1
|
Canet G, Zussy C, Vitalis M, Morin F, Chevallier N, Hunt H, Claeysen S, Blaquière M, Marchi N, Planel E, Meijer OC, Desrumaux C, Givalois L. Advancing Alzheimer's disease pharmacotherapy: efficacy of glucocorticoid modulation with dazucorilant (CORT113176) in preclinical mouse models. Br J Pharmacol 2025; 182:1930-1956. [PMID: 39891319 DOI: 10.1111/bph.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Exposure to chronic stress and high levels of glucocorticoid hormones in adulthood has been associated with cognitive deficits and increased risk of Alzheimer's disease (AD). Dazucorilant has recently emerged as a selective glucocorticoid receptor (NR3C1) modulator, exhibiting efficacy in counteracting amyloid-β toxicity in an acute model of AD. We aim to assess the therapeutic potential of dazucorilant in reversing amyloid and tau pathologies through the inhibition of glucocorticoid receptor pathological activity, and providing additional evidence for its consideration in AD treatment. EXPERIMENTAL APPROACH The efficacy of dazucorilant was evaluated in two transgenic mouse models of amyloid pathology. The slowly progressing J20 and the aggressively pathological 5xFAD mice. Behavioural analysis was conducted to evaluate welfare, cognitive performances and anxiety levels. The activity of the glucocorticoid receptor system, neuroinflammation, amyloid burden and tau phosphorylation were examined in hippocampi. KEY RESULTS In both AD models, chronic treatment with dazucorilant improved working and long-term spatial memories along with the inhibition of glucocorticoid receptor-dependent pathogenic processes and the normalization of plasma glucocorticoid levels. Dazucorilant treatment also resulted in a reduction in tau hyperphosphorylation and amyloid production and aggregation. Additionally, dazucorilant seemed to mediate a specific re-localization of activated glial cells onto amyloid plaques in J20 mice, suggesting a restoration of physiological neuroinflammatory processes. CONCLUSION AND IMPLICATIONS Dazucorilant exhibited sustained disease-modifying effects in two AD models. Given that this compound has demonstrated safety and tolerability in human subjects, our results provide pre-clinical support for conducting clinical trials to evaluate its potential in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Charleine Zussy
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Françoise Morin
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | | | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | | | - Nicola Marchi
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Planel
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- LIPSTIC LabEx, Dijon, France
| | - Laurent Givalois
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
- CNRS, Paris, France
| |
Collapse
|
2
|
Di Vincenzo M, Pellegrino P, Schiappa G, Campanati A, Del Vescovo V, Piccirillo S, Ambrogini P, Arnaldi G, Orciani M. Role of 11β-Hydroxysteroid Dehydrogenase and Mineralocorticoid Receptor on Alzheimer's Disease Onset: A Systematic Review. Int J Mol Sci 2025; 26:1357. [PMID: 39941125 PMCID: PMC11818399 DOI: 10.3390/ijms26031357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The role of 11β-HSD1 in Alzheimer's disease (AD) has garnered significant attention due to its involvement in glucocorticoid metabolism, neuroinflammation, and cognitive decline. This review explores the current understanding of 11β-HSD1 in AD, examining genetic, preclinical, and clinical research. Genetic studies have identified 11β-HSD1 polymorphisms that may influence AD risk, although findings remain inconsistent. Mechanistically, 11β-HSD1 promotes neurodegeneration through the dysregulation of glucocorticoid activity, contributing to hippocampal atrophy, amyloid plaque formation, and tau pathology. Preclinical studies have shown that 11β-HSD1 inhibitors offer neuroprotective effects, including enhanced cognitive function, reduced inflammation, and improved mitochondrial activity. However, clinical trials, including those involving ABT-384 and Xanamem, have produced mixed results, with no substantial cognitive improvements despite effective enzyme inhibition. These inconsistencies highlight the complexity of AD and the challenges in translating preclinical findings into clinical outcomes. Moreover, while 11β-HSD1 inhibition holds therapeutic potential, other strategies targeting neuroinflammation, autophagy, and glucocorticoid signaling are also being explored. Ongoing research is focusing on optimizing 11β-HSD1 inhibitors, identifying biomarkers for patient selection, and investigating combination therapies to enhance treatment efficacy. Ultimately, 11β-HSD1's role in AD presents a promising therapeutic target, but further studies are required to fully understand its potential in managing the disease.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences—Histology, Università Politecnica delle Marche, 60126 Ancona, Italy; (M.D.V.); (P.P.); (G.S.); (V.D.V.)
| | - Pamela Pellegrino
- Department of Clinical and Molecular Sciences—Histology, Università Politecnica delle Marche, 60126 Ancona, Italy; (M.D.V.); (P.P.); (G.S.); (V.D.V.)
| | - Genny Schiappa
- Department of Clinical and Molecular Sciences—Histology, Università Politecnica delle Marche, 60126 Ancona, Italy; (M.D.V.); (P.P.); (G.S.); (V.D.V.)
| | - Anna Campanati
- Department of Clinical and Molecular Sciences—Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Valerio Del Vescovo
- Department of Clinical and Molecular Sciences—Histology, Università Politecnica delle Marche, 60126 Ancona, Italy; (M.D.V.); (P.P.); (G.S.); (V.D.V.)
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health—Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giorgio Arnaldi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Monia Orciani
- Department of Clinical and Molecular Sciences—Histology, Università Politecnica delle Marche, 60126 Ancona, Italy; (M.D.V.); (P.P.); (G.S.); (V.D.V.)
| |
Collapse
|
3
|
Jaqua EE, Tran MLN, Alvarez P, Gupta M, Yoong J. Dementia and Cognitive Decline: A HEALM Approach. Am J Lifestyle Med 2024:15598276241291508. [PMID: 39540186 PMCID: PMC11556629 DOI: 10.1177/15598276241291508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Dementia and cognitive decline pose significant global public health challenges, with prevalence expected to rise in the coming decades. Lifestyle medicine offers a promising approach to mitigating cognitive issues through six key interventions: diet, physical activity, restorative sleep, social connections, stress management, and avoiding risky substances. Traditional methods like randomized controlled trials (RCTs) have limitations in capturing the long-term impacts of these interventions. To overcome these challenges, the American College of Lifestyle Medicine (ACLM) and the True Health Initiative (THI) developed the Hierarchies of Evidence Applied to Lifestyle Medicine (HEALM) framework, informed by the Evidence Threshold Pathway Mapping (ETPM) approach. This framework integrates diverse evidence sources to assess intervention effects over time. Applying HEALM, this review evaluates lifestyle factors' impact on dementia and cognitive decline. It finds strong evidence supporting plant-based nutrition, physical activity, restorative sleep, and avoiding risky substances in promoting cognitive health. Social connections may mitigate cognitive decline, while stress management requires further investigation due to inconclusive findings. Integrating these findings into public health strategies could effectively address the growing dementia burden and enhance overall well-being in aging populations, underscoring the need for continued research in cognitive health.
Collapse
Affiliation(s)
- Ecler E. Jaqua
- Family Medicine Department, Loma Linda University School of Medicine, Loma Linda, CA, USA (EJ, MLT, PA, MG)
| | - Mai-Linh N. Tran
- Family Medicine Department, Loma Linda University School of Medicine, Loma Linda, CA, USA (EJ, MLT, PA, MG)
| | - Pedro Alvarez
- Family Medicine Department, Loma Linda University School of Medicine, Loma Linda, CA, USA (EJ, MLT, PA, MG)
| | - Monica Gupta
- Family Medicine Department, Loma Linda University School of Medicine, Loma Linda, CA, USA (EJ, MLT, PA, MG)
| | - Jessica Yoong
- Family Medicine Department, Kaiser Permanente Riverside Medical Center, Riverside, CA, USA (JY)
| |
Collapse
|
4
|
Wu M, Cheng Y, Zhang R, Han W, Jiang H, Bi C, Zhang Z, Ye M, Lin X, Liu Z. Molecular mechanism and therapeutic strategy of bile acids in Alzheimer's disease from the emerging perspective of the microbiota-gut-brain axis. Biomed Pharmacother 2024; 178:117228. [PMID: 39088965 DOI: 10.1016/j.biopha.2024.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β outside neurons and Tau protein inside neurons. Various pathological mechanisms are implicated in AD, including brain insulin resistance, neuroinflammation, and endocrinal dysregulation of adrenal corticosteroids. These factors collectively contribute to neuronal damage and destruction. Recently, bile acids (BAs), which are metabolites of cholesterol, have shown neuroprotective potential against AD by targeting the above pathological changes. BAs can enter the systematic circulation and cross the blood-brain barrier, subsequently exerting neuroprotective effects by targeting several endogenous receptors. Additionally, BAs interact with the microbiota-gut-brain (MGB) axis to improve immune and neuroendocrine function during AD episodes. Gut microbes impact BA signaling in the brain through their involvement in BA biotransformation. In this review, we summarize the role and molecular mechanisms of BAs in AD while considering the MGB axis and propose novel strategies for preventing the onset and progression of AD.
