1
|
Gauthier M, Hebert LP, Dugast E, Lardeux V, Letort K, Thiriet N, Belnoue L, Balado E, Solinas M, Belujon P. Sex-dependent effects of stress on aIC-NAc circuit neuroplasticity: Role of the endocannabinoid system. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111335. [PMID: 40113129 DOI: 10.1016/j.pnpbp.2025.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Stress is a major risk factor for psychiatric disorders and affects neuroplasticity in brain areas like the nucleus accumbens core (NAcC) and the insular cortex (IC). This study examined neuroplasticity changes in the aIC-NAcC circuit after restraint stress in male and female rats, and explored the role of the endocannabinoid system. Male and female rats underwent 2 h of acute restraint stress. Behavioral tests and in vivo electrophysiological recordings were performed immediately and 24 h after stress exposure. cFos was performed immediately after stress. Since stress effects were observed only in males, we evaluated the systemic and intra-NAc blockade of CB1 receptors in male rats. We found increased c-Fos expression in the hypothalamus but not in the IC in both sexes after acute restraint stress, along with heightened anxiety and reduced exploratory behavior. Males and females exhibited different neuronal plasticity in the aIC-NAcC pathway. Under basal conditions, males showed equal proportions of long-term potentiation (LTP) and long-term depression (LTD), whereas females predominantly exhibited LTP. Stress disrupted synaptic plasticity in males by eliminating LTD in the aIC-NAcC pathway 24 h after exposure. This effect was reversed by systemic and local CB1 receptor blockade. These findings suggest that integration of aIC information into NAcC differs by sex, with stress-induced neuroplasticity changes occurring only in males, dependent on the endocannabinoid system. This study provides insight into sex differences in stress reactivity, which may relate to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Manon Gauthier
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Léo-Paul Hebert
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Kevin Letort
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Laure Belnoue
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Eric Balado
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
2
|
Jafari Gandomani S, Soleimani M, Fayazmilani R. Evaluation of the c-Fos expression in the hippocampus after fatigue caused by one session of endurance exercise in pre-pubertal and adult rats. Int J Neurosci 2024; 134:1450-1459. [PMID: 37812039 DOI: 10.1080/00207454.2023.2269471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Central fatigue plays an important role in reducing endurance exercise activity during brain development. c-Fos gene expression in the hippocampus was examined as an indicator of neuronal activation after exhaustion. METHODS Eighteen pre-pubertal male rats at four weeks old and 18 adult rats at eight weeks were randomly divided into three groups: Control (C), Constant time exercise (CTEx), Endurance Exercise until Exhaustion (ExhEx), which started at two minutes and ended in 20 min, the main swimming test was performed with a weight equal to 5% of the bodyweight attached to the rats' tail as a single session in experimental groups and was recorded at the end of their time, while to evaluate the force loss, the Grip strength was measured before and after the activity. The brain activation rate was examined by c-Fos gene expression and Nissl staining in CA3 and dentate gyrus (DG) in the hippocampus of all groups. RESULTS Power grip and Nissl positive neurons in CA3 and DG have been significantly higher in pre-pubertal rats than in adults, both in the CTEx group (p = 0.04) and in the ExhEx group (p < 0.001). Also, real-time exhaustion in the pre-pubertal group was significantly longer than in adults. c-Fos gene expression was significantly reduced in adults' hippocampus in comparison to preadolescence (p < 0.01) and control (p < 0.001). CONCLUSION These findings clarified that increased strength and longer fatigue in pre-puberal rats may lead to c-Fos gene expression and decreased neurons in the hippocampus. Perhaps this is a protective effect to suppress stress hormones.
Collapse
Affiliation(s)
- Samira Jafari Gandomani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Rana Fayazmilani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Guevara CA, Alloo K, Gupta S, Thomas R, del Valle P, Magee AR, Benson DL, Huntley GW. Parkinson's LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress. Front Behav Neurosci 2024; 18:1445184. [PMID: 39328984 PMCID: PMC11425082 DOI: 10.3389/fnbeh.2024.1445184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Anxiety is a psychiatric non-motor symptom of Parkinson's that can appear in the prodromal period, prior to significant loss of midbrain dopamine neurons and motor symptoms. Parkinson's-related anxiety affects females more than males, despite the greater prevalence of Parkinson's in males. How stress, anxiety and Parkinson's are related and the basis for a sex-specific impact of stress in Parkinson's are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 (Lrrk2 G2019S) and Lrrk2 WT control mice. In humans, LRRK2 G2019S significantly elevates the risk of late-onset Parkinson's. To assess within-sex differences between Lrrk2 G2019S and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby Lrrk2 G2019S and Lrrk2 WT control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male Lrrk2 G2019S mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on Lrrk2 G2019S mice while significantly increasing latency to feed in Lrrk2 WT control mice. Female Lrrk2 G2019S mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female Lrrk2 G2019S mice was generally lower compared to stressed Lrrk2 WT mice, except for the nucleus accumbens of male Lrrk2 G2019S mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the Lrrk2 G2019S mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in some, but not all stress-related brain regions.
