1
|
Rajesh AE, Olvera-Barrios A, Warwick AN, Wu Y, Stuart KV, Biradar MI, Ung CY, Khawaja AP, Luben R, Foster PJ, Cleland CR, Makupa WU, Denniston AK, Burton MJ, Bastawrous A, Keane PA, Chia MA, Turner AW, Lee CS, Tufail A, Lee AY, Egan C. Machine learning derived retinal pigment score from ophthalmic imaging shows ethnicity is not biology. Nat Commun 2025; 16:60. [PMID: 39746957 PMCID: PMC11696055 DOI: 10.1038/s41467-024-55198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Few metrics exist to describe phenotypic diversity within ophthalmic imaging datasets, with researchers often using ethnicity as a surrogate marker for biological variability. We derived a continuous, measured metric, the retinal pigment score (RPS), that quantifies the degree of pigmentation from a colour fundus photograph of the eye. RPS was validated using two large epidemiological studies with demographic and genetic data (UK Biobank and EPIC-Norfolk Study) and reproduced in a Tanzanian, an Australian, and a Chinese dataset. A genome-wide association study (GWAS) of RPS from UK Biobank identified 20 loci with known associations with skin, iris and hair pigmentation, of which eight were replicated in the EPIC-Norfolk cohort. There was a strong association between RPS and ethnicity, however, there was substantial overlap between each ethnicity and the respective distributions of RPS scores. RPS decouples traditional demographic variables from clinical imaging characteristics. RPS may serve as a useful metric to quantify the diversity of the training, validation, and testing datasets used in the development of AI algorithms to ensure adequate inclusion and explainability of the model performance, critical in evaluating all currently deployed AI models. The code to derive RPS is publicly available at: https://github.com/uw-biomedical-ml/retinal-pigmentation-score .
Collapse
Affiliation(s)
- Anand E Rajesh
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Abraham Olvera-Barrios
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
| | - Alasdair N Warwick
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
- University College London Institute of Cardiovascular Science, London, UK
| | - Yue Wu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
| | - Mahantesh I Biradar
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
| | | | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Robert Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
| | - Charles R Cleland
- International Centre for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Eye Department, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
| | - William U Makupa
- Eye Department, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
| | | | - Matthew J Burton
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
- International Centre for Eye Health, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew Bastawrous
- Eye Department, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
- PEEK Vision, Berkhamsted, UK
| | - Pearse A Keane
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
| | - Mark A Chia
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
| | - Angus W Turner
- Lions Eye Institute, University of Western Australia, Nedlands, WA, Australia
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Adnan Tufail
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK
| | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Catherine Egan
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & University College London Institute of Ophthalmology, London, UK.
| |
Collapse
|
2
|
Hosseinpour Mashkani SM, Bishop DP, Westerhausen MT, Adlard PA, Golzan SM. Alterations in zinc, copper, and iron levels in the retina and brain of Alzheimer's disease patients and the APP/PS1 mouse model. Metallomics 2024; 16:mfae053. [PMID: 39520546 PMCID: PMC11630249 DOI: 10.1093/mtomcs/mfae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Transition metals like copper (Cu), iron (Fe), and zinc (Zn) are vital for normal central nervous system function and are also linked to neurodegeneration, particularly in the onset and progression of Alzheimer's disease (AD). Their alterations in AD, identified prior to amyloid plaque aggregation, offer a unique target for staging pre-amyloid AD. However, analysing their levels in the brain is extremely challenging, necessitating the development of alternative approaches. Here, we utilized laser ablation-inductively coupled plasma-mass spectrometry and solution nebulization-inductively coupled plasma-mass spectrometry to quantitatively measure Cu, Fe, and Zn concentrations in the retina and hippocampus samples obtained from human donors (i.e. AD and healthy controls), and in the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD and wild-type (WT) controls, aged 9 and 18 months. Our findings revealed significantly elevated Cu, Fe, and Zn levels in the retina (*P < .05, P < .01, and P < .001) and hippocampus (*P < .05, *P < .05, and *P < .05) of human AD samples compared to healthy controls. Conversely, APP/PS1 mouse models exhibited notably lower metal levels in the same regions compared to WT mice-Cu, Fe, and Zn levels in the retina (**P < .01, *P < .05, and *P < .05) and hippocampus (**P < .01, **P < .01, and *P < .05). The contrasting metal profiles in human and mouse samples, yet similar patterns within each species' retina and brain, suggest the retina mirrors cerebral metal dyshomoeostasis in AD. Our findings lay the groundwork for staging pre-AD pathophysiology through assessment of transition metal levels in the retina.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
| | - S Mojtaba Golzan
- Vision Science Group (Orthoptics Discipline), Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Trlin P, Gong J, Tran KKN, Wong VHY, Lee PY, Hoang A, Zhao D, Beauchamp LC, Lim JKH, Metha A, Barnham KJ, Finkelstein DI, Bui BV, Bedggood P, Nguyen CTO. Retinal hyperspectral imaging in mouse models of Parkinson's disease and healthy aging. Sci Rep 2024; 14:16089. [PMID: 38997314 PMCID: PMC11245556 DOI: 10.1038/s41598-024-66284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Retinal hyperspectral imaging (HSI) is a non-invasive in vivo approach that has shown promise in Alzheimer's disease. Parkinson's disease is another neurodegenerative disease where brain pathobiology such as alpha-synuclein and iron overaccumulation have been implicated in the retina. However, it remains unknown whether HSI is altered in in vivo models of Parkinson's disease, whether it differs from healthy aging, and the mechanisms which drive these changes. To address this, we conducted HSI in two mouse models of Parkinson's disease across different ages; an alpha-synuclein overaccumulation model (hA53T transgenic line M83, A53T) and an iron deposition model (Tau knock out, TauKO). In comparison to wild-type littermates the A53T and TauKO mice both demonstrated increased reflectivity at short wavelengths ~ 450 to 600 nm. In contrast, healthy aging in three background strains exhibited the opposite effect, a decreased reflectance in the short wavelength spectrum. We also demonstrate that the Parkinson's hyperspectral signature is similar to that from an Alzheimer's disease model, 5xFAD mice. Multivariate analyses of HSI were significant when plotted against age. Moreover, when alpha-synuclein, iron or retinal nerve fibre layer thickness were added as a cofactor this improved the R2 values of the correlations in certain groups. This study demonstrates an in vivo hyperspectral signature in Parkinson's disease that is consistent in two mouse models and is distinct from healthy aging. There is also a suggestion that factors including retinal deposition of alpha-synuclein and iron may play a role in driving the Parkinson's disease hyperspectral profile and retinal nerve fibre layer thickness in advanced aging. These findings suggest that HSI may be a promising translation tool in Parkinson's disease.
Collapse
Affiliation(s)
- Paul Trlin
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jenny Gong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Katie K N Tran
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anh Hoang
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leah C Beauchamp
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Discipline of Optometry, School of Allied Health, University of Western Australia, Crawley, WA, 6009, Australia
| | - Andrew Metha
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Phillip Bedggood
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Duman Sastim D, Elboga G, Elboga U, Gungor K. Evaluation of the relationship between FDG-PET hypometabolism and retinal layer thickness in patients with Alzheimer's disease. Acta Neurol Belg 2024; 124:987-993. [PMID: 38546932 DOI: 10.1007/s13760-024-02511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/23/2024] [Indexed: 06/01/2024]
Abstract
We aimed to investigate the diagnostic value of Optical coherence tomography (OCT) in Alzheimer's disease (AD) and to assess the correlation between OCT and fluorodeoxyglucose (FDG)-positron emission tomography (PET) which shows high diagnostic agreement with findings from postmortem histopathology-the gold standard method. Patients who were diagnosed with AD-related dementia were selected for the study. Patients with a mini mental test (MMT) score between 18 and 23 were included in the study (n = 31). Volunteers with MMT ≥ 28 and no cognitive impairment were included in the study as the control group (n = 31). OCT imaging was performed in the patient and control groups after detailed ophthalmological examinations including visual acuity and intraocular pressure measurements. Brain glucose metabolism measurement was performed using 18 F-FDG PET/computed tomography. When adjusted for age and sex, mean retinal nerve fiber layer thickness (RNFL) thickness showed a significant difference between groups and the RNFL thickness in the superior temporal and superior nasal quadrants in AD-related mild dementia group showed a significant difference (p < 0.05). Furthermore, only the RNFL thickness in the inferior nasal quadrant of the right eye showed a significant difference between the groups (p = 0.016). It is thought that OCT is a promising imaging method in the elderly population due to its low-cost, non-invasive and easily applicability, and therefore, it may contribute in the future as a tool in the periodic follow-up of patients diagnosed with AD.
Collapse
Affiliation(s)
- Demet Duman Sastim
- Department of Psychiatry, Tunceli State Hospital, Merkez, 62000, Merkez/Tunceli, Turkey.