Collapse
Affiliation(s)
- Menglu Wu
- Clinical Laboratory, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, China; Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yongyi Cheng
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ruolin Zhang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Wenwen Han
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hanqi Jiang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Chenchen Bi
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ziyi Zhang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, China
| | - Xiuqin Lin
- Clinical Laboratory, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, China.
| | - Zheng Liu
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
5
|
Wang M, Wang L, Yang M, Zhang X, Fan X. Associations of dietary patterns and perceived stress with memory deficits in patients with heart failure. J Health Psychol 2024; 29:963-975. [PMID: 38230537 DOI: 10.1177/13591053231221064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
This study aimed to examine the relationships between dietary patterns and perceived stress with memory deficits in 291 patients with heart failure aged 45-85 years. A total of 142 (48.8%) patients reported memory deficit. Three dietary patterns were identified by K-means clustering: nut-fruit-dairy, meat-processed, and traditional (high intake of cereals) diets. Compared to the traditional diet, the nut-fruit-dairy diet and meat-processed diet were associated with lower levels of deficits in short-term memory, delayed memory, and overall memory. What's more, perceived stress was positively associated with deficits in short-term memory and overall memory, but the association was only found in patients adhering to the traditional diet using stratified analyses. Our findings suggest that adhering to a healthy diet may be conducive to improving deficits in short-term memory, delayed memory, and overall memory, while also buffering the adverse association between perceived stress and deficits in short-term memory and overall memory.
Collapse
Affiliation(s)
| | - Lyu Wang
- The Chinese University of Hong Kong, P.R. China
| | | | | | | |
Collapse
|
6
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Tian Y, Ye Q, Qiao J, Wang L, Dai Y, Wen H, Dou Z. A causal relationship between panic disorder and risk of alzheimer disease: a two-sample mendelian randomization analysis. BMC Psychiatry 2024; 24:178. [PMID: 38439042 PMCID: PMC10913557 DOI: 10.1186/s12888-024-05624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Observational studies have suggested a link between panic disorder (PD) and Alzheimer disease (AD). This study aimed to identify the underlying association of PD with the risk of AD using Mendelian randomization. METHODS Genetic instrumental variables (IVs) were retrieved in the genome-wide association study between PD and AD. Then, five different models, namely inverse variance weighting (IVW), weighted median, weighted mode, MR-Egger and MR-robust adjusted profile scores (MR-RAPS), were used for MR Analysis. Finally, the heterogeneity and pleiotropy of identified IVs were verified by multiple sensitivity tests. RESULTS The Cochran's Q test based on MR Egger and IVW showed that no evidence of heterogeneity was found in the effects of instrumental variables, so a fixed-effect model was used. IVW analysis (OR 1.000479, 95% CI [1.000147056, 1.000811539], p = 0.005) indicated that PD was associated with an increased risk of AD, and a causal association existed between them. Meanwhile, weighted median (OR 1.000513373, 95% CI [1.000052145, 1.000974814], p = 0.029) and MR-RAPS (OR 1.000510118, 95% CI [1.000148046, 1.00087232], p = 0.006) also showed the similar findings. In addition, extensive sensitivity analyses confirmed the robustness and accuracy of these results. CONCLUSION This investigation provides evidence of a potential causal relationship between PD and the increased risk of AD. Based on our MR results, when diagnosing and treating patients with PD, clinicians should pay more attention to their AD-related symptoms to choose therapeutic measures or minimize comorbidities. Furthermore, the development of drugs that improve both PD and AD may better treat patients with these comorbidities.
Collapse
Affiliation(s)
- Yueqin Tian
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, 510630, Guangzhou, Guangdong, China
| | - Qiuping Ye
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, 510630, Guangzhou, Guangdong, China
| | - Jia Qiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, 510630, Guangzhou, Guangdong, China
| | - Lian Wang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, 510630, Guangzhou, Guangdong, China
| | - Yong Dai
- Clinical Medical College of Acupuncture, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, 510630, Guangzhou, Guangdong, China.
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, 510630, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Rajkumar RP. Resolving a paradox: antidepressants, neuroinflammation, and neurodegeneration. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024:11-37. [DOI: 10.37349/ent.2024.00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2025]
Abstract
Depression is a known risk factor for dementia. Antidepressants are the most commonly used treatment for this condition, and are effective in at least half to two-thirds of cases. Extensive evidence from in vitro and animal models suggests that antidepressants have anti-inflammatory and neuroprotective properties. These effects have been shown to reduce the oxidative damage, amyloid aggregation, and expression of pro-inflammatory genes associated with animal models of neurodegenerative disorders. However, longitudinal research in humans has shown that antidepressants do not protect against dementia, and may even be associated with a risk of cognitive deterioration over time in older adults. The contrast between two sets of findings represents a paradox of significant clinical and public health significance, particularly when treating depression in late life. This review paper attempts to resolve this paradox by critically reviewing the medium- and long-term effects of antidepressants on peripheral immune-inflammatory responses, infection risk, gut microbiota, and neuroendocrine responses to stress, and how these effects may influence the risk of neurodegeneration. Briefly stated, it is possible that the peripheral actions of antidepressant medications may antagonize their beneficial effects against neuroinflammation. The implications of these findings are then explored with a particular focus on the development and testing of multimodal neuroprotective and anti-inflammatory treatments that could reduce the risk of Alzheimer’s and related dementias in patients suffering from depression.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, Pondicherry, India
| |
Collapse
|
9
|
Bajaj S, Mahesh R. Converged avenues: depression and Alzheimer's disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 2024; 51:225. [PMID: 38281208 DOI: 10.1007/s11033-023-09170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Depression, a highly prevalent disorder affecting over 280 million people worldwide, is comorbid with many neurological disorders, particularly Alzheimer's disease (AD). Depression and AD share overlapping pathophysiology, and the search for accountable biological substrates made it an essential and intriguing field of research. The paper outlines the neurobiological pathways coinciding with depression and AD, including neurotrophin signalling, the hypothalamic-pituitary-adrenal axis (HPA), cellular apoptosis, neuroinflammation, and other aetiological factors. Understanding overlapping pathways is crucial in identifying common pathophysiological substrates that can be targeted for effective management of disease state. Antidepressants, particularly monoaminergic drugs (first-line therapy), are shown to have modest or no clinical benefits. Regardless of the ineffectiveness of conventional antidepressants, these drugs remain the mainstay for treating depressive symptoms in AD. To overcome the ineffectiveness of traditional pharmacological agents in treating comorbid conditions, a novel therapeutic class has been discussed in the paper. This includes neurotransmitter modulators, glutamatergic system modulators, mitochondrial modulators, antioxidant agents, HPA axis targeted therapy, inflammatory system targeted therapy, neurogenesis targeted therapy, repurposed anti-diabetic agents, and others. The primary clinical challenge is the development of therapeutic agents and the effective diagnosis of the comorbid condition for which no specific diagnosable scale is present. Hence, introducing Artificial Intelligence (AI) into the healthcare system is revolutionary. AI implemented with interdisciplinary strategies (neuroimaging, EEG, molecular biomarkers) bound to have accurate clinical interpretation of symptoms. Moreover, AI has the potential to forecast neurodegenerative and psychiatric illness much in advance before visible/observable clinical symptoms get precipitated.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
10
|
Numakawa T, Kajihara R. An Interaction between Brain-Derived Neurotrophic Factor and Stress-Related Glucocorticoids in the Pathophysiology of Alzheimer's Disease. Int J Mol Sci 2024; 25:1596. [PMID: 38338875 PMCID: PMC10855648 DOI: 10.3390/ijms25031596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
11
|
Canet G, Rocaboy E, Laliberté F, Boscher E, Guisle I, Diego-Diaz S, Fereydouni-Forouzandeh P, Whittington RA, Hébert SS, Pernet V, Planel E. Temperature-induced Artifacts in Tau Phosphorylation: Implications for Reliable Alzheimer's Disease Research. Exp Neurobiol 2023; 32:423-440. [PMID: 38196137 PMCID: PMC10789175 DOI: 10.5607/en23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
In preclinical research on Alzheimer's disease and related tauopathies, tau phosphorylation analysis is routinely employed in both cellular and animal models. However, recognizing the sensitivity of tau phosphorylation to various extrinsic factors, notably temperature, is vital for experimental accuracy. Hypothermia can trigger tau hyperphosphorylation, while hyperthermia leads to its dephosphorylation. Nevertheless, the rapidity of tau phosphorylation in response to unintentional temperature variations remains unknown. In cell cultures, the most significant temperature change occurs when the cells are removed from the incubator before harvesting, and in animal models, during anesthesia prior to euthanasia. In this study, we investigate the kinetics of tau phosphorylation in N2a and SH-SY5Y neuronal cell lines, as well as in mice exposed to anesthesia. We observed changes in tau phosphorylation within the few seconds upon transferring cell cultures from their 37°C incubator to room temperature conditions. However, cells placed directly on ice post-incubation exhibited negligible phosphorylation changes. In vivo, isoflurane anesthesia rapidly resulted in tau hyperphosphorylation within the few seconds needed to lose the pedal withdrawal reflex in mice. These findings emphasize the critical importance of preventing temperature variation in researches focused on tau. To ensure accurate results, we recommend avoiding anesthesia before euthanasia and promptly placing cells on ice after removal from the incubator. By controlling temperature fluctuations, the reliability and validity of tau phosphorylation studies can be significantly enhanced.