Collapse
Affiliation(s)
- Christopher A. Guevara
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kumayl Alloo
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Swati Gupta
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
| | - Romario Thomas
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
| | - Pamela del Valle
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George W. Huntley
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Arjol D, Agüera ADR, Hagen C, Papini MR. Frustrative nonreward: Detailed c-Fos expression patterns in the amygdala after consummatory successive negative contrast. Neurobiol Learn Mem 2024; 213:107942. [PMID: 38815677 DOI: 10.1016/j.nlm.2024.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The amygdala has been implicated in frustrative nonreward induced by unexpected reward downshifts, using paradigms like consummatory successive negative contrast (cSNC). However, existing evidence comes from experiments involving the central and basolateral nuclei on a broad level. Moreover, whether the amygdala's involvement in reward downshift requires a cSNC effect (i.e., greater suppression in downshifted animals than in unshifted controls) or just consummatory suppression without a cSNC effect, remains unclear. Three groups were exposed to (1) a large reward disparity leading to a cSNC effect (32-to-2% sucrose), (2) a small reward disparity involving consummatory suppression in the absence of a cSNC effect (8-to-2% sucrose), and (3) an unshifted control (2% sucrose). Brains obtained after the first reward downshift session were processed for c-Fos expression, a protein often used as a marker for neural activation. c-Fos-positive cells were counted in the anterior, medial, and posterior portions (A/P axis) of ten regions of the rat basolateral, central, and medial amygdala. c-Fos expression was higher in 32-to-2% sucrose downshift animals than in the other two groups in four regions: the anterior and the medial lateral basal amygdala, the medial capsular central amygdala, and the anterior anterio-ventral medial amygdala. None of the areas exhibited differential c-Fos expression between the 8-to-2% sucrose downshift and the unshifted conditions. Thus, amygdala activation requires exposure to a substantial reward disparity. This approach has identified, for the first time, specific amygdala areas relevant to understand the cSNC effect, suggesting follow-up experiments aimed at testing the function of these regions in reward downshift.
Collapse
Affiliation(s)
- David Arjol
- Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| | | | - Christopher Hagen
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, USA
| | | |
Collapse
|
5
|
Lai CW, Chang CH. Pharmacological activation of the amygdala, but not single prolonged footshock-induced acute stress, interferes with cue-induced motivation toward food rewards in rats. Front Behav Neurosci 2023; 17:1252868. [PMID: 37781505 PMCID: PMC10538645 DOI: 10.3389/fnbeh.2023.1252868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
In the face of threats, animals adapt their behaviors to cope with the situation. Under such circumstances, irrelevant behaviors are usually suppressed. In this study, we examined whether food-seeking motivation would decrease under activation of the amygdala, an important nucleus in the regulation of stress response in the central nervous system, or after a physical acute stress session. In Experiment 1, we pharmacologically activated the basolateral nucleus (BLA) or the central nucleus of the amygdala (CeA) before a cue-induced reinstatement test in rats. Our results showed that activation of the BLA or the CeA abolished cue-induced motivation toward food rewards, while locomotor activity and free food intake were not affected. In Experiments 2 and 3, we further assessed anxiety and despair levels, as well as cue-induced reinstatement, after a single prolonged footshock-induced acute stress in rats. Behaviorally, acute stress did not affect anxiety level, despair level, or cue-induced motivation toward food rewards. Physiologically, there was no difference in cellular activities of the amygdala immediately after acute stress. To conclude, our results suggested that pharmacological activation of the amygdala decreased cue-induced motivation toward food reward. However, physiological acute stress did not immediately interfere with the negative emotions, motivation, or amygdala activities of the animals.
