1
|
Johal K, Jones DJW, Bell L, Lovegrove JA, Lamport DJ. Impact of coffee-derived chlorogenic acid on cognition: a systematic review and meta-analysis. Nutr Res Rev 2025; 38:393-406. [PMID: 39403843 DOI: 10.1017/s0954422424000209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Coffee drinking has been associated with benefits for various health outcomes, with many attributed to the most prevalent family of polyphenols within coffee, chlorogenic acids (CGA). Whilst reviews of the association between coffee and cognition exist, evidence exploring effects of coffee-specific CGA on cognition has yet to be systematically synthesised. The purpose was to systematically review the current literature investigating the relationship between CGA from coffee and cognitive performance. A further objective was to undertake a meta-analysis of relevant randomised controlled trials (RCT). Observational and intervention studies were included if they considered coffee-based CGA consumption in human participants and applied a standardised measure of cognition. Furthermore, intervention studies were required to define the CGA content and include a control group/placebo. Studies were excluded if they examined CGA alone as an extract or supplement. A search of Scopus, PubMed, Web of Science, ScienceDirect and PsycINFO resulted in including twenty-three papers, six of which were interventions. The evidence from the broader systematic review suggests that CGA from coffee may need to be consumed chronically over a sustained period to produce cognitive benefits. However, the meta-analysis of RCT showed no benefits of coffee CGA intake on cognitive function (d = 0.00, 95% CI -0.05, 0.05). Overall, this review included a limited number of studies, the sample sizes were small, and a wide range of cognitive measures have been utilised. This indicates that further, good-quality interventions and RCT are required to systematically explore the conditions under which coffee CGA may provide benefits for cognitive outcomes.
Collapse
Affiliation(s)
- Karen Johal
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6DZ, UK
| | - Dan J W Jones
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6DZ, UK
| | - Lynne Bell
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6DZ, UK
| | - Julie A Lovegrove
- Human Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK
| | - Daniel Joseph Lamport
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6DZ, UK
| |
Collapse
|
2
|
Li Z, Zhang Z, Yu B. Correction to "Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease". J Med Chem 2025; 68:9018-9024. [PMID: 40214661 DOI: 10.1021/acs.jmedchem.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
|
3
|
Li Z, Zhang Z, Yu B. Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease. J Med Chem 2025; 68:2377-2402. [PMID: 39865664 DOI: 10.1021/acs.jmedchem.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory loss and cognitive decline. With current treatments offering limited effectiveness, researchers are turning to natural products that can target various aspects of AD pathology. Clinically approved natural products, such as galantamine and huperzine A, have shown success in AD treatments. Furthermore, compounds such as epigallocatechin gallate, quercetin, and resveratrol are in clinical trials. This Perspective examines nearly 100 natural compounds with promising neuroprotective effects in preclinical and clinical studies. These compounds exhibit diverse pharmacological actions that help to prevent neurodegeneration while improving cognitive functions. Their unique structures further enhance their biological activities, making them promising candidates for drug discovery. This Perspective stresses the importance of further clinical research to maximize the medical benefits of these compounds and highlights their potential as innovative remedies for AD. Continued exploration of these compounds is crucial to fully leverage their capabilities in combating AD.
Collapse
Affiliation(s)
- Zhonghua Li
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Lopes CR, Cunha RA. Impact of coffee intake on human aging: Epidemiology and cellular mechanisms. Ageing Res Rev 2024; 102:102581. [PMID: 39557300 DOI: 10.1016/j.arr.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The conception of coffee consumption has undergone a profound modification, evolving from a noxious habit into a safe lifestyle actually preserving human health. The last 20 years also provided strikingly consistent epidemiological evidence showing that the regular consumption of moderate doses of coffee attenuates all-cause mortality, an effect observed in over 50 studies in different geographic regions and different ethnicities. Coffee intake attenuates the major causes of mortality, dampening cardiovascular-, cerebrovascular-, cancer- and respiratory diseases-associated mortality, as well as some of the major causes of functional deterioration in the elderly such as loss of memory, depression and frailty. The amplitude of the benefit seems discrete (17 % reduction) but nonetheless corresponds to an average increase in healthspan of 1.8 years of lifetime. This review explores evidence from studies in humans and human tissues supporting an ability of coffee and of its main components (caffeine and chlorogenic acids) to preserve the main biological mechanisms responsible for the aging process, namely genomic instability, macromolecular damage, metabolic and proteostatic impairments with particularly robust effects on the control of stress adaptation and inflammation and unclear effects on stem cells and regeneration. Further studies are required to detail these mechanistic benefits in aged individuals, which may offer new insights into understanding of the biology of aging and the development of new senostatic strategies. Additionally, the safety of this lifestyle factor in the elderly prompts a renewed attention to recommending the maintenance of coffee consumption throughout life as a healthy lifestyle and to further exploring who gets the greater benefit with what schedules of which particular types and doses of coffee.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal; MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, Portugal; Centro de Medicina Digital P5, Escola de Medicina da Universidade do Minho, Braga, Portugal.