| | - Gulcin Elboga
- Faculty of Medicine, Department of Psychiatry, Gaziantep University, Gaziantep, Turkey
| | - Umut Elboga
- Faculty of Medicine, Department of Nuclear Medicine, Gaziantep University, Gaziantep, Turkey
| | - Kivanc Gungor
- Faculty of Medicine, Department of Ophthalmology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
5
|
Hasan MM, Phu J, Sowmya A, Meijering E, Kalloniatis M. Artificial intelligence in the diagnosis of glaucoma and neurodegenerative diseases. Clin Exp Optom 2024; 107:130-146. [PMID: 37674264 DOI: 10.1080/08164622.2023.2235346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/07/2023] [Indexed: 09/08/2023] Open
Abstract
Artificial Intelligence is a rapidly expanding field within computer science that encompasses the emulation of human intelligence by machines. Machine learning and deep learning - two primary data-driven pattern analysis approaches under the umbrella of artificial intelligence - has created considerable interest in the last few decades. The evolution of technology has resulted in a substantial amount of artificial intelligence research on ophthalmic and neurodegenerative disease diagnosis using retinal images. Various artificial intelligence-based techniques have been used for diagnostic purposes, including traditional machine learning, deep learning, and their combinations. Presented here is a review of the literature covering the last 10 years on this topic, discussing the use of artificial intelligence in analysing data from different modalities and their combinations for the diagnosis of glaucoma and neurodegenerative diseases. The performance of published artificial intelligence methods varies due to several factors, yet the results suggest that such methods can potentially facilitate clinical diagnosis. Generally, the accuracy of artificial intelligence-assisted diagnosis ranges from 67-98%, and the area under the sensitivity-specificity curve (AUC) ranges from 0.71-0.98, which outperforms typical human performance of 71.5% accuracy and 0.86 area under the curve. This indicates that artificial intelligence-based tools can provide clinicians with useful information that would assist in providing improved diagnosis. The review suggests that there is room for improvement of existing artificial intelligence-based models using retinal imaging modalities before they are incorporated into clinical practice.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- School of Computer Science and Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | - Jack Phu
- School of Optometry and Vision Science, University of New South Wales, Kensington, Australia
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| | - Arcot Sowmya
- School of Computer Science and Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Kensington, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
6
|
Li R, Hui Y, Li J, Zhang X, Zhang S, Lv B, Ni Y, Li X, Liang X, Yang L, Lv H, Li H, Yang Y, Liu G, Xie G, Wu S, Wang Z. The association of global vessel width with cognitive decline and cerebral small vessel disease burden in the KaiLuan study. Quant Imaging Med Surg 2024; 14:932-943. [PMID: 38223087 PMCID: PMC10784051 DOI: 10.21037/qims-23-927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Background As the retinal microvasculature shares similarities with the cerebral microvasculature, numerous studies have shown that retinal vascular is associated with cognitive decline. In addition, several population-based studies have confirmed the association between retinal vascular and cerebral small vessel disease (CSVD) burden. However, the association of retinal vascular with CSVD burden as well as cognitive function has not been explored simultaneously. This study investigated the relations of retinal microvascular parameters (RMPs) with CSVD burden and cognitive function. Methods We conducted a cross-sectional study of participants in the KaiLuan study. Data were collected from subjects aged ≥18 years old who could complete retinal photography and brain magnetic resonance imaging (MRI) between December 2020 to October 2021 in the Kailuan community of Tangshan. RMPs were evaluated using a deep learning system. The cognitive function was measured using the Montreal Cognitive Assessment (MoCA). We conducted logistic regression models, and mediation analysis to evaluate the associations of RMPs with CSVD burden and cognitive decline. Results Of the 905 subjects (mean age: 55.42±12.02 years, 54.5% female), 488 (53.9%) were classified with cognitive decline. The fractal dimension (FD) [odds ratio (OR), 0.098, 95% confidence interval (CI): 0.015-0.639, P=0.015] and global vein width (OR: 1.010, 95% CI: 1.005-1.015, P<0.001) were independent risk factors for cognitive decline after adjustment for potential confounding factors. The global artery width was significantly associated with severe CSVD burden (OR: 0.985, 95% CI: 0.974-0.997, P=0.013). The global vein width was sightly associated with severe CSVD burden (OR: 1.005, 95% CI: 1.000-1.010, P=0.050) after adjusting for potential confounders. The multivariable-adjusted odds ratios (95% CI) in highest tertile versus lowest tertile of global vein width were 1.290 (0.901-1.847) for cognitive decline and 1.546 (1.004-2.290) for severe CSVD burden, respectively. Moreover, CSVD burden played a partial mediating role in the association between global vein width and cognitive function (mediating effect 6.59%). Conclusions RMPs are associated with cognitive decline and the development of CSVD. A proportion of the association between global vein width and cognitive decline may be attributed to the presence of CSVD burden.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Hui
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Shun Zhang
- Department of Psychiatry, Kailuan Mental Health Centre, Tangshan, China
| | - Bin Lv
- Ping An Healthcare Technology, Beijing, China
| | - Yuan Ni
- Ping An Healthcare Technology, Beijing, China
| | - Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoliang Liang
- Department of Psychiatry, Kailuan Mental Health Centre, Tangshan, China
| | - Ling Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyang Li
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangfeng Liu
- Department of Ophthalmology, Peking University International Hospital, Beijing, China
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Wisely CE, Richardson A, Henao R, Robbins CB, Ma JP, Wang D, Johnson KG, Liu AJ, Grewal DS, Fekrat S. A Convolutional Neural Network Using Multimodal Retinal Imaging for Differentiation of Mild Cognitive Impairment from Normal Cognition. OPHTHALMOLOGY SCIENCE 2024; 4:100355. [PMID: 37877003 PMCID: PMC10591009 DOI: 10.1016/j.xops.2023.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 10/26/2023]
Abstract
Purpose To develop a machine learning tool capable of differentiating eyes of subjects with normal cognition from those with mild cognitive impairment (MCI) using OCT and OCT angiography (OCTA). Design Evaluation of a diagnostic technology. Participants Subjects with normal cognition were compared to subjects with MCI. Methods A multimodal convolutional neural network (CNN) was built to predict likelihood of MCI from ganglion cell-inner plexiform layer (GC-IPL) thickness maps, OCTA images, and quantitative data including patient characteristics. Main Outcome Measures Area under the receiver operating characteristic curve (AUC) and summaries of the confusion matrix (sensitivity and specificity) were used as performance metrics for the prediction outputs of the CNN. Results Images from 236 eyes of 129 cognitively normal subjects and 154 eyes of 80 MCI subjects were used for training, validating, and testing the CNN. When applied to the independent test set using inputs including GC-IPL thickness maps, OCTA images, and quantitative OCT and OCTA data, the AUC value for the CNN was 0.809 (95% confidence interval [CI]: 0.681-0.937). This model achieved a sensitivity of 79% and specificity of 83%. The AUC value for GC-IPL thickness maps alone was 0.681 (95% CI: 0.529-0.832), for OCTA images alone was 0.625 (95% CI: 0.466-0.784) and for both GC-IPL maps and OCTA images was 0.693 (95% CI: 0.543-0.843). Models using quantitative data alone were also tested, with a model using quantitative data derived from images, 0.960 (95% CI: 0.902-1.00), outperforming a model using demographic data alone, 0.580 (95% CI: 0.417-0.742). Conclusions This novel CNN was able to identify an MCI diagnosis using an independent test set comprised of OCT and OCTA images and quantitative data. The GC-IPL thickness maps provided more useful decision support than the OCTA images. The addition of quantitative data inputs also provided significant decision support to the CNN to identify individuals with MCI. Quantitative imaging metrics provided superior decision support than demographic data. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- C. Ellis Wisely
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
| | - Alexander Richardson
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Ricardo Henao
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Cason B. Robbins
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
| | - Justin P. Ma
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
| | - Dong Wang
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Kim G. Johnson
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Andy J. Liu
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Dilraj S. Grewal
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
| | - Sharon Fekrat
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- iMIND Study Group, Duke University School of Medicine, Durham, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
8
|
Donato L, Mordà D, Scimone C, Alibrandi S, D’Angelo R, Sidoti A. Bridging Retinal and Cerebral Neurodegeneration: A Focus on Crosslinks between Alzheimer-Perusini's Disease and Retinal Dystrophies. Biomedicines 2023; 11:3258. [PMID: 38137479 PMCID: PMC10741418 DOI: 10.3390/biomedicines11123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In the early stages of Alzheimer-Perusini's disease (AD), individuals often experience vision-related issues such as color vision impairment, reduced contrast sensitivity, and visual acuity problems. As the disease progresses, there is a connection with glaucoma and age-related macular degeneration (AMD) leading to retinal cell death. The retina's involvement suggests a link with the hippocampus, where most AD forms start. A thinning of the retinal nerve fiber layer (RNFL) due to the loss of retinal ganglion cells (RGCs) is seen as a potential AD diagnostic marker using electroretinography (ERG) and optical coherence tomography (OCT). Amyloid beta fragments (Aβ), found in the eye's vitreous and aqueous humor, are also present in the cerebrospinal fluid (CSF) and accumulate in the retina. Aβ is known to cause tau hyperphosphorylation, leading to its buildup in various retinal layers. However, diseases like AD are now seen as mixed proteinopathies, with deposits of the prion protein (PrP) and α-synuclein found in affected brains and retinas. Glial cells, especially microglial cells, play a crucial role in these diseases, maintaining immunoproteostasis. Studies have shown similarities between retinal and brain microglia in terms of transcription factor expression and morphotypes. All these findings constitute a good start to achieving better comprehension of neurodegeneration in both the eye and the brain. New insights will be able to bring the scientific community closer to specific disease-modifying therapies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
- Department of Veterinary Sciences, University of Messina, 98122 Messina, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
| |
Collapse
|
9
|
Shen L, Tang X, Zhang H, Zhuang H, Lin J, Zhao Y, Liu X. Targeted Metabolomic Analysis of the Eye Tissue of Triple Transgenic Alzheimer's Disease Mice at an Early Pathological Stage. Mol Neurobiol 2023; 60:7309-7328. [PMID: 37553545 DOI: 10.1007/s12035-023-03533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease in older people. Despite some consensus on pathogenesis of AD established by previous researches, further elucidation is still required for better understanding. This study analyzed the eye tissues of 2- and 6-month-old triple transgenic AD (3 × Tg-AD) male mice and age-sex-matched wild-type (WT) mice using a targeted metabolomics approach. Compared with WT mice, 20 and 44 differential metabolites were identified in 2- and 6-month-old AD mice, respectively. They were associated with purine metabolism, pantothenate and CoA biosynthesis, pyruvate metabolism, lysine degradation, glycolysis/gluconeogenesis, and pyrimidine metabolism pathways. Among them, 8 metabolites presented differences in both the two groups, and 5 of them showed constant trend of change. The results indicated that the eye tissues of 3 × Tg-AD mice underwent changes in the early stages of the disease, with changes in metabolites observed at 2 months of age and more pronounced at 6 months of age, which is consistent with our previous studies on hippocampal targeted metabolomics in 3 × Tg-AD mice. Therefore, a joint analysis of data from this study and previous hippocampal study was performed, and the differential metabolites and their associated mechanisms were similar in eye and hippocampal tissues, but with tissue specificity.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
- Shenzhen Key Laboratory of Marine, Biotechnology, and Ecology, Shenzhen, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
10
|
Danesh-Meyer HV. An Eye on the Brain: Adding Insight to Injury. Am J Ophthalmol 2023; 255:A1-A3. [PMID: 37499892 DOI: 10.1016/j.ajo.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Helen V Danesh-Meyer
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand.
| |
Collapse
|
11
|
Zuhair V, Rangwala HS, Mughal ZUN, Fatima H, Shaikh AT, Mussarat A. Viewing the Brain Through Retina: A New Avenue for Early Diagnosis of Alzheimer's Disease. Ann Neurosci 2023; 30:219-221. [PMID: 38020399 PMCID: PMC10662277 DOI: 10.1177/09727531231190992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Varisha Zuhair
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | | - Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | - Abdullah Mussarat
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
12
|
Tomasoni M, Beyeler MJ, Vela SO, Mounier N, Porcu E, Corre T, Krefl D, Button AL, Abouzeid H, Lazaros K, Bochud M, Schlingemann R, Bergin C, Bergmann S. Genome-wide Association Studies of Retinal Vessel Tortuosity Identify Numerous Novel Loci Revealing Genes and Pathways Associated With Ocular and Cardiometabolic Diseases. OPHTHALMOLOGY SCIENCE 2023; 3:100288. [PMID: 37131961 PMCID: PMC10149284 DOI: 10.1016/j.xops.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Purpose To identify novel susceptibility loci for retinal vascular tortuosity, to better understand the molecular mechanisms modulating this trait, and reveal causal relationships with diseases and their risk factors. Design Genome-wide Association Studies (GWAS) of vascular tortuosity of retinal arteries and veins followed by replication meta-analysis and Mendelian randomization (MR). Participants We analyzed 116 639 fundus images of suitable quality from 63 662 participants from 3 cohorts, namely the UK Biobank (n = 62 751), the Swiss Kidney Project on Genes in Hypertension (n = 397), and OphtalmoLaus (n = 512). Methods Using a fully automated retina image processing pipeline to annotate vessels and a deep learning algorithm to determine the vessel type, we computed the median arterial, venous and combined vessel tortuosity measured by the distance factor (the length of a vessel segment over its chord length), as well as by 6 alternative measures that integrate over vessel curvature. We then performed the largest GWAS of these traits to date and assessed gene set enrichment using the novel high-precision statistical method PascalX. Main Outcome Measure We evaluated the genetic association of retinal tortuosity, measured by the distance factor. Results Higher retinal tortuosity was significantly associated with higher incidence of angina, myocardial infarction, stroke, deep vein thrombosis, and hypertension. We identified 175 significantly associated genetic loci in the UK Biobank; 173 of these were novel and 4 replicated in our second, much smaller, metacohort. We estimated heritability at ∼25% using linkage disequilibrium score regression. Vessel type specific GWAS revealed 116 loci for arteries and 63 for veins. Genes with significant association signals included COL4A2, ACTN4, LGALS4, LGALS7, LGALS7B, TNS1, MAP4K1, EIF3K, CAPN12, ECH1, and SYNPO2. These tortuosity genes were overexpressed in arteries and heart muscle and linked to pathways related to the structural properties of the vasculature. We demonstrated that retinal tortuosity loci served pleiotropic functions as cardiometabolic disease variants and risk factors. Concordantly, MR revealed causal effects between tortuosity, body mass index, and low-density lipoprotein. Conclusions Several alleles associated with retinal vessel tortuosity suggest a common genetic architecture of this trait with ocular diseases (glaucoma, myopia), cardiovascular diseases, and metabolic syndrome. Our results shed new light on the genetics of vascular diseases and their pathomechanisms and highlight how GWASs and heritability can be used to improve phenotype extraction from high-dimensional data, such as images. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Mattia Tomasoni
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michael Johannes Beyeler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sofia Ortin Vela
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Tanguy Corre
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Daniel Krefl
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexander Luke Button
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hana Abouzeid
- Division of Ophthalmology, Geneva University Hospitals, Geneva, Switzerland
- Clinical Eye Research Center Memorial Adolphe de Rothschild, Geneva, Switzerland
| | | | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Reinier Schlingemann
- Jules-Gonin Eye Hospital, Lausanne, Switzerland
- Department of Ophthalmology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Delavari P, Ozturan G, Yuan L, Yilmaz Ö, Oruc I. Artificial intelligence, explainability, and the scientific method: A proof-of-concept study on novel retinal biomarker discovery. PNAS NEXUS 2023; 2:pgad290. [PMID: 37746328 PMCID: PMC10517742 DOI: 10.1093/pnasnexus/pgad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
We present a structured approach to combine explainability of artificial intelligence (AI) with the scientific method for scientific discovery. We demonstrate the utility of this approach in a proof-of-concept study where we uncover biomarkers from a convolutional neural network (CNN) model trained to classify patient sex in retinal images. This is a trait that is not currently recognized by diagnosticians in retinal images, yet, one successfully classified by CNNs. Our methodology consists of four phases: In Phase 1, CNN development, we train a visual geometry group (VGG) model to recognize patient sex in retinal images. In Phase 2, Inspiration, we review visualizations obtained from post hoc interpretability tools to make observations, and articulate exploratory hypotheses. Here, we listed 14 hypotheses retinal sex differences. In Phase 3, Exploration, we test all exploratory hypotheses on an independent dataset. Out of 14 exploratory hypotheses, nine revealed significant differences. In Phase 4, Verification, we re-tested the nine flagged hypotheses on a new dataset. Five were verified, revealing (i) significantly greater length, (ii) more nodes, and (iii) more branches of retinal vasculature, (iv) greater retinal area covered by the vessels in the superior temporal quadrant, and (v) darker peripapillary region in male eyes. Finally, we trained a group of ophthalmologists (N = 26 ) to recognize the novel retinal features for sex classification. While their pretraining performance was not different from chance level or the performance of a nonexpert group (N = 31 ), after training, their performance increased significantly (p < 0.001 , d = 2.63 ). These findings showcase the potential for retinal biomarker discovery through CNN applications, with the added utility of empowering medical practitioners with new diagnostic capabilities to enhance their clinical toolkit.