Collapse
Affiliation(s)
- Chien-Wen Lai
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-hui Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Martini P, Mingardi J, Carini G, Mattevi S, Ndoj E, La Via L, Magri C, Gennarelli M, Russo I, Popoli M, Musazzi L, Barbon A. Transcriptional Profiling of Rat Prefrontal Cortex after Acute Inescapable Footshock Stress. Genes (Basel) 2023; 14:genes14030740. [PMID: 36981011 PMCID: PMC10048409 DOI: 10.3390/genes14030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after. While no substantial changes were observed at the single gene level immediately after the stress session, gene set enrichment analysis showed alterations in neuronal pathways associated with glia development, glia-neuron networking, and synaptic function. Furthermore, we found alterations in the expression of gene sets regulated by specific transcription factors that could represent master regulators of the acute stress response. Of note, these pathways and transcriptional programs are activated during the early stress response (immediately after FS) and are already turned off after 2 h-while at 24 h, the transcriptional profile is largely unaffected. Overall, our analysis provided a transcriptional landscape of the early changes triggered by acute unavoidable FS stress in the PFC of rats, suggesting that the transcriptional wave is fast and mild, but probably enough to activate a cellular response to acute stress.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jessica Mingardi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elona Ndoj
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
Morandi-Raikova A, Mayer U. Active exploration of an environment drives the activation of the hippocampus-amygdala complex of domestic chicks. J Exp Biol 2022; 225:275962. [PMID: 35815434 DOI: 10.1242/jeb.244190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
In birds, like in mammals, the hippocampus critically mediates spatial navigation through the formation of a spatial map. This study investigates the impact of active exploration of an environment on the hippocampus of young domestic chicks. Chicks that were free to actively explore the environment exhibited a significantly higher neural activation (measured by c-Fos expression), compared to those that passively observed the same environment from a restricted area. The difference was limited to the anterior and the dorsolateral parts of the intermediate hippocampus. Furthermore, the nucleus taeniae of the amygdala showed a higher c-Fos expression in the active exploration group than the passive observation group. In both brain regions, brain activation correlated with the number of locations that chicks visited during the test. This suggest that the increase of c-Fos expression in the hippocampus is related to increased firing rates of spatially coding neurons. Furthermore, our study indicates a functional linkage of the hippocampus and nucleus taeniae of the amygdala in processing spatial information. Overall, with the present study, we confirm that, in birds like in mammals, hippocampus and amygdala functions are linked and likely related to spatial representations.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| |
Collapse
|
8
|
Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022; 14:862098. [PMID: 35592695 PMCID: PMC9110804 DOI: 10.3389/fnagi.2022.862098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Abolfazl Golgol
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
9
|
Grossman YS, Fillinger C, Manganaro A, Voren G, Waldman R, Zou T, Janssen WG, Kenny PJ, Dumitriu D. Structure and function differences in the prelimbic cortex to basolateral amygdala circuit mediate trait vulnerability in a novel model of acute social defeat stress in male mice. Neuropsychopharmacology 2022; 47:788-799. [PMID: 34799681 PMCID: PMC8782864 DOI: 10.1038/s41386-021-01229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 02/03/2023]
Abstract
Stressful life events are ubiquitous and well-known to negatively impact mental health. However, in both humans and animal models, there is large individual variability in how individuals respond to stress, with some but not all experiencing long-term adverse consequences. While there is growing understanding of the neurobiological underpinnings of the stress response, much less is known about how neurocircuits shaped by lifetime experiences are activated during an initial stressor and contribute to this selective vulnerability versus resilience. We developed a model of acute social defeat stress (ASDS) that allows classification of male mice into "susceptible" (socially avoidant) versus "resilient" (expressing control-level social approach) one hour after exposure to six minutes of social stress. Using circuit tracing and high-resolution confocal imaging, we explored differences in activation and dendritic spine density and morphology in the prelimbic cortex to basolateral amygdala (PL→BLA) circuit in resilient versus susceptible mice. Susceptible mice had greater PL→BLA recruitment during ASDS and activated PL→BLA neurons from susceptible mice had more and larger mushroom spines compared to resilient mice. We hypothesized identified structure/function differences indicate an overactive PL→BLA response in susceptible mice and used an intersectional chemogenetic approach to inhibit the PL→BLA circuit during or prior to ASDS. We found in both cases that this blocked ASDS-induced social avoidance. Overall, we show PL→BLA structure/function differences mediate divergent behavioral responses to ASDS in male mice. These results support PL→BLA circuit overactivity during stress as a biomarker of trait vulnerability and potential target for prevention of stress-induced psychopathology.
Collapse
Affiliation(s)
- Yael S Grossman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Clementine Fillinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Manganaro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - George Voren
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Waldman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Zou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dani Dumitriu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, Columbia University, New York, NY, USA.
- Sackler Institute, Columbia University, New York, NY, USA.
