1
|
Ellis RA, Webber TK, Noble NC, Linnstaedt SD, Hinrichs R, Wiltshire C, Reda MH, Davie W, House SL, Beaudoin FL, An X, Neylan TC, Clifford DPhil GD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Punches BE, Pascual JL, Seamon MJ, Datner EM, Pearson C, Peak DA, Domeier RM, Rathlev NK, O’Neil BJ, Sergot P, Sanchez LD, Bruce SE, Joormann J, Kessler RC, Ressler KJ, Koenen KC, McLean SA, Stevens JS, Jovanovic T, Seligowski AV. Longitudinal Associations Between Peritraumatic Oestradiol and Fear Responding in Women and Men. Stress Health 2025; 41:e3522. [PMID: 40119846 PMCID: PMC11991665 DOI: 10.1002/smi.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 03/24/2025]
Abstract
PTSD is more prevalent in women than men and associated with autonomic dysfunction. Higher oestradiol levels have been associated with decreased PTSD severity, however, the impact of oestradiol on autonomic function is not well characterised. We examined associations among peritraumatic oestradiol levels and autonomic function in the multi-site AURORA study. Participants (n = 283, 69.6% female) were recruited from the emergency department (ED) following trauma exposure. Skin conductance (SC) was measured during trauma recall at the ED. Oestradiol was assayed from blood collected at ED, 2-week and 6-month. Fear conditioning, including fear potentiated startle (FPS), was completed at 2-week and 6-month. In women, ED oestradiol was significantly positively associated with ED SC and FPS at 6-month. In men, significant negative correlations between ED oestradiol and SC were found. Among women in the study, peritraumatic oestradiol was positively associated with fear responding 6-month. Findings suggest that the protective effects of oestradiol on PTSD may depend on other factors, such as time since trauma. Additional research is needed to elucidate how peritraumatic oestradiol and autonomic function may interact to confer risk for PTSD.
Collapse
Affiliation(s)
- Robyn A. Ellis
- McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | - Sarah D. Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Rebecca Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Charis Wiltshire
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, 48201, USA
| | - Mariam H. Reda
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - William Davie
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, 48201, USA
| | - Stacey L. House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francesca L. Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, 02930, USA
- Department of Emergency Medicine, Brown University, Providence, RI, 02930, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Thomas C. Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gari D. Clifford DPhil
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Laura T. Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
- The Many Brains Project, Belmont, MA, 02478, USA
| | - Scott L. Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - John P. Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Alan B. Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Paul I. Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Phyllis L. Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, 32209, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, 32209, USA
| | - Brittany E. Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, 43210, USA
- Ohio State University College of Nursing, Columbus, OH, 43210, USA
| | - Jose L. Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark J. Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth M. Datner
- Department of Emergency Medicine, Jefferson Einstein hospital, Jefferson Health, Philadelphia, PA, 19141, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, 48202, USA
| | - David A. Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert M. Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, 48197, USA
| | - Niels K. Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, 01107, USA
| | - Brian J. O’Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, 48202, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, 77030, USA
| | - Leon D. Sanchez
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven E. Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, 63121, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT, 06510, USA
| | - Ronald C. Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, 02115, USA
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, 02478, USA
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Samuel A. McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27559, USA
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, 48202, USA
| | - Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
2
|
Mota-Rojas D, Whittaker AL, Bienboire-Frosini C, Buenhombre J, Mora-Medina P, Domínguez-Oliva A, Martínez-Burnes J, Hernández-Avalos I, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Lezama-García K, Grandin T. The neurobiological basis of emotions and their connection to facial expressions in non-human mammals: insights in nonverbal communication. Front Vet Sci 2025; 12:1541615. [PMID: 40125317 PMCID: PMC11926555 DOI: 10.3389/fvets.2025.1541615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Recognizing that nonhuman animals are sentient beings has increased interest in studying their emotional state. Similar to humans, research has shown that some nonhuman mammals can modify facial expressions by contraction/relaxation of facial muscles according to their affective state. From a neurophysiological perspective, emotions are processed in several brain structures, mainly from the limbic system, such as the hypothalamus, hypophysis, hippocampus, prefrontal cortex, and amygdala. The converged pathways between the amygdala, the motor cortex, and its projections to the facial nerve control the movement of facial or mimetic muscles. Thus, facial expression is suggested to reflect the internal emotional state and could serve as an essential mode of nonverbal communication in mammals. In humans, the Facial Action Coding System (FACS) is a method that objectively analyzes facial movements using an anatomical base. In veterinary medicine, AnimalFACS is an adaptation of this system to eight animal species, including domestic animals (dogs, cats, and horses) and nonhuman primates (chimpanzees, orangutans, gibbons, macaques, and common marmosets). Considering these coded facial movements, current research aims to associate certain facial expressions with the animals' emotional states and affective contexts. Thus, this review aims to discuss recent findings associated with the neurobiology of emotions and facial expressions in non-human mammals, using AnimalFACS to understand nonverbal communication. Characterizing each facial expression according to different contexts might help identify if the animal is expressing a positive or negative emotional response to the event, which can improve nonverbal human-animal communication.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA, Australia
| | | | - Jhon Buenhombre
- Faculty of Agricultural Sciences, Animal Welfare and Ethology Specialization, Fundación Universitaria Agraria de Colombia – UNIAGRARIA, Bogotá, Colombia
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Julio Martínez-Burnes
- Instituto de Ecología Aplicada, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria, Mexico
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Temple Grandin
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Wang J, Cai J, Wang Z, Yang S, Wang J, Jia Y, Sun H, Ma X. α5-nAChR/NETO2 contributed to chronic stress-promoted lung adenocarcinoma progression. Cancer Cell Int 2025; 25:67. [PMID: 40001189 PMCID: PMC11853797 DOI: 10.1186/s12935-025-03701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND α5-nicotinic acetylcholine receptor (α5-nAChR) participates in chronic stress-promoted lung adenocarcinoma (LUAD) progression. Neuropilin and tolloid-like 2 (NETO2) contributes to fear expression and extinction, which is related to tumorigenesis. CHRNA5 (encoding α5-nAChR) gene profiling revealed a reduction in NETO2 expression following CHRNA5 knockdown. Nevertheless, the connection between α5-nAChR and NETO2 in LUAD progression induced by chronic stress remains unclear. METHODS RNA-Seq and bioinformatics database were used for analyzing the expression as well as correlation of α5-nAChR, together with NETO2 in LUAD. α5-nAChR and NETO2 expression were detected using immunohistochemistry in LUAD tissue microarrays, chronic restraint stress (CRS) and chronic unpredictable stress (CUMS) mice tissues. In lung adenocarcinoma A549 and H1299 cells, the expression of α5-nAChR, NETO2, p-CAMKII, p-STAT3 and vimentin induced by acetylcholine/nicotine was examined by western blot. The interaction of α5-nAChR with NETO2 in lung adenocarcinoma cells was detected by Co-immunoprecipitation assay and modeled using molecular docking. EdU assay and colony formation assay were conducted to evaluate cell proliferation, while wound healing assay as well as transwell assay assessed the migration and invasion of lung adenocarcinoma cells. RESULTS α5-nAChR expression was related to NETO2 expression, low survival rate, staging as well as smoking status in LUAD dataset as well as tissue microarrays. The correlation between α5-nAChR and NETO2 was validated in nude mice xenograft tissues. α5-nAChR as well as NETO2 expression correlated in CRS and CUMS mice tissues. In vitro, acetylcholine/nicotine mediated NETO2, p-CAMKII, p-STAT3 and vimentin expression via α5-nAChR. α5-nAChR interacted with NETO2 as well as CAMKII in LUAD cells. α5-nAChR/NETO2 signaling contributed to LUAD cell proliferation, migration and invasion. CONCLUSIONS The above results uncover a new chronic stress-promoted LUAD signaling pathway: α5-nAChR/NETO2 axis contributes to chronic stress-promoted LUAD cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Jingting Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Jiaying Cai
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Zengping Wang
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Shuran Yang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Jing Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China.