Collapse
Affiliation(s)
- Parsa Delavari
- Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, V5Z 0A6 BC, Canada
- Neuroscience, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3 BC, Canada
| | - Gulcenur Ozturan
- Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, V5Z 0A6 BC, Canada
| | - Lei Yuan
- Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, V5Z 0A6 BC, Canada
| | - Özgür Yilmaz
- Mathematics, University of British Columbia, Vancouver, V6T 1Z2 BC, Canada
| | - Ipek Oruc
- Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, V5Z 0A6 BC, Canada
- Neuroscience, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3 BC, Canada
| |
Collapse
|
14
|
Vij R, Arora S. A systematic survey of advances in retinal imaging modalities for Alzheimer's disease diagnosis. Metab Brain Dis 2022; 37:2213-2243. [PMID: 35290546 DOI: 10.1007/s11011-022-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Recent advances in retinal imaging pathophysiology have shown a new function for biomarkers in Alzheimer's disease diagnosis and prognosis. The significant improvements in Optical coherence tomography (OCT) retinal imaging have led to significant clinical translation, particularly in Alzheimer's disease detection. This systematic review will provide a comprehensive overview of retinal imaging in clinical applications, with a special focus on biomarker analysis for use in Alzheimer's disease detection. Articles on OCT retinal imaging in Alzheimer's disease diagnosis were identified in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until March 2021. Those studies using simultaneous retinal imaging acquisition were chosen, while those using sequential techniques were rejected. "Alzheimer's disease" and "Dementia" were searched alone and in combination with "OCT" and "retinal imaging". Approximately 1000 publications were searched, and after deleting duplicate articles, 145 relevant studies focused on the diagnosis of Alzheimer's disease utilizing retinal imaging were chosen for study. OCT has recently been demonstrated to be a valuable technique in clinical practice as according to this survey, 57% of the researchers employed optical coherence tomography, 19% used ocular fundus imaging, 13% used scanning laser ophthalmoscopy, and 11% have used multimodal imaging to diagnose Alzheimer disease. Retinal imaging has become an important diagnostic technique for Alzheimer's disease. Given the scarcity of available literature, it is clear that future prospective trials involving larger and more homogeneous groups are necessary, and the work can be expanded by evaluating its significance utilizing a machine-learning platform rather than simply using statistical methodologies.
Collapse
Affiliation(s)
- Richa Vij
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sakshi Arora
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
15
|
Liu X, Sun P, Yang J, Fan Y. Biomarkers involved in the pathogenesis of cerebral small-vessel disease. Front Neurol 2022; 13:969185. [PMID: 36119691 PMCID: PMC9475115 DOI: 10.3389/fneur.2022.969185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral small-vessel disease (CSVD) has been found to have a strong association with vascular cognitive impairment (VCI) and functional loss in elderly patients. At present, the diagnosis of CSVD mainly relies on brain neuroimaging markers, but they cannot fully reflect the overall picture of the disease. Currently, some biomarkers were found to be related to CSVD, but the underlying mechanisms remain unclear. We aimed to systematically review and summarize studies on the progress of biomarkers related to the pathogenesis of CSVD, which is mainly the relationship between these indicators and neuroimaging markers of CSVD. Concerning the pathophysiological mechanism of CSVD, the biomarkers of CSVD have been described as several categories related to sporadic and genetic factors. Monitoring of biomarkers might contribute to the early diagnosis and progression prediction of CSVD, thus providing ideas for better diagnosis and treatment of CSVD.
Collapse
|
16
|
Borràs C, Mercer A, Sirisi S, Alcolea D, Escolà-Gil JC, Blanco-Vaca F, Tondo M. HDL-like-Mediated Cell Cholesterol Trafficking in the Central Nervous System and Alzheimer's Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms23169356. [PMID: 36012637 PMCID: PMC9409363 DOI: 10.3390/ijms23169356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
The main aim of this work is to review the mechanisms via which high-density lipoprotein (HDL)-mediated cholesterol trafficking through the central nervous system (CNS) occurs in the context of Alzheimer’s disease (AD). Alzheimer’s disease is characterized by the accumulation of extracellular amyloid beta (Aβ) and abnormally hyperphosphorylated intracellular tau filaments in neurons. Cholesterol metabolism has been extensively implicated in the pathogenesis of AD through biological, epidemiological, and genetic studies, with the APOE gene being the most reproducible genetic risk factor for the development of AD. This manuscript explores how HDL-mediated cholesterol is transported in the CNS, with a special emphasis on its relationship to Aβ peptide accumulation and apolipoprotein E (ApoE)-mediated cholesterol transport. Indeed, we reviewed all existing works exploring HDL-like-mediated cholesterol efflux and cholesterol uptake in the context of AD pathogenesis. Existing data seem to point in the direction of decreased cholesterol efflux and the impaired entry of cholesterol into neurons among patients with AD, which could be related to impaired Aβ clearance and tau protein accumulation. However, most of the reviewed studies have been performed in cells that are not physiologically relevant for CNS pathology, representing a major flaw in this field. The ApoE4 genotype seems to be a disruptive element in HDL-like-mediated cholesterol transport through the brain. Overall, further investigations are needed to clarify the role of cholesterol trafficking in AD pathogenesis.
Collapse
Affiliation(s)
- Carla Borràs
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Aina Mercer
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
| | - Sònia Sirisi
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Daniel Alcolea
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- CIBERNED, ISCIII, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Correspondence: (J.C.E.-G.); (M.T.); Tel.: +34-93-553-7358 (J.C.E.-G. & M.T.)
| | - Francisco Blanco-Vaca
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Mireia Tondo
- Institut d’Investigació Biomèdica Sant Pau (IIB), Sant Quintí 77-79, 08041 Barcelona, Spain
- CIBERDEM, ISCIII, 28029 Madrid, Spain
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Correspondence: (J.C.E.-G.); (M.T.); Tel.: +34-93-553-7358 (J.C.E.-G. & M.T.)
| |
Collapse
|
17
|
Matei N, Leahy S, Blair NP, Burford J, Rahimi M, Shahidi M. Retinal Vascular Physiology Biomarkers in a 5XFAD Mouse Model of Alzheimer's Disease. Cells 2022; 11:2413. [PMID: 35954257 PMCID: PMC9368483 DOI: 10.3390/cells11152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that affects the brain and retina and lacks reliable biomarkers for early diagnosis. As amyloid beta (Aβ) manifestations emerge prior to clinical symptoms and plaques of amyloid may cause vascular damage, identification of retinal vascular biomarkers may improve knowledge of AD pathophysiology and potentially serve as therapeutic targets. The purpose of the current study was to test the hypothesis that retinal hemodynamic and oxygen metrics are altered in 5XFAD mice. METHODS Thirty-two male mice were evaluated at 3 months of age: sixteen 5XFAD transgenic and sixteen wild-type mice. Spectral-domain optical coherence tomography, vascular oxygen tension, and blood flow imaging were performed in one eye of each mouse. After imaging, the imaged and fellow retinal tissues were submitted for histological sectioning and amyloid protein analysis, respectively. Protein analysis was also performed on the brain tissues. RESULTS Retinal physiological changes in venous diameter and blood velocity, arterial and venous oxygen contents, coupled with anatomical alterations in the thickness of retinal cell layers were detected in 5XFAD mice. Moreover, an increase in Aβ42 levels in both the retina and brain tissues was observed in 5XFAD mice. Significant changes in retinal oxygen delivery, metabolism, or extraction fraction were not detected. Based on compiled data from both groups, arterial oxygen content was inversely related to venous blood velocity and nerve fiber/ganglion cell layer thickness. CONCLUSIONS Concurrent alterations in retinal hemodynamic and oxygen metrics, thickness, and tissue Aβ42 protein levels in 5XFAD mice at 3 months of age corresponded to previously reported findings in human AD. Overall, these results suggest that this mouse model can be utilized for studying pathophysiology of AD and evaluating potential therapies.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Norman P. Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James Burford
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mansour Rahimi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Biffi E, Turple Z, Chung J, Biffi A. Retinal biomarkers of Cerebral Small Vessel Disease: A systematic review. PLoS One 2022; 17:e0266974. [PMID: 35421194 PMCID: PMC9009626 DOI: 10.1371/journal.pone.0266974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Cerebral Small Vessel Disease (CSVD), a progressive degenerative disorder of small caliber cerebral vessels, represents a major contributor to stroke and vascular dementia incidence worldwide. We sought to conduct a systematic review of the role of retinal biomarkers in diagnosis and characterization of CSVD. METHODS We conducted a systematic review of MEDLINE, PubMed, Scopus, the Cochrane Library Database, and Web of Science. We identified studies of sporadic CSVD (including CSVD not otherwise specified, Cerebral Amyloid Angiopathy, and Hypertensive Arteriopathy) and the most common familial CSVD disorders (including CADASIL, Fabry disease, and MELAS). Included studies used one or more of the following tools: visual fields assessment, fundus photography, Optical Coherence Tomography and OCT Angiography, Fluorescein Angiography, Electroretinography, and Visual Evoked Potentials. RESULTS We identified 48 studies of retinal biomarkers in CSVD, including 9147 cases and 12276 controls. Abnormalities in retinal vessel diameter (11 reports, n = 11391 participants), increased retinal vessel tortuosity (11 reports, n = 617 participants), decreased vessel fractal dimension (5 reports, n = 1597 participants) and decreased retinal nerve fiber layer thickness (5 reports, n = 4509 participants) were the biomarkers most frequently associated with CSVD. We identified no reports conducting longitudinal retinal evaluations of CSVD, or systematically evaluating diagnostic performance. CONCLUSION Multiple retinal biomarkers were associated with CSVD or its validated neuroimaging biomarkers. However, existing evidence is limited by several shortcomings, chiefly small sample size and unstandardized approaches to both biomarkers' capture and CSVD characterization. Additional larger studies will be required to definitively determine whether retinal biomarkers could be successfully incorporated in future research efforts and clinical practice.