Collapse
Affiliation(s)
- Geoffrey Canet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emma Rocaboy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | - Francis Laliberté
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emmanuelle Boscher
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Isabelle Guisle
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Sofia Diego-Diaz
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | | | - Robert A. Whittington
- Department of Anesthesiology and Perioperative Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sébastien S. Hébert
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Vincent Pernet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Department of Neurology, Bern University Hospital, Bern 3010, Switzerland
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| |
Collapse
|
12
|
Reiss AB, Gulkarov S, Pinkhasov A, Sheehan KM, Srivastava A, De Leon J, Katz AE. Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:77. [PMID: 38256338 PMCID: PMC10819522 DOI: 10.3390/medicina60010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Prostate cancer is the second leading cause of cancer death in men in the United States. Androgen deprivation therapy (ADT) is currently the primary treatment for metastatic prostate cancer, and some studies have shown that the use of anti-androgen drugs is related to a reduction in cognitive function, mood changes, diminished quality of life, dementia, and possibly Alzheimer's disease. ADT has potential physiological effects such as a reduction in white matter integrity and a negative impact on hypothalamic functions due to the lowering of testosterone levels or the blockade of downstream androgen receptor signaling by first- and second-generation anti-androgen drugs. A comparative analysis of prostate cancer patients undergoing ADT and Alzheimer patients identified over 30 shared genes, illustrating common ground for the mechanistic underpinning of the symptomatology. The purpose of this review was to investigate the effects of ADT on cognitive function, mood, and quality of life, as well as to analyze the relationship between ADT and Alzheimer's disease. The evaluation of prostate cancer patient cognitive ability via neurocognitive testing is described. Future studies should further explore the connection among cognitive deficits, mood disturbances, and the physiological changes that occur when hormonal balance is altered.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Psychiatry, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| | - Katie M. Sheehan
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Aaron E. Katz
- Department of Urology, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| |
Collapse
|
13
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Warren A. The relationship between perceived stigma and perceived stress in cognitive decline: a survey of persons with mild cognitive impairment and their caregivers. Front Psychol 2023; 14:1293284. [PMID: 38144994 PMCID: PMC10740212 DOI: 10.3389/fpsyg.2023.1293284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction While Alzheimer's disease and other causes of dementia have rapidly become a global health crisis with growing incidence that is unabated, the incidence of Mild Cognitive Impairment (MCI) far exceeds that of Alzheimer's disease. Persons with MCI demonstrate some level of cognitive impairment, but daily functions remain intact and there is no certainty that they will develop dementia. Yet, the possibility conjures a considerable amount of fear and anxiety, further fueled by a vast array of misconceptions and stigma. The pervasive nature of this stigma permeates society and culture at many levels. Persons with MCI who are at higher risk for development of dementia may be especially vulnerable to fear and stigma associated with the diagnosis. Based on this premise, the primary aim of this study was to examine the relationship between perceived stigma and perceived stress in persons with MCI and their care partners, including the relationship between income and the study variables. The secondary aim was to examine the effect of a combined cognitive rehabilitation and wellness program on these perceptions. Methods Thirty participants were recruited from Mayo Clinic's Health Action to Benefit Independence and Thinking (HABIT) program. MCI (n = 15) and care partner (n = 15) participants completed the Stigma Impact Scale (SIS) and the Perceived Stress Scale (PSS) before and after the HABIT program. Results Average SIS and PSS scores decreased in the MCI, care partner, and combined groups, both pre- and post-HABIT. Linear regression was used to assess the relationship between perceived stigma and stress, controlling for income. A significant relationship was found between perceived stigma and perceived stress both pre and post-HABIT. Discussion The results suggest a relationship exists between perceived stigma and perceived stress in persons with MCI and their care partners, and an educational program such as HABIT may strengthen this relationship by informing participants of potential challenges that occur in cognitive decline. Understanding these relationships may provide an opportunity to provide tools for this vulnerable population.
Collapse
Affiliation(s)
- Alison Warren
- The Department of Clinical Research and Leadership, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
15
|
Franks KH, Rowsthorn E, Bransby L, Lim YY, Chong TTJ, Pase MP. Association of Self-Reported Psychological Stress with Cognitive Decline: A Systematic Review. Neuropsychol Rev 2023; 33:856-870. [PMID: 36456767 DOI: 10.1007/s11065-022-09567-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022]
Abstract
Psychological stress is a potential modifiable risk factor for cognitive decline. However, the extent to which self-reported psychological stress is differentially associated with decline in specific cognitive domains remains unclear. Differences may be due to heterogeneity in the aspects of psychological stress investigated, for example, neuroticism (which is linked to vulnerability to stress), perceived stress, or exposure to stressful life events. This review aims to establish the associations between these aspects of self-reported psychological stress and cognitive decline. PsychINFO, Embase and MEDLINE were searched from database inception to September 2021. Studies were included if they were observational, prospective, and if they investigated the association between self-reported psychological stress and cognitive decline in adults with a minimum mean age of 40 years at baseline. Thirty studies satisfied the inclusion criteria, with most examining neuroticism (n = 17) as a predictor of cognitive decline. Fewer examined perceived stress (n = 7) or stressful life events (n = 6). There was evidence of an association between neuroticism and cognitive decline, particularly in the domain of memory. Similarly, across studies, perceived stress was also associated with memory decline. Research investigating the relationship between stressful life events and cognitive decline had fewer outcomes to interpret. Overall, the findings highlight that memory may be particularly susceptible to high levels of neuroticism and perceived stress. We identified a lack of research into some cognitive domains, such as executive function, which should be addressed by future studies.
Collapse
Affiliation(s)
- Katherine H Franks
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, 3168, Clayton, VIC, Australia.
| | - Ella Rowsthorn
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, 3168, Clayton, VIC, Australia
| | - Lisa Bransby
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, 3168, Clayton, VIC, Australia
| | - Yen Ying Lim
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, 3168, Clayton, VIC, Australia
| | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, 3168, Clayton, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
- Department of Clinical Neurosciences, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, 3168, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
16
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
17
|
Bachstetter AD, Lutshumba J, Winford E, Abner EL, Martin BJ, Harp JP, Van Eldik LJ, Schmitt FA, Wilcock DM, Stowe AM, Jicha GA, Nikolajczyk BS. A blunted T H17 cytokine signature in women with mild cognitive impairment: insights from inflammatory profiling of a community-based cohort of older adults. Brain Commun 2023; 5:fcad259. [PMID: 37901041 PMCID: PMC10612408 DOI: 10.1093/braincomms/fcad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
People with dementia have an increase in brain inflammation, caused in part by innate and adaptive immune cells. However, it remains unknown whether dementia-associated diseases alter neuro-immune reflex arcs to impact the systemic immune system. We examined peripheral immune cells from a community-based cohort of older adults to test if systemic inflammatory cytokine signatures associated with early stages of cognitive impairment. Human peripheral blood mononuclear cells were cultured with monocyte or T-cell-targeted stimuli, and multiplex assays quantitated cytokines in the conditioned media. Following T-cell-targeted stimulation, cells from women with cognitive impairment produced lower amounts of TH17 cytokines compared with cells from cognitively healthy women, while myeloid-targeted stimuli elicited similar amounts of cytokines from cells of both groups. This TH17 signature correlated with the proportion of circulating CD4+ and CD8+ T cells and plasma glial fibrillary acidic protein and neurofilament light concentrations. These results suggest that decreases in TH17 cytokines could be an early systemic change in women at risk for developing dementia. Amelioration of TH17s cytokines in early cognitive impairment could, in part, explain the compromised ability of older adults to respond to vaccines or defend against infection.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jenny Lutshumba
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Edric Winford
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbra J Martin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jordan P Harp
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick A Schmitt
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
- Department of Behavioral Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Donna M Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
18
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Fraile-Ramos J, Garrit A, Reig-Vilallonga J, Giménez-Llort L. Hepatic Oxi-Inflammation and Neophobia as Potential Liver-Brain Axis Targets for Alzheimer's Disease and Aging, with Strong Sensitivity to Sex, Isolation, and Obesity. Cells 2023; 12:1517. [PMID: 37296638 PMCID: PMC10252497 DOI: 10.3390/cells12111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Research on Alzheimer's disease (AD) has classically focused on alterations that occur in the brain and their intra- and extracellular neuropathological hallmarks. However, the oxi-inflammation hypothesis of aging may also play a role in neuroimmunoendocrine dysregulation and the disease's pathophysiology, where the liver emerges as a target organ due to its implication in regulating metabolism and supporting the immune system. In the present work, we demonstrate organ (hepatomegaly), tissue (histopathological amyloidosis), and cellular oxidative stress (decreased glutathione peroxidase and increased glutathione reductase enzymatic activities) and inflammation (increased IL-6 and TNF𝛼) as hallmarks of hepatic dysfunction in 16-month-old male and female 3xTg-AD mice at advanced stages of the disease, and as compared to age- and sex-matched non-transgenic (NTg) counterparts. Moreover, liver-brain axis alterations were found through behavioral (increased neophobia) and HPA axis correlations that were enhanced under forced isolation. In all cases, sex (male) and isolation (naturalistic and forced) were determinants of worse hepatomegaly, oxidative stress, and inflammation progression. In addition, obesity in old male NTg mice was translated into a worse steatosis grade. Further research is underway determine whether these alterations could correlate with a worse disease prognosis and to establish potential integrative system targets for AD research.