| |
Collapse
|
5
|
Bhargava Y, Kottapalli A, Baths V. Validation and comparison of virtual reality and 3D mobile games for cognitive assessment against ACE-III in 82 young participants. Sci Rep 2024; 14:23918. [PMID: 39397120 PMCID: PMC11471807 DOI: 10.1038/s41598-024-75065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Current medical and clinical ecosystem for dementia detection is inadequate for its early detection. Traditional cognitive assessments are introduced after cognitive impairment has begun to disrupt the real-world functioning of the person. Moreover, these tools are paper-pen based and fail to replicate the real-world situations wherein the person ultimately lives, acts and grows. The lack of tools for early detection of dementia, combined with absence of reliable pharmacological cure compound the problems associated with dementia diagnosis and care. Advancement of technology has facilitated early prediction of disease like cancer, diabetes, heart disease, but hardly any such translation has been observed for dementia or cognitive impairment. Given this background, we examine the potential of Virtual Reality (VR) and 3D Mobile-based goal-oriented games for cognitive assessment. We evaluate three games (2 in VR, one in mobile) among 82 young participants (aged 18-28 years) and compare and contrast the game-based results with their Addenbrooke Cognitive Examination (ACE-III) scores. Three main analysis methods are used: Correlative, Z-score and Regression analysis. Positive correlation was observed for ACE-III and game-based scores. Z-scores analysis revealed no difference between the two scores, and stronger statistical significance was found between game scores and cognitive health factors like age, smoking compared to ACE-III. Specific game performances also revealed about real-world traits of participants, like hand-use confusion and direction confusion. Results establish the plausibility of using goal-oriented games for more granular, time-based, and functional cognitive assessment.
Collapse
Affiliation(s)
- Yesoda Bhargava
- Cognitive Neuroscience Lab, Department of Biological Sciences, BITS Pilani K. K. Birla Goa Campus, Goa, 403726, India
| | - Ashwani Kottapalli
- Cognitive Neuroscience Lab, Department of Biological Sciences, BITS Pilani K. K. Birla Goa Campus, Goa, 403726, India
| | - Veeky Baths
- Cognitive Neuroscience Lab, Department of Biological Sciences, BITS Pilani K. K. Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
6
|
Blum D, Cailliau E, Béhal H, Vidal J, Delaby C, Buée L, Allinquant B, Gabelle A, Bombois S, Lehmann S, Schraen‐Maschke S, Hanon O. Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer's disease: A BALTAZAR cohort study. Alzheimers Dement 2024; 20:6948-6959. [PMID: 39099181 PMCID: PMC11485411 DOI: 10.1002/alz.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. METHODS MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aβ1-42], Aβ1-40) were analyzed using logistic and analysis of covariance models. RESULTS Adjusted on Apolipoprotein E (APOE ε4), age, sex, education level, and tobacco, lower caffeine consumption was associated with higher risk to be amnestic (OR: 2.49 [95% CI: 1.13 to 5.46]; p = 0.023) and lower CSF Aβ1-42 (p = 0.047), Aβ1-42/Aβ1-40 (p = 0.040), and Aβ1-42/p-tau181 (p = 0.020) in the whole cohort. DISCUSSION Data support the beneficial effect of caffeine consumption to memory impairments and CSF amyloid markers in MCI and AD patients. HIGHLIGHTS We studied the impact of caffeine consumption in the BALTAZAR cohort. Low caffeine intake is associated with higher risk of being amnestic in MCI/AD patients. Caffeine intake is associated with CSF biomarkers in AD patients.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | | | | | - Jean‐Sébastien Vidal
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Luc Buée
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Bernadette Allinquant
- Université Paris CitéInstitute of Psychiatry and Neuroscience, Inserm, UMR‐S 1266ParisFrance
| | - Audrey Gabelle
- Université de MontpellierCHU MontpellierMemory Research and Resources CenterDepartment of Neurology, Inserm INM NeuroPEPs TeamExcellence Center of Neurodegenerative DisordersMontpellierFrance
| | - Stéphanie Bombois
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié‐SalpêtrièreParisFrance
| | - Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
| | - Susanna Schraen‐Maschke
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Olivier Hanon
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| |
Collapse
|
7
|
Gomez-Murcia V, Launay A, Carvalho K, Burgard A, Meriaux C, Caillierez R, Eddarkaoui S, Kilinc D, Siedlecki-Wullich D, Besegher M, Bégard S, Thiroux B, Jung M, Nebie O, Wisztorski M, Déglon N, Montmasson C, Bemelmans AP, Hamdane M, Lebouvier T, Vieau D, Fournier I, Buee L, Lévi S, Lopes LV, Boutillier AL, Faivre E, Blum D. Neuronal A2A receptor exacerbates synapse loss and memory deficits in APP/PS1 mice. Brain 2024; 147:2691-2705. [PMID: 38964748 PMCID: PMC11292904 DOI: 10.1093/brain/awae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024] Open
Abstract
Early pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice. These behavioural changes were not linked to major change in the development of amyloid pathology but rather associated with increased phosphorylated tau at neuritic plaques. Moreover, proteomic and transcriptomic analyses coupled with quantitative immunofluorescence studies indicated that neuronal upregulation of the receptor promoted both neuronal and non-neuronal autonomous alterations, i.e. enhanced neuroinflammatory response but also loss of excitatory synapses and impaired neuronal mitochondrial function, presumably accounting for the detrimental effect on memory. Overall, our results provide compelling evidence that neuronal A2AR dysfunction, as seen in the brain of patients, contributes to amyloid-related pathogenesis and underscores the potential of A2AR as a relevant therapeutic target for mitigating cognitive impairments in this neurodegenerative disorder.