- Columbia Population Research Center, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Chun EK, Donovan M, Liu Y, Wang Z. Behavioral, neurochemical, and neuroimmune changes associated with social buffering and stress contagion. Neurobiol Stress 2022; 16:100427. [PMID: 35036478 PMCID: PMC8749234 DOI: 10.1016/j.ynstr.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 02/02/2023] Open
Abstract
Social buffering can provide protective effects on stress responses and their subsequent negative health outcomes. Although social buffering is beneficial for the recipient, it can also have anxiogenic effects on the provider of the social buffering - a phenomena referred to as stress contagion. Social buffering and stress contagion usually occur together, but they have traditionally been studied independently, thus limiting our understanding of this dyadic social interaction. In the present study, we examined the effects of preventative social buffering and stress contagion in socially monogamous prairie voles (Microtus ochrogaster). We tested the hypothesis that this dynamic social interaction is associated with coordinated alterations in behaviors, neurochemical activation, and neuroimmune responses. To do so, adult male prairie voles were stressed via an acute immobilization restraint tube (IMO) either alone (Alone) or with their previously pair-bonded female partner (Partner) in the cage for 1 h. In contrast, females were placed in a cage containing either an empty IMO tube (Empty) or one that contained their pair-bonded male (Partner). Anxiety-like behavior was tested on the elevated plus maze (EPM) following the 60-mins test and brain sections were processed for neurochemical/neuroimmune marker labeling for all subjects. Our data indicate that females in the Partner group were in contact with and sniffed the IMO tube more, showed fewer anxiety-like behaviors, and had a higher level of oxytocin expression in the paraventricular nucleus of the hypothalamus (PVN) compared to the Empty group females. Males in the Partner group had lower levels of anxiety-like behavior during the EPM test, greater activation of corticotropin-releasing hormone expressing neurons in the PVN, lower activation of serotonin neurons in the dorsal raphe, and lower levels of microgliosis in the nucleus accumbens. Taken together, these data suggest brain region- and neurochemical-specific alterations as well as neuroinflammatory changes that may be involved in the regulation of social buffering and stress contagion behaviors.
Collapse
Affiliation(s)
- Eileen K. Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
11
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Barbier M, González JA, Houdayer C, Burdakov D, Risold P, Croizier S. Projections from the dorsomedial division of the bed nucleus of the stria terminalis to hypothalamic nuclei in the mouse. J Comp Neurol 2021; 529:929-956. [PMID: 32678476 PMCID: PMC7891577 DOI: 10.1002/cne.24988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
As stressful environment is a potent modulator of feeding, we seek in the present work to decipher the neuroanatomical basis for an interplay between stress and feeding behaviors. For this, we combined anterograde and retrograde tracing with immunohistochemical approaches to investigate the patterns of projections between the dorsomedial division of the bed nucleus of the stria terminalis (BNST), well connected to the amygdala, and hypothalamic structures such as the paraventricular (PVH) and dorsomedial (DMH), the arcuate (ARH) nuclei and the lateral hypothalamic areas (LHA) known to control feeding and motivated behaviors. We particularly focused our study on afferences to proopiomelanocortin (POMC), agouti-related peptide (AgRP), melanin-concentrating-hormone (MCH) and orexin (ORX) neurons characteristics of the ARH and the LHA, respectively. We found light to intense innervation of all these hypothalamic nuclei. We particularly showed an innervation of POMC, AgRP, MCH and ORX neurons by the dorsomedial and dorsolateral divisions of the BNST. Therefore, these results lay the foundation for a better understanding of the neuroanatomical basis of the stress-related feeding behaviors.
Collapse
Affiliation(s)
- Marie Barbier
- EA481, Neurosciences Intégratives et Cliniques, UFR SantéUniversité Bourgogne Franche‐ComtéBesançonFrance
- Department of PsychiatrySeaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - J. Antonio González
- The Francis Crick InstituteLondonUK
- The Rowett Institute, School of MedicineMedical Sciences and Nutrition, University of AberdeenAberdeenUK
| | - Christophe Houdayer
- EA481, Neurosciences Intégratives et Cliniques, UFR SantéUniversité Bourgogne Franche‐ComtéBesançonFrance
| | - Denis Burdakov
- The Francis Crick InstituteLondonUK
- Neurobehavioural Dynamics Lab, Institute for Neuroscience, D‐HESTSwiss Federal Institute of Technology / ETH ZürichZürichSwitzerland
| | - Pierre‐Yves Risold
- EA481, Neurosciences Intégratives et Cliniques, UFR SantéUniversité Bourgogne Franche‐ComtéBesançonFrance
| | - Sophie Croizier
- University of LausanneCenter for Integrative GenomicsLausanneSwitzerland
| |
Collapse
|
13
|
Mohammed M, Berdasco C, Lazartigues E. Brain angiotensin converting enzyme-2 in central cardiovascular regulation. Clin Sci (Lond) 2020; 134:2535-2547. [PMID: 33016313 PMCID: PMC7640374 DOI: 10.1042/cs20200483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
The brain renin-angiotensin system (RAS) plays an important role in the regulation of autonomic and neuroendocrine functions, and maintains cardiovascular homeostasis. Ang-II is the major effector molecule of RAS and exerts most of its physiological functions, including blood pressure (BP) regulation, via activation of AT1 receptors. Dysregulation of brain RAS in the central nervous system results in increased Ang-II synthesis that leads to sympathetic outflow and hypertension. Brain angiotensin (Ang) converting enzyme-2 (ACE2) was discovered two decades ago as an RAS component, exhibiting a counter-regulatory role and opposing the adverse cardiovascular effects produced by Ang-II. Studies using synthetic compounds that can sustain the elevation of ACE2 activity or genetically overexpressed ACE2 in specific brain regions found various beneficial effects on cardiovascular function. More recently, ACE2 has been shown to play critical roles in neuro-inflammation, gut dysbiosis and the regulation of stress and anxiety-like behaviors. In the present review, we aim to highlight the anatomical locations and functional implication of brain ACE2 related to its BP regulation via modulation of the sympathetic nervous system and discuss the recent developments and future directions in the ACE2-mediated central cardiovascular regulation.