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
4
|
Yu Q, Ruan M, Chen Y, Wang C. Advances in neuroscience research and big data's analysis on anxiety disorder. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2025; 16:e1692. [PMID: 39390772 DOI: 10.1002/wcs.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 10/12/2024]
Abstract
Anxiety disorder is a complex disease with the influence of environmental and genetic factors and multimolecular participation, and it is also one of the most common mental disorders. The causes of disorders are not clear but may include a variety of social, psychological, and biological factors. Therefore, neither genetics, neurobiology, nor neuroimaging can independently explain the pathological mechanism. By searching the Web of Science databases, Derwent Innovation Patent database, ClinicalTrials.gov database, and Cortellis database, we analyze the current situation of papers, patents, clinical trials, and drugs of anxiety disorder. Second, the existing literature was reviewed to summarize the neurophysiological mechanism, brain imaging, gene, anti-anxiety drugs, and other aspects of anxiety disorders. This article reviews the research status of anxiety disorders. The heterogeneity of the disease, lack of treatment effectiveness, and gaps in translational medicine still present barriers to further advancement. Thus, in-depth explorations of the underlying biological mechanisms of anxiety disorders, the detection and intervention of biological targets, and further developments based on existing intervention strategies will drive future research on anxiety disorders. This article is categorized under: Neuroscience > Clinical.
Collapse
Affiliation(s)
- Qianmei Yu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Meihua Ruan
- Shanghai Institute of Nutrition and Health, Shanghai Information Center for Life Sciences, Chinese Academy of Science, Shanghai, China
| | - Yongjun Chen
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Kaczmarczyk M, Deuter CE, Deus H, Kallidou A, Merz CJ, Hellmann-Regen J, Otte C, Wingenfeld K. Effects of separate and combined estradiol and progesterone administration on fear extinction in healthy pre-menopausal women. Transl Psychiatry 2024; 14:449. [PMID: 39448569 PMCID: PMC11502897 DOI: 10.1038/s41398-024-03079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024] Open
Abstract
Altered fear conditioning and extinction learning are discussed as key etiological features in anxiety disorders. Women have an increased risk for anxiety disorders and fear conditioning has been shown to be influenced by the menstrual cycle phase and circulating gonadal hormones. The objective of our study was to investigate the effects of separate and combined estradiol and progesterone administration on fear extinction in healthy women. We conducted a placebo-controlled, randomized study in healthy women, who completed a fear conditioning paradigm on three consecutive days: fear acquisition training on day 1, fear extinction training on day 2, and return of fear test on day 3. Skin conductance responses (SCRs) served as main outcome variable. Two hours before testing on day 2, participants received pills containing either placebo, estradiol (2 mg), progesterone (400 mg) or the combination of both. We examined 116 women (mean age 25.7 ± 6.0 years), who showed significantly stronger conditioned SCRs to the CS+ than CS- during fear acquisition training indicating successful fear learning. At the beginning of the fear extinction training, estradiol administration reduced the differentiation between the conditioned stimuli. In the return of fear test, the estradiol groups showed heightened SCR responses to the previously extinguished stimulus, i.e., impaired extinction recall. Administration of progesterone did not have any significant influence on SCRs. There were also no effects on fear potentiated startle response. In our interpretation, exogenous estradiol administration affected the extinction of the conditioned fear response which led subsequently to a stronger return of fear. From a clinical perspective our findings suggest that estradiol levels may have an influence on the success of exposure therapy and could be taken into consideration when planning exposure sessions.
Collapse
Affiliation(s)
- Michael Kaczmarczyk
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- BIH Biomedical Innovation Academy, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Christian Eric Deuter
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Deus
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Kallidou
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Berlin, Germany
| | - Katja Wingenfeld
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Berlin, Germany
| |
Collapse
|
6
|
Kampa M, Stark R, Klucken T. The impact of extinction timing on pre-extinction arousal and subsequent return of fear. Learn Mem 2024; 31:a053902. [PMID: 38627067 PMCID: PMC11098463 DOI: 10.1101/lm.053902.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Exposure-based therapy is effective in treating anxiety, but a return of fear in the form of relapse is common. Exposure is based on the extinction of Pavlovian fear conditioning. Both animal and human studies point to increased arousal during immediate compared to delayed extinction (>+24 h), which presumably impairs extinction learning and increases the subsequent return of fear. Impaired extinction learning under arousal might interfere with psychotherapeutic interventions. The aim of the present study was to investigate whether arousal before extinction differs between extinction groups and whether arousal before extinction predicts the return of fear in a later (retention) test. As a highlight, both the time between fear acquisition and extinction (immediate vs. delayed) and the time between extinction and test (early vs. late test) were systematically varied. We performed follow-up analyses on data from 103 young, healthy participants to test the above hypotheses. Subjective arousal ratings and physiological arousal measures of sympathetic and hypothalamic pituitary adrenal axis activation (tonic skin conductance and salivary cortisol) were collected. Increased pre-extinction arousal in the immediate extinction group was only confirmed for subjective arousal. In linear regression analyses, none of the arousal measures predicted a significant return of fear in the different experimental groups. Only when we aggregated across the two test groups, tonic skin conductance at the onset of extinction predicted the return of fear in skin conductance responses. The overall results provide little evidence that pre-extinction arousal affects subsequent extinction learning and memory. In terms of clinical relevance, there is no clear evidence that exposure could be improved by reducing subjective or physiological arousal.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, 57072 Siegen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, 35394 Giessen, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, 35394 Giessen, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, 35394 Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, 35032 Marburg, Germany and Justus Liebig University, 35394 Giessen, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, 57072 Siegen, Germany
| |
Collapse
|
7
|
Sep MSC, Geuze E, Joëls M. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. Transl Psychiatry 2023; 13:376. [PMID: 38062029 PMCID: PMC10703817 DOI: 10.1038/s41398-023-02660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Current evidence-based treatments for post-traumatic stress disorder (PTSD) are efficacious in only part of PTSD patients. Therefore, novel neurobiologically informed approaches are urgently needed. Clinical and translational neuroscience point to altered learning and memory processes as key in (models of) PTSD psychopathology. We extended this notion by clarifying at a meta-level (i) the role of information valence, i.e. neutral versus emotional/fearful, and (ii) comparability, as far as applicable, between clinical and preclinical phenotypes. We hypothesized that cross-species, neutral versus emotional/fearful information processing is, respectively, impaired and enhanced in PTSD. This preregistered meta-analysis involved a literature search on PTSD+Learning/Memory+Behavior, performed in PubMed. First, the effect of information valence was estimated with a random-effects meta-regression. The sources of variation were explored with a random forest-based analysis. The analyses included 92 clinical (N = 6732 humans) and 182 preclinical (N = 6834 animals) studies. A general impairment of learning, memory and extinction processes was observed in PTSD patients, regardless of information valence. Impaired neutral learning/memory and fear extinction were also present in animal models of PTSD. Yet, PTSD models enhanced fear/trauma memory in preclinical studies and PTSD impaired emotional memory in patients. Clinical data on fear/trauma memory was limited. Mnemonic phase and valence explained most variation in rodents but not humans. Impaired neutral learning/memory and fear extinction show stable cross-species PTSD phenotypes. These could be targeted for novel PTSD treatments, using information gained from neurobiological animal studies. We argue that apparent cross-species discrepancies in emotional/fearful memory deserve further in-depth study; until then, animal models targeting this phenotype should be applied with utmost care.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam University Medical Center location Vrije Universiteit, Amsterdam, The Netherlands.
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Nostadt A, Merz CJ, Wolf OT, Tegenthoff M, Lissek S. Cortisol decreases activation in extinction related brain areas resulting in an impaired recall of context-dependent extinction memory. Neurobiol Learn Mem 2023; 205:107844. [PMID: 37866754 DOI: 10.1016/j.nlm.2023.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Conditioned responding gradually stops during successful extinction learning. The renewal effect is defined as the recovery of a extinguished conditioned response when the context of extinction is different from acquisition. The stress hormone cortisol is known to have an influence on extinction memory and associative learning. Different effects of cortisol on behaviour and brain activity have been observed with respect to stress timing, duration, and intensity. However, the influence of cortisol prior to the initial encoding of stimulus-outcome associations on extinction learning, renewal and its behavioural and neurobiological correlates is still largely unknown. In our study, 60 human participants received 20 mg cortisol or placebo and then learned, extinguished, and recalled the associations between food stimuli presented in distinct contexts and different outcomes in three subsequent task phases. Learning performance during acquisition and extinction phases was equally good for both treatment groups. In the cortisol group, significantly more participants showed renewal compared to placebo. In the subgroup of participants with renewal, cortisol treated participants showed significantly better extinction learning performance compared to placebo. Participants showing renewal had in general difficulties with recalling extinction memory, but in contrast to placebo, the cortisol group exhibited a context-dependent impairment of extinction memory recall. Imaging analyses revealed that cortisol decreased activation in the hippocampus during acquisition. The cortisol group also showed reduced dorsolateral prefrontal cortex activation when extinction learning took place in a different context, but enhanced activation in inferior frontal gyrus during extinction learning without context change. During recall, cortisol decreased ventromedial prefrontal cortex activation. Taken together, our findings illustrate cortisol as a potent modulator of extinction learning and recall of extinction memory which also promotes renewal.