Collapse
Affiliation(s)
- Juan Fraile-Ramos
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anna Garrit
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Reig-Vilallonga
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
20
|
Dronse J, Ohndorf A, Richter N, Bischof GN, Fassbender R, Behfar Q, Gramespacher H, Dillen K, Jacobs HIL, Kukolja J, Fink GR, Onur OA. Serum cortisol is negatively related to hippocampal volume, brain structure, and memory performance in healthy aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1154112. [PMID: 37251803 PMCID: PMC10213232 DOI: 10.3389/fnagi.2023.1154112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Elevated cortisol levels have been frequently reported in Alzheimer's disease (AD) and linked to brain atrophy, especially of the hippocampus. Besides, high cortisol levels have been shown to impair memory performance and increase the risk of developing AD in healthy individuals. We investigated the associations between serum cortisol levels, hippocampal volume, gray matter volume and memory performance in healthy aging and AD. Methods In our cross-sectional study, we analyzed the relationships between morning serum cortisol levels, verbal memory performance, hippocampal volume, and whole-brain voxel-wise gray matter volume in an independent sample of 29 healthy seniors (HS) and 29 patients along the spectrum of biomarker-based AD. Results Cortisol levels were significantly elevated in patients with AD as compared to HS, and higher cortisol levels were correlated with worse memory performance in AD. Furthermore, higher cortisol levels were significantly associated with smaller left hippocampal volumes in HS and indirectly negatively correlated to memory function through hippocampal volume. Higher cortisol levels were further related to lower gray matter volume in the hippocampus and temporal and parietal areas in the left hemisphere in both groups. The strength of this association was similar in HS and AD. Conclusion In AD, cortisol levels are elevated and associated with worse memory performance. Furthermore, in healthy seniors, higher cortisol levels show a detrimental relationship with brain regions typically affected by AD. Thus, increased cortisol levels seem to be indirectly linked to worse memory function even in otherwise healthy individuals. Cortisol may therefore not only serve as a biomarker of increased risk for AD, but maybe even more importantly, as an early target for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Ohndorf
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gérard N. Bischof
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ronja Fassbender
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Qumars Behfar
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kim Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Palliative Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heidi I. L. Jacobs
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health Witten/Herdecke University, Witten, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
22
|
Arbeev KG, Bagley O, Yashkin AP, Duan H, Akushevich I, Ukraintseva SV, Yashin AI. Understanding Alzheimer's disease in the context of aging: Findings from applications of stochastic process models to the Health and Retirement Study. Mech Ageing Dev 2023; 211:111791. [PMID: 36796730 PMCID: PMC10085865 DOI: 10.1016/j.mad.2023.111791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
There is growing literature on applications of biodemographic models, including stochastic process models (SPM), to studying regularities of age dynamics of biological variables in relation to aging and disease development. Alzheimer's disease (AD) is especially good candidate for SPM applications because age is a major risk factor for this heterogeneous complex trait. However, such applications are largely lacking. This paper starts filling this gap and applies SPM to data on onset of AD and longitudinal trajectories of body mass index (BMI) constructed from the Health and Retirement Study surveys and Medicare-linked data. We found that APOE e4 carriers are less robust to deviations of trajectories of BMI from the optimal levels compared to non-carriers. We also observed age-related decline in adaptive response (resilience) related to deviations of BMI from optimal levels as well as APOE- and age-dependence in other components related to variability of BMI around the mean allostatic values and accumulation of allostatic load. SPM applications thus allow revealing novel connections between age, genetic factors and longitudinal trajectories of risk factors in the context of AD and aging creating new opportunities for understanding AD development, forecasting trends in AD incidence and prevalence in populations, and studying disparities in those.
Collapse
Affiliation(s)
- Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA.
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Svetlana V Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| |
Collapse
|
23
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
24
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
25
|
Fabrication of Nutraceutical Beverage from Saffron (Crocus sativus L.) Extract and Studying Its Health Effects. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023. [DOI: 10.1155/2023/7130266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A saffron extract-based beverage (SEBB) was formulated and characterized based on its sensory attributes and health benefits. The main bioactive compounds of saffron extract (crocin and safranal) were quantified. Three formulations of SEBB were prepared based on the sucrose concentration: SEBB 1 contained 65 g of sucrose per 500 ml, SEBB 2 contained 17.5 g, and SEBB 3 contained 79.5 g. The SEBB most desired by consumers was then subjected to biochemical analysis to evaluate its antioxidative effects on the damage induced by food contaminated with carbon tetrachloride (CCl4). Fifteen albino rats were split into five groups and treated with different doses of CCl4 or SEBB according to the planned animal experiment for 62 days. Sensory evaluation illustrated that SEBB 1 had the highest acceptability scores. The content of crocin and safranal was 23.039 and 4.135 ppm, respectively. The SEBB ameliorated the increased activity of enzymes involved in liver and kidney function and improved the total antioxidant capacity, blood glucose, and lipid profile.
Collapse
|
26
|
Modifiable risk factors of dementia linked to excitation-inhibition imbalance. Ageing Res Rev 2023; 83:101804. [PMID: 36410620 DOI: 10.1016/j.arr.2022.101804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Recent evidence identifies 12 potentially modifiable risk factors for dementia to which 40% of dementia cases are attributed. While the recognition of these risk factors has paved the way for the development of new prevention measures, the link between these risk factors and the underlying pathophysiology of dementia is yet not well understood. A growing number of recent clinical and preclinical studies support a role of Excitation-Inhibition (E-I) imbalance in the pathophysiology of dementia. In this review, we aim to propose a conceptual model on the links between the modifiable risk factors and the E-I imbalance in dementia. This model, which aims to address the current gap in the literature, is based on 12 mediating common mechanisms: the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroinflammation, oxidative stress, mitochondrial dysfunction, cerebral hypo-perfusion, blood-brain barrier (BBB) dysfunction, beta-amyloid deposition, elevated homocysteine level, impaired neurogenesis, tau tangles, GABAergic dysfunction, and glutamatergic dysfunction. We believe this model serves as a framework for future studies in this field and facilitates future research on dementia prevention, discovery of new biomarkers, and developing new interventions.
Collapse
|
27
|
Lee D, Lee VMY, Hur SK. Manipulation of the diet-microbiota-brain axis in Alzheimer's disease. Front Neurosci 2022; 16:1042865. [PMID: 36408394 PMCID: PMC9672822 DOI: 10.3389/fnins.2022.1042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies investigating the pathogenesis of Alzheimer's disease have identified various interdependent constituents contributing to the exacerbation of the disease, including Aβ plaque formation, tau protein hyperphosphorylation, neurofibrillary tangle accumulation, glial inflammation, and the eventual loss of proper neural plasticity. Recently, using various models and human patients, another key factor has been established as an influential determinant in brain homeostasis: the gut-brain axis. The implications of a rapidly aging population and the absence of a definitive cure for Alzheimer's disease have prompted a search for non-pharmaceutical tools, of which gut-modulatory therapies targeting the gut-brain axis have shown promise. Yet multiple recent studies examining changes in human gut flora in response to various probiotics and environmental factors are limited and difficult to generalize; whether the state of the gut microbiota in Alzheimer's disease is a cause of the disease, a result of the disease, or both through numerous feedback loops in the gut-brain axis, remains unclear. However, preliminary findings of longitudinal studies conducted over the past decades have highlighted dietary interventions, especially Mediterranean diets, as preventative measures for Alzheimer's disease by reversing neuroinflammation, modifying the intestinal and blood-brain barrier (BBB), and addressing gut dysbiosis. Conversely, the consumption of Western diets intensifies the progression of Alzheimer's disease through genetic alterations, impaired barrier function, and chronic inflammation. This review aims to support the growing body of experimental and clinical data highlighting specific probiotic strains and particular dietary components in preventing Alzheimer's disease via the gut-brain axis.