Collapse
Affiliation(s)
- Victoria Gomez-Murcia
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Agathe Launay
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Kévin Carvalho
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Anaëlle Burgard
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), University of Strasbourg, F-67000 Strasbourg, France
- UMR7364–Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), CNRS, F-67000 Strasbourg, France
| | - Céline Meriaux
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Raphaëlle Caillierez
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Sabiha Eddarkaoui
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Devrim Kilinc
- Inserm U1167, LabEx DISTALZ, Université de Lille, Institut Pasteur de Lille, CHU Lille, F-59000 Lille, France
| | - Dolores Siedlecki-Wullich
- Inserm U1167, LabEx DISTALZ, Université de Lille, Institut Pasteur de Lille, CHU Lille, F-59000 Lille, France
| | - Mélanie Besegher
- Plateformes Lilloises en Biologie et Santé (PLBS)–UAR 2014–US 41, CNRS, Inserm, Université de Lille, Institut Pasteur de Lille, CHU Lille, F-59000 Lille, France
| | - Séverine Bégard
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Bryan Thiroux
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, CNRS UMR7104, Inserm U1258—GenomEast Platform, F-67400 Illkirch, France
| | - Ouada Nebie
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Maxence Wisztorski
- Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, Lille F-59000, France
| | - Nicole Déglon
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), 1011 Lausanne, Switzerland
| | - Claire Montmasson
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F-75005 Paris, France
| | - Alexis-Pierre Bemelmans
- Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, Université Paris-Saclay, CEA, CNRS, F-92265 Fontenay-aux-Roses, France
| | - Malika Hamdane
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Thibaud Lebouvier
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
- Memory Clinic, CHU Lille, F-59000 Lille, France
| | - Didier Vieau
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Isabelle Fournier
- Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, Lille F-59000, France
| | - Luc Buee
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - Sabine Lévi
- Institut du Fer à Moulin, Inserm UMR-S 1270, Sorbonne Université, F-75005 Paris, France
| | - Luisa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), University of Strasbourg, F-67000 Strasbourg, France
- UMR7364–Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), CNRS, F-67000 Strasbourg, France
| | - Emilie Faivre
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| | - David Blum
- UMR-S1172 Lille Neuroscience & Cognition (LilNCog), University of Lille, Inserm, CHU Lille, F-59000 Lille, France
- Alzheimer & Tauopathies Team, LabEx DISTALZ, University of Lille, F-59000 Lille, France
| |
Collapse
|
8
|
Suganuma T, Hatori S, Chen CK, Hori S, Kanuka M, Liu CY, Tatsuzawa C, Yanagisawa M, Hayashi Y. Caffeoylquinic Acid Mitigates Neuronal Loss and Cognitive Decline in 5XFAD Mice Without Reducing the Amyloid-β Plaque Burden. J Alzheimers Dis 2024; 99:1285-1301. [PMID: 38788074 DOI: 10.3233/jad-240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Caffeoylquinic acid (CQA), which is abundant in coffee beans and Centella asiatica, reportedly improves cognitive function in Alzheimer's disease (AD) model mice, but its effects on neuroinflammation, neuronal loss, and the amyloid-β (Aβ) plaque burden have remained unclear. Objective To assess the effects of a 16-week treatment with CQA on recognition memory, working memory, Aβ levels, neuronal loss, neuroinflammation, and gene expression in the brains of 5XFAD mice, a commonly used mouse model of familial AD. Methods 5XFAD mice at 7 weeks of age were fed a 0.8% CQA-containing diet for 4 months and then underwent novel object recognition (NOR) and Y-maze tests. The Aβ levels and plaque burden were analyzed by enzyme-linked immunosorbent assay and immunofluorescent staining, respectively. Immunostaining of markers of mature neurons, synapses, and glial cells was analyzed. AmpliSeq transcriptome analysis and quantitative reverse-transcription-polymerase chain reaction were performed to assess the effect of CQA on gene expression levels in the cerebral cortex of the 5XFAD mice. Results CQA treatment for 4 months improved recognition memory and ameliorated the reduction of mature neurons and synaptic function-related gene mRNAs. The Aβ levels, plaque burden, and glial markers of neuroinflammation seemed unaffected. Conclusions These findings suggest that CQA treatment mitigates neuronal loss and improves cognitive function without reducing Aβ levels or neuroinflammation. Thus, CQA is a potential therapeutic compound for AD, improving cognitive function via as-yet unknown mechanisms independent of reductions in Aβ or neuroinflammation.