Collapse
Affiliation(s)
- Elena Biffi
- New England College of Optometry, Boston, MA, United States of America
- * E-mail:
| | - Zachary Turple
- New England College of Optometry, Boston, MA, United States of America
| | - Jessica Chung
- New England College of Optometry, Boston, MA, United States of America
| | - Alessandro Biffi
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
19
|
Li TR, Yang Q, Hu X, Han Y. Biomarkers and Tools for Predicting Alzheimer's Disease in the Preclinical Stage. Curr Neuropharmacol 2022; 20:713-737. [PMID: 34030620 PMCID: PMC9878962 DOI: 10.2174/1570159x19666210524153901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the only leading cause of death for which no disease-modifying therapy is currently available. Over the past decade, a string of disappointing clinical trial results has forced us to shift our focus to the preclinical stage of AD, which represents the most promising therapeutic window. However, the accurate diagnosis of preclinical AD requires the presence of brain β- amyloid deposition determined by cerebrospinal fluid or amyloid-positron emission tomography, significantly limiting routine screening and diagnosis in non-tertiary hospital settings. Thus, an easily accessible marker or tool with high sensitivity and specificity is highly needed. Recently, it has been discovered that individuals in the late stage of preclinical AD may not be truly "asymptomatic" in that they may have already developed subtle or subjective cognitive decline. In addition, advances in bloodderived biomarker studies have also allowed the detection of pathologic changes in preclinical AD. Exosomes, as cell-to-cell communication messengers, can reflect the functional changes of their source cell. Methodological advances have made it possible to extract brain-derived exosomes from peripheral blood, making exosomes an emerging biomarker carrier and liquid biopsy tool for preclinical AD. The eye and its associated structures have rich sensory-motor innervation. In this regard, studies have indicated that they may also provide reliable markers. Here, our report covers the current state of knowledge of neuropsychological and eye tests as screening tools for preclinical AD and assesses the value of blood and brain-derived exosomes as carriers of biomarkers in conjunction with the current diagnostic paradigm.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Qin Yang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xiaochen Hu
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, 50924, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China;,Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China;,National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China;,School of Biomedical Engineering, Hainan University, Haikou, 570228, China;,Address correspondence to this author at the Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Tel: +86 13621011941; E-mail:
| |
Collapse
|
20
|
Martinelli I, Tayebati SK, Tomassoni D, Nittari G, Roy P, Amenta F. Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells 2022; 11:cells11071120. [PMID: 35406683 PMCID: PMC8997725 DOI: 10.3390/cells11071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood–brain barrier (BBB) and blood–retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
- Correspondence:
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| |
Collapse
|
21
|
Liu J, Baum L, Yu S, Lin Y, Xiong G, Chang RCC, So KF, Chiu K. Preservation of Retinal Function Through Synaptic Stabilization in Alzheimer's Disease Model Mouse Retina by Lycium Barbarum Extracts. Front Aging Neurosci 2022; 13:788798. [PMID: 35095474 PMCID: PMC8792986 DOI: 10.3389/fnagi.2021.788798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 01/11/2023] Open
Abstract
In Alzheimer's disease (AD), amyloid β deposition-induced hippocampal synaptic dysfunction generally begins prior to neuronal degeneration and memory impairment. Lycium barbarum extracts (LBE) have been demonstrated to be neuroprotective in various animal models of neurodegeneration. In this study, we aimed to investigate the effects of LBE on the synapse loss in AD through the avenue of the retina in a triple transgenic mouse model of AD (3xTg-AD). We fed 3xTg-AD mice with low (200 mg/kg) or high (2 g/kg) dose hydrophilic LBE daily for 2 months from the starting age of 4- or 6-month-old. For those started at 6 month age, at 1 month (though not 2 months) after starting treatment, mice given high dose LBE showed a significant increase of a wave and b wave in scotopic ERG. After 2 months of treatment with high dose LBE, calpain-2, calpain-5, and the oxidative RNA marker 8-OHG were downregulated, and presynaptic densities in the inner plexiform layer but not the outer plexiform layer of the retina were significantly increased, suggesting the presynaptic structure of retina was preserved. Our results indicate that LBE feeding may preserve synapse stability in the retina of 3xTg-AD mice, probably by decreasing both oxidative stress and intracellular calcium influx. Thus, LBE might have potential as a neuroprotectant for AD through synapse preservation.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Larry Baum
- Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shasha Yu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Eye Hospital, Nankai University Eye Hospital, Tianjin Eye Institute, Tianjin Medical University, Tianjin, China
| | - Youhong Lin
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Guoying Xiong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok Fai So
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Kwok Fai So
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Kin Chiu
| |
Collapse
|
22
|
Liao C, Xu J, Chen Y, Ip NY. Retinal Dysfunction in Alzheimer's Disease and Implications for Biomarkers. Biomolecules 2021; 11:biom11081215. [PMID: 34439882 PMCID: PMC8394950 DOI: 10.3390/biom11081215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Division of Life Science, Molecular Neuroscience Center, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| |
Collapse
|
23
|
Ge YJ, Xu W, Ou YN, Qu Y, Ma YH, Huang YY, Shen XN, Chen SD, Tan L, Zhao QH, Yu JT. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2021; 69:101361. [PMID: 34000463 DOI: 10.1016/j.arr.2021.101361] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Retinal changes may reflect the pathophysiological processes in the central nervous system and can be assessed by imaging modalities non-invasively. We aim to localize candidate retinal biomarkers in Alzheimer's disease (AD), mild cognitive impairment (MCI), and preclinical AD. METHODS We systematically searched PubMed, EMBASE, Scopus, and Web of Science from inception to January 2021 for observational studies that investigated retinal imaging and electrophysiological markers in AD, MCI, and preclinical AD. Between-groups standardized mean differences (SMDs) with 95 % confidence intervals were computed using random-effects models. RESULTS Of 19,727 citations identified, 126 articles were eligible for inclusion. Compared with healthy controls, the thickness of peripapillary retinal nerve fiber layer (pRNFL; SMD = -0.723, p < 0.001), total macular (SMD = -0.612, p < 0.001), and subfoveal choroid (SMD = -0.888, p < 0.001) were significantly reduced in patients with AD. Compared with healthy controls, patients with MCI also had lower thickness of pRNFL (SMD = -0.324, p < 0.001), total macular (SMD = -0.302, p < 0.001), and subfoveal choroid (SMD = -0.462, p = 0.020). Other candidate biomarkers included the optic nerve head morphology, retinal amyloid deposition, microvascular morphology and densities, blood flow, and electrophysiological markers. CONCLUSIONS Retinal structural, vascular, and electrophysiological biomarkers hold great potential for the diagnosis, prognosis and risk assessment of AD and MCI. These biomarkers warrant further development in the future, especially in diagnostic test accuracy and longitudinal studies.
Collapse
|
24
|
Quinn N, Jenkins A, Ryan C, Januszewski A, Peto T, Brazionis L. Imaging the eye and its relevance to diabetes care. J Diabetes Investig 2021; 12:897-908. [PMID: 33190401 PMCID: PMC8169343 DOI: 10.1111/jdi.13462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022] Open
Abstract
Diabetes is a major cause of vision loss globally, yet this devastating complication is largely preventable. Early detection and treatment of diabetic retinopathy necessitates screening. Ocular imaging is widely used clinically, both for the screening and management of diabetic retinopathy. Common eye conditions, such as glaucoma, cataracts and retinal vessel thrombosis, and signs of systemic conditions, such as hypertension, are frequently revealed. As well as imaging by a skilled clinician during an eye examination, non-ophthalmic clinicians, such as general practitioners, endocrinologists, nurses and trained health workers, can also can carry out diabetic eye screening. This process usually comprises local imaging with remote grading, mostly human grading. However, grading incorporating artificial intelligence is emerging. In a clinical research context, retinal vasculature analyses using semi-automated software in many populations have identified associations between retinal vessel geometry, such as vessel caliber, and the risk of diabetic retinopathy and other chronic complications of type 1 and type 2 diabetes. Similarly, evaluation of corneal nerves by corneal confocal microscopy is revealing diabetes-related abnormalities, and associations with and predictive power for other chronic diabetes complications. As yet, the value of retinal vessel geometry and corneal confocal microscopy measures at an individual level is uncertain. In this article, targeting non-ocular clinicians and researchers, we review existent and emerging ocular imaging and grading tools, including artificial intelligence, and their associations between ocular imaging findings and diabetes and its chronic complications.
Collapse
Affiliation(s)
- Nicola Quinn
- National Health and Medical Research Council Clinical Trials CenterThe University of SydneySydneyNew South WalesAustralia
- Center for Public HealthQueen’s University BelfastBelfastUK
| | - Alicia Jenkins
- National Health and Medical Research Council Clinical Trials CenterThe University of SydneySydneyNew South WalesAustralia
- Center for Public HealthQueen’s University BelfastBelfastUK
| | - Chris Ryan
- National Health and Medical Research Council Clinical Trials CenterThe University of SydneySydneyNew South WalesAustralia
- Department of MedicineThe University of MelbourneMelbourneVictoriaAustralia
| | - Andrzej Januszewski
- National Health and Medical Research Council Clinical Trials CenterThe University of SydneySydneyNew South WalesAustralia
- Department of MedicineThe University of MelbourneMelbourneVictoriaAustralia
| | - Tunde Peto
- Center for Public HealthQueen’s University BelfastBelfastUK
| | - Laima Brazionis
- National Health and Medical Research Council Clinical Trials CenterThe University of SydneySydneyNew South WalesAustralia
- Department of MedicineThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
25
|
Jiménez EC, Sierra-Marcos A, Romeo A, Hashemi A, Leonovych O, Bustos Valenzuela P, Solé Puig M, Supèr H. Altered Vergence Eye Movements and Pupil Response of Patients with Alzheimer's Disease and Mild Cognitive Impairment During an Oddball Task. J Alzheimers Dis 2021; 82:421-433. [PMID: 34024820 DOI: 10.3233/jad-201301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive deterioration of cognitive functions and may be preceded by mild cognitive impairment (MCI). Evidence shows changes in pupil and vergence responses related to cognitive processing of visual information. OBJECTIVE Here we test the hypothesis that MCI and AD are associated with specific patterns in vergence and pupil responses. METHODS We employed a visual oddball task. In the distractor condition (80%of the trials), a blue stimulus was presented whereas in the target condition (20%of trials) it was red. Participants (23 Controls, 33 MCI patients, and 18 AD patients) were instructed to press a button when a target appeared. RESULTS Participants briefly converged their eyes 200 ms after stimulus presentation. In controls, this transient peak response was followed by a delay response to targets but not to distractor stimuli. In the patient groups, delay responses to distractors were noticed. Consequently, the differential vergence response was strong in the control group, weak in the MCI group, and absent in the AD group. Pupils started to dilate 500-600 ms after the appearance of a target but slightly contracted after the presentation of a distractor. This differential pupil response was strongest in the AD group. CONCLUSION Our findings support the idea of a role of vergence and pupil responses in attention and reveal altered responses in MCI and AD patients. Further studies should assess the value of vergence and pupil measurements as an objective support tool for early diagnosis of AD.