Collapse
Affiliation(s)
- Alina Nostadt
- BG University Hospital Bergmannsheil, Department of Neurology, Ruhr University Bochum, Germany.
| | - Christian J Merz
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Martin Tegenthoff
- BG University Hospital Bergmannsheil, Department of Neurology, Ruhr University Bochum, Germany
| | - Silke Lissek
- BG University Hospital Bergmannsheil, Department of Neurology, Ruhr University Bochum, Germany
| |
Collapse
|
9
|
Labrenz F, Merz CJ, Icenhour A. Connecting dots in disorders of gut-brain interaction: the interplay of stress and sex hormones in shaping visceral pain. Front Psychiatry 2023; 14:1204136. [PMID: 37275987 PMCID: PMC10235543 DOI: 10.3389/fpsyt.2023.1204136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Visceral pain and stress are tightly intertwined bodily and emotional phenomena, which enable a flexible adaptation to environmental challenges by activating a response repertoire to restore homeostasis along the gut-brain axis. However, visceral pain and stress can persist widely independent of the initial cause, acquiring independent disease values and posing major health burdens as predominant features in disorders of gut-brain interaction (DGBI). Epidemiological data consistently documents an increased prevalence for women to suffer from chronic visceral pain, possibly shaped by sex hormones and modulated by stress and its biological and psychosocial correlates. Yet, mechanisms underlying the complex interactions between altered visceroception, stress and sex remain widely elusive, especially in clinical populations with DGBI. We herein selectively review mechanisms of interactions between stress and sex in the complex pathophysiology of DGBI. A particular emphasis is laid on visceral pain, in which stress constitutes a major risk factor as well as mediator, and sex-related differences are particularly pronounced. Building on the neurobiology of stress and mechanisms of gut-brain interactions, we highlight putative target mechanisms via which visceral pain and stress may converge with sex effects into a triad. Accommodating a global demographic shift, we propose a lifespan perspective in future research, which may enable a more fine-tuned evaluation of this complex interplay exerting distinct challenges during vulnerable developmental phases. This viewpoint may advance our understanding of pathophysiological processes and can ultimately inspire novel tailored prevention strategies and therapeutic approaches in the treatment of chronic visceral pain and DGBI across the lifespan.
Collapse
Affiliation(s)
- Franziska Labrenz
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Christian J. Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Adriane Icenhour
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Raeder F, Merz CJ, Tegenthoff M, Dere E, Wolf OT, Margraf J, Schneider S, Zlomuzica A. Do oral contraceptives modulate the effects of stress induction on one-session exposure efficacy and generalization in women? Psychopharmacology (Berl) 2023; 240:1075-1089. [PMID: 36894736 PMCID: PMC10102109 DOI: 10.1007/s00213-023-06345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
RATIONALE The administration of glucocorticoids (GC) as an adjunct to exposure represents a promising strategy to improve one-session exposure outcome in anxiety disorders. It remains to be determined whether similar effects can be induced with the use of acute stress. Furthermore, the possible modulation of exposure effects by hormonal factors (e.g., use of oral contraceptives (OCs)) was not explored so far. OBJECTIVES We investigated whether acute stress prior to one-session exposure for spider fear affects its efficacy in women using oral contraceptives (OC) relative to free-cycling (FC) women. In addition, effects of stress on generalization of exposure therapy effects towards untreated stimuli were examined. METHODS Women with fears of spiders and cockroaches were randomly assigned to a Stress (n = 24) or No-Stress (n = 24) condition prior to one-session exposure. Of these 48 participants, 19 women used OC (n = 9 in the Stress, and n = 10 in the No-Stress group). All FC women had a regular menstrual cycle and were tested only in the follicular phase of their menstrual cycle. Pre-exposure stress induction was realized with the socially evaluated cold-pressor test. Exposure-induced changes towards treated and untreated fear stimuli were tested with behavioral approach tests for spiders and cockroaches and subjective fear and self-report measures. RESULTS Acute stress did not influence exposure-induced reduction in fear and avoidance of the treated stimuli (spiders). Similarly, stress had no effect on the generalization of exposure-therapy effects towards untreated stimuli (cockroaches). Exposure-induced reduction in subjective fear and self-report measures for treated stimuli was less evident in women using OC specifically after pre-exposure stress. Women using OC had higher levels of subjective fear and scored higher in self-report measures at post-treatment (24 h after exposure) and follow-up (4 weeks after exposure). CONCLUSIONS OC intake may represent an important confounding factor in augmentation studies using stress or GC.
Collapse
Affiliation(s)
- Friederike Raeder
- Faculty of Psychology, Mental Health Research and Treatment, Center, Ruhr University Bochum, Massenbergstr. 9-13, 44787, Bochum, Germany
| | - Christian J Merz
- Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Ruhr University Bochum, Department of Neurology, BG-Kliniken Bergmannsheil, Bochum, Germany
| | - Ekrem Dere
- Faculty of Psychology, Mental Health Research and Treatment, Center, Ruhr University Bochum, Massenbergstr. 9-13, 44787, Bochum, Germany.,Institut de Biologie Paris-Seine, UFR Des Sciences de La Vie, Sorbonne Université, Paris, France
| | - Oliver T Wolf
- Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr University Bochum, Bochum, Germany
| | - Jürgen Margraf
- Faculty of Psychology, Mental Health Research and Treatment, Center, Ruhr University Bochum, Massenbergstr. 9-13, 44787, Bochum, Germany
| | - Silvia Schneider
- Faculty of Psychology, Mental Health Research and Treatment, Center, Ruhr University Bochum, Massenbergstr. 9-13, 44787, Bochum, Germany
| | - Armin Zlomuzica
- Faculty of Psychology, Mental Health Research and Treatment, Center, Ruhr University Bochum, Massenbergstr. 9-13, 44787, Bochum, Germany.
| |
Collapse
|
11
|
Iwabuchi SJ, Drabek MM, Cottam WJ, Tadjibaev A, Mohammadi-Nejad AR, Sotiropoulos S, Fernandes GS, Valdes AM, Zhang W, Doherty M, Walsh DA, Auer DP. Medio-dorsal thalamic dysconnectivity in chronic knee pain: A possible mechanism for negative affect and pain comorbidity. Eur J Neurosci 2023; 57:373-387. [PMID: 36453757 PMCID: PMC10108119 DOI: 10.1111/ejn.15880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022]
Abstract
The reciprocal interaction between pain and negative affect is acknowledged but pain-related alterations in brain circuits involved in this interaction, such as the mediodorsal thalamus (MDThal), still require a better understanding. We sought to investigate the relationship between MDThal circuitry, negative affect and pain severity in chronic musculoskeletal pain. For these analyses, participants with chronic knee pain (CKP, n = 74) and without (n = 36) completed magnetic resonance imaging scans and questionnaires. Seed-based MDThal functional connectivity (FC) was compared between groups. Within CKP group, we assessed the interdependence of MDThal FC with negative affect. Finally, post hoc moderation analysis explored whether burden of pain influences affect-related MDThal FC. The CKP group showed altered MDThal FC to hippocampus, ventromedial prefrontal cortex and subgenual anterior cingulate. Furthermore, in CKP group, MDThal connectivity correlated significantly with negative affect in several brain regions, most notably the medial prefrontal cortex, and this association was stronger with increasing pain burden and absent in pain-free controls. In conclusion, we demonstrate mediodorsal thalamo-cortical dysconnectivity in chronic pain with areas linked to mood disorders and associations of MDThal FC with negative affect. Moreover, burden of pain seems to enhance affect sensitivity of MDThal FC. These findings suggest mediodorsal thalamic network changes as possible drivers of the detrimental interplay between chronic pain and negative affect.