Collapse
Affiliation(s)
- Takaya Suganuma
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Biological Science Research Laboratories, Kao Corporation, Ichikai, Japan
| | - Sena Hatori
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Satoshi Hori
- Biological Science Research Laboratories, Kao Corporation, Ichikai, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
van Lessen M, Mardaryev A, Broadley D, Bertolini M, Edelkamp J, Kückelhaus M, Funk W, Bíró T, Paus R. 'Speed-ageing' of human skin in serum-free organ culture ex vivo: An instructive novel assay for preclinical human skin ageing research demonstrates senolytic effects of caffeine and 2,5-dimethylpyrazine. Exp Dermatol 2024; 33:e14955. [PMID: 37897068 DOI: 10.1111/exd.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Preclinical human skin ageing research has been limited by the paucity of instructive and clinically relevant models. In this pilot study, we report that healthy human skin of different age groups undergoes extremely accelerated ageing within only 3 days, if organ-cultured in a defined serum-free medium. Quantitative (immuno-)histomorphometry documented this unexpected ex vivo phenotype on the basis of ageing-associated biomarkers: the epidermis showed significantly reduced rete ridges and keratinocyte proliferation, sirtuin-1, MTCO1 and collagen 17a1 protein levels; this contrasted with significantly increased expression of the DNA-damage marker, γH2A.X. In the dermis, collagen 1 and 3 and hyaluronic acid content were significantly reduced compared to Day 0 skin. qRT-PCR of whole skin RNA extracts also showed up-regulated mRNA levels of several (inflamm-) ageing biomarkers (MMP-1, -2, -3, -9; IL6, IL8, CXCL10 and CDKN1). Caffeine, a methylxanthine with recognized anti-ageing properties, counteracted the dermal collagen 1 and 3 reduction, the epidermal accumulation of γH2A.X, and the up-regulation of CXCL10, IL6, IL8, MMP2 and CDKN1. Finally, we present novel anti-ageing effects of topical 2,5-dimethylpyrazine, a natural pheromone TRPM5 ion channel activator. Thus, this instructive, clinically relevant "speed-ageing" assay provides a simple, but powerful new research tool for dissecting skin ageing and rejuvenation, and is well-suited to identify novel anti-ageing actives directly in the human target organ.
Collapse
Affiliation(s)
| | - Andrei Mardaryev
- Monasterium Laboratory, Münster, Germany
- Centre for Skin Sciences, School of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom
| | | | | | | | | | | | - Tamás Bíró
- Monasterium Laboratory, Münster, Germany
- Cutaneon, Hamburg, Germany
| | - Ralf Paus
- Monasterium Laboratory, Münster, Germany
- Cutaneon, Hamburg, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
10
|
Starling-Soares B, Pereira M, Renke G. Extrapolating the Coffee and Caffeine (1,3,7-Trimethylxanthine) Effects on Exercise and Metabolism-A Concise Review. Nutrients 2023; 15:5031. [PMID: 38140290 PMCID: PMC10745355 DOI: 10.3390/nu15245031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The consumption of coffee and caffeine (1,3,7-trimethylxanthine) is part of many cultures worldwide. Their properties include serving as a neurostimulant aid, enhancing energy substrate levels, and improving general exercise performance. Both present therapeutic effects that can also be used to control chronic and metabolic diseases due to four mechanisms: adenosine receptor antagonism, increased catecholamine concentrations, a phosphodiesterase inhibitor, and a stimulator of calcium-release channels. Despite the individual genetic variabilities, distinct mechanisms have been demonstrated to improve physical performance, thermogenesis, lipolysis, insulin sensitivity, and hormonal modulation. Thus, coffee consumption and caffeine supplementation may enhance physical and mental performance and may improve metabolic variables, reducing oxidative stress, inflammation, and insulin resistance. Current data reveal vital aspects of coffee and caffeine consumption in specific populations, although further studies are needed to define clinical interventions with caffeine in obesity and chronic conditions.
Collapse
Affiliation(s)
- Bernardo Starling-Soares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-250, MG, Brazil
- Extreme Sports Nutrition Institute—INEE, Belo Horizonte 31310-370, MG, Brazil
| | - Marcela Pereira
- Nutrindo Ideais Performance and Nutrition Research Center, Rio de Janeiro 22411-040, RJ, Brazil
| | - Guilherme Renke
- Nutrindo Ideais Performance and Nutrition Research Center, Rio de Janeiro 22411-040, RJ, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
11
|
Huang LK, Kuan YC, Lin HW, Hu CJ. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update. J Biomed Sci 2023; 30:83. [PMID: 37784171 PMCID: PMC10544555 DOI: 10.1186/s12929-023-00976-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, presenting a significant unmet medical need worldwide. The pathogenesis of AD involves various pathophysiological events, including the accumulation of amyloid and tau, neuro-inflammation, and neuronal injury. Clinical trials focusing on new drugs for AD were documented in 2020, but subsequent developments have emerged since then. Notably, the US-FDA has approved Aducanumab and Lecanemab, both antibodies targeting amyloid, marking the end of a nearly two-decade period without new AD drugs. In this comprehensive report, we review all trials listed in clinicaltrials.gov, elucidating their underlying mechanisms and study designs. Ongoing clinical trials are investigating numerous promising new drugs for AD. The main trends in these trials involve pathophysiology-based, disease-modifying therapies and the recruitment of participants in earlier stages of the disease. These trends underscore the significance of conducting fundamental research on pathophysiology, prevention, and intervention prior to the occurrence of brain damage caused by AD.