Collapse
Affiliation(s)
- Daniel Lee
- Middleton High School, Middleton, WI, United States
| | - Virginia M-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Seong Kwon Hur
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
28
|
Akinci M, Sánchez-Benavides G, Brugulat-Serrat A, Peña-Gómez C, Palpatzis E, Shekari M, Deulofeu C, Fuentes-Julian S, Salvadó G, González-de-Echávarri JM, Suárez-Calvet M, Minguillón C, Fauria K, Molinuevo JL, Gispert JD, Grau-Rivera O, Arenaza-Urquijo EM. Subjective cognitive decline and anxious/depressive symptoms during the COVID-19 pandemic: what is the role of stress perception, stress resilience, and β-amyloid? Alzheimers Res Ther 2022; 14:126. [PMID: 36068641 PMCID: PMC9446623 DOI: 10.1186/s13195-022-01068-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The COVID-19 pandemic may worsen the mental health of people reporting subjective cognitive decline (SCD) and therefore their clinical prognosis. We aimed to investigate the association between the intensity of SCD and anxious/depressive symptoms during confinement and the underlying mechanisms. METHODS Two hundred fifty cognitively unimpaired participants completed the Hospital Anxiety and Depression Scale (HADS) and SCD-Questionnaire (SCD-Q) and underwent amyloid-β positron emission tomography imaging with [18F] flutemetamol (N = 205) on average 2.4 (± 0.8) years before the COVID-19 confinement. During the confinement, participants completed the HADS, Perceived Stress Scale (PSS), Brief Resilience Scale (BRS), and an ad hoc questionnaire on worries (access to primary products, self-protection materials, economic situation) and lifestyle changes (sleep duration, sleep quality, eating habits). We investigated stress-related measurements, worries, and lifestyle changes in relation to SCD. We then conducted an analysis of covariance to investigate the association of SCD-Q with HADS scores during the confinement while controlling for pre-confinement anxiety/depression scores and demographics. Furthermore, we introduced amyloid-β positivity, PSS, and BRS in the models and performed mediation analyses to explore the mechanisms explaining the association between SCD and anxiety/depression. RESULTS In the whole sample, the average SCD-Q score was 4.1 (± 4.4); 70 (28%) participants were classified as SCD, and 26 (12.7%) were amyloid-β-positive. During the confinement, participants reporting SCD showed higher PSS (p = 0.035) but not BRS scores (p = 0.65) than those that did not report SCD. No differences in worries or lifestyle changes were observed. Higher SCD-Q scores showed an association with greater anxiety/depression scores irrespective of pre-confinement anxiety/depression levels (p = 0.002). This association was not significant after introducing amyloid-β positivity and stress-related variables in the model (p = 0.069). Amyloid-β positivity and PSS were associated with greater HADS irrespective of pre-confinement anxiety/depression scores (p = 0.023; p < 0.001). The association of SCD-Q with HADS was mediated by PSS (p = 0.01). CONCLUSIONS Higher intensity of SCD, amyloid-β positivity, and stress perception showed independent associations with anxious/depressive symptoms during the COVID-19 confinement irrespective of pre-confinement anxiety/depression levels. The association of SCD intensity with anxiety/depression was mediated by stress perception, suggesting stress regulation as a potential intervention to reduce affective symptomatology in the SCD population in the face of stressors.
Collapse
Affiliation(s)
- Muge Akinci
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
| | - Cleofé Peña-Gómez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Eleni Palpatzis
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carme Deulofeu
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | | | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Department of Clinical Sciences, Clinical Memory Research Unit, Malmö, Sweden
| | | | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurología, Hospital del Mar, Barcelona, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- H.Lundbeck A/s, Copenhagen, Denmark
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurología, Hospital del Mar, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
29
|
Alzheimer’s Disease and Tau Self-Assembly: In the Search of the Missing Link. Int J Mol Sci 2022; 23:ijms23084192. [PMID: 35457009 PMCID: PMC9032712 DOI: 10.3390/ijms23084192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease characterized by progressive cognitive impairment, apathy, and neuropsychiatric disorders. Two main pathological hallmarks have been described: neurofibrillary tangles, consisting of tau oligomers (hyperphosphorylated tau) and Aβ plaques. The influence of protein kinases and phosphatases on the hyperphosphorylation of tau is already known. Hyperphosphorylated tau undergoes conformational changes that promote its self-assembly. However, the process involving these mechanisms is yet to be elucidated. In vitro recombinant tau can be aggregated by the action of polyanions, such as heparin, arachidonic acid, and more recently, the action of polyphosphates. However, how that process occurs in vivo is yet to be understood. In this review, searching the most accurate and updated literature on the matter, we focus on the precise molecular events linking tau modifications, its misfolding and the initiation of its pathological self-assembly. Among these, we can identify challenges regarding tau phosphorylation, the link between tau heteroarylations and the onset of its self-assembly, as well as the possible metabolic pathways involving natural polyphosphates, that may play a role in tau self-assembly.
Collapse
|
30
|
Elucidating the association between depression, anxiety, and cognition in middle-aged adults: Application of dimensional and categorical approaches. J Affect Disord 2022; 296:559-566. [PMID: 34648818 DOI: 10.1016/j.jad.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND In older adults, depressive and anxiety symptoms are associated with dementia risk, and represent a manifestation of the dementia prodrome. Understanding how these symptoms are related to cognition in midlife may inform risk models of dementia. METHODS This study examined the relationship between depressive and anxiety symptoms, and cognition, in a sample (n= 2,657) of participants enrolled in the Healthy Brain Project. Depressive and Anxiety symptoms were assessed using the Depression Anxiety and Stress Scale, Hospital Anxiety and Depression Scale, and centre for Epidemiological Studies Depression Scale. Objective cognition was assessed using the Cogstate Brief Battery and subjective cognition assessed using the Alzheimer's disease Cooperative Study Cognitive Function Instrument. RESULTS Somatic- and panic-related anxiety symptoms were associated significantly with poorer attention; while tension- and panic-related anxiety were associated significantly with poorer memory. Having clinically meaningful anxiety or depressive symptoms was associated with increased subjective cognitive concerns (d=-0.37). This was further increased for those with clinically meaningful anxiety and depressive symptoms (d = -1.07). LIMITATIONS This study reports cross-sectional data, and uses a sample enriched with individuals with a family history of dementia who are therefore at a higher risk of developing dementia compared to the general population. Additionally, biological markers such as cortisol, Aβ, and tau were unavailable. CONCLUSION The results support the hypothesis that depressive and anxiety symptoms may increase risk of cognitive decline. Further, they suggest that using depression and anxiety as clinical markers may be helpful in identifying the earliest signs of cognitive decline.