Collapse
Affiliation(s)
- Sarina J Iwabuchi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marianne M Drabek
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - William J Cottam
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Arman Tadjibaev
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ali-Reza Mohammadi-Nejad
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Stamatios Sotiropoulos
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Gwen S Fernandes
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, UK
- Centre for Sports, Exercise and Osteoarthritis Research Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Ana M Valdes
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Weiya Zhang
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Michael Doherty
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - David A Walsh
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Dorothee P Auer
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Effects of phase synchronization and frequency specificity in the encoding of conditioned fear-a web-based fear conditioning study. PLoS One 2023; 18:e0281644. [PMID: 36867619 PMCID: PMC9983861 DOI: 10.1371/journal.pone.0281644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Oscillatory synchronization in the theta-frequency band was found to play a causal role in binding information of different modalities in declarative memory. Moreover, there is first evidence from a laboratory study that theta-synchronized (vs. asynchronized) multimodal input in a classical fear conditioning paradigm resulted in better discrimination of a threat-associated stimulus when compared to perceptually similar stimuli never associated with the aversive unconditioned stimulus (US). Effects manifested in affective ratings and ratings of contingency knowledge. However, theta-specificity was not addressed so far. Thus, in the present pre-registered web-based fear conditioning study, we compared synchronized (vs. asynchronized) input in a theta-frequency band vs. the same synchronization manipulation in a delta frequency. Based on our previous laboratory design, five visual gratings of different orientations (25°, 35°, 45°, 55°, 65°) served as conditioned stimuli (CS) with only one (CS+) paired with the auditory aversive US. Both CS and US were luminance or amplitude modulated, respectively, in a theta (4 Hz) or delta (1.7 Hz) frequency. In both frequencies, CS-US pairings were presented either in-phase (0° phase lag) or out-of-phase (90°, 180°, 270°), resulting in four independent groups (each group N = 40). Phase synchronization augmented the discrimination of CSs in CS-US contingency knowledge but did not affect valence and arousal ratings. Interestingly, this effect occurred independent of frequency. In sum, the current study proves the ability to successfully conduct complex generalization fear conditioning in an online setting. Based on this prerequisite, our data supports a causal role of phase synchronization in the declarative CS-US associations for low frequencies rather than in the specific theta-frequency band.
Collapse
|
13
|
|
14
|
Merz CJ, Wolf OT. How stress hormones shape memories of fear and anxiety in humans. Neurosci Biobehav Rev 2022; 142:104901. [DOI: 10.1016/j.neubiorev.2022.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022]
|
15
|
Role of noradrenergic arousal for fear extinction processes in rodents and humans. Neurobiol Learn Mem 2022; 194:107660. [PMID: 35870717 DOI: 10.1016/j.nlm.2022.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 01/22/2023]
Abstract
Fear extinction is a learning mechanism that is pivotal for the inhibition of fear responses towards cues or contexts that no longer predict the occurrence of a threat. Failure of fear extinction leads to fear expression under safe conditions and is regarded to be a cardinal characteristic of many anxiety-related disorders and posttraumatic stress disorder. Importantly, the neurotransmitter noradrenaline was shown to be a potent modulator of fear extinction. Rodent studies demonstrated that excessive noradrenaline transmission after acute stress opens a time window of vulnerability, in which fear extinction learning results in attenuated long-term extinction success. In contrast, when excessive noradrenergic transmission subsides, well-coordinated noradrenaline transmission is necessary for the formation of a long-lasting extinction memory. In addition, emerging evidence suggests that the neuropeptide corticotropin releasing hormone (CRF), which strongly regulates noradrenaline transmission under conditions of acute stress, also impedes long-term extinction success. Recent rodent work - using sophisticated methods - provides evidence for a hypothetical mechanistic framework of how noradrenaline and CRF dynamically orchestrate the neural fear and extinction circuitry to attenuate or to improve fear extinction and extinction recall. Accordingly, we review the evidence from rodent studies linking noradrenaline and CRF to fear extinction learning and recall and derive the hypothetical mechanistic framework of how different levels of noradrenaline and CRF may create a time window of vulnerability which impedes successful long-term fear extinction. We also address evidence from human studies linking noradrenaline and fear extinction success. Moreover, we accumulate emerging approaches to non-invasively measure and manipulate the noradrenergic system in healthy humans. Finally, we emphasize the importance of future studies to account for sex (hormone) differences when examining the interaction between fear extinction, noradrenaline, and CRF. To conclude, NA's effects on fear extinction recall strongly depend on the arousal levels at the onset of fear extinction learning. Our review aimed at compiling the available (mainly rodent) data in a neurobiological framework, suited to derive testable hypotheses for future work in humans.
Collapse
|
16
|
Vizeli P, Straumann I, Duthaler U, Varghese N, Eckert A, Paulus MP, Risbrough V, Liechti ME. Effects of 3,4-Methylenedioxymethamphetamine on Conditioned Fear Extinction and Retention in a Crossover Study in Healthy Subjects. Front Pharmacol 2022; 13:906639. [PMID: 35910354 PMCID: PMC9326355 DOI: 10.3389/fphar.2022.906639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: 3,4-Methylenedioxymethamphetamine (MDMA) has shown initial promise as an adjunct in psychotherapy to treat posttraumatic stress disorder (PTSD). Its efficacy and safety have been demonstrated across phase I-III studies. However, the mechanism underlying the potential utility of MDMA to treat PTSD in humans has not yet been thoroughly investigated. Preliminary evidence suggests that MDMA may facilitate fear extinction recall, which may be through the release of oxytocin. To test this hypothesis, we examined the efficacy of acute MDMA treatment to enhance fear extinction learning and recall. Methods: We used a two-period, double-blind, randomized, placebo-controlled crossover design in 30 healthy male subjects who received a placebo and a single dose of MDMA (125 mg). Fear extinction was tested using two separate Pavlovian fear conditioning paradigms, one using skin conductance response (SCR), and the other fear-potentiated startle (FPS) to conditioned cues. MDMA treatment occurred after fear conditioning and 2 h before extinction learning. Extinction recall was tested 23 h after MDMA intake. Additional outcome measures included subjective effects, emotion recognition tasks, plasma levels of oxytocin, and pharmacokinetics. Results: Fear conditioning and extinction learning were successful in both fear extinction paradigms (generalized eta-squared [ges] for SCR: 0.08; FPS: 0.07). Compared to placebo treatment, MDMA treatment significantly reduced SCRs to the reinforced conditioned stimulus (CS+) during extinction learning (ges = 0.03) and recall (ges = 0.06). Intensity of the subjective effects of MDMA (good effect, trust, and openness) during extinction learning negatively correlated with the discrimination between CS+ and the safety stimulus (CS-) during recall. MDMA did not influence FPS to conditioned cues. Oxytocin concentration was increased fourfold on average by MDMA during acute effects but was not associated with fear extinction outcomes. Conclusions: MDMA treatment facilitated rapid fear extinction and retention of extinction as measured by SCR to fear cues, in line with animal studies of MDMA facilitation of extinction. However, this effect may be limited to certain forms of learned fear responses, as it was not observed in the extinction model using startle reactivity as the outcome. This study provides further evidence for the facilitation of extinction with MDMA treatment and suggests this may be a component of its efficacy when paired with psychotherapy. Clinical Trial registration: clinicaltrials.gov identifier: NCT03527316.