Collapse
Affiliation(s)
- Li-Kai Huang
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhong Zheng Road, Zhonghe District, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ho-Wei Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhong Zheng Road, Zhonghe District, New Taipei City, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan.
- Dementia Center and Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Vrânceanu M, Hegheş SC, Cozma-Petruţ A, Banc R, Stroia CM, Raischi V, Miere D, Popa DS, Filip L. Plant-Derived Nutraceuticals Involved in Body Weight Control by Modulating Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:2273. [PMID: 37375898 DOI: 10.3390/plants12122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Obesity is the most prevalent health problem in the Western world, with pathological body weight gain associated with numerous co-morbidities that can be the main cause of death. There are several factors that can contribute to the development of obesity, such as diet, sedentary lifestyle, and genetic make-up. Genetic predispositions play an important role in obesity, but genetic variations alone cannot fully explain the explosion of obesity, which is why studies have turned to epigenetics. The latest scientific evidence suggests that both genetics and environmental factors contribute to the rise in obesity. Certain variables, such as diet and exercise, have the ability to alter gene expression without affecting the DNA sequence, a phenomenon known as epigenetics. Epigenetic changes are reversible, and reversibility makes these changes attractive targets for therapeutic interventions. While anti-obesity drugs have been proposed to this end in recent decades, their numerous side effects make them not very attractive. On the other hand, the use of nutraceuticals for weight loss is increasing, and studies have shown that some of these products, such as resveratrol, curcumin, epigallocatechin-3-gallate, ginger, capsaicin, and caffeine, can alter gene expression, restoring the normal epigenetic profile and aiding weight loss.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Viorica Raischi
- Laboratory of Physiology of Stress, Adaptation and General Sanocreatology, Institute of Physiology and Sanocreatology, 1 Academiei Street, 2028 Chișinău, Moldova
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Susy K. Long-term outcomes from the UK Biobank on the impact of coffee on cardiovascular disease, arrhythmias, and mortality: Does the future hold coffee prescriptions? Glob Cardiol Sci Pract 2023; 2023:e202313. [PMID: 37351100 PMCID: PMC10282813 DOI: 10.21542/gcsp.2023.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023] Open
Abstract
INTRODUCTION Coffee is a popular beverage and the most used psychostimulant worldwide. Habitual coffee consumption has been linked to a growing list of health benefits; however, coffee consumption has been a source of longstanding debate. Recent observational studies have challenged the misconception of caffeine and reported the safety and beneficial effects of coffee intake on a range of cardiovascular (CV) conditions, including coronary artery disease, arrhythmias, heart failure, and stroke, leading to a decreased risk of CVD, all-cause and CVD mortality, and being associated with favorable CV outcomes. However, the mechanisms underlying the protective effects of caffeine remain speculative, and there is a lack of dedicated studies aimed at addressing the impact of different coffee subtypes on clinical outcomes such as CVD, arrhythmia, and mortality. Study and Results: The study included 449,563 UK Biobank participants, free of cardiovascular problems at enrollment (median age 58 years; 55.3% females). The median follow-up time was 12.5 years. Drinking 4 to 5 cups/day of ground (HR 0.83; 95% CI [0.76-0.91]; P < .0001) or 2 to 3 cups/day of instant (HR, 0.88; 95% CI [0.85-0.92]; P < .0001) coffee (but not decaffeinated coffee) was associated with a significant reduction in incident arrhythmia, including AF. Habitual coffee intake of up to 5 cups/day was associated with significant reductions in the risk of incident CVD, CHD (HR 0.89, CI [0.86-0.91], P < 0.0001), CCF (HR 0.83, CI [0.79-0.87], P < 0.0001), and ischemic stroke (HR 0.84, CI [0.78-0.90], P < 0.0001). Coffee consumption led to significant reductions in all-cause mortality (HR 0.86, CI [0.83-0.89], P < 0.0001) and CV mortality (HR 0.82, CI [0.74-0.90], P < 0.0001). Consumption of ground coffee at all levels significantly reduced the risk of all-cause and CV mortality. There was no significant difference in the incidence of CVD among all intake categories or across all coffee subtypes. LESSONS LEARNED The results from the UK Biobank indicate that mild-to-moderate consumption of all types of coffee is linked to improved CV outcomes and a lower risk of cardiovascular disease and death, with caffeinated coffee significantly reducing the risk of arrhythmias, including AF. Daily coffee intake should not be discouraged by physicians, even in the presence of a newly developed cardiovascular disease. Whether coffee will be prescribed in the future to prevent CVD and improve cardiovascular health depends on further evaluation of the physiological mechanisms and elucidation of the specific protective effects of coffee consumption.