Collapse
|
31
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Hypothalamic Functional Connectivity and Apathy in People with Alzheimer's Disease and Cognitively Normal Healthy Controls. J Alzheimers Dis 2022; 90:1615-1628. [PMID: 36314209 PMCID: PMC10064487 DOI: 10.3233/jad-220708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Earlier studies have described the neural markers of apathy in Alzheimer's disease (AD) and mild cognitive impairment (MCI), but few focused on the motivation circuits. Here, we targeted hypothalamus, a hub of the motivation circuit. OBJECTIVE To examine hypothalamic resting state functional connectivity (rsFC) in relation to apathy. METHODS We performed whole-brain regression of hypothalamic rsFC against Apathy Evaluation Scale (AES) total score and behavioral, cognitive, and emotional subscores in 29 patients with AD/MCI and 28 healthy controls (HC), controlling for age, sex, education, cognitive status, and depression. We evaluated the results at a corrected threshold and employed path analyses to assess possible interaction between hypothalamic rsFCs, apathy and depression/memory. Finally, we re-examined the findings in a subsample of amyloid-β-verified AD. RESULTS AES total score correlated negatively with hypothalamic precuneus (PCu)/posterior cingulate cortex (PCC) and positively with left middle temporal gyrus (MTG) and supramarginal gyrus rsFCs. Behavioral subscore correlated negatively with hypothalamic PCu/PCC and positively with middle frontal gyrus rsFC. Cognitive subscore correlated positively with hypothalamic MTG rsFC. Emotional subscore correlated negatively with hypothalamic calcarine cortex rsFC. In path analyses, hypothalamic-PCu/PCC rsFC negatively modulated apathy and, in turn, depression. The model where hypothalamic MTG rsFC and memory independently modulated apathy also showed a good fit. The findings of diminished hypothalamic-PCu/PCC rsFC in relation to apathy and, in turn, depression were confirmed in amyloid-verified AD. CONCLUSION The findings together support a role of altered hypothalamic connectivity in relation to apathy and depression, and modulation of apathy by memory dysfunction.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Medicine & Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Canet G, Zussy C, Hernandez C, Chevallier N, Marchi N, Desrumaux C, Givalois L. Chronic Glucocorticoids Consumption Triggers and Worsens Experimental Alzheimer's Disease-Like Pathology by Detrimental Immune Modulations. Neuroendocrinology 2022; 112:982-997. [PMID: 34923495 DOI: 10.1159/000521559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Among the risk factors identified in the sporadic forms of Alzheimer's disease (AD), environmental and lifestyle elements are of growing interest. Clinical observations suggest that stressful events can anticipate AD onset, while stress-related disorders can promote AD. Here, we tested the hypothesis that a chronic treatment with glucocorticoids is sufficient to trigger or exacerbate AD molecular hallmarks. METHODS We first validated a rat model of experimental chronic glucocorticoids (GC) consumption (corticosterone [CORT] in drinking water for 4 weeks). Then, to evaluate the consequences of chronic GC consumption on the onset of amyloid-β (Aβ) toxicity, animals chronically treated with GC were intracerebroventricularly injected with an oligomeric solution of Aβ25-35 (oAβ) (acute model of AD). We evaluated AD-related cognitive deficits and pathogenic mechanisms, with a special emphasis on neuroinflammatory markers. RESULTS Chronic CORT consumption caused the inhibition of the nonamyloidogenic pathways, the impairment of Aβ clearance processes and the induction of amyloidogenic pathways in the hippocampus. The principal enzymes involved in glucocorticoid receptor activation and Tau phosphorylation were upregulated. Importantly, the AD-like phenotype triggered by chronic CORT was analogous to the one caused by oAβ. These molecular commonalities across models were independent from inflammation, as chronic CORT was immunosuppressive while oAβ was pro-inflammatory. When chronic CORT consumption anticipated the induction of the oAβ pathology, we found a potentiation of neuroinflammatory processes associated with an exacerbation of synaptic and memory deficits but also an aggravation of AD-related hallmarks. DISCUSSION/CONCLUSION This study unravels new functional outcomes identifying chronic CORT consumption as a main risk factor for AD and suggests that glucocorticoid-based therapies should be prescribed with caution in populations with AD risk.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Nicola Marchi
- Department of Neuroscience, Laboratory of Cerebrovascular and Glia Research, Institute of Functional Genomics, UMR CNRS-5203, INSERM-U1191, University of Montpellier, Montpellier, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, University of Montpellier, EPHE, INSERM, Montpellier, France
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, P-9717, Québec, Québec, Canada
| |
Collapse
|
33
|
Chen ZC, Wu H, Wang XD, Zeng Y, Huang G, Lv Y, Niu J, Meng X, Cai P, Shen L, Gang B, You Y, Lv Y, Ren Z, Shi Z, Ji Y. Association between marital status and cognitive impairment based on a cross-sectional study in China. Int J Geriatr Psychiatry 2022; 37. [PMID: 34729814 DOI: 10.1002/gps.5649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/31/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Marital status may have an impact on the elderly population's health, but few studies in China discussed about the association between marital status and cognitive impairment. OBJECTIVE To investigate the relationship between marital status and cognitive impairment. To compare the influences of marital status on dementia between men and women. METHODS This study was based on a representative national cross-sectional epidemiological survey in China. We randomly selected 13 provinces and municipalities and included 19,276 participants aged 65 years or older in our study. Data was collected by interviewing the participants about their sociodemographic characteristics, and neuropsychological testing was administered to the participants by neurologists. To analyze the association between marital status and cognitive impairment, multiple logistic regression was based on a series of models. RESULTS Among the 19,276 subjects, about 77.2% were married, 1.6% were single, 21.2% were divorced/separated or widowed. The odds ratios (OR) of dementia were higher in single (OR: 2.13, CI: 1.53-2.97; p < 0.001), divorced/separated/widowed when they were ≤55 years old (OR: 1.75, CI: 1.30-2.35; p < 0.001), and divorced/separated/widowed when they were >55 years old (OR: 1.16, CI: 1.03-1.31; p < 0.001) participants than in married ones. Divorced/separated/widowed ≤55 men had about 2.75 times increase in dementia risk than married men. CONCLUSION People with long-term divorced/separated/widowed status would be associated to cognitive impairment more than those with short-term divorced/separated/widowed status. Men may be affected by marriage disruption more than women in terms of increasing the risk of dementia.
Collapse
Affiliation(s)
- Zhi-Chao Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Wu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiao-Dan Wang
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Guowei Huang
- Department of Nutrition and Food Science, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yang Lv
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xinling Meng
- Department of Neurology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, China
| | - Pan Cai
- Dementia Clinic, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Baozhi Gang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong You
- Department of Neurology, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Lv
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Zhihong Ren
- Department of Neurology, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing, China
| | - Zhihong Shi
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
34
|
Hamilton CA, Matthews FE, Erskine D, Attems J, Thomas AJ. Neurodegenerative brain changes are associated with area deprivation in the United Kingdom: findings from the Brains for Dementia Research study. Acta Neuropathol Commun 2021; 9:198. [PMID: 34924033 PMCID: PMC8684681 DOI: 10.1186/s40478-021-01301-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
Socioeconomic disadvantage is associated with greater risk of dementia. This has been theorised to reflect inequalities in cognitive reserve, healthcare access, lifestyle, and other health factors which may contribute to the clinical manifestation of dementia. We aimed to assess whether area deprivation in the United Kingdom was associated with greater risk or severity of the specific neurodegenerative diseases which lead to dementia in a multi-centre cohort with autopsy assessment. Participants underwent clinical assessment prior to brain tissue donation post-mortem. Each then underwent detailed, standardised neuropathological assessment. National area deprivation statistics were derived for each participant’s neighbourhood, for use as a predictor in binary and ordinal logistic models assessing the respective presence and severity of staging of key neuropathological changes, adjusting for theorised confounders. Individuals from among the 20% most deprived neighbourhoods in the United Kingdom had significantly higher neurofibrillary tangle and neuritic plaque staging, and increased risk of cerebral amyloid angiopathy. These findings were not explained by a greater risk of diabetes or hypertension, APOE genotype, alcohol misuse or tobacco smoking, sex, or age differences. A sensitivity analysis conditioning on baseline cognitive impairment did not meaningfully change the observed association. Socioeconomic disadvantage may contribute to dementia incidence through a greater severity of specific neuropathological changes (neurofibrillary tangles, neuritic plaques, and cerebral amyloid angiopathy), independent of other indirect influences. Mechanisms through which deprivation is associated with these require further exploration.
Collapse
|
35
|
Curley DE, Webb AE, Sheffler DJ, Haass-Koffler CL. Corticotropin Releasing Factor Binding Protein as a Novel Target to Restore Brain Homeostasis: Lessons Learned From Alcohol Use Disorder Research. Front Behav Neurosci 2021; 15:786855. [PMID: 34912198 PMCID: PMC8667027 DOI: 10.3389/fnbeh.2021.786855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Stress is well-known to contribute to the development of many psychiatric illnesses including alcohol and substance use disorder (AUD and SUD). The deleterious effects of stress have also been implicated in the acceleration of biological age, and age-related neurodegenerative disease. The physio-pathology of stress is regulated by the corticotropin-releasing factor (CRF) system, the upstream component of the hypothalamic-pituitary-adrenal (HPA) axis. Extensive literature has shown that dysregulation of the CRF neuroendocrine system contributes to escalation of alcohol consumption and, similarly, chronic alcohol consumption contributes to disruption of the stress system. The CRF system also represents the central switchboard for regulating homeostasis, and more recent studies have found that stress and aberrations in the CRF pathway are implicated in accelerated aging and age-related neurodegenerative disease. Corticotropin releasing factor binding protein (CRFBP) is a secreted glycoprotein distributed in peripheral tissues and in specific brain regions. It neutralizes the effects of CRF by sequestering free CRF, but may also possess excitatory function by interacting with CRF receptors. CRFBP's dual role in influencing CRF bioavailability and CRF receptor signaling has been shown to have a major part in the HPA axis response. Therefore, CRFBP may represent a valuable target to treat stress-related illness, including: development of novel medications to treat AUD and restore homeostasis in the aging brain. This narrative review focuses on molecular mechanisms related to the role of CRFBP in the progression of addictive and psychiatric disorders, biological aging, and age-related neurodegenerative disease. We provide an overview of recent studies investigating modulation of this pathway as a potential therapeutic target for AUD and age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Dallece E. Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, United States
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Douglas J. Sheffler
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, United States
| |
Collapse
|
36
|
Faraji J, Metz GAS. Aging, Social Distancing, and COVID-19 Risk: Who is more Vulnerable and Why? Aging Dis 2021; 12:1624-1643. [PMID: 34631211 PMCID: PMC8460299 DOI: 10.14336/ad.2021.0319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Perceived social support represents an important predictor of healthy aging. The global COVID-19 pandemic has dramatically changed the face of social relationships and revealed elderly to be particularly vulnerable to the effects of social isolation. Social distancing may represent a double-edged sword for older adults, protecting them against COVID-19 infection while also sacrificing personal interaction and attention at a critical time. Here, we consider the moderating role of social relationships as a potential influence on stress resilience, allostatic load, and vulnerability to infection and adverse health outcomes in the elderly population. Understanding the mechanisms how social support enhances resilience to stress and promotes mental and physical health into old age will enable new preventive strategies. Targeted social interventions may provide effective relief from the impact of COVID-19-related isolation and loneliness. In this regard, a pandemic may also offer a window of opportunity for raising awareness and mobilizing resources for new strategies that help build resilience in our aging population and future generations.