Collapse
Affiliation(s)
- Patrick Vizeli
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | | | - Victoria Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Center of Excellence for Stress and Mental Health, San Diego, CA, United States
| | - Matthias E. Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Ramos-Cejudo J, Genfi A, Abu-Amara D, Debure L, Qian M, Laska E, Siegel C, Milton N, Newman J, Blessing E, Li M, Etkin A, Marmar CR, Fossati S. CRF serum levels differentiate PTSD from healthy controls and TBI in military veterans. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2022; 3:153-162. [PMID: 35211666 PMCID: PMC8764614 DOI: 10.1176/appi.prcp.20210017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background and Objective Posttraumatic stress disorder (PTSD) is a serious and frequently debilitating psychiatric condition that can occur in people who have experienced traumatic stressors, such as war, violence, sexual assault and other life‐threatening events. Treatment of PTSD and traumatic brain injury (TBI) in veterans is challenged by diagnostic complexity, partially due to PTSD and TBI symptoms overlap and to the fact that subjective self‐report assessments may be influenced by a patient's willingness to share their traumatic experiences and resulting symptoms. Corticotropin‐releasing factor (CRF) is one of the main mediators of hypothalamic pituitary adrenal (HPA)‐axis responses in stress and anxiety. Methods and Results We analyzed serum CRF levels in 230 participants including heathy controls (64), and individuals with PTSD (53), TBI (70) or PTSD + TBI (43) by enzyme immunoassay (EIA). Significantly lower CRF levels were found in both the PTSD and PTSD + TBI groups compared to healthy control (PTSD vs. Controls: P = 0.0014, PTSD + TBI vs. Controls: P = 0.0011) and chronic TBI participants (PTSD vs. TBI: P < 0.0001, PTSD + TBI vs. TBI: P < 0.0001), suggesting a PTSD‐related mechanism independent from TBI and associated with CRF reduction. CRF levels negatively correlated with PTSD severity on the Clinically Administered PTSD Scale (CAPS‐5) scale in the whole study group. Conclusions Hyperactivation of the HPA axis has been classically identified in acute stress. However, the recognized enhanced feedback inhibition of the HPA axis in chronic stress supports our findings of lower CRF in PTSD patients. This study suggests that reduced serum CRF in PTSD should be further investigated. Future validation studies will establish if CRF is a possible blood biomarker for PTSD and/or for differentiating PTSD and chronic TBI symptomatology. The HPA axis is activated under acute stress conditions, but an enhanced feedback inhibition may be prevalent in chronic stress conditions such as PTSD. We observed a reduction in serum CRF levels in veterans with PTSD and PTSD + TBI, but not in veterans with chronic TBI alone. A serum CRF reduction may be indicative of CNS mechanisms specific to PTSD and should be further evaluated as a possible peripheral biomarker.
Collapse
Affiliation(s)
- Jaime Ramos-Cejudo
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Afia Genfi
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Duna Abu-Amara
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Ludovic Debure
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,New York University, School of Medicine, Department of Neurology, New York, NY, USA
| | - Meng Qian
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Eugene Laska
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Carole Siegel
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Nicholas Milton
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Jennifer Newman
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Esther Blessing
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Meng Li
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Amit Etkin
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA USA.,Stanford University, Stanford Neurosciences Institute, Stanford, CA, USA.,VA Palo Alto Health Care System, Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Charles R Marmar
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Silvia Fossati
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,New York University, School of Medicine, Department of Neurology, New York, NY, USA.,Current Affiliation: Alzheimer's center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Cortisol before extinction generalization alters its neural correlates during retrieval. Psychoneuroendocrinology 2022; 136:105607. [PMID: 34864329 DOI: 10.1016/j.psyneuen.2021.105607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
While generalization of fear seems to be naturally acquired as frequently observed in fear-related disorders, extinction learning appears to be stimulus-specific. Thus, treatments aiming to generalize extinction learning comprise the chance to overcome stimulus-specificity and consequently reduce relapse. One suggested candidate is the timing-dependent administration of the stress hormone cortisol. In the present pre-registered, three-day fear conditioning study, we aimed to create a generalized extinction memory trace in 60 healthy men and women using multiple sizes of one conditioned stimulus (CS+G; generalized) during extinction training, whereas the other CS (CS+N; non-generalized) and the CS- were solely presented in their original sizes. Extinction training took place either after pharmacological administration of 20 mg cortisol or placebo. Following successful fear acquisition on day one, generalization effects during extinction training and retrieval were investigated in the comparison of CS+G and CS+N. Insula and dorsal anterior cingulate cortex (dACC) activation for CS+G as compared to CS+N extending to the second half of extinction training indicated prolonged fear processing during extinction training for the CS+G on day two. During retrieval on day three, an activation of the anterior hippocampus occurred for CS+N minus CS+G in the cortisol but not in the placebo group. Additionally, a more posterior hippocampal activation (compared to the other hippocampal activation) was observed for the contrast CS+G minus CS+N. In accordance with our hypotheses, amygdala and dACC responding during reinstatement test was reduced for the CS+G as compared to CS+N. However, cortisol did not modulate amygdala responding, but abolished the CS+G/CS+N differentiation in the dACC relative to placebo. Generalization and cortisol effects were not mirrored in skin conductance responses. In conclusion, extinction generalization processes appear to rely on prolonged fear processing still present in the second half of extinction training that in turn leads to reduced fear-related processing after reinstatement. Cortisol administration prior to extinction training, however, selectively reduced fear-related activation for standard extinction but did not further reduce fear-related activation for extinction generalization.
Collapse
|
19
|
Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev 2021; 131:1037-1055. [PMID: 34673111 PMCID: PMC8642312 DOI: 10.1016/j.neubiorev.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason J Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
20
|
Baldi E, Costa A, Rani B, Passani MB, Blandina P, Romano A, Provensi G. Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? Int J Mol Sci 2021; 22:10000. [PMID: 34576161 PMCID: PMC8467761 DOI: 10.3390/ijms221810000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Alessia Costa
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Barbara Rani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Maria Beatrice Passani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Patrizio Blandina
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology ‘V. Erspamer’, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gustavo Provensi
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| |
Collapse
|
21
|
Bierwirth P, Sperl MFJ, Antov MI, Stockhorst U. Prefrontal Theta Oscillations Are Modulated by Estradiol Status During Fear Recall and Extinction Recall. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1071-1080. [PMID: 33711549 DOI: 10.1016/j.bpsc.2021.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Emerging human studies demonstrate that theta oscillations in the dorsal anterior cingulate cortex are enhanced during fear recall (enhanced fear expression) and reduced during successful extinction recall (reduced fear expression). Although evidence suggests sex differences in fear recall and extinction recall, there are currently no human studies examining the oscillatory foundations of these memory processes separately in men and women. METHODS Because previous studies suggest that estradiol partially mediates these sex differences, we examined 20 men (low estradiol and low progesterone), 20 women using oral contraceptives (low estradiol and low progesterone), and 20 free-cycling women during midcycle (high estradiol and low progesterone). We used a fear-conditioning procedure, allowing us to separately assess fear recall and extinction recall 24 hours after fear and extinction learning. Skin conductance responses and electroencephalography were recorded during fear recall and extinction recall, and prefrontal oscillations were source localized. RESULTS We found elevated fear expression during fear recall and impaired extinction recall, as indicated by increased peripheral arousal (skin conductance responses) and fronto-central theta oscillations, source localized in the dorsal anterior cingulate cortex and dorsomedial prefrontal cortex. Importantly, peripheral arousal and dorsal anterior cingulate cortex theta oscillations were stronger in men and women on oral contraceptives than in women from the midcycle group. CONCLUSIONS Our data show that neural oscillatory and peripheral correlates of heightened fear expression during fear recall and (impaired) extinction recall do not simply differ between sexes but depend on hormonal fluctuations within women.