Collapse
|
14
|
Zheng YB, Sun J, Shi L, Su SZ, Chen X, Wang QW, Huang YT, Wang YJ, Zhu XM, Que JY, Zeng N, Lin X, Yuan K, Yan W, Deng JH, Shi J, Bao YP, Lu L. Association of Caffeine Consumption and Brain Amyloid Positivity in Cognitively Normal Older Adults. J Alzheimers Dis 2023; 93:483-493. [PMID: 37038808 DOI: 10.3233/jad-220591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Several epidemiological studies have reported the protective role of caffeine on health outcomes; however, it remained debatable on caffeine consumption and brain amyloid positivity. OBJECTIVE We aimed to determine the relationship between caffeine consumption and brain amyloid pathology in cognitively normal older adults. METHODS The dataset used for analysis in this cross-sectional study was selected from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Study. Multivariable logistic regression analyses were performed to explore the association between caffeine consumption and amyloid positivity using odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS In total, 4,394 participants were included in the final analysis. No significant association between caffeine consumption and amyloid positivity was observed in the whole participants (OR, 0.95; 95% CI, 0.78-1.14; p = 0.558). Subgroup analysis showed that caffeine intake was significantly associated with decreased amyloid positivity in males (OR, 0.72; 95% CI, 0.54-0.97; p = 0.032) but not in females (OR, 1.14; 95% CI, 0.90-1.46; p = 0.280), and the association between caffeine and amyloid positivity was not affected by age or APOE genotypes. In addition, different levels of caffeine were not associated with amyloid positivity. CONCLUSION The findings suggest that caffeine consumption was not significantly associated with amyloid positivity in the whole sample. However, caffeine consumption may be inversely associated with amyloid positivity among males but not females. More studies are needed to explore the mechanisms underlying caffeine consumption and brain amyloid positivity.
Collapse
Affiliation(s)
- Yong-Bo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Pain Medicine Center, Peking University Third Hospital, Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Si-Zhen Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Xuan Chen
- The First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Qian-Wen Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Yue-Tong Huang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Yi-Jie Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xi-Mei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Jian-Yu Que
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- School of Public Health, Peking University, Beijing, China
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Jia-Hui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- School of Public Health, Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
15
|
Beversdorf DQ, Crosby HW, Shenker JI. Complementary and Alternative Medicine Approaches in Alzheimer Disease and Other Neurocognitive Disorders. MISSOURI MEDICINE 2023; 120:70-78. [PMID: 36860601 PMCID: PMC9970340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As our population ages, there is interest in delaying or intervening in cognitive decline. While newer agents are under development, agents in mainstream use do not impact the course of diseases that cause cognitive decline. This increases interest in alternative strategies. Even as we welcome possible new disease-modifying agents, they are likely to remain costly. Herein, we review the evidence behind other complementary and alternative strategies for cognitive enhancement and prevention of cognitive decline.
Collapse
Affiliation(s)
- David Q Beversdorf
- Departments of Neurology, Radiology, and Psychological Sciences, and is the William and Nancy Thompson Endowed Chair in Radiology, , University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Haley W Crosby
- Fourth-year medical student at the School of Medicine, , University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Joel I Shenker
- Department of Neurology, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| |
Collapse
|
16
|
Fu XQ, Lin ZL, Li LY, Wang Q, Deng L, Lin Z, Lin JJ, Wang XY, Shen TY, Zheng YH, Lin W, Li PJ. Chlorogenic acid alleviates hypoxic-ischemic brain injury in neonatal mice. Neural Regen Res 2023; 18:568-576. [DOI: 10.4103/1673-5374.350203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232214400. [PMID: 36430879 PMCID: PMC9697425 DOI: 10.3390/ijms232214400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Various studies have been conducted, exploring the genetic susceptibility of Alzheimer's disease (AD). Adenosine receptor subtype A2a (ADORA2A) and cytochrome P450 1A2 (CYP1A2) are implicated in pathways such as oxidative stress and caffeine metabolism, which are associated with AD. The aim of this study was to explore for any potential association between the ADORA2A rs5760423 and the CYP1A2 rs762551 genetic variants and AD. A case-control study was performed with a total of 654 subjects (327 healthy controls and 327 patients with AD). Five genetic models were assumed. We also examined the allele-allele combination of both variants. The value of 0.05 was considered as the statistical significance threshold. A statistically significant association was found between ADORA2A rs5760423 and AD, as the "T" allele was associated with increased AD risk in recessive (OR = 1.51 (1.03-2.21)) and log-additive (OR = 1.30 (1.04-1.62)) genetic modes. In the codominant model, the TT genotype was more prevalent compared to the GG genotype (OR = 1.71 (1.09-2.66)). The statistical significance was maintained after adjustment for sex. No association between CYP1A2 rs762551 or allele-allele combination and AD was detected. We provide preliminary indication for a possible association between the ADORA2A rs5760423 genetic polymorphism and AD.
