1
|
Bassi M, Roda E, Tirri M, Corli G, Bilel S, Bernardi T, Boccuto F, Borsari M, Buscaglia E, De Luca F, Di Rosa F, Gregori A, Buccilli V, Maida P, Ambrogi D, Strano-Rossi S, Locatelli CA, Marti M. α-PHP: Acute effects and pharmacokinetic in male and female mice, and clinical data on related intoxications. Drug Alcohol Depend 2025; 269:112596. [PMID: 39987764 DOI: 10.1016/j.drugalcdep.2025.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Alpha-Pyrrolidinohexanophenone (α-PHP) is a synthetic pyrovalerone derivative with structural characteristics and stimulant effects on humans comparable to α-PVP and MDPV. Since its pharmaco-toxicological effects have been poorly investigated, the aim of this study was to evaluate the acute effects of α-PHP (0.1-30mg/kg; i.p.) on behavioral responses in CD-1 male and female mice. Sex-related differences in pharmacokinetic profile of α-PHP (30mg/kg; i.p.) in mice were evaluated by analyzing i) the urine concentration of α-PHP and its metabolites at different time points, and ii) α-PHP levels in plasma, brain, and kidneys at 35min after the injection. Clinical data related to α-PHP intoxications, recorded by the Pavia Poison Control Centre (PCC) are also described. The present study shows that female mice were more sensitive to the effects of α-PHP on visual object, tactile, mobility time, and hypothermia, but males showed a deeper effect on visual placing. Both sexes developed analgesia to the mechanical stimulation, but only males showed a slight increase in enduring the thermal stimulation. Male mice showed higher plasma levels of α-PHP and a different elimination of α-PHP and metabolites than females. Case reports highlighted severe toxidromes characterized by Central Nervous System alterations (psychomotor agitation, tremors/fasciculations, hallucinations), cardiovascular toxicity signs (tachycardia, tachypnoea, thoracic pain) and other peripheral symptoms (hyperthermia, rhabdomyolysis). Our findings highlight the importance of the in vivo investigation of the effects and pharmacokinetic differences in male and female mice, to make contribution to the translational toxicological and forensic sex-related value.
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara 44121, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Valeria Buccilli
- Department of Scientific Investigation (RIS), Carabinieri, Messina 98122, Italy
| | - Pietro Maida
- Department of Scientific Investigation (RIS), Carabinieri, Messina 98122, Italy
| | | | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome 00168, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System (NEWS-D), Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
2
|
Bahramnejad E, Barney ER, Lester S, Hurtado A, Thompson T, Watkins JC, Hammer MF. Greater female than male resilience to mortality and morbidity in the Scn8a mouse model of pediatric epilepsy. Int J Neurosci 2024; 134:1611-1623. [PMID: 37929583 DOI: 10.1080/00207454.2023.2279497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/14/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
AIMS Females and males of all ages are affected by epilepsy; however, unlike many clinical studies, most preclinical research has focused on males. Genetic variants in the voltage-gated sodium channel gene, SCN8A, are associated with a broad spectrum of neurological and epileptic syndromes. Here we investigate sex differences in the natural history of the Scn8a-N1768D knockin mouse model of pediatric epilepsy. METHODS We utilize 24/7 video to monitor juveniles and adults of both sexes to investigate variability in seizure activity (e.g. onset and frequency), mortality and morbidity, response to cannabinoids, and mode of death. We also monitor sleep architecture using a noninvasive piezoelectric method in order to identify factors that influence seizure severity and outcome. RESULTS Both sexes had nearly 100% penetrance in seizure onset and early mortality. However, adult heterozygous (D/+) females were more resilient as exhibited by the ability to tolerate more seizures over a longer lifespan. Homozygous (D/D) juveniles did not exhibit a sex difference in overall survival. Female estrus cycle was disrupted before seizure onset, while sleep was disrupted in both sexes in association with seizure onset. Females typically died while in convulsive status epilepticus; however, a high proportion of males died while not experiencing behavioral seizures. Only juvenile and adult males benefited from cannabinoid administration. CONCLUSIONS These results support the hypothesis that factors associated with sexual differentiation play a role in the neurobiology of epilepsy and point to the importance of including both sexes in the design of studies to identify new epilepsy therapies.