Collapse
Affiliation(s)
- Elizabeth Carolina Jiménez
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,University of Guadalajara, Jalisco, México
| | - Alba Sierra-Marcos
- Department of Neurology and Neurophysiology, Hospital Sanitas CIMA, Barcelona, Spain
| | - August Romeo
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Amin Hashemi
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Oleksii Leonovych
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Braingaze SL, Mataró, Spain
| | - Patricia Bustos Valenzuela
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Maria Solé Puig
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Hans Supèr
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences of the University of Barcelona (UBNeuro), Barcelona, Spain.,Braingaze SL, Mataró, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Byun MS, Park SW, Lee JH, Yi D, Jeon SY, Choi HJ, Joung H, Ghim UH, Park UC, Kim YK, Shin SA, Yu HG, Lee DY. Association of Retinal Changes With Alzheimer Disease Neuroimaging Biomarkers in Cognitively Normal Individuals. JAMA Ophthalmol 2021; 139:548-556. [PMID: 33764406 DOI: 10.1001/jamaophthalmol.2021.0320] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Retinal biomarkers reflecting in vivo brain Alzheimer disease (AD) pathologic abnormalities could be a useful tool for screening cognitively normal (CN) individuals at the preclinical stage of AD. Objectives To investigate the association of both functional and structural alterations of the retina with in vivo AD pathologic abnormalities in CN older adults and model a screening tool for detection of preclinical AD. Design, Setting, and Participants This cross-sectional study included a total of 49 CN individuals, and all assessment was done at the Seoul National University Hospital, Seoul, South Korea. All participants underwent complete ophthalmic examination, including swept-source optical coherence tomography (SS-OCT) and multifocal electroretinogram as well as amyloid-β (Aβ) positron emission tomography and magnetic resonance imaging. Data were collected from January 1, 2016, through October 31, 2017, and analyzed from February 1, 2018, through June 30, 2020. Main Outcomes and Measures For structural parameters of the retina, the thickness of the macula and layer-specific thicknesses, including peripapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer measured by SS-OCT, were used for analysis. For functional parameters of the retina, implicit time and amplitude of rings 1 to 6 measured by multifocal electroretinogram were used. Results Of the 49 participants, 25 were women (51.0%); mean (SD) age was 70.6 (9.4) years. Compared with 33 CN individuals without Aβ deposition (Aβ-CN), the 16 participants with Aβ (Aβ+CN) showed reduced inner nasal macular thickness (mean [SD], 308.9 [18.4] vs 286.1 [22.5] μm; P = .007) and retinal nerve fiber layer thickness, particularly in the inferior quadrant (133.8 [17.9] vs 103.8 [43.5] μm; P = .003). In addition, the Aβ+CN group showed prolonged implicit time compared with the Aβ-CN group, particularly in ring 5 (41.3 [4.0] vs 38.2 [1.3] milliseconds; P = .002). AD-related neurodegeneration was correlated with the thickness of the ganglion cell-inner plexiform layer only (r = 0.41, P = .005). The model to differentiate the Aβ+CN vs Aβ-CN groups derived from the results showed 90% accuracy. Conclusions and Relevance The findings of this study showing both functional as well as structural changes of retina measured by multifocal electroretinogram and SS-OCT in preclinical AD suggest the potential use of retinal biomarkers as a tool for early detection of in vivo AD pathologic abnormalities in CN older adults.
Collapse
Affiliation(s)
- Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung Wook Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Seran Eye Center, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - So Yeon Jeon
- Department of Neuropsychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hyo Jung Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Haejung Joung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Un Hyung Ghim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Un Chul Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Seong A Shin
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.,Retinal Degeneration Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
27
|
Latina V, Giacovazzo G, Cordella F, Balzamino BO, Micera A, Varano M, Marchetti C, Malerba F, Florio R, Ercole BB, La Regina F, Atlante A, Coccurello R, Di Angelantonio S, Calissano P, Amadoro G. Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide reduces retinal degeneration in a mouse model of Alzheimer's Disease. Acta Neuropathol Commun 2021; 9:38. [PMID: 33750467 PMCID: PMC7942014 DOI: 10.1186/s40478-021-01138-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20-22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aβ processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giacomo Giacovazzo
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Cristina Marchetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bruno Bruni Ercole
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute for Complex System (ISC)-CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
28
|
Lee ATC, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW. Higher Dementia Incidence in Older Adults with Poor Visual Acuity. J Gerontol A Biol Sci Med Sci 2021; 75:2162-2168. [PMID: 32043518 PMCID: PMC7566398 DOI: 10.1093/gerona/glaa036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 11/13/2022] Open
Abstract
Background Longitudinal evidence of poor visual acuity associating with higher risk of incident dementia is mixed. This study aimed to examine if poor visual acuity was associated with higher dementia incidence in a large community cohort of older adults, independent of the possible biases relating to misclassification error, reverse causality, and confounding effects due to health problems and behaviors. Methods A total of 15,576 community-living older adults without dementia at baseline were followed for 6 years to the outcome of incident dementia, which was diagnosed according to the ICD-10 or a Clinical Dementia Rating of 1 to 3. Visual acuity was assessed using the Snellen’s chart at baseline and follow-up. Important variables including demographics (age, sex, education, and socioeconomic status), physical and psychiatric comorbidities (cardiovascular risks, ophthalmological conditions, hearing impairment, poor mobility, and depression), and lifestyle behaviors (smoking, diet, physical, intellectual, and social activities) were also assessed. Results Over 68,904 person-years of follow-up, 1,349 participants developed dementia. Poorer visual acuity at baseline was associated with higher dementia incidence in 6 years, even after adjusting for demographics, health problems, and lifestyle behaviors, and excluding those who developed dementia within 3 years after baseline. Compared with normal vision, the hazard ratio of dementia was 1.19 (p = .31), 2.09 (p < .001), and 8.66 (p < .001) for mild, moderate, and severe visual impairment, respectively. Conclusions Moderate-to-severe visual impairment could be a potential predictor and possibly a risk factor for dementia. From a clinical perspective, older adults with poor visual acuity might warrant further risk assessment for dementia.
Collapse
Affiliation(s)
- Allen T C Lee
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Wai C Chan
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | - Helen F K Chiu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ruby S Y Lee
- Elderly Health Service, Department of Health, The Government of Hong Kong SAR, China
| | - Linda C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Malan L, Hamer M, von Känel R, Kotliar K, van Wyk RD, Lambert GW, Vilser W, Ziemssen T, Schlaich MP, Smith W, Magnusson M, Wentzel A, Myburgh CE, Steyn HS, Malan NT. Delayed retinal vein recovery responses indicate both non-adaptation to stress as well as increased risk for stroke: the SABPA study. Cardiovasc J Afr 2021; 32:5-16. [PMID: 33104153 PMCID: PMC8756074 DOI: 10.5830/cvja-2020-031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/07/2020] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Low or high sympatho-adrenal-medullary axis (SAM) and hypothalamic-pituitary-adrenal axis (HPA) dysregulation reflect chronic stress. Retinal vessel dynamics may relate to SAM, HPA activity and stroke risk. Our objectives were therefore to assess the relationships between retinal vessel, SAM and HPA responses, and to determine stroke risk. METHODS A prospective bi-ethnic gender cohort (n = 275, 45 ± 9 years) was included. Urine/serum/saliva samples for SAM [norepinephrine:creatinine ratio (u-NE)] and HPA [adrenocorticotrophic hormone (ACTH), cortisol] were obtained at baseline, three-year follow up and upon flicker light-induced provocation. Diastolic ocular perfusion pressure was measured as a marker of hypo-perfusion. Retinal arterial narrowing and venous widening calibres were quantified from digital images in the mydriatic eye. A validated stress and stroke risk score was applied. RESULTS An interaction term was fitted for venous dilation in u-NE tertiles (p ≤ 0.05) and not in u-NE median/quartiles/quintiles. Independent of race or gender, tertile 1 (low u-NE) had a 112% increase in u-NE, decreases in cortisol, and no changes in ACTH over three years (positive feedback). Tertile 3 (high u-NE) contradictorily had decreases in u-NE and cortisol, and increases in ACTH (negative feedback). In tertile 1, reduced arterial dilation, and faster arterial vasoconstriction and narrowing were related to higher SAM activity and hypo-perfusion (p ≤ 0.05), whereas delayed venous dilation, recovery and widening were related to cortisol hypo-secretion (p ≤ 0.05). In tertile 1, delayed venous recovery responses predicted stress and stroke risk [odds ratio 4.8 (1.2-19.6); p = 0.03]. These associations were not found in u-NE tertiles 2 and 3. CONCLUSIONS In response to low norepinephrine, a reflex increase in SAM activity occurred, enhancing arterial vasoconstriction and hypo-perfusion. Concomitant HPA dysregulation attenuated retinal vein vasoactivity and tone, reflecting delayed vein recovery responses and non-adaptation to stress. These constrained vein recovery responses are indicative of increased chronic stress and stroke risk.
Collapse
Affiliation(s)
- Leoné Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.
| | - Mark Hamer
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom
| | - Roland von Känel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich 8091, Switzerland
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Jülich, Germany
| | | | - Gavin W Lambert
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn; Baker Heart & Diabetes Institute, Melbourne, Australia
| | | | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Laboratory Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University Western Australia, Perth, Australia
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; Medical Research Council Research Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Martin Magnusson
- Department of Clinical Sciences, Malmö, Lund University; Wallenberg Centre for Molecular Medicine, Malmö, Lund University; Department of Cardiology, Malmö, Skåne University Hospital, Sweden
| | - Annemarie Wentzel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Carlien E Myburgh
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Hendrik S Steyn
- Statistical Consultation Services, North-West University, Potchefstroom, South Africa
| | - Nico T Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| |
Collapse
|
30
|
Armstrong GW, Kim LA, Vingopoulos F, Park JY, Garg I, Kasetty M, Silverman RF, Zeng R, Douglas VP, Lopera F, Baena A, Giraldo M, Norton D, Cronin-Golomb A, Arboleda-Velasquez JF, Quiroz YT, Miller JB. Retinal Imaging Findings in Carriers With PSEN1-Associated Early-Onset Familial Alzheimer Disease Before Onset of Cognitive Symptoms. JAMA Ophthalmol 2021; 139:49-56. [PMID: 33180114 PMCID: PMC7662482 DOI: 10.1001/jamaophthalmol.2020.4909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/27/2020] [Indexed: 01/08/2023]
Abstract
Importance Individuals with autosomal dominant mutations for Alzheimer disease are valuable in determining biomarkers present prior to the onset of cognitive decline, improving the ability to diagnose Alzheimer disease as early as possible. Optical coherence tomography (OCT) has surfaced as a potential noninvasive technique capable of analyzing central nervous system tissues for biomarkers of Alzheimer disease. Objective To evaluate whether OCT can detect early retinal alterations in carriers of the presenilin 1 (PSEN1 [OMIM 104311]) E280A mutation who are cognitively unimpaired. Design, Setting, and Participants A cross-sectional imaging study conducted from July 13, 2015, to September 16, 2020, included 10 carriers of the PSEN1 E280A mutation who were cognitively unimpaired and 10 healthy noncarrier family members, all leveraged from a homogenous Colombian kindred. Statistical analysis was conducted from September 9, 2017, to September 16, 2020. Main Outcomes and Measures Mixed-effects multiple linear regression was performed to compare the thickness values of the whole retina and individual retinal layers on OCT scans between mutation carriers and noncarriers. Simple linear-effects and mixed-effects multiple linear regression models were used to assess whether age was an effect modifier for PSEN1 mutation of amyloid β levels and retinal thickness, respectively. Fundus photographs were used to compare the number of arterial and venous branch points, arterial and venous tortuosity, and fractal dimension. Results This study included 10 carriers of the PSEN1 E280A mutation who were cognitively unimpaired (7 women [70%]; mean [SD] age, 36.3 [8.1] years) and 10 healthy noncarrier family members (7 women [70%]; mean [SD] age, 36.4 [8.2] years). Compared with noncarrier controls, PSEN1 mutation carriers who were cognitively unimpaired had a generalized decrease in thickness of the whole retina as well as individual layers detected on OCT scans, with the inner nuclear layer (outer superior quadrant, β = -3.06; P = .007; outer inferior quadrant, β = -2.60; P = .02), outer plexiform layer (outer superior quadrant, β = -3.44; P = .03), and outer nuclear layer (central quadrant, β = -8.61; P = .03; inner nasal quadrant, β = -8.39; P = .04; inner temporal quadrant, β = -9.39; P = .02) showing the greatest amount of statistically significant thinning. Age was a significant effect modifier for the association between PSEN1 mutation and amyloid β levels in cortical regions (β = 0.03; P = .001) but not for the association between PSEN1 mutation and retinal thickness. No statistical difference was detected in any of the vascular parameters studied. Conclusions and Relevance These findings suggest that OCT can detect functional and morphologic changes in the retina of carriers of familial Alzheimer disease who are cognitively unimpaired several years before clinical onset, suggesting that OCT findings and retinal vascular parameters may be biomarkers prior to the onset of cognitive decline.