Collapse
|
18
|
Medvedeva M, Kitsilovskaya N, Stroylova Y, Sevostyanova I, Saboury AA, Muronetz V. Hydroxycinnamic Acid Derivatives from Coffee Extracts Prevent Amyloid Transformation of Alpha-Synuclein. Biomedicines 2022; 10:biomedicines10092255. [PMID: 36140356 PMCID: PMC9496549 DOI: 10.3390/biomedicines10092255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Earlier we showed that derivatives of hydroxycinnamic acids prevent amyloid transformation of alpha-synuclein and prion protein. The aim of this work was to determine the content of 3-hydroxycinnamic acid derivatives in coffee extracts and to evaluate their activity in relation to alpha-synuclein amyloid aggregation. Hydroxycinnamic acid derivatives were identified in aqueous and ethanol extracts of coffee beans by quantitative mass spectrometric analysis. Only 3,4-dimethoxycinnamic acid (13–53 μg/mL) was detected in significant amounts in the coffee extracts, while ferulic acid was present in trace amounts. In addition, 3-methoxy-4-acetamidoxycinnamic acid (0.4–0.8 μg/mL) was detected in the roasted coffee extracts. The half-maximum inhibitory concentrations of alpha-synuclein fibrillization reaction in the presence of coffee extracts, as well as inhibitory constants, were determined using thioflavin T assay. The inhibitory effect of black and green coffee extracts on alpha-synuclein fibrillization is dose-dependent, and in a pairwise comparison, the constants of half-maximal inhibition of fibrillization for green coffee extracts are comparable to or greater than those for black coffee. Thus, coffee extracts prevent pathological transformation of alpha-synuclein in vitro, probably due to the presence of 3,4-dimethoxycinnamic acid in them. Consequently, coffee drinks and coffee extracts can be used for the prevention of synucleinopathies including Parkinson’s disease.
Collapse
Affiliation(s)
- Maria Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia Kitsilovskaya
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Federal State Budgetary Institution “Federal Research and Clinical Center of Physical-Chemical Medicine”, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Yulia Stroylova
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Irina Sevostyanova
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Vladimir Muronetz
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| |
Collapse
|
19
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
20
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Larsson SC, Woolf B, Gill D. Plasma Caffeine Levels and Risk of Alzheimer's Disease and Parkinson's Disease: Mendelian Randomization Study. Nutrients 2022; 14:nu14091697. [PMID: 35565667 PMCID: PMC9102212 DOI: 10.3390/nu14091697] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
We leveraged genetic variants associated with caffeine metabolism in the two-sample Mendelian randomization framework to investigate the effect of plasma caffeine levels on the risk of Alzheimer’s disease and Parkinson’s disease. Genetic association estimates for the outcomes were obtained from the International Genomics of Alzheimer’s Project, the International Parkinson’s Disease Genomics consortium, the FinnGen consortium, and the UK Biobank. Genetically predicted higher plasma caffeine levels were associated with a non-significant lower risk of Alzheimer’s disease (odds ratio 0.87; 95% confidence interval 0.76, 1.00; p = 0.056). A suggestive association was observed for genetically predicted higher plasma caffeine levels and lower risk of Parkinson’s disease in the FinnGen consortium. but not in the International Parkinson’s Disease Genomics consortium; no overall association was found (odds ratio 0.92; 95% confidence interval 0.77, 1.10; p = 0.347). This study found possible suggestive evidence of a protective role of caffeine in Alzheimer’s disease. The association between caffeine and Parkinson’s disease requires further study.
Collapse
Affiliation(s)
- Susanna C. Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Correspondence:
| | - Benjamin Woolf
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK;
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1NY, UK;
- Department of Clinical Pharmacology and Therapeutics, Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
- Genetics Department, Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford OX3 7FZ, UK
| |
Collapse
|
22
|
Cai J, Cai M, Xia W, Jiang L, Song H, Chen X. Explore the Mechanism of β-Asarone on Improving Cognitive Dysfunction in Rats with Diabetic Encephalopathy. J Alzheimers Dis Rep 2022; 6:195-206. [PMID: 35591951 PMCID: PMC9108628 DOI: 10.3233/adr-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background: The number of people with diabetes is increasing, and many patients have significantly impaired cognitive function. For patients with diabetic encephalopathy (DE), simply lowering blood sugar does not improve learning and memory. Studies have shown that β-asarone can significantly improve cognitive impairment in patients with DE, but the specific mechanism of action is unclear. Objective: This experiment hopes to use a variety of experimental methods to clarify the protective effect and mechanism of β-asarone on brain neurons during the development of DE disease. Methods: A high-sugar and high-fat diet and streptozotocin injection-induced DE rat model was used. β-asarone was administered for four weeks. The experiment used the Morris water maze test, biochemical index detection, and many methods to evaluate the neuroprotective effect of β-asarone on DE rats from various aspects and understand its mechanism. Results: β-asarone reduced neuronal cell damage and significantly improved the learning and memory ability of DE rats. In addition, β-asarone can reduce the oxidative stress response and amyloid-β accumulation in the brain of DE model rats and increase the content of brain-derived neurotrophic factor (BDNF) in the brain tissue, thereby reducing neuronal cell apoptosis and playing a protective role. Conclusion: β-asarone can reduce the accumulation of oxidative stress and amyloid-β in the brain, increase the content of BDNF, reduce the apoptosis of neuronal cells, and exert neuronal protection, thereby improving the learning and memory ability of DE model rats.