Collapse
Affiliation(s)
- Mazher Mohammed
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA 70119, USA
| | - Clara Berdasco
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA 70119, USA
| |
Collapse
|
14
|
Yamada C, Iizuka S, Nahata M, Hattori T, Takeda H. Vulnerability to psychological stress-induced anorexia in female mice depends on blockade of ghrelin signal in nucleus tractus solitarius. Br J Pharmacol 2020; 177:4666-4682. [PMID: 32754963 PMCID: PMC7520439 DOI: 10.1111/bph.15219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Women have a higher incidence of eating disorders than men. We investigated whether the effects of ghrelin on feeding are affected by sex and stress, and to elucidate the mechanisms that may cause sex differences in stress‐mediated anorexia, focusing on ghrelin. Experimental Approach Acylated ghrelin was administered to naïve and psychologically stressed male and female C57BL/6J mice, followed by measurements of food intake and plasma hormone levels. Ovariectomy was performed to determine the effects of ovary‐derived oestrogen on stress‐induced eating disorders in female mice. The numbers of Agrp or c‐Fos mRNA‐positive cells and estrogen receptor α/c‐Fos protein‐double‐positive cells were assessed. Key Results Ghrelin administration to naïve female mice caused a higher increase in food intake, growth hormone secretion, Agrp mRNA expression in the arcuate nucleus and c‐Fos expression in the nucleus tractus solitarius (NTS) than in male mice. In contrast, psychological stress caused a more sustained reduction in food intake in females than males. The high sensitivity of naïve females to exogenous ghrelin was attenuated by stress exposure. The stress‐induced decline in food intake was not abolished by ovariectomy. Estrogen receptor‐α but not ‐β antagonism prevented the decrease in food intake under stress. Estrogen receptor‐α/c‐Fos‐double‐positive cells in the NTS were significantly increased by stress only in females. Conclusion and Implications Stress‐mediated eating disorders in females may be due to blockade of ghrelin signalling via estrogen receptor‐α activation in the NTS. Targeting the ghrelin signal in the brain could be a new treatment strategy to prevent these disorders.
Collapse
Affiliation(s)
- Chihiro Yamada
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Miwa Nahata
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.,Hokkaido University Hospital Gastroenterological Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
15
|
Kanemoto M, Nakamura T, Sasahara M, Ichijo H. Stress-Related Neuronal Clusters in Sublenticular Extended Amygdala of Basal Forebrain Show Individual Differences of Positions. Front Neural Circuits 2020; 14:29. [PMID: 32547372 PMCID: PMC7270356 DOI: 10.3389/fncir.2020.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
To understand functional neuronal circuits for emotion in the basal forebrain, patterns of neuronal activation were examined in mice by immunohistochemistry of immediate-early gene products (Zif268/Egr1 and c-Fos). In all mice examined, clusters of 30–50 neurons expressing Zif268 were found on both sides in the area between the extended amygdala (EA) and globus pallidus (GP), generally designated as sublenticular extended amygdala (SLEA). The clusters consisted of 79.9 ± 3.0% of GABAergic neurons in GAD65-mCherry mice. The expression of the cholinergic marker choline acetyltransferase and the GP markers parvalbumin, proenkephalin, and FoxP2 indicated that these neurons were different from known types of neurons in the EA and GP; therefore, we named them the sublenticular extended amygdalar Zif268/Egr1-expressing neuronal cluster (SLEA-zNC). Sublenticular extended amygdalar Zif268/Egr1-expressing neuronal clusters participated in stress processing because increasing numbers of cells were observed in SLEA-zNCs after exposure to restraint stress (RS), the induction of which was suppressed by diazepam treatment. Mapping SLEA-zNCs showed that their positions and arrangement varied individually; SLEA-zNCs were distributed asymmetrically and tended to be situated mainly in the middle region between the anterior commissure (AC) and posterior end of the GP. However, the total cell number in SLEA-zNCs was compatible between the right and left hemispheres after activation by RS. Therefore, SLEA-zNCs were distributed asymmetrically but were not lateralized. Because time courses of activation differed between the Zif268 and c-Fos, the sequential dual treatment of RSs enabled us to differentiate SLEA-zNCs activated by the first and second RS. The results supported that the same SLEA-zNCs responded to both the first and second RS, and this also applied for all SLEA-zNCs. Thus, we concluded that the cluster positions were invariable under RS in each mouse but were distributed differently between individual mice. We name these newly identified neuronal clusters as stress-related neuronal clusters, SLEA-zNCs, which are considered to be novel functional units of “islands of activation.” Moreover, SLEA-zNCs were situated at different positions in all mice examined, showing individual differences in their positions.