Collapse
Affiliation(s)
- Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany.
| | - Matthias F J Sperl
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany; Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
22
|
Matheson K, Asokumar A, Anisman H. Resilience: Safety in the Aftermath of Traumatic Stressor Experiences. Front Behav Neurosci 2020; 14:596919. [PMID: 33408619 PMCID: PMC7779406 DOI: 10.3389/fnbeh.2020.596919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The relationship between adverse experiences and the emergence of pathology has often focused on characteristics of the stressor or of the individual (stressor appraisals, coping strategies). These features are thought to influence multiple biological processes that favor the development of mental and physical illnesses. Less often has attention focused on the aftermath of traumatic experiences, and the importance of safety and reassurance that is necessary for longer-term well-being. In some cases (e.g., post-traumatic stress disorder) this may be reflected by a failure of fear extinction, whereas in other instances (e.g., historical trauma), the uncertainty about the future might foster continued anxiety. In essence, the question becomes one of how individuals attain feelings of safety when it is fully understood that the world is not necessarily a safe place, uncertainties abound, and feelings of agency are often illusory. We consider how individuals acquire resilience in the aftermath of traumatic and chronic stressors. In this respect, we review characteristics of stressors that may trigger particular biological and behavioral coping responses, as well as factors that undermine their efficacy. To this end, we explore stressor dynamics and social processes that foster resilience in response to specific traumatic, chronic, and uncontrollable stressor contexts (intimate partner abuse; refugee migration; collective historical trauma). We point to resilience factors that may comprise neurobiological changes, such as those related to various stressor-provoked hormones, neurotrophins, inflammatory immune, microbial, and epigenetic processes. These behavioral and biological stress responses may influence, and be influenced by, feelings of safety that come about through relationships with others, spiritual and place-based connections.
Collapse
Affiliation(s)
- Kimberly Matheson
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Ajani Asokumar
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
23
|
Antov MI, Plog E, Bierwirth P, Keil A, Stockhorst U. Visuocortical tuning to a threat-related feature persists after extinction and consolidation of conditioned fear. Sci Rep 2020; 10:3926. [PMID: 32127551 PMCID: PMC7054355 DOI: 10.1038/s41598-020-60597-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons in the visual cortex sharpen their orientation tuning as humans learn aversive contingencies. A stimulus orientation (CS+) that reliably predicts an aversive noise (unconditioned stimulus: US) is selectively enhanced in lower-tier visual cortex, while similar unpaired orientations (CS-) are inhibited. Here, we examine in male volunteers how sharpened visual processing is affected by fear extinction learning (where no US is presented), and how fear and extinction memory undergo consolidation one day after the original learning episode. Using steady-state visually evoked potentials from electroencephalography in a fear generalization task, we found that extinction learning prompted rapid changes in orientation tuning: Both conditioned visuocortical and skin conductance responses to the CS+ were strongly reduced. Next-day re-testing (delayed recall) revealed a brief but precise return-of-tuning to the CS+ in visual cortex accompanied by a brief, more generalized return-of-fear in skin conductance. Explorative analyses also showed persistent tuning to the threat cue in higher visual areas, 24 h after successful extinction, outlasting peripheral responding. Together, experience-based changes in the sensitivity of visual neurons show response patterns consistent with memory consolidation and spontaneous recovery, the hallmarks of long-term neural plasticity.
Collapse
Affiliation(s)
- Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany.
| | - Elena Plog
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| | - Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| | - Andreas Keil
- Department of Psychology and Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, 32611, USA
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| |
Collapse
|
24
|
Chen FL, Li J, Wang B, Tian SW, Long C. Apelin-13 enhances contextual fear extinction in rats. Neurosci Lett 2019; 712:134487. [PMID: 31513835 DOI: 10.1016/j.neulet.2019.134487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Fear extinction is considered as a new learning process that is valid to model features of post-traumatic stress disorder (PTSD). The neuropeptide apelin, such as apelin-13, apelin-17 and apelin-36, are endogenous ligands of the G-protein coupled receptor APJ. Apelin and its receptor APJ are widely distributed in the central nervous system. Accumulating evidence suggests the critical role of apelin-13 in modulation of learning and memory, however, its specific role in fear extinction remains unclear. In the present study, we investigated the effect of apelin-13 administration on contextual fear extinction in rats. The behavioral procedure included four sessions: habitation, conditioning, extinction training and extinction recall. Rats received intracerebroventricular infusion of apelin-13 (3 or 6 μg) 0.5 h prior to the extinction training. Percentage of freezing was utilized to assess the conditioned fear response. Results showed that apelin-13, with the dose of 6 but not 3 μg, significantly decreased freezing response during both extinction training and extinction recall test sessions. Furthermore, apelin-13 did not affect the levels of baseline freezing, locomotor activity and anxiety. The results suggest that apelin-13 dose-dependently enhances contextual fear extinction, and may function as a novel target for treatment of PTSD.
Collapse
Affiliation(s)
- Fang-Ling Chen
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jie Li
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Shao-Wen Tian
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, 541000, China.
| | - Chen Long
- Department of Minimally Invasive Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
25
|
Sep MSC, Gorter R, van Ast VA, Joëls M, Geuze E. No Time-Dependent Effects of Psychosocial Stress on Fear Contextualization and Generalization: A Randomized-Controlled Study With Healthy Participants. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019896547. [PMID: 32440603 PMCID: PMC7219903 DOI: 10.1177/2470547019896547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 01/10/2023]
Abstract
The formation of context-dependent fear memories (fear contextualization) can aid the recognition of danger in new, similar, situations. Overgeneralization of fear is often seen as hallmark of anxiety and trauma-related disorders. In this randomized-controlled study, we investigated whether exposure to a psychosocial stressor influences retention of fear contextualization and generalization in a time-dependent manner. The Trier Social Stress Test was used to induce psychosocial stress. Healthy male participants (n = 117) were randomly divided into three experimental groups that were subjected to the acquisition phase of the Fear Generalization Task: (1) without stress, (2) immediately after acute stress, or (3) 2 h after acute stress. In this task, a male with neutral facial expression (conditioned stimuli) was depicted in two different contexts that modulated the conditioned stimuli-unconditioned stimuli (=shock) association (threat, safe). Salivary alpha-amylase and cortisol levels were measured throughout the experiment. After a 24-h delay, context-dependency of fear memory was investigated with an unannounced memory test consisting of the threat and safe contexts alternated with a novel context (the generalization context). Multilevel analyses revealed that participants showed increased fear-potentiated startle responses to the conditioned stimuli in the threat compared to the safe context, at the end of the acquisition phase, indicating adequate fear contextualization. Directly after acquisition, there were no time-dependent effects of psychosocial stress on fear contextualization. Context-dependency of fear memories was retained 24 h later, as fear-potentiated startle responding was modulated by context (threat > safe or novel). At that time, the context-dependency of fear memories was also not influenced by the early or late effects of the endogenous stress response during acquisition. These results with experimental stress deviate in some aspects from those earlier obtained with exogenous hydrocortisone administration, suggesting a distinct role for stress mediators other than cortisol.
Collapse
Affiliation(s)
- Milou S. C. Sep
- Brain Research and Innovation
Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Translational
Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the
Netherlands
| | - Rosalie Gorter
- Brain Research and Innovation
Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Vanessa A. van Ast
- Department of Clinical Psychology,
University
of Amsterdam, Amsterdam, the
Netherlands
| | - Marian Joëls
- Department of Translational
Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the
Netherlands
- University of Groningen, University
Medical Center Groningen, Groningen, the Netherlands
| | - Elbert Geuze
- Brain Research and Innovation
Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC
Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
26
|
Chronic corticosterone increases ΔFOSB and CRFR1 immunoreactivity in brain regions that modulate aversive conditioning. Behav Brain Res 2019; 356:107-119. [DOI: 10.1016/j.bbr.2018.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023]
|
27
|
Concomitant THC and stress adolescent exposure induces impaired fear extinction and related neurobiological changes in adulthood. Neuropharmacology 2019; 144:345-357. [DOI: 10.1016/j.neuropharm.2018.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/17/2018] [Accepted: 11/10/2018] [Indexed: 01/21/2023]
|
28
|
Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a robust clinical endophenotype for these disorders and, as such, has particular significance in the current "age of RDoC (research domain criteria)." Various rodent models of impaired extinction have thus been generated with the objective of approximating this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of extinction memory and thus protection against various forms of fear relapse; modeled in the laboratory by measuring spontaneous recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1) experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective therapeutic treatments for anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
29
|
Meir Drexler S, Merz CJ, Jentsch VL, Wolf OT. How stress and glucocorticoids timing-dependently affect extinction and relapse. Neurosci Biobehav Rev 2018; 98:145-153. [PMID: 30594494 DOI: 10.1016/j.neubiorev.2018.12.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
Abstract
In recent years, various research groups aimed to augment extinction learning (the most important underlying mechanism of exposure therapy) using glucocorticoids (GCs), in particular the stress hormone cortisol. In this review, we introduce the STaR (Stress Timing affects Relapse) model, a theoretical model of the timing-dependent effects of stress/GCs treatment on extinction and relapse. In particular, we show that (1) pre-extinction stress/GCs promote memory consolidation in a context-independent manner, making extinction memory more resistant to relapse following context change. (2) Post-extinction stress also enhances extinction consolidation, but in a context-bound manner. These differences may result from the timing-dependent effects of cortisol on emotional memory contextualization. At the neural level, extinction facilitation is reflected in alterations in the amygdala-hippocampal-prefrontal cortex network. (3) Stress/GCs before a retrieval test impair extinction retrieval and promote relapse. This may result from strengthening amygdala signaling or disruption of the inhibitory functioning of the prefrontal cortex. The STaR model can contribute to the understanding and prevention of relapse processes.