Collapse
Affiliation(s)
- Jamshid Faraji
- 1Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,2Faculty of Nursing & Midwifery, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gerlinde A S Metz
- 1Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
37
|
Babusikova E, Dobrota D, Turner AJ, Nalivaeva NN. Effect of Global Brain Ischemia on Amyloid Precursor Protein Metabolism and Expression of Amyloid-Degrading Enzymes in Rat Cortex: Role in Pathogenesis of Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:680-692. [PMID: 34225591 DOI: 10.1134/s0006297921060067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPβ produced by β-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic β-secretase pathway and accumulation of the neurotoxic Aβ peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.
Collapse
Affiliation(s)
- Eva Babusikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Dusan Dobrota
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| |
Collapse
|
38
|
Liu Q, Xi Y, Wang Q, Liu J, Li P, Meng X, Liu K, Chen W, Liu X, Liu Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer's disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun 2021; 95:330-343. [PMID: 33839232 DOI: 10.1016/j.bbi.2021.04.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive deficits and psychiatric symptoms. The gut microbiota-brain axis plays a pivotal role during AD development, which could target nutritional intervention. The prebiotic mannan oligosaccharide (MOS) has been reported to reshape the gut microbiome and enhanced the formation of the neuroprotective metabolites short-chain fatty acids (SCFAs). Here, we found that an 8-week treatment of MOS (0.12%, w/v in the drinking water) significantly improved cognitive function and spatial memory, accompanied by attenuated the anxiety- and obsessive-like behaviors in the 5xFAD transgenic AD mice model. MOS substantially reduced the Aβ accumulation in the cortex, hippocampus, and amygdala of the brain. Importantly, MOS treatment significantly balanced the brain redox status and suppressed the neuroinflammatory responses. Moreover, MOS also alleviated the HPA-axis disorders by decreasing the levels of hormones corticosterone (CORT) and corticotropin-releasing hormone (CRH) and upregulated the norepinephrine (NE) expressions. Notably, the gut barrier integrity damage and the LPS leak were prevented by the MOS treatment. MOS re-constructed the gut microbiota composition, including increasing the relative abundance of Lactobacillus and reducing the relative abundance of Helicobacter. MOS enhanced the butyrate formation and related microbes levels. The correlation analysis indicated that the reshaped gut microbiome and enhanced butyrate formation are highly associated with behavioral alteration and brain oxidative status. SCFAs supplementation experiment also attenuated the behavioral disorders and Aβ accumulation in the AD mice brain, accompanied by balanced HPA-axis and redox status. In conclusion, the present study indicated that MOS significantly attenuates the cognitive and mental deficits in the 5xFAD mice, which could be partly explained by the reshaped microbiome and enhanced SCFAs formation in the gut. MOS, as a prebiotics, can be translated into a novel microbiota-targeted approach for managing metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinhui Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Peiran Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Meng
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
39
|
Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer's disease development: The results of genetic interaction analyses of human data. Mech Ageing Dev 2021; 196:111477. [PMID: 33798591 PMCID: PMC8173104 DOI: 10.1016/j.mad.2021.111477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Emerging evidence from experimental and clinical research suggests that stress-related genes may play key roles in AD development. The fact that genome-wide association studies were not able to detect a contribution of such genes to AD indicates the possibility that these genes may influence AD non-linearly, through interactions of their products. In this paper, we selected two stress-related genes (GCN2/EIF2AK4 and APP) based on recent findings from experimental studies which suggest that the interplay between these genes might influence AD in humans. To test this hypothesis, we evaluated the effects of interactions between SNPs in these two genes on AD occurrence, using the Health and Retirement Study data on white indidividuals. We found several interacting SNP-pairs whose associations with AD remained statistically significant after correction for multiple testing. These findings emphasize the importance of nonlinear mechanisms of polygenic AD regulation that cannot be detected in traditional association studies. To estimate collective effects of multiple interacting SNP-pairs on AD, we constructed a new composite index, called Interaction Polygenic Risk Score, and showed that its association with AD is highly statistically significant. These results open a new avenue in the analyses of mechanisms of complex multigenic AD regulation.
Collapse
Affiliation(s)
| | - Deqing Wu
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | | - Olivia Bagley
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | |
Collapse
|
40
|
Kim M, Bezprozvanny I. Differences in Recycling of Apolipoprotein E3 and E4-LDL Receptor Complexes-A Mechanistic Hypothesis. Int J Mol Sci 2021; 22:5030. [PMID: 34068576 PMCID: PMC8126166 DOI: 10.3390/ijms22095030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein E (ApoE) is a protein that plays an important role in the transport of fatty acids and cholesterol and in cellular signaling. On the surface of the cells, ApoE lipoparticles bind to low density lipoprotein receptors (LDLR) that mediate the uptake of the lipids and downstream signaling events. There are three alleles of the human ApoE gene. Presence of ApoE4 allele is a major risk factor for developing Alzheimer's disease (AD) and other disorders late in life, but the mechanisms responsible for biological differences between different ApoE isoforms are not well understood. We here propose that the differences between ApoE isoforms can be explained by differences in the pH-dependence of the association between ApoE3 and ApoE4 isoforms and LDL-A repeats of LDLR. As a result, the following endocytosis ApoE3-associated LDLRs are recycled back to the plasma membrane but ApoE4-containing LDLR complexes are trapped in late endosomes and targeted for degradation. The proposed mechanism is predicted to lead to a reduction in steady-state surface levels of LDLRs and impaired cellular signaling in ApoE4-expressing cells. We hope that this proposal will stimulate experimental research in this direction that allows the testing of our hypothesis.