Collapse
Affiliation(s)
- Jingwen Cai
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ming Cai
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenwen Xia
- Lu’an City Hospital of Traditional Chinese Medicine, Lu’an, Anhui, China
| | - Lanlan Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
23
|
Conde SV, Martins FO, Dias SS, Pinto P, Bárbara C, Monteiro EC. Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption. Nutrients 2022; 14:nu14071382. [PMID: 35405995 PMCID: PMC9003552 DOI: 10.3390/nu14071382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
Daytime hypersomnolence, the prime feature of obstructive sleep apnea (OSA), frequently leads to high coffee consumption. Nevertheless, some clinicians ask for patients’ caffeine avoidance. Caffeinated drinks are sometimes associated with more severe OSA. However, these effects are not consensual. Here we investigated the effect of caffeine consumption on sleep architecture and apnea/hypopnea index in OSA. Also, the impact of caffeine on variables related with dysmetabolism, dyslipidemia, and sympathetic nervous system (SNS) dysfunction were investigated. A total of 65 patients diagnosed with OSA and 32 without OSA were included after given written informed consent. Polysomnographic studies were performed. Blood was collected to quantify caffeine and its metabolites in plasma and biochemical parameters. 24 h urine samples were collected for catecholamines measurement. Statistical analyses were performed by SPSS: (1) non-parametric Mann-Whitney test to compare variables between controls and OSA; (2) multivariate logistic regression testing the effect of caffeine on sets of variables in the 2 groups; and (3) Spearmans’ correlation between caffeine levels and comorbidities in patients with OSA. As expected OSA development is associated with dyslipidemia, dysmetabolism, SNS dysfunction, and sleep fragmentation. There was also a significant increase in plasma caffeine levels in the OSA group. However, the higher consumption of caffeine by OSA patients do not alter any of these associations. These results showed that there is no apparent rationale for caffeine avoidance in chronic consumers with OSA.
Collapse
Affiliation(s)
- Sílvia V. Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edifício 2, piso 3, 1150-082 Lisboa, Portugal; (F.O.M.); (E.C.M.)
- Correspondence:
| | - Fátima O. Martins
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edifício 2, piso 3, 1150-082 Lisboa, Portugal; (F.O.M.); (E.C.M.)
| | - Sara S. Dias
- ciTechCare—Center for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Paula Pinto
- Pneumology Department, Centro Hospitalar de Lisboa Norte, Hospital Pulido Valente, 1649-028 Lisboa, Portugal; (P.P.); (C.B.)
| | - Cristina Bárbara
- Pneumology Department, Centro Hospitalar de Lisboa Norte, Hospital Pulido Valente, 1649-028 Lisboa, Portugal; (P.P.); (C.B.)
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edifício 2, piso 3, 1150-082 Lisboa, Portugal; (F.O.M.); (E.C.M.)
| |
Collapse
|
24
|
Zhang L, Cao J, Yang H, Pham P, Khan U, Brown B, Wang Y, Zieneldien T, Cao C. Commercial and Instant Coffees Effectively Lower Aβ1-40 and Aβ1-42 in N2a/APPswe Cells. Front Nutr 2022; 9:850523. [PMID: 35369094 PMCID: PMC8965317 DOI: 10.3389/fnut.2022.850523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial neurological disease with neurofibrillary tangles and neuritic plaques as histopathological markers. Due to this, although AD is the leading cause of dementia worldwide, clinical AD dementia cannot be certainly diagnosed until neuropathological post-mortem evaluation. Coffee has been reported to have neurologically protective factors, particularly against AD, but coffee brand and type have not been taken into consideration in previous studies. We examined the discrepancies among popular commercial and instant coffees in limiting the development and progression through Aβ1-40 and Aβ1-42 production, and hypothesized that coffee consumption, regardless of brand or type, is beneficial for stalling the progression and development of Aβ-related AD. Methods Coffee samples from four commercial coffee brands and four instant coffees were purchased or prepared following given instructions and filtered for the study. 5, 2.5, and 1.25% concentrations of each coffee were used to treat N2a/APPswe cell lines. MTT assay was used to assess cell viability for coffee concentrations, as well as pure caffeine concentrations. Sandwich ELISA assay was used to determine Aβ concentration for Aβ1-40 and Aβ1-42 peptides of coffee-treated cells. Results Caffeine concentrations were significantly varied among all coffees (DC vs. MDC, PC, SB, NIN, MIN p < 0.05). There was no correlation between caffeine concentration and cell toxicity among brands and types of coffee, with no toxicity at 0.5 mg/ml caffeine and lower. Most coffees were toxic to N2a/APPswe cells at 5% (p < 0.05), but not at 2.5%. Most coffees at a 2.5% concentration reduced Aβ1-40 and Aβ1-42 production, with comparable results between commercial and instant coffees. Conclusion All coffees tested have beneficial health effects for AD through lowering Aβ1-40 and Aβ1-42 production, with Dunkin' Donuts® medium roast coffee demonstrating the most consistent and optimal cell survival rates and Aβ concentration. On the other hand, Starbucks® coffee exhibited the highest cell toxicity rates among the tested coffees.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurological Rehabilitation, The Affiliated Brain Hospital of Guangzhou Medical University, Guanzhou, China
| | - Jessica Cao
- Department of Kinesiology, Wiess School of Natural Sciences, Rice University, Houston, TX, United States
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Phillip Pham
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Umer Khan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Breanna Brown
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|