Collapse
Affiliation(s)
- Munenori Kanemoto
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoya Nakamura
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
16
|
Weera MM, Schreiber AL, Avegno EM, Gilpin NW. The role of central amygdala corticotropin-releasing factor in predator odor stress-induced avoidance behavior and escalated alcohol drinking in rats. Neuropharmacology 2020; 166:107979. [PMID: 32028150 DOI: 10.1016/j.neuropharm.2020.107979] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by avoidance of trauma-associated stimuli and amygdala hyperreactivity, and is highly co-morbid with alcohol use disorder (AUD). Our lab uses a predator odor (bobcat urine) stress model that produces conditioned avoidance of an odor-paired context in a subset of rats, mirroring avoidance symptoms that manifest in some but not all humans exposed to trauma. We previously showed that after predator odor stress, Avoiders exhibit escalated operant alcohol self-administration (SA), higher aversion-resistant operant alcohol responding, hyperalgesia, and greater anxiety-like behavior compared to unstressed Controls. We also showed previously that systemic antagonism of corticotropin-releasing factor-1 receptors (CRFR1) reduced escalation of operant alcohol SA in rats not indexed for avoidance, that corticotropin-releasing factor (CRF) infusions into the central amygdala (CeA) produced conditioned place avoidance in stress-naïve rats, and that intra-CeA infusion of a CRFR1 antagonist reduced hyperalgesia in Avoiders. Here, we show that avoidance behavior is persistent after repeated predator odor exposure. In addition, Avoiders showed lower weight gain than Controls after predator odor re-exposure. In the brain, higher avoidance was correlated with higher number of c-Fos + cells and CRF immunoreactivity in the CeA. Finally, we show that intra-CeA CRFR1 antagonism reversed post-stress escalation of alcohol SA and reduced avoidance behavior in Avoiders. Collectively, these findings suggest that elucidation of the mechanisms by which CRFR1-gated CeA circuits regulate avoidance behavior and alcohol SA may lead to better understanding of the neural mechanisms underlying co-morbid PTSD and AUD.
Collapse
Affiliation(s)
- Marcus M Weera
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Allyson L Schreiber
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA, 70119, USA
| |
Collapse
|
17
|
Guo X, Keenan BT, Sarantopoulou D, Lim DC, Lian J, Grant GR, Pack AI. Age attenuates the transcriptional changes that occur with sleep in the medial prefrontal cortex. Aging Cell 2019; 18:e13021. [PMID: 31549781 PMCID: PMC6826131 DOI: 10.1111/acel.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022] Open
Abstract
Sleep abnormalities are common with aging. Studies show that sleep plays important roles in brain functions, and loss of sleep is associated with increased risks for neurological diseases. Here, we used RNA sequencing to explore effects of age on transcriptome changes between sleep and sleep deprivation (SD) in medial prefrontal cortex and found that transcriptional changes with sleep are attenuated in old. In particular, old mice showed a 30% reduction in the number of genes significantly altered between sleep/wake and, in general, had smaller magnitudes of changes in differentially expressed genes compared to young mice. Gene ontology analysis revealed differential age effects on certain pathways. Compared to young mice, many of the wake‐active functions were similarly induced by SD in old mice, whereas many of the sleep‐active pathways were attenuated in old mice. We found similar magnitude of changes in synaptic homeostasis genes (Fos, Arc, and Bdnf) induced by SD, suggesting intact synaptic upscaling on the transcript level during extended wakefulness with aging. However, sleep‐activated processes, such as DNA repair, synaptogenesis, and axon guidance, were sensitive to the effect of aging. Old mice expressed elevated levels of immune response genes when compared to young mice, and enrichment analysis using cell‐type‐specific markers indicated upregulation of microglia and oligodendrocyte genes in old mice. Moreover, gene sets of the two cell types showed age‐specific sleep/wake regulation. Ultimately, this study enhances understanding of the transcriptional changes with sleep and aging, providing potential molecular targets for future studies of age‐related sleep abnormalities and neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Brendan T. Keenan
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
| | - Diane C. Lim
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Jie Lian
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
- Department of Genetics University of Pennsylvania Philadelphia Pennsylvania
| | - Allan I. Pack
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
18
|
Profiling of key brain nuclei involved in CNS control of stress and glucose homeostasis. Biochem Biophys Res Commun 2019; 521:441-448. [PMID: 31672274 DOI: 10.1016/j.bbrc.2019.10.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
Previous work have shown several key brain nuclei involved in acute psychological stress and glucose homeostasis. Acute stress influences glucose metabolism via released stress hormones by activating the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Little is known about the brain nuclei which response to peripheral glucose alteration are either abundant with glucosesensing neurons or the activations are secondary to stress. Here we profile and compare the brain nuclei that response to stress and glucose homeostasis in mouse models of acute restraint stress, glucose and 2-DG injections respectively. Our present work provide a comprehensive depiction on key brain nuclei involved in CNS control of stress and glucose homeostasis, which gives clue for functional identification of brain nuclei that regulate glucose homeostasis under stress.