Collapse
Affiliation(s)
- Grayson W. Armstrong
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| | - Leo A. Kim
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Filippos Vingopoulos
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| | - Jea Young Park
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| | - Itika Garg
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| | - Megan Kasetty
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| | | | - Rebecca Zeng
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| | - Vivian Paraskevi Douglas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Ana Baena
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Margarita Giraldo
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Dan Norton
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Psychology, Gordon College, Wenham, Massachusetts
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | | | - Yakeel T. Quiroz
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - John B. Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
- Harvard Retinal Imaging Laboratory, Boston, Massachusetts
| |
Collapse
|
31
|
Snyder PJ, Alber J, Alt C, Bain LJ, Bouma BE, Bouwman FH, DeBuc DC, Campbell MC, Carrillo MC, Chew EY, Cordeiro MF, Dueñas MR, Fernández BM, Koronyo-Hamaoui M, La Morgia C, Carare RO, Sadda SR, van Wijngaarden P, Snyder HM. Retinal imaging in Alzheimer's and neurodegenerative diseases. Alzheimers Dement 2021; 17:103-111. [PMID: 33090722 PMCID: PMC8062064 DOI: 10.1002/alz.12179] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
In the last 20 years, research focused on developing retinal imaging as a source of potential biomarkers for Alzheimer's disease and other neurodegenerative diseases, has increased significantly. The Alzheimer's Association and the Alzheimer's & Dementia: Diagnosis, Assessment, Disease Monitoring editorial team (companion journal to Alzheimer's & Dementia) convened an interdisciplinary discussion in 2019 to identify a path to expedite the development of retinal biomarkers capable of identifying biological changes associated with AD, and for tracking progression of disease severity over time. As different retinal imaging modalities provide different types of structural and/or functional information, the discussion reflected on these modalities and their respective strengths and weaknesses. Discussion further focused on the importance of defining the context of use to help guide the development of retinal biomarkers. Moving from research to context of use, and ultimately to clinical evaluation, this article outlines ongoing retinal imaging research today in Alzheimer's and other brain diseases, including a discussion of future directions for this area of study.
Collapse
Affiliation(s)
- Peter J. Snyder
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Clemens Alt
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania
| | - Brett E. Bouma
- Harvard Medical School, Massachusetts General Hospital and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Massachusetts
| | - Femke H. Bouwman
- Neurologist, Alzheimer Center Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Melanie C.W. Campbell
- Physics and Astronomy, Optometry and Vision Science and Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maria C. Carrillo
- Medical & Scientific Relations, Alzheimer’s Association, Chicago, Illinois
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - M. Francesca Cordeiro
- Imperial College London, UCL Institute of Ophthalmology, ICORG Western Eye Hospital, London, UK
| | - Michael R. Dueñas
- Chief Public Health Officer (Ret.), American Optometric Association, Washington, D.C
| | | | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute and Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Italy
| | | | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, California
- Department of Ophthalmology, UCLA, Los Angeles, California
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, Australia
| | - Heather M. Snyder
- Medical & Scientific Relations, Alzheimer’s Association, Chicago, Illinois
| |
Collapse
|
32
|
Gilmore CS, Lim KO, Garvin MK, Wang JK, Ledolter J, Fenske AL, Gentz CL, Nellis J, Armstrong MT, Kardon RH. Association of Optical Coherence Tomography With Longitudinal Neurodegeneration in Veterans With Chronic Mild Traumatic Brain Injury. JAMA Netw Open 2020; 3:e2030824. [PMID: 33351088 PMCID: PMC7756235 DOI: 10.1001/jamanetworkopen.2020.30824] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IMPORTANCE Mild traumatic brain injury (TBI) may predispose individuals to progressive neurodegeneration. OBJECTIVE To identify evidence of neurodegeneration through longitudinal evaluation of changes in retinal layer thickness using optical coherence tomography in veterans with a history of mild TBI. DESIGN, SETTING, AND PARTICIPANTS This longitudinal cohort study evaluated veterans who were receiving services at the Minneapolis Veterans Affairs Health Care System. Symptomatic or mild TBI was diagnosed according to the Mayo TBI Severity Classification System. Participants in the age-matched control group had no history of TBI. Participants with any history or evidence of retinal or optic nerve disease that could affect retinal thickness were excluded. Data analysis was performed from July 2019 to February 2020. EXPOSURES The presence and severity of mild TBI were determined through consensus review of self-report responses during the Minnesota Blast Exposure Screening Tool semistructured interview. MAIN OUTCOMES AND MEASURES Change over time of retinal nerve fiber layer (RNFL) thickness. RESULTS A total of 139 veterans (117 men [84%]; mean [SD] age, 49.9 [11.1] years) were included in the study, 69 in the TBI group and 70 in the control group. Veterans with mild TBI showed significantly greater RNFL thinning compared with controls (mean [SE] RNFL slope, -1.47 [0.24] μm/y vs -0.31 [0.32] μm/y; F1,122 = 8.42; P = .004; Cohen d = 0.52). Functionally, veterans with mild TBI showed greater declines in visual field mean deviation (mean [SE] slope, -0.09 [0.14] dB/y vs 0.46 [0.23] dB/y; F1,122 = 4.08; P = .046; Cohen d = 0.36) and pattern standard deviation (mean [SE] slope, 0.09 [0.06] dB/y vs -0.10 [0.07] dB/y; F1,122 = 4.78; P = .03; Cohen d = 0.39) and high spatial frequency (12 cycles/degree) contrast sensitivity compared with controls. Cognitively, there was a significantly greater decrease in the number of errors over time during the Groton Maze Learning Test (GMLT) in controls compared with veterans with mild TBI (mean [SE] slope, -9.30 [1.48] errors/y vs -5.23 [1.24] errors/y; F1,127 = 4.43; P = .04; Cohen d = 0.37). RNFL tissue loss was significantly correlated with both worsening performance on the GMLT over time (Spearman ρ = -0.20; P = .03) and mild TBI severity (Spearman ρ = -0.25; P = .006). The more severe the mild TBI (larger Minnesota Blast Exposure Screening Tool severity score), the faster the reduction in RNFL thickness (ie, the more negative the slope) across time. CONCLUSIONS AND RELEVANCE This cohort study found longitudinal evidence for significant, progressive neural degeneration over time in veterans with mild TBI, as indicated by greater RNFL tissue loss in patients with mild TBI vs controls, as well as measures of function. These results suggest that these longitudinal measures may be useful biomarkers of neurodegeneration. Changes in this biomarker may provide early detection of subsequent cognitive and functional deficits that may impact veterans' independence and need for care.
Collapse
Affiliation(s)
- Casey S. Gilmore
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Kelvin O. Lim
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota, Minneapolis
| | - Mona K. Garvin
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City
| | - Jui-Kai Wang
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City
| | - Johannes Ledolter
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City
- Department of Business Analytics and Department of Statistics and Actuarial Science, University of Iowa, Iowa City
| | - Alicia L. Fenske
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Carolyn L. Gentz
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Julie Nellis
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
| | - Michael T. Armstrong
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Randy H. Kardon
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
| |
Collapse
|
33
|
Wisely CE, Wang D, Henao R, Grewal DS, Thompson AC, Robbins CB, Yoon SP, Soundararajan S, Polascik BW, Burke JR, Liu A, Carin L, Fekrat S. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol 2020; 106:388-395. [DOI: 10.1136/bjophthalmol-2020-317659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.Results284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).ConclusionOur CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
Collapse
|
34
|
Gu L, Zhang X, You S, Zhao S, Liu Z, Harada T. Semi-Supervised Learning in Medical Images Through Graph-Embedded Random Forest. Front Neuroinform 2020; 14:601829. [PMID: 33240071 PMCID: PMC7683389 DOI: 10.3389/fninf.2020.601829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022] Open
Abstract
One major challenge in medical imaging analysis is the lack of label and annotation which usually requires medical knowledge and training. This issue is particularly serious in the brain image analysis such as the analysis of retinal vasculature, which directly reflects the vascular condition of Central Nervous System (CNS). In this paper, we present a novel semi-supervised learning algorithm to boost the performance of random forest under limited labeled data by exploiting the local structure of unlabeled data. We identify the key bottleneck of random forest to be the information gain calculation and replace it with a graph-embedded entropy which is more reliable for insufficient labeled data scenario. By properly modifying the training process of standard random forest, our algorithm significantly improves the performance while preserving the virtue of random forest such as low computational burden and robustness over over-fitting. Our method has shown a superior performance on both medical imaging analysis and machine learning benchmarks.
Collapse
Affiliation(s)
- Lin Gu
- RIKEN AIP, Tokyo, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Xiaowei Zhang
- Bioinformatics Institute (BII), ASTAR, Singapore, Singapore
| | - Shaodi You
- Faculty of Science, Institute of Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Shen Zhao
- Department of Medical Physics, Western University, London, ON, Canada
| | - Zhenzhong Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Tatsuya Harada
- RIKEN AIP, Tokyo, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Szegedi S, Dal‐Bianco P, Stögmann E, Traub‐Weidinger T, Rainer M, Masching A, Schmidl D, Werkmeister RM, Chua J, Schmetterer L, Garhöfer G. Anatomical and functional changes in the retina in patients with Alzheimer's disease and mild cognitive impairment. Acta Ophthalmol 2020; 98:e914-e921. [PMID: 32212415 PMCID: PMC7687124 DOI: 10.1111/aos.14419] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE There is evidence that mild cognitive impairment (MCI) or Alzheimer's disease (AD) is accompanied by alterations in the retina. The current study was performed to investigate structural and functional changes in patients with systemic neurodegenerative disease. METHODS A total of 47 patients with either MCI or AD and 43 healthy age- and sex-matched control subjects were included. Inclusion criteria for MCI were abnormal memory function and a mini-mental state examination (MMSE) score >26 points, for patients with AD a diagnosis of probable AD of mild to moderate degree and an MMSE score in the range of 20-26. Retinal blood flow was measured using a Doppler optical coherence tomography (OCT) system. Retinal vessel diameter, oxygen saturation and flicker-induced vasodilatation were measured using a Vessel Analyzer. Retinal nerve fibre layer thickness (RNFLT) was assessed using an OCT system. RESULTS Global RNFLT was lower in patients compared to healthy controls (93.7 ± 12.8 µm versus 99.1 ± 9.0 µm, p = 0.02). The same was found in regards to retinal arterial blood flow, which was 9.3 ± 2.4 and 12.3 ± 3.2 μl/min in the patient and control groups, respectively (p < 0.001). Mean retinal arterial diameter was reduced in patients (76.0 ± 8.9 µm versus 80.6 ± 8.0 µm, p = 0.03). Arteriovenous difference in oxygen saturation was lower in patients (20.4 ± 5.1% versus 23.5 ± 4.0%, p < 0.01). No difference in the flicker response was observed. CONCLUSION In patients with MCI and AD, arteriovenous difference in oxygen saturation, retinal blood flow and arterial vessel diameter was reduced. No difference was found in flicker response between groups. This indicates alterations in retinal oxygen metabolism in patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Stephan Szegedi
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Peter Dal‐Bianco
- Department of NeurologyMedical University of ViennaViennaAustria
| | | | - Tatjana Traub‐Weidinger
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Michael Rainer
- Department of PsychiatrySocial and Medical Centre East – Danube HospitalViennaAustria
- Karl Landsteiner Institute for Memory and Alzheimer ResearchViennaAustria
| | - Andreas Masching
- Department of PsychiatrySocial and Medical Centre East – Danube HospitalViennaAustria
| | - Doreen Schmidl
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Jacqueline Chua
- Singapore Eye Research InstituteSingapore National Eye CentreSingapore CitySingapore
- Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Medical SchoolSingapore CitySingapore
| | - Leopold Schmetterer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Singapore Eye Research InstituteSingapore National Eye CentreSingapore CitySingapore
- Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Medical SchoolSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
- Institute of Molecular and Clinical OphthalmologyBaselSwitzerland
| | - Gerhard Garhöfer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
36
|
Retinal Degeneration and Alzheimer's Disease: An Evolving Link. Int J Mol Sci 2020; 21:ijms21197290. [PMID: 33023198 PMCID: PMC7582766 DOI: 10.3390/ijms21197290] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) and glaucoma are degenerative conditions of the retina and a significant cause of irreversible blindness in developed countries. Alzheimer’s disease (AD), the most common dementia of the elderly, is often associated with AMD and glaucoma. The cardinal features of AD include extracellular accumulation of amyloid β (Aβ) and intracellular deposits of hyper-phosphorylated tau (p-tau). Neuroinflammation and brain iron dyshomeostasis accompany Aβ and p-tau deposits and, together, lead to progressive neuronal death and dementia. The accumulation of Aβ and iron in drusen, the hallmark of AMD, and Aβ and p-tau in retinal ganglion cells (RGC), the main retinal cell type implicated in glaucoma, and accompanying inflammation suggest overlapping pathology. Visual abnormalities are prominent in AD and are believed to develop before cognitive decline. Some are caused by degeneration of the visual cortex, while others are due to RGC loss or AMD-associated retinal degeneration. Here, we review recent information on Aβ, p-tau, chronic inflammation, and iron dyshomeostasis as common pathogenic mechanisms linking the three degenerative conditions, and iron chelation as a common therapeutic option for these disorders. Additionally discussed is the role of prion protein, infamous for prion disorders, in Aβ-mediated toxicity and, paradoxically, in neuroprotection.