Collapse
Affiliation(s)
- Erfan Bahramnejad
- Graduate Program in Pharmacology, University of Arizona, Tucson Arizona, AZ, USA
| | - Emily R Barney
- BIO5 Institute, University of Arizona, Tucson Arizona, AZ, USA
| | - Sarah Lester
- BIO5 Institute, University of Arizona, Tucson Arizona, AZ, USA
| | - Aurora Hurtado
- BIO5 Institute, University of Arizona, Tucson Arizona, AZ, USA
| | | | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson Arizona, AZ, USA
| | - Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson Arizona, AZ, USA
- Department of Neurology, University of Arizona, Tucson Arizona, AZ, USA
| |
Collapse
|
3
|
Forner-Piquer I, Giommi C, Sella F, Lombó M, Montik N, Dalla Valle L, Carnevali O. Endocannabinoid System and Metabolism: The Influences of Sex. Int J Mol Sci 2024; 25:11909. [PMID: 39595979 PMCID: PMC11593739 DOI: 10.3390/ijms252211909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid system (ECS) is a lipid signaling system involved in numerous physiological processes, such as endocrine homeostasis, appetite control, energy balance, and metabolism. The ECS comprises endocannabinoids, their cognate receptors, and the enzymatic machinery that tightly regulates their levels within tissues. This system has been identified in various organs, including the brain and liver, in multiple mammalian and non-mammalian species. However, information regarding the sex-specific regulation of the ECS remains limited, even though increasing evidence suggests that interactions between sex steroid hormones and the ECS may ultimately modulate hepatic metabolism and energy homeostasis. Within this framework, we will review the sexual dimorphism of the ECS in various animal models, providing evidence of the crosstalk between endocannabinoids and sex hormones via different metabolic pathways. Additionally, we will underscore the importance of understanding how endocrine-disrupting chemicals and exogenous cannabinoids influence ECS-dependent metabolic pathways in a sex-specific manner.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Marta Lombó
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Molecular Biology, Universidad de León, 24071 León, Spain
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
4
|
Fattore L, Pisanu A, Concas L, Casula C, Siddi C, Pisu MG, Serra M, Concas A, Porcu P. Behavioral characterization of co-exposure to cannabinoids and hormonal contraceptives in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110890. [PMID: 37926338 DOI: 10.1016/j.pnpbp.2023.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Hormonal contraceptives are among the most widely used drugs by young healthy women to block ovulation and avoid pregnancy. They reduce the ovarian secretion of estradiol and progesterone, hormones that also modulate neuronal plasticity, cognitive functions, emotions and mood. Cannabis is the most commonly used illicit drug worldwide and its use is increasing among young women, many of which regularly take the "pill". Despite evidence of a bidirectional interaction between the endocannabinoid system and gonadal hormones, only very few studies have examined the consequences of cannabis consumption in young females under hormonal contraceptives treatment. To fill this gap, this study evaluated the behavioral effects of co-exposure to chronic 1) hormonal contraceptives, i.e., ethinyl estradiol (EE) plus levonorgestrel (LNG), one of the synthetic estrogen-progestin combinations of hormonal contraceptives, and 2) cannabinoid receptor agonist, i.e., WIN 55,212-2 (WIN), on motor activity, emotional state and cognitive functions in young adult female rats (8-11/experimental group). Hormonal and cannabinoid treatment started at post-natal day (PND) 52 and 56, respectively, while behavioral testing occurred between PND 84-95. The results show that chronic EE-LNG treatment, at doses (0.020 and 0.060 mg/rat, respectively) known to drastically reduce plasma progesterone levels, and the contextual exposure to WIN, at a dose (12.5 μg/kg/infusion) known to be rewarding in the rat, alters the hormonal milieu but does not cause further changes in locomotor activity compared to EE-LNG or WIN alone, and does not modify anxiety-like state (as measured by the elevated plus maze and the marble burying tests) and cognitive abilities (as measured by the novel object recognition and the prepulse inhibition tests) in young adult female rats. Although exposure to EE-LNG and WIN tends to increase the duration of immobility and to reduce the time spent swimming in the forced swimming test, there was not a significant additive effect suggestive of a depressive-like state. These findings allow deepening the current knowledge on the interaction between cannabinoid agonists and hormonal contraceptives and suggest that low, rewarding doses of cannabinoids do not significantly alter the motor and cognitive skills and do not induce anxiety or depressive-like states in females that use hormonal contraceptives.