Collapse
|
19
|
Kovács LÁ, Berta G, Csernus V, Ujvári B, Füredi N, Gaszner B. Corticotropin-Releasing Factor-Producing Cells in the Paraventricular Nucleus of the Hypothalamus and Extended Amygdala Show Age-Dependent FOS and FOSB/DeltaFOSB Immunoreactivity in Acute and Chronic Stress Models in the Rat. Front Aging Neurosci 2019; 11:274. [PMID: 31649527 PMCID: PMC6794369 DOI: 10.3389/fnagi.2019.00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
Corticotropin-releasing factor (CRF) immunoreactive (ir) neurons of the paraventricular nucleus of the hypothalamus (PVN) play pivotal role in the coordination of stress response. CRF-producing cells in the central nucleus of amygdala (CeA) and oval division of the bed nucleus of stria terminalis (BNSTov) are also involved in stress adaptation and mood control. Immediate early gene products, subunits of the transcription factor activator protein 1 (AP1) are commonly used as acute (FOS) and/or chronic (FOSB/deltaFOSB) markers for the neuronal activity in stress research. It is well known that the course of aging affects stress adaptation, but little is known about the aging-related stress sensitivity of CRF neurons. To the best of our knowledge, the stress-induced neuronal activity of CRF neurons in the course of aging in acute and chronic stress models was not studied systematically yet. Therefore, the aim of the present study was to quantify the acute restraint stress (ARS) and chronic variable mild stress (CVMS) evoked neuronal activity in CRF cells of the PVN, CeA, and BNSTov using triple-label immunofluorescence throughout the whole lifespan in the rat. We hypothesized that the FOS and FOSB content of CRF cells upon ARS or CVMS decreases with age. Our results showed that the FOS and FOSB response to ARS declined with age in the PVN-CRF cells. BNSTov and CeA CRF cells did not show remarkable stress-induced elevation of these markers neither in ARS, nor in CVMS. Exposure to CVMS resulted in an age-independent significant increase of FOSB/delta FOSB immunosignal in PVN-CRF neurons. Unexpectedly, we detected a remarkable stress-independent FOSB/deltaFOSB signal in CeA- and BNSTov-CRF cells that declined with the course of aging. In summary, PVN-CRF cells show decreasing acute stress sensitivity (i.e., FOS and FOSB immunoreactivity) with the course of aging, while their (FOSB/deltaFOSB) responsivity to chronic challenge is maintained till senescence. Stress exposure does not affect the occurrence of the examined Fos gene products in CeA- and BNSTov-CRF cells remarkably suggesting that their contribution to stress adaptation response does not require AP1-controlled transcriptional changes.
Collapse
Affiliation(s)
- László Á Kovács
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Valér Csernus
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| |
Collapse
|
20
|
Varodayan FP, Minnig MA, Steinman MQ, Oleata CS, Riley MW, Sabino V, Roberto M. PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress. Neuropharmacology 2019; 168:107752. [PMID: 31476352 DOI: 10.1016/j.neuropharm.2019.107752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - M A Minnig
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - M Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - C S Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - M W Riley
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - V Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - M Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
21
|
Abstract
The constant refinement of tests used in animal research is crucial for the scientific community. This is particularly true for the field of pain research, where ethical standards are notably sensitive. The formalin test is widely used in pain research and some of its mechanisms resemble those underlying clinical pain in humans. Immediately upon injection, formalin triggers two waves (an early and a late phase) of strong, nociceptive behaviour, characterised by licking, biting, lifting and shaking the injected paw of the animal. Although well characterised at the behaviour level, since its proposal over four decades ago, there has not been any significant refinement to the formalin test, especially those combining minimisation of animal distress and preservation of behavioural outcomes of the test. Here, we propose a modified and improved method for the formalin test. We show that anaesthetising the animal with the inhalable anaesthetic sevoflurane at the time of the injection can produce reliable, robust and reproducible results whilst animal distress during the initial phase is reduced. Importantly, our results were validated by pharmacological suppression of the behaviour during the late phase of the test with gabapentin, the anaesthetic showing no interference with the drug. In addition, we demonstrate that this is also a useful method to screen for changes in pain behaviour in response to formalin in transgenic lines.