Collapse
|
37
|
Wu J, Zhang X, Azhati G, Li T, Xu G, Liu F. Retinal microvascular attenuation in mental cognitive impairment and Alzheimer's disease by optical coherence tomography angiography. Acta Ophthalmol 2020; 98:e781-e787. [PMID: 32153141 DOI: 10.1111/aos.14381] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To explore regional variation of the macular microvasculature in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), also to detect the association between retinal macular microvascular parameters and the progress of preclinical AD. METHODS Prospective study of healthy controls, patients with MCI and patients with AD by using Optical coherence tomography angiography (OCT-A). We quantified foveal avascular zone (FAZ) areas, densities of the superficial retinal capillary plexuses (SRCP) and deep retinal capillary plexuses (DRCP). The SRCP and DRCP were divided into inner (3 mm) and external (6 mm) annular rings, each containing four quadrants (SI, II, TI, NI, SE, IE, TE and NE). The data were analysed statistically by using SPSS 22 software. RESULTS Totally, 60 subjects including 21 HC (33 eyes), 21 patients with MCI (32 eyes) and 18 AD patients (28 eyes) were recruited. The microvascular densities of DRCP at all quadrants of the parafovea and perifovea were significantly lower in AD patients compared to HC group (p < 0.05). Compared to the HCs, MCI patients showed significant microvascular loss in most sectors of the parafovea and the SE sector of the DRCP (p < 0.05), but not in the parafovea (p = 0.829) or perifovea (p = 0.824) of the SRCP. No significant difference was found in microvascular density of SRCP among the groups, except at SI between the AD and HC groups (p = 0.048). CONCLUSION Our findings demonstrated the macular microvascular attenuation in MCI and AD patients. Both AD and MCI patients showed retinal microvascular density loss, which is more significant in the deep retinal capillary plexuses. Optical coherence tomography angiography (OCT-A) can be used to identify early microvascular abnormalities in AD and MCI. Quantified microvascular density in the DRCP might serve as potential biomarkers of early sign of AD then contribute to forestall the progression of preclinical AD.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
- School of Medicine Tongji University Shanghai China
| | - Xiaojun Zhang
- Department of Neurology OSF St. Francis Medical Center University of Illinois College of Medicine Peoria Peoria Illinois USA
| | - Guliqiwaer Azhati
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
| | - Tingting Li
- Department of Ophthalmology Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University Shanghai China
| | - Guoxing Xu
- Department of Ophthalmology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Fang Liu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
| |
Collapse
|
38
|
Chibhabha F, Yaqi Y, Li F. Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2019-0119/revneuro-2019-0119.xml. [PMID: 32804680 DOI: 10.1515/revneuro-2019-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a common form of age-related dementia that mostly affects the aging population. Clinically, it is a disease characterized by impaired memory and progressive cognitive decline. Although the pathological hallmarks of AD have been traditionally described with a general confinement in the brain, recent studies have shown similar pathological changes in the retina, which is a developmental outgrowth of the forebrain. These AD-related neurodegenerative changes in the retina have been implicated to cause early visual problems in AD even before cognitive impairment becomes apparent. With recent advances in research, the commonly held view that AD-related cerebral pathology causes visual dysfunction through disruption of central visual pathways has been re-examined. Currently, several studies have already explored how AD manifests in the retina and the possibility of using the same retina as a window to non-invasively examine AD-related pathology in the brain. Non-invasive screening of AD through the retina has the potential to improve on early detection and management of the disease since the majority of AD cases are usually diagnosed very late. The purpose of this review is to provide evidence on the involvement of the retina in AD and to suggest a possible direction for future research into the non-invasive screening, diagnosis, and monitoring of AD using the retina.
Collapse
Affiliation(s)
- Fidelis Chibhabha
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- Department of Anatomy, Faculty of Medicine, Midlands State University, P. Bag 9055, Senga, Gweru, Zimbabwe
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Yang Yaqi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Feng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
39
|
Franceschiello B, Di Sopra L, Minier A, Ionta S, Zeugin D, Notter MP, Bastiaansen JAM, Jorge J, Yerly J, Stuber M, Murray MM. 3-Dimensional magnetic resonance imaging of the freely moving human eye. Prog Neurobiol 2020; 194:101885. [PMID: 32653462 DOI: 10.1016/j.pneurobio.2020.101885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Eye motion is a major confound for magnetic resonance imaging (MRI) in neuroscience or ophthalmology. Currently, solutions toward eye stabilisation include participants fixating or administration of paralytics/anaesthetics. We developed a novel MRI protocol for acquiring 3-dimensional images while the eye freely moves. Eye motion serves as the basis for image reconstruction, rather than an impediment. We fully reconstruct videos of the moving eye and head. We quantitatively validate data quality with millimetre resolution in two ways for individual participants. First, eye position based on reconstructed images correlated with simultaneous eye-tracking. Second, the reconstructed images preserve anatomical properties; the eye's axial length measured from MRI images matched that obtained with ocular biometry. The technique operates on a standard clinical setup, without necessitating specialized hardware, facilitating wide deployment. In clinical practice, we anticipate that this may help reduce burdens on both patients and infrastructure, by integrating multiple varieties of assessments into a single comprehensive session. More generally, our protocol is a harbinger for removing the necessity of fixation, thereby opening new opportunities for ethologically-valid, naturalistic paradigms, the inclusion of populations typically unable to stably fixate, and increased translational research such as in awake animals whose eye movements constitute an accessible behavioural readout.
Collapse
Affiliation(s)
- Benedetta Franceschiello
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland.
| | - Lorenzo Di Sopra
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Astrid Minier
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Silvio Ionta
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - David Zeugin
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Michael P Notter
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - João Jorge
- École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Micah M Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University Nashville, TN, USA.
| |
Collapse
|
40
|
Brighi C, Cordella F, Chiriatti L, Soloperto A, Di Angelantonio S. Retinal and Brain Organoids: Bridging the Gap Between in vivo Physiology and in vitro Micro-Physiology for the Study of Alzheimer's Diseases. Front Neurosci 2020; 14:655. [PMID: 32625060 PMCID: PMC7311765 DOI: 10.3389/fnins.2020.00655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Recent progress in tissue engineering has led to increasingly complex approaches to investigate human neurodegenerative diseases in vitro, such as Alzheimer's disease, aiming to provide more functional and physiological models for the study of their pathogenesis, and possibly the identification of novel diagnostic biomarkers and therapeutic targets. Induced pluripotent stem cell-derived cortical and retinal organoids represent a novel class of in vitro three-dimensional models capable to recapitulate with a high similarity the structure and the complexity of the native brain and retinal tissues, thus providing a framework for better mimicking in a dish the patient's disease features. This review aims to discuss progress made over the years in the field of in vitro three-dimensional cell culture systems, and the benefits and disadvantages related to a possible application of organoids for the study of neurodegeneration associated with Alzheimer's disease, providing a promising breakthrough toward a personalized medicine approach and the reduction in the use of humanized animal models.
Collapse
Affiliation(s)
- Carlo Brighi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Federica Cordella
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Luigi Chiriatti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Multimodal Coherent Imaging of Retinal Biomarkers of Alzheimer's Disease in a Mouse Model. Sci Rep 2020; 10:7912. [PMID: 32404941 PMCID: PMC7220911 DOI: 10.1038/s41598-020-64827-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023] Open
Abstract
We acquired depth-resolved light scattering measurements from the retinas of triple transgenic Alzheimer’s Disease (3xTg-AD) mice and wild type (WT) age-matched controls using co-registered angle-resolved low-coherence interferometry (a/LCI) and optical coherence tomography (OCT). Angle-resolved light scattering measurements were acquired from the nerve fiber layer, outer plexiform layer, and retinal pigmented epithelium using image guidance and segmented thicknesses provided by co-registered OCT B-scans. Analysis of the OCT images showed a statistically significant thinning of the nerve fiber layer in AD mouse retinas compared to WT controls. The a/LCI scattering measurements provided complementary information that distinguishes AD mice by quantitatively characterizing tissue heterogeneity. The AD mouse retinas demonstrated higher mean and variance in nerve fiber layer light scattering intensity compared to WT controls. Further, the difference in tissue heterogeneity was observed through short-range spatial correlations that show greater slopes at all layers of interest for AD mouse retinas compared to WT controls. A greater slope indicates a faster loss of spatial correlation, suggesting a loss of tissue self-similarity characteristic of heterogeneity consistent with AD pathology. Use of this combined modality introduces unique tissue texture characterization to complement development of future AD biomarker analysis.
Collapse
|
42
|
Shi H, Koronyo Y, Rentsendorj A, Regis GC, Sheyn J, Fuchs DT, Kramerov AA, Ljubimov AV, Dumitrascu OM, Rodriguez AR, Barron E, Hinton DR, Black KL, Miller CA, Mirzaei N, Koronyo-Hamaoui M. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol 2020; 139:813-836. [PMID: 32043162 PMCID: PMC7181564 DOI: 10.1007/s00401-020-02134-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/27/2023]
Abstract
Pericyte loss and deficient vascular platelet-derived growth factor receptor-β (PDGFRβ) signaling are prominent features of the blood-brain barrier breakdown described in Alzheimer's disease (AD) that can predict cognitive decline yet have never been studied in the retina. Recent reports using noninvasive retinal amyloid imaging, optical coherence tomography angiography, and histological examinations support the existence of vascular-structural abnormalities and vascular amyloid β-protein (Aβ) deposits in retinas of AD patients. However, the cellular and molecular mechanisms of such retinal vascular pathology were not previously explored. Here, by modifying a method of enzymatically clearing non-vascular retinal tissue and fluorescent immunolabeling of the isolated blood vessel network, we identified substantial pericyte loss together with significant Aβ deposition in retinal microvasculature and pericytes in AD. Evaluation of postmortem retinas from a cohort of 56 human donors revealed an early and progressive decrease in vascular PDGFRβ in mild cognitive impairment (MCI) and AD compared to cognitively normal controls. Retinal PDGFRβ loss significantly associated with increased retinal vascular Aβ40 and Aβ42 burden. Decreased vascular LRP-1 and early apoptosis of pericytes in AD retina were also detected. Mapping of PDGFRβ and Aβ40 levels in pre-defined retinal subregions indicated that certain geometrical and cellular layers are more susceptible to AD pathology. Further, correlations were identified between retinal vascular abnormalities and cerebral Aβ burden, cerebral amyloid angiopathy (CAA), and clinical status. Overall, the identification of pericyte and PDGFRβ loss accompanying increased vascular amyloidosis in Alzheimer's retina implies compromised blood-retinal barrier integrity and provides new targets for AD diagnosis and therapy.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Andrei A Kramerov
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oana M Dumitrascu
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony R Rodriguez
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - David R Hinton
- Departments of Pathology and Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Kelman JC, Hodge C, Stanwell P, Mustafic N, Fraser CL. Retinal nerve fibre changes in sports-related repetitive traumatic brain injury. Clin Exp Ophthalmol 2020; 48:204-211. [PMID: 31691473 DOI: 10.1111/ceo.13673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
IMPORTANCE There is limited literature on the use of optical coherence tomography in the assessment of retinal nerve fibre layer (RNFL) thickness in sports-related repetitive mild traumatic brain injury. BACKGROUND To evaluate RNFL thickness in professional rugby league players. RNFL thinning may serve as a proxy for wider white matter degeneration. DESIGN Cross-sectional observational study. PARTICIPANTS Thirteen retired Australian professional rugby league players were recruited. METHODS Participants underwent binocular optical coherence tomography to measure RNFL thickness. Each participant underwent a complete ophthalmic assessment to exclude concurrent disease. MAIN OUTCOME MEASURES RNFL thickness of each eye were compared with a normative database. RESULTS Participants had played professional Rugby League for 18 years on average and reported sustaining 15 sports-related concussions throughout their career. The RNFL in participants was four micrometres thinner than that of matched normative data. Cohort average RNFL thickness was reduced in 12 out of 14 optical coherence testing parameters. These findings were statistically significant in the left inferonasal [P = .013] and left nasal [P = .006] sectors. There was no statistically significant relationship between RNFL thickness and other visual measures. CONCLUSIONS AND RELEVANCE This study is the first to demonstrate RNFL thinning in a cohort of retired Australian professional Rugby League players. RNFL changes have been shown to correlate with cerebral white matter loss and neurodegeneration. Optical coherence tomography may serve as a safe and economical means of screening for repetitive traumatic brain injury related neurodegeneration in contact sport athletes.