Collapse
Affiliation(s)
- Shira Meir Drexler
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Valerie L Jentsch
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
30
|
Lux V. Epigenetic Programming Effects of Early Life Stress: A Dual-Activation Hypothesis. Curr Genomics 2018; 19:638-652. [PMID: 30532644 PMCID: PMC6225448 DOI: 10.2174/1389202919666180307151358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/04/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic processes during early brain development can function as 'developmental switches' that contribute to the stability of long-term effects of early environmental influences by programming central feedback mechanisms of the HPA axis and other neural networks. In this thematic review, we summarize accumulated evidence for a dual-activation of stress-related and sensory networks underlying the epigenetic programming effects of early life stress. We discuss findings indicating epigenetic programming of stress-related genes with impact on HPA axis function, the interaction of epigenetic mechanisms with neural activity in stress-related neural networks, epigenetic effects of glucocorticoid exposure, and the impact of stress on sensory development. Based on these findings, we propose that the combined activation of stress-related neural networks and stressor-specific sensory networks leads to both neural and hormonal priming of the epigenetic machinery, which sensitizes these networks for developmental programming effects. This allows stressor-specific adaptations later in life, but may also lead to functional mal-adaptations, depending on timing and intensity of the stressor. Finally, we discuss methodological and clinical implications of the dual-activation hypothesis. We emphasize that, in addition to modifications in stress-related networks, we need to account for functional modifications in sensory networks and their epigenetic underpinnings to elucidate the long-term effects of early life stress.
Collapse
Affiliation(s)
- Vanessa Lux
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Luchkina NV, Bolshakov VY. Diminishing fear: Optogenetic approach toward understanding neural circuits of fear control. Pharmacol Biochem Behav 2018; 174:64-79. [PMID: 28502746 PMCID: PMC5681900 DOI: 10.1016/j.pbb.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/13/2017] [Accepted: 05/10/2017] [Indexed: 02/05/2023]
Abstract
Understanding complex behavioral processes, both learned and innate, requires detailed characterization of the principles governing signal flow in corresponding neural circuits. Previous studies were hampered by the lack of appropriate tools needed to address the complexities of behavior-driving micro- and macrocircuits. The development and implementation of optogenetic methodologies revolutionized the field of behavioral neuroscience, allowing precise spatiotemporal control of specific, genetically defined neuronal populations and their functional connectivity both in vivo and ex vivo, thus providing unprecedented insights into the cellular and network-level mechanisms contributing to behavior. Here, we review recent pioneering advances in behavioral studies with optogenetic tools, focusing on mechanisms of fear-related behavioral processes with an emphasis on approaches which could be used to suppress fear when it is pathologically expressed. We also discuss limitations of these methodologies as well as review new technological developments which could be used in future mechanistic studies of fear behavior.
Collapse
Affiliation(s)
- Natalia V Luchkina
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| |
Collapse
|
32
|
Drexler SM, Merz CJ, Wolf OT. Preextinction Stress Prevents Context-Related Renewal of Fear. Behav Ther 2018; 49:1008-1019. [PMID: 30316481 DOI: 10.1016/j.beth.2018.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/21/2018] [Accepted: 03/03/2018] [Indexed: 11/24/2022]
Abstract
Extinction learning, which creates new safety associations, is thought to be the mechanism underlying exposure therapy, commonly used for the treatment of anxiety disorders and posttraumatic stress disorder. The relative strength and availability for retrieval of both the fear and safety memories determine the response in a given situation. While the fear memory is often context-independent and may easily generalize, extinction memory is highly context-specific. "Renewal" of the extinguished fear memory might thus occur following a shift in context. The aim of the current work was to create an enhanced and generalized extinction memory to a discrete stimulus using stress exposure before extinction learning, thereby preventing renewal. In our contextual fear conditioning paradigm, 40 healthy men acquired (Day 1), retrieved and extinguished (Day 2) the fear memories, with no differences between the stress and the control group. A significant difference between the groups emerged in the renewal test (Day 3). A renewal effect was seen in the control group (N = 20), confirming the context-dependency of the extinction memory. In contrast, the stress group (N = 20) showed no renewal effect. Fear reduction was generalized to the acquisition context as well, suggesting that stress rendered the extinction memory more context-independent. These results are in line with previous studies that showed contextualization disruption as a result of pre-learning stress, mediated by the rapid effects of glucocorticoids on the hippocampus. Our findings support research investigating the use of glucocorticoids or stress induction in exposure therapy and suggest the right timing of administration in order to optimize their effects.
Collapse
Affiliation(s)
| | | | - Oliver T Wolf
- Institute of Cognitive Neuroscience, Ruhr-University Bochum.
| |
Collapse
|
33
|
Merz CJ, Kinner VL, Wolf OT. Let's talk about sex … differences in human fear conditioning. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Stylianakis AA, Harmon-Jones SK, Richardson R, Baker KD. Differences in the persistence of spatial memory deficits induced by a chronic stressor in adolescents compared to juveniles. Dev Psychobiol 2018; 60:805-813. [PMID: 29943435 DOI: 10.1002/dev.21750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Abstract
Adolescence is thought of as a stress-sensitive developmental period. While many studies have compared adolescent responses to stress relative to that of adults, a growing body of work has examined stress responses in juveniles. Here we investigated if a chronic stressor has a differential effect on spatial memory in rats depending on whether it occurs during adolescence or the juvenile period. Male rats were exposed to the stress hormone corticosterone (Cort) in their drinking water, a vehicle control (2.5% ethanol), or water, for 7 days before being tested on a novel Object/Place task 6 days or 6 weeks later. Exposure to Cort or ethanol at either age impaired spatial memory at the 6-day test. The ethanol induced impairment was attenuated 6 weeks later. However, rats given Cort during adolescence, but not the juvenile period, were still impaired. Together, these results suggest that adolescence is indeed a stress-sensitive period.
Collapse
Affiliation(s)
| | | | - Rick Richardson
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kathryn D Baker
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Abstract
Relapses represent a major limitation to the long-term remission of pathological fear and anxiety. Stress modulates the acquisition and expression of fear memories and appears to promote fear recovery in patients with anxiety disorders. However, the neural correlates underlying stress hormone effects on the return of fear in humans remain unexplored. Likewise, little is known about the interactions between sex and stress hormones on return of fear phenomena. In this functional magnetic resonance imaging study, 32 men and 32 women were exposed to a fear renewal paradigm with fear acquisition in context A and extinction in context B. On the following day, participants received either cortisol or placebo 40 min before return of fear was tested in both contexts in a renewal and reinstatement test. Cortisol increased differential conditioned skin conductance responses in the extinction context B following reinstatement in men but not in women. On the neural level, this effect was characterized by enhanced fear-related activation in the right amygdala in men, while an activation decrement in this region was observed after cortisol treatment in women. Our results revealed that cortisol promotes the return of fear in men by strengthening a key node of the fear network - the amygdala. We thereby provide novel insights into a sex-specific mechanism mediating stress-induced fear recovery which may translate into different relapse risks and treatment strategies for men and women.