Collapse
Affiliation(s)
- Meewhi Kim
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
41
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
42
|
Lopresti AL, Smith SJ, Drummond PD. Modulation of the hypothalamic-pituitary-adrenal (HPA) axis by plants and phytonutrients: a systematic review of human trials. Nutr Neurosci 2021; 25:1704-1730. [PMID: 33650944 DOI: 10.1080/1028415x.2021.1892253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The hypothalamic-pituitary-adrenal (HPA) axis plays a central role in the stress response. Plants, herbs, spices, and plant-based nutrients may influence HPA-axis activity. OBJECTIVE To evaluate randomised controlled, human trials assessing the effects of single plants or phytonutrients on HPA-axis related hormones. METHODS A systematic review of PubMed, Cochrane library, and the Cumulative Index to Nursing and Allied Health Literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria comprised of human, randomised controlled studies with a control intervention examining the effects of a single herb, spice, plant, or extract on pre- and post-changes in blood, saliva, urine, or hair concentrations of cortisol, cortisone, corticotrophin-releasing hormone, or adrenocorticotropic hormone. Databases were searched from inception until October 2020. RESULTS Fifty-two studies were identified examining the effects of ashwagandha, Korean ginseng, St John's Wort, cannabidiol, Rhodiola rosea, curcumin, cherry juice, asparagus, Jiaogulan, Black cohosh, Siberian ginseng, Bacopa monnieri, blueberries, green tea, Caralluma fimbriata, cashew apple juice, melon, American ginseng, Ginkgo biloba, grape juice, grapefruit juice, rosella, hops, mangosteen, holy basil, and pomegranate juice. Due to significant variability in study designs, the effect of phytonutrients on HPA-axis activity in humans was unclear. The most consistent finding was a morning, cortisol-lowering effect from ashwagandha supplementation. CONCLUSION For most phytonutrients, the effects of supplementation on HPA-axis activity in humans is unclear. Before more definitive conclusions about the effects of phytonutrients on the HPA-axis can be made, further research is required.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Stephen J Smith
- Clinical Research Australia, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
43
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
44
|
Rainero I, Bruni AC, Marra C, Cagnin A, Bonanni L, Cupidi C, Laganà V, Rubino E, Vacca A, Di Lorenzo R, Provero P, Isella V, Vanacore N, Agosta F, Appollonio I, Caffarra P, Bussè C, Sambati R, Quaranta D, Guglielmi V, Logroscino G, Filippi M, Tedeschi G, Ferrarese C. The Impact of COVID-19 Quarantine on Patients With Dementia and Family Caregivers: A Nation-Wide Survey. Front Aging Neurosci 2021; 12:625781. [PMID: 33536898 PMCID: PMC7849158 DOI: 10.3389/fnagi.2020.625781] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Previous studies showed that quarantine for pandemic diseases is associated with several psychological and medical effects. The consequences of quarantine for COVID-19 pandemic in patients with dementia are unknown. We investigated the clinical changes in patients with Alzheimer's disease and other dementias, and evaluated caregivers' distress during COVID-19 quarantine. METHODS The study involved 87 Italian Dementia Centers. Patients with Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD), and Vascular Dementia (VD) were eligible for the study. Family caregivers of patients with dementia were interviewed by phone in April 2020, 45 days after quarantine declaration. Main outcomes were patients' changes in cognitive, behavioral, and motor symptoms. Secondary outcomes were effects on caregivers' psychological features. RESULTS 4913 patients (2934 females, 1979 males) fulfilled the inclusion criteria. Caregivers reported a worsening in cognitive functions in 55.1% of patients, mainly in subjects with DLB and AD. Aggravation of behavioral symptoms was observed in 51.9% of patients. In logistic regression analysis, previous physical independence was associated with both cognitive and behavioral worsening (odds ratio 1.85 [95% CI 1.42-2.39], 1.84 [95% CI 1.43-2.38], respectively). On the contrary, pandemic awareness was a protective factor for the worsening of cognitive and behavioral symptoms (odds ratio 0.74 [95% CI 0.65-0.85]; and 0.72 [95% CI 0.63-0.82], respectively). Approximately 25.9% of patients showed the onset of new behavioral symptoms. A worsening in motor function was reported by 36.7% of patients. Finally, caregivers reported a high increase in anxiety, depression, and distress. CONCLUSION Our study shows that quarantine for COVID-19 is associated with an acute worsening of clinical symptoms in patients with dementia as well as increase of caregivers' burden. Our findings emphasize the importance to implement new strategies to mitigate the effects of quarantine in patients with dementia.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Aging Brain and Memory Clinic, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Turin, Italy
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Amalia C. Bruni
- Regional Neurogenetic Centre, Department of Primary Care, ASP-CZ, Catanzaro, Italy
| | - Camillo Marra
- Memory Clinic, Fondazione Policlinico Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Chiara Cupidi
- CDCD Ospedale del Delta, AUSL Ferrara, Ferrara, Italy
| | - Valentina Laganà
- Regional Neurogenetic Centre, Department of Primary Care, ASP-CZ, Catanzaro, Italy
| | - Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandro Vacca
- Aging Brain and Memory Clinic, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Turin, Italy
| | - Raffaele Di Lorenzo
- Regional Neurogenetic Centre, Department of Primary Care, ASP-CZ, Catanzaro, Italy
| | - Paolo Provero
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Turin, Italy
- Center for Omics Sciences, IRCCS S. Raffaele Scientific Institute, Milan, Italy
| | - Valeria Isella
- Department of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano–Bicocca, Monza, Italy
| | | | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Ildebrando Appollonio
- Department of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano–Bicocca, Monza, Italy
| | | | - Cinzia Bussè
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Renato Sambati
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari, Bari, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Davide Quaranta
- Memory Clinic, Fondazione Policlinico Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valeria Guglielmi
- Memory Clinic, Fondazione Policlinico Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari, Bari, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Gioacchino Tedeschi
- Department of Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Carlo Ferrarese
- Department of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano–Bicocca, Monza, Italy
| |
Collapse
|
45
|
Watermeyer T, Robb C, Gregory S, Udeh-Momoh C. Therapeutic implications of hypothalamic-pituitaryadrenal-axis modulation in Alzheimer's disease: A narrative review of pharmacological and lifestyle interventions. Front Neuroendocrinol 2021; 60:100877. [PMID: 33045258 DOI: 10.1016/j.yfrne.2020.100877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
With disease-modifying treatments for Alzheimer's disease (AD) still elusive, the search for alternative intervention strategies has intensified. Growing evidence suggests that dysfunction in hypothalamic-pituitaryadrenal-axis (HPAA) activity may contribute to the development of AD pathology. The HPAA, may therefore offer a novel target for therapeutic action. This review summarises and critically evaluates animal and human studies investigating the effects of pharmacological and non-pharmacological intervention on HPAA modulation alongside cognitive performance. The interventions discussed include glucocorticoid receptor antagonists and 11β-hydroxysteroid dehydrogenase inhibitors as well as lifestyle treatments such as physical activity, diet, sleep and contemplative practices. Pharmacological HPAA modulators improve pathology and cognitive deficit in animal AD models, but human pharmacological trials are yet to provide definitive support for such benefits. Lifestyle interventions may offer promising strategies for HPAA modification and cognitive health, but several methodological caveats across these studies were identified. Directions for future research in AD studies are proposed.
Collapse
Affiliation(s)
- Tamlyn Watermeyer
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK; Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Catherine Robb
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Chinedu Udeh-Momoh
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK; Translational Health Sciences, School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
46
|
Avila J, Perry G. A Multilevel View of the Development of Alzheimer's Disease. Neuroscience 2020; 457:283-293. [PMID: 33246061 DOI: 10.1016/j.neuroscience.2020.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Every year the Alzheimer's Association publishes a report that provides facts and figures indicating the public health, social and economic impact of Alzheimer's disease (AD). In addition, there are a number of reviews on the disease for general readers. Also, at congresses, AD is analyzed at different but not always related levels, leading to an "elephant as seen by blind men situation" for many of the participants. The review presented herein seeks to provide readers with a holistic view of how AD develops from various perspectives: the whole human organism, brain, circuits, neurons, cellular hallmarks, and molecular level.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
47
|
Ávila-Villanueva M, Gómez-Ramírez J, Maestú F, Venero C, Ávila J, Fernández-Blázquez MA. The Role of Chronic Stress as a Trigger for the Alzheimer Disease Continuum. Front Aging Neurosci 2020; 12:561504. [PMID: 33192456 PMCID: PMC7642953 DOI: 10.3389/fnagi.2020.561504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Affiliation(s)
- Marina Ávila-Villanueva
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Jaime Gómez-Ramírez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Campus de Montegancedo, Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Campus de Somosaguas, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel A Fernández-Blázquez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
48
|
Sharma A, Brenner M, Wang P. Potential Role of Extracellular CIRP in Alcohol-Induced Alzheimer's Disease. Mol Neurobiol 2020; 57:5000-5010. [PMID: 32827106 DOI: 10.1007/s12035-020-02075-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death in the USA and the most common form of neurodegenerative dementia. In AD, microtubule-associated protein tau becomes pathologically phosphorylated and aggregated, leading to neurodegeneration and the cognitive deficits that characterize the disease. Prospective studies have shown that frequent and heavy alcohol drinking is linked to early onset and increased severity of AD. The precise mechanisms of how alcohol leads to AD, however, remain poorly understood. We have shown that extracellular cold-inducible RNA-binding protein (eCIRP) is a critical mediator of memory impairment induced by exposure to binge-drinking levels of alcohol, leading us to reason that eCIRP may be a key player in the relationship between alcohol and AD. In this review, we first discuss the mechanisms by which alcohol promotes AD. We then review eCIRP's role as a critical mediator of acute alcohol intoxication-induced neuroinflammation and cognitive impairment. Next, we explore the potential contribution of eCIRP to the development of alcohol-induced AD by targeting tau phosphorylation. We also consider the effects of eCIRP on neuronal death and neurogenesis linking alcohol with AD. Finally, we highlight the importance of further studying eCIRP as a critical molecular mechanism connecting acute alcohol intoxication, neuroinflammation, and tau phosphorylation in AD along with the potential of therapeutically targeting eCIRP as a new strategy to attenuate alcohol-induced AD.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA. .,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
49
|
Alzheimer's Disease and Specialized Pro-Resolving Lipid Mediators: Do MaR1, RvD1, and NPD1 Show Promise for Prevention and Treatment? Int J Mol Sci 2020; 21:ijms21165783. [PMID: 32806612 PMCID: PMC7460933 DOI: 10.3390/ijms21165783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease and a major contributor to progressive cognitive impairment in an aging society. As the pathophysiology of AD involves chronic neuroinflammation, the resolution of inflammation and the group of lipid mediators that actively regulate it-i.e., specialized pro-resolving lipid mediators (SPMs)-attracted attention in recent years as therapeutic targets. This review focuses on the following three specific SPMs and summarizes their relationships to AD, as they were shown to effectively address and reduce the risk of AD-related neuroinflammation: maresin 1 (MaR1), resolvin D1 (RvD1), and neuroprotectin D1 (NPD1). These three SPMs are metabolites of docosahexaenoic acid (DHA), which is contained in fish oils and is thus easily available to the public. They are expected to become incorporated into promising avenues for preventing and treating AD in the future.
Collapse
|