Collapse
Affiliation(s)
- Julian C Kelman
- Save Sight Institute, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Hodge
- Save Sight Institute, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peter Stanwell
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nina Mustafic
- Save Sight Institute, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Clare L Fraser
- Save Sight Institute, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Ciudin A, Ortiz-Zuñiga AM, Fidilio E, Romero D, Sánchez M, Comas M, Gonzalez O, Vilallonga R, Simó-Servat O, Hernández C, Simó R. Retinal Microperimetry: A Useful Tool for Detecting Insulin Resistance-Related Cognitive Impairment in Morbid Obesity. J Clin Med 2019; 8:jcm8122181. [PMID: 31835729 PMCID: PMC6947364 DOI: 10.3390/jcm8122181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023] Open
Abstract
Background: There is clear association between type 2 diabetes (T2D) and cognitive decline. Retinal microperimetry is a useful tool for detecting cognitive impairment in T2D. Morbid obesity (MO) has been associated with cognitive impairment. Insulin resistance (IR) seems a major determinant, but the data are unclear. The aim of this study was to evaluate the cognitive impairment in MO as well as the utility of retinal microperimetry in identifying these alterations. Methods: In total, 50 consecutive patients with MO were matched by age and gender with 30 healthy controls. All patients underwent cognitive evaluation (Montreal Cognitive Assessment Test-MoCA) and retinal microperimetry, using MAIA microperimeter 3rd generation. Retinal sensitivity and gaze fixation parameters were used for the evaluation of the analysis. Results: MO patients showed a significantly lower neurocognitive performance than the controls: MoCA score 24.94 ± 2.74 vs. 28.95 ± 1.05, p < 0.001. Cognitive function inversely correlated with the HOMA-IR (r = −0.402, p = 0.007). The AUROC for cognitive impairment using microperimetry was 0.807, CI 95% (0.592–0.947), p = 0.017. Conclusions: (1) Systemic insulin resistance is a major underlying mechanism accounting for the higher prevalence of cognitive impairment detected in young MO subjects. (2) Retinal microperimetry is a useful tool for identifying MO patients with cognitive impairment.
Collapse
Affiliation(s)
- Andreea Ciudin
- Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Plaça Cívica, Barcelona 08193, Spain; (A.M.O.-Z.); (E.F.); (D.R.); (O.S.-S.); (C.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid 28020, Spain
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
- Correspondence: (A.C.); (R.S.); Tel.: +34-934-894-172 (A.C.); +34-934-894-172 (R.S.)
| | - Angel Michael Ortiz-Zuñiga
- Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Plaça Cívica, Barcelona 08193, Spain; (A.M.O.-Z.); (E.F.); (D.R.); (O.S.-S.); (C.H.)
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
| | - Enzamaria Fidilio
- Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Plaça Cívica, Barcelona 08193, Spain; (A.M.O.-Z.); (E.F.); (D.R.); (O.S.-S.); (C.H.)
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
| | - Diana Romero
- Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Plaça Cívica, Barcelona 08193, Spain; (A.M.O.-Z.); (E.F.); (D.R.); (O.S.-S.); (C.H.)
| | - Marta Sánchez
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
| | - Marta Comas
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
| | - Oscar Gonzalez
- Department of Surgery. Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (O.G.); (R.V.)
| | - Ramon Vilallonga
- Department of Surgery. Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (O.G.); (R.V.)
| | - Olga Simó-Servat
- Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Plaça Cívica, Barcelona 08193, Spain; (A.M.O.-Z.); (E.F.); (D.R.); (O.S.-S.); (C.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid 28020, Spain
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
| | - Cristina Hernández
- Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Plaça Cívica, Barcelona 08193, Spain; (A.M.O.-Z.); (E.F.); (D.R.); (O.S.-S.); (C.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid 28020, Spain
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
| | - Rafael Simó
- Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Plaça Cívica, Barcelona 08193, Spain; (A.M.O.-Z.); (E.F.); (D.R.); (O.S.-S.); (C.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid 28020, Spain
- Department of Endocrinology, Vall d’Hebron University Hospital. Passeig Vall d’Hebron 119-139, Barcelona 08035, Spain; (M.S.); (M.C.)
- Correspondence: (A.C.); (R.S.); Tel.: +34-934-894-172 (A.C.); +34-934-894-172 (R.S.)
| |
Collapse
|
45
|
Retinal Nerve Fiber Layer in Patients with Alcohol Use Disorder. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The objectives of the present study are to determine the effects of alcohol use on the retinal nerve fiber layer (RNFL) thickness and macular thickness of abstinent patients with alcohol use disorders (AUD) and to assess whether it correlates with alcohol consumption and/or cognitive impairment. This was a prospective, observational study that included 21 patients (42 eyes) and 21 controls (42 eyes). Patients met the criteria for early remission AUD at the moment of inclusion. We used optical coherence tomography to assess retinal thickness. Macular thickness in the group of AUD patients was lower in all quadrants (p < 0.05), with the exception of the peripheral and central. Regarding the nerve fiber layer in the macular and papilla areas, we found no significant differences. At the retina ganglion cell layer and in the nerve fiber of the macula, we found significant differences in all quadrants (p < 0.05), with the exception of the superior and superior nasal area, for the right eye. For the left eye, the only differences were found in the lower quadrant. Finally, when comparing the AUD patients to the controls, we found significant reductions in the ganglion cell layer of the macula in all quadrants in the former. There was a significant correlation between these findings and cognitive impairment (measured with the Test de Detección de Deterioro Cognitivo en Alcoholismo (TEDCA)), but not with alcohol consumption. Alcohol consumption is correlated with retinal harm and related cognitive decline.
Collapse
|
46
|
Motta D, Casaca W, Paiva A. Vessel Optimal Transport for Automated Alignment of Retinal Fundus Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 28:6154-6168. [PMID: 31283507 DOI: 10.1109/tip.2019.2925287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optimal transport has emerged as a promising and useful tool for supporting modern image processing applications such as medical imaging and scientific visualization. Indeed, the optimal transport theory enables great flexibility in modeling problems related to image registration, as different optimization resources can be successfully used as well as the choice of suitable matching models to align the images. In this paper, we introduce an automated framework for fundus image registration which unifies optimal transport theory, image processing tools, and graph matching schemes into a functional and concise methodology. Given two ocular fundus images, we construct representative graphs which embed in their structures spatial and topological information from the eye's blood vessels. The graphs produced are then used as input by our optimal transport model in order to establish a correspondence between their sets of nodes. Finally, geometric transformations are performed between the images so as to accomplish the registration task properly. Our formulation relies on the solid mathematical foundation of optimal transport as a constrained optimization problem, being also robust when dealing with outliers created during the matching stage. We demonstrate the accuracy and effectiveness of the present framework throughout a comprehensive set of qualitative and quantitative comparisons against several influential state-of-the-art methods on various fundus image databases.
Collapse
|
47
|
Tribble JR, Vasalauskaite A, Redmond T, Young RD, Hassan S, Fautsch MP, Sengpiel F, Williams PA, Morgan JE. Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma. Brain Commun 2019; 1:fcz035. [PMID: 31894207 PMCID: PMC6928391 DOI: 10.1093/braincomms/fcz035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022] Open
Abstract
Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure-function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure-function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden
| | | | - Tony Redmond
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
| | - Robert D Young
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
| | - Shoaib Hassan
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XW Wales, UK
| | | | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX Wales, UK
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ Wales, UK
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XW Wales, UK
| |
Collapse
|
48
|
More SS, Beach JM, McClelland C, Mokhtarzadeh A, Vince R. In Vivo Assessment of Retinal Biomarkers by Hyperspectral Imaging: Early Detection of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4492-4501. [PMID: 31603648 DOI: 10.1021/acschemneuro.9b00331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A noninvasive and cost-effective means to detect preclinical Alzheimer's disease (AD) and monitor disease progression would be invaluable. The retina is a developmental extension of the brain and has been viewed as a window to evaluate AD-related pathology. Cross-sectional studies have shown structural changes in the retina of AD patients that include thinning of the retinal nerve-fiber layer and changes in retinal vasculature. However, such changes do not manifest in early stages of the disease nor are they specific biomarkers for AD. Described herein is the utilization of our retinal hyperspectral imaging (rHSI) technique as a biomarker for identification of AD-related early pathological changes in the retina. Specifically, this account concerns the translation of our rHSI technique from animal models to human AD subjects. The underlying principle is Rayleigh light scattering, which is expected from low-order Aβ aggregates present in early pathology. Recruitment was restricted to AD subjects (N = 19) and age-matched controls, with no family history of AD (N = 16). To limit the influence of skin pigmentation, subjects were restricted to those with skin pigmentation values of 2-3 on the Fitzpatrick scale. The largest spectral deviation from control subjects, rHSI signature, was obtained at the MCI stage with MMSE scores ⩾22, suggesting higher sensitivity of this technique in early disease stages. The rHSI signature observed is unaffected by eye pathologies such as glaucoma and cataract. Age of the subjects minimally influenced the spectral signatures. The rHSI technique shows promise for detection of preclinical AD; it is conducted in a truly noninvasive manner, without application of an exogenous label, and is thus potentially suitable for population screening.
Collapse
|
49
|
Hadar A, Gurwitz D. Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936769 PMCID: PMC6436957 DOI: 10.31887/dcns.2018.20.4/dgurwitz] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is the major epidemic of the 21st century, its prevalence rising along with improved human longevity. Early AD diagnosis is key to successful treatment, as currently available therapeutics only allow small benefits for diagnosed AD patients. By contrast, future therapeutics, including those already in preclinical or clinical trials, are expected to afford neuroprotection prior to widespread brain damage and dementia. Brain imaging technologies are developing as promising tools for early AD diagnostics, yet their high cost limits their utility for screening at-risk populations. Blood or plasma transcriptomics, proteomics, and/or metabolomics may pave the way for cost-effective AD risk screening in middle-aged individuals years ahead of cognitive decline. This notion is exemplified by data mining of blood transcriptomics from a published dataset. Consortia blood sample collection and analysis from large cohorts with mild cognitive impairment followed longitudinally for their cognitive state would allow the development of a reliable and inexpensive early AD screening tool.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978 Israel
| |
Collapse
|
50
|
Hadar A. Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? DIALOGUES IN CLINICAL NEUROSCIENCE 2018; 20:293-300. [PMID: 30936769 PMCID: PMC6436957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Alzheimer disease (AD) is the major epidemic of the 21st century, its prevalence rising along with improved human longevity. Early AD diagnosis is key to successful treatment, as currently available therapeutics only allow small benefits for diagnosed AD patients. By contrast, future therapeutics, including those already in preclinical or clinical trials, are expected to afford neuroprotection prior to widespread brain damage and dementia. Brain imaging technologies are developing as promising tools for early AD diagnostics, yet their high cost limits their utility for screening at-risk populations. Blood or plasma transcriptomics, proteomics, and/or metabolomics may pave the way for cost-effective AD risk screening in middle-aged individuals years ahead of cognitive decline. This notion is exemplified by data mining of blood transcriptomics from a published dataset. Consortia blood sample collection and analysis from large cohorts with mild cognitive impairment followed longitudinally for their cognitive state would allow the development of a reliable and inexpensive early AD screening tool.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine
| |
Collapse
|