Collapse
Affiliation(s)
- Douglas M Lopes
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, London, UK
| | - Heather L Cater
- MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Matthew Thakur
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, London, UK
| | - Sara Wells
- MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Stephen B McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, London, UK
| |
Collapse
|
22
|
Abstract
The constant refinement of tests used in animal research is crucial for the scientific community. This is particularly true for the field of pain research, where ethical standards are notably sensitive. The formalin test is widely used in pain research and some of its mechanisms resemble those underlying clinical pain in humans. Immediately upon injection, formalin triggers two waves (an early and a late phase) of strong, nociceptive behaviour, characterised by licking, biting, lifting and shaking the injected paw of the animal. Although well characterised at the behaviour level, since its proposal over four decades ago, there has not been any significant refinement to the formalin test, especially those combining minimisation of animal distress and preservation of behavioural outcomes of the test. Here, we propose a modified and improved method for the formalin test. We show that anaesthetising the animal with the inhalable anaesthetic sevoflurane at the time of the injection can produce reliable, robust and reproducible results whilst animal distress during the initial phase is reduced. Importantly, our results were validated by pharmacological suppression of the behaviour during the late phase of the test with gabapentin, the anaesthetic showing no interference with the drug. In addition, we demonstrate that this is also a useful method to screen for changes in pain behaviour in response to formalin in transgenic lines.
Collapse
Affiliation(s)
- Douglas M Lopes
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, London, UK
| | - Heather L Cater
- MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Matthew Thakur
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, London, UK
| | - Sara Wells
- MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Stephen B McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London SE1 1UL, London, UK
| |
Collapse
|
23
|
Destruction of the Dorsal Motor Nucleus of the Vagus Aggravates Inflammation and Injury from Acid-Induced Acute Esophagitis in a Rat Model. Anal Cell Pathol (Amst) 2019; 2019:8243813. [PMID: 31281769 PMCID: PMC6589286 DOI: 10.1155/2019/8243813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background/Aims The aim of this study is to examine the protective effect of the cholinergic anti-inflammatory pathway (CAP) in experimental esophagitis in rats. Methods A total of 40 male Sprague-Dawley (SD) rats were randomly divided into five groups as follows: control group, sham + saline group, sham + acid group, operation + saline group, and operation + acid group. Two weeks after the dorsal motor nucleus of the vagus (DMV) destruction, hydrochloric acid with pepsin was perfused into the lower part of the esophagus for 90 min. The rats were sacrificed 60 min after perfusion. The esophagus was prepared for hematoxylin and eosin (HE) staining, and the degree of inflammation and NF-κB activation in the esophagus was measured. Inflammatory cytokines (TNF-α, IL-6, IL-1β, and PGE2) in the esophagus were measured by ELISA. The brain was removed and processed for c-fos immunohistochemistry staining. The c-fos-positive neurons were counted and analyzed. Results The TNF-α, IL-1β, IL-6, and PGE2 concentrations in the esophageal tissue increased after acid perfusion. The microscopic esophagitis scores and the activation of NF-κB p65 in the esophagus were significantly higher in the operation + acid group than in the operation + saline group. c-fos-positive neurons significantly increased in rats receiving acid perfusion in the amygdala (AM), the paraventricular nucleus of the hypothalamus (PVN), the parabrachial nucleus (PBN), the nucleus of the solitary tract (NTS)/DMV, the nucleus ambiguous (NA), the reticular nucleus of the medulla (RNM), and the area postrema (AP). After DMV destruction, c-fos expression was reduced in the AM, PVN, PBN, NTS/DMV, NA, RNM, and AP, especially in the AM, PVN, NTS/DMV, RNM, and AP. Conclusions The DMV is an important nucleus of the CAP. The DMV lesion can aggravate esophageal inflammation and injury from acid-induced acute esophagitis in a rat model. The CAP has a protective effect on the acute esophagitis rat model and could be a new therapy for reflux esophagitis (RE).
Collapse
|