Collapse
Affiliation(s)
- Valerie L Kinner
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
36
|
Wellman LL, Fitzpatrick ME, Sutton AM, Williams BL, Machida M, Sanford LD. Antagonism of corticotropin releasing factor in the basolateral amygdala of resilient and vulnerable rats: Effects on fear-conditioned sleep, temperature and freezing. Horm Behav 2018; 100:20-28. [PMID: 29501756 PMCID: PMC5949089 DOI: 10.1016/j.yhbeh.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
The basolateral nucleus of the amygdala (BLA) plays a significant role in mediating individual differences in the effects of fear memory on sleep. Here, we assessed the effects of antagonizing corticotropin releasing factor receptor 1 (CRFR1) after shock training (ST) on fear-conditioned behaviors and sleep. Outbred Wistar rats were surgically implanted with electrodes for recording EEG and EMG and with bilateral guide cannulae directed at BLA. Data loggers were placed intraperitoneally to record core body temperature. The CRFR1 antagonist, antalarmin (ANT; 4.82 mM) was microinjected into BLA after shock training (ST: 20 footshocks, 0.8 mA, 0.5 s duration, 60 s interstimulus interval), and the effects on sleep, freezing and the stress response (stress-induced hyperthermia, SIH) were examined after ST and fearful context re-exposure alone at 7 days (CTX1) and 21 days (CTX2) post-ST. EEG and EMG recordings were scored for non-rapid eye movement sleep (NREM), rapid eye movement sleep (REM) and wakefulness. The rats were separated into 4 groups: Vehicle-vulnerable (Veh-Vul; n = 10), Veh-resilient (Veh-Res; n = 11), ANT-vulnerable (ANT-Vul; n = 8) and ANT-resilient (ANT-Res; n = 8) based on whether, compared to baseline, the rats showed a decrease or no change/increase in REM during the first 4 h following ST. Post-ST ANT microinjected into BLA attenuated the fear-conditioned reduction in REM in ANT-Vul rats on CTX1, but did not significantly alter REM in ANT-Res rats. However, compared to Veh treated rats, REM was reduced in ANT treated rats on CTX2. There were no group differences in freezing or SIH across conditions. Therefore, CRFR1 in BLA plays a role in mediating individual differences in sleep responses to stress and in the extinction of fear conditioned changes in sleep.
Collapse
Affiliation(s)
- Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Mairen E Fitzpatrick
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amy M Sutton
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brook L Williams
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Mayumi Machida
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
37
|
Abstract
Pain is essential for avoidance of tissue damage and for promotion of healing. Notwithstanding the survival value, pain brings about emotional suffering reflected in fear and anxiety, which in turn augment pain thus giving rise to a self-sustaining feedforward loop. Given such reciprocal relationships, the present article uses neuroscientific conceptualizations of fear and anxiety as a theoretical framework for hitherto insufficiently understood pathophysiological mechanisms underlying chronic pain. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain and nociception plus amygdala, anxiety, cognitive, fear, sensory, and unconscious. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) parallelism between acute pain and fear and between chronic pain and anxiety; (2) all are related to the evasion of sensory-perceived threats and are subserved by subcortical circuits mediating automatic threat-induced physiologic responses and defensive actions in conjunction with higher order corticolimbic networks (e.g., thalamocortical, thalamo-striato-cortical and amygdalo-cortical) generating conscious representations and valuation-based adaptive behaviors; (3) some instances of chronic pain and anxiety conditions are driven by the failure to diminish or block respective nociceptive information or unconscious treats from reaching conscious awareness; and (4) the neural correlates of pain-related conscious states and cognitions may become autonomous (i.e., dissociated) from the subcortical activity/function leading to the eventual chronicity. Identifying relative contributions of the diverse neuroanatomical sources, thus, offers prospects for the development of novel preventive, diagnostic, and therapeutic strategies in chronic pain patients.
Collapse
Affiliation(s)
- Igor Elman
- Boonshoft School of Medicine, Wright State University, Dayton VA Medical Center, Dayton, OH, United States
| | - David Borsook
- Harvard Medical School, Center for Pain and the Brain, Boston Children's Hospital, Massachusetts General Hospital, McLean Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety. J Neurosci 2017; 37:23-37. [PMID: 28053027 DOI: 10.1523/jneurosci.2599-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner.
Collapse
|
39
|
The effects of intranasal oxytocin on smoothie intake, cortisol and attentional bias in anorexia nervosa. Psychoneuroendocrinology 2017; 79:167-174. [PMID: 28288443 DOI: 10.1016/j.psyneuen.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterised by severe malnutrition as well as intense fear and anxiety around food and eating with associated anomalies in information processing. Previous studies have found that the neuropeptide, oxytocin, can influence eating behaviour, lower the neurobiological stress response and anxiety among clinical populations, and alter attentional processing of food and eating related images in AN. METHODOLOGY Thirty adult women with AN and twenty-nine healthy comparison (HC) women took part in the current study. The study used double blind, placebo controlled, crossover design to investigate the effects of a single dose of intranasal oxytocin (40 IU) on a standard laboratory smoothie challenge, and on salivary cortisol, anxiety, and attentional bias towards food images before and after the smoothie challenge in AN and HC participants. Attentional bias was assessed using a visual probe task. RESULTS Relative to placebo intranasal oxytocin reduced salivary cortisol and altered anomalies in attentional bias towards food images in the AN group only. The oxytocin-induced reduction in attentional avoidance of food images correlated with oxytocin induced reduction in salivary cortisol in the AN group before the smoothie challenge. Intranasal oxytocin did not significantly alter subjective feelings of anxiety or intake during the smoothie challenge in the AN or HC groups. CONCLUSIONS Intranasal oxytocin may moderate the automated information processing biases in AN and reduce neurobiological stress. Further investigation of the effects of repeated administration of oxytocin on these processes as well as on eating behaviour and subjective anxiety would be of interest.
Collapse
|
40
|
Wolf OT, Kluge A. Commentary: Retrieval practice protects memory against acute stress. Front Behav Neurosci 2017; 11:48. [PMID: 28352221 PMCID: PMC5348509 DOI: 10.3389/fnbeh.2017.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum Bochum, Germany
| | - Annette Kluge
- Department of Work and Organizational Psychology, Faculty of Psychology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
41
|
Gilpin NW, Weiner JL. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. GENES BRAIN AND BEHAVIOR 2016; 16:15-43. [PMID: 27749004 DOI: 10.1111/gbb.12349] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact.
Collapse
Affiliation(s)
- N W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
42
|
Merz CJ, Wolf OT. Sex differences in stress effects on emotional learning. J Neurosci Res 2016; 95:93-105. [DOI: 10.1002/jnr.23811] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Christian J. Merz
- Institute of Cognitive Neuroscience, Department of Cognitive Psychology; Ruhr-University Bochum; Bochum Germany
| | - Oliver T. Wolf
- Institute of Cognitive Neuroscience, Department of Cognitive Psychology; Ruhr-University Bochum; Bochum Germany
| |
Collapse
|
43
|
Davies DR, Olson D, Meyer DL, Scholl JL, Watt MJ, Manzerra P, Renner KJ, Forster GL. Mild Traumatic Brain Injury with Social Defeat Stress Alters Anxiety, Contextual Fear Extinction, and Limbic Monoamines in Adult Rats. Front Behav Neurosci 2016; 10:71. [PMID: 27147992 PMCID: PMC4835499 DOI: 10.3389/fnbeh.2016.00071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mTBI induction, and 6 days later were tested either for anxiety-like behavior using the elevated plus maze (EPM), or for contextual fear conditioning and extinction. Brains were collected 24 h after EPM testing, and tissue from various limbic regions analyzed for content of monoamines, their precursors and metabolites using HPLC with electrochemical detection. Either social defeat or mTBI alone decreased time spent in open arms of the EPM, indicating greater anxiety-like behavior. However, this effect was enhanced by the combination of treatments. Further, rats exposed to both social defeat and mTBI exhibited greater freezing within extinction sessions compared to all other groups, suggesting impaired contextual fear extinction. Social defeat combined with mTBI also had greater effects on limbic monoamines than either insult alone, particularly with respect to serotonergic effects associated with anxiety and fear learning. The results suggest social stress concurrent with mTBI produces provides a relevant animal model for studying the prevention and treatment of post-concussive psychobiological outcomes.
Collapse
Affiliation(s)
- Daniel R Davies
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Dawne Olson
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Danielle L Meyer
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Jamie L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Pasquale Manzerra
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Kenneth J Renner
- Center for Brain and Behavior Research, Department of Biology, University of South Dakota Vermillion, SD, USA
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| |
Collapse
|