Collapse
Affiliation(s)
- Liana Fattore
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Augusta Pisanu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Luca Concas
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Claudia Casula
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Carlotta Siddi
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | | | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
5
|
Obermanns J, Meiser H, Hoberg S, Vesterager CS, Schulz F, Juckel G, Emons B. Genetic variation of the 5-HT1A rs6295, 5-HT2A rs6311, and CNR1 rs1049353 and an altered endocannabinoid system in depressed patients. Brain Behav 2023; 13:e3323. [PMID: 37984468 PMCID: PMC10726863 DOI: 10.1002/brb3.3323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The reasons for developing depression are not fully understood. However, it is known that the serotonergic system plays a role in the etiology, but the endocannabinoid system receives attention. METHOD In this study, 161 patients with a depressive disorder and 161 healthy participants were examined for the distribution of the CNR1 rs4940353, 5-HT2A rs6311, and 5-HT1A rs6295 by high-resolution melting genotyping. The concentration of arachidonoyl ethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) in the blood was measured by liquid chromatography-tandem mass spectrometry. Additionally, depression and anxiety symptoms were evaluated based on self-questionnaires. Fifty-nine patients participated in a second appointment to measure the concentration of AEA, 2-AG, and symptoms of depression and anxiety. RESULTS We observed higher AEA and decreased 2-AG concentrations in patients with depression compared to healthy participants. During the treatment, the concentrations of AEA and 2-AG did not change significantly. In patients higher symptoms of anxiety correlated with lower concentrations of 2-AG. Gender differences were found concerning increased 2-AG concentration in male patients and increased anxiety symptoms in female patients. Genotypic variations of 5-HT1A rs6295 and 5-HT2A rs6311 are associated with altered serotonergic activity and serotonin content in patients. CONCLUSION In conclusion, it seems that the endocannabinoid system, especially the endocannabinoids 2-AG and AEA, and genetic variations of the 5-HT1A and 5-HT2A could play a role in patients with depression and may be involved in a depressive disorder.
Collapse
Affiliation(s)
- Jasmin Obermanns
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | - Hanna Meiser
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | - Saskia Hoberg
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | | | - Frank Schulz
- Chemistry and Biochemistry of Natural ProductsRuhr University BochumBochumGermany
| | - Georg Juckel
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | - Barbara Emons
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| |
Collapse
|
6
|
Pabon E, de Wit H. Effects of Oral Delta-9-Tetrahydrocannabinol in Women During the Follicular Phase of the Menstrual Cycle. Cannabis Cannabinoid Res 2023; 8:1117-1125. [PMID: 35593915 PMCID: PMC10714110 DOI: 10.1089/can.2022.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: This study examined effects of oral delta-9-tetrahydrocannabinol (THC) in women at two phases of the menstrual cycle differing in circulating levels of estrogen (E). Pre-clinical findings indicate that E increases sensitivity to THC and other cannabinoids, raising the possibility that higher E may be a risk factor for adverse responses to THC in women. Methods: We examined subjective and behavioral responses to THC (7.5 and 15 mg oral) and placebo in women during the early follicular (EF) phase when E levels are low and the late follicular (LF) phase when E levels are higher. Outcome measures included self-report ratings of drug effects, cardiovascular measures, and biochemical verification of ovarian hormone levels. We hypothesized that women would exhibit greater responses to THC during the LF phase compared to the EF phase. Results: On most measures, responses to THC were similar during the two phases. However, on two self-report measures, "Wanting More" drug and anxiety, the effects occurred slightly earlier after drug administration in women who were tested during the EF phase. Conclusions: We conclude that the differences in levels of E occurring during the early and LF phase of the menstrual cycle do not strongly influence responses to THC. It remains to be determined whether responses are similarly stable across other cycle phases, or in women receiving exogenous hormone treatments.
Collapse
Affiliation(s)
- Elisa Pabon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Eski MT, Teberik K, Taha S, Büken B, Turan Sönmez F. Compare of optic coherence tomography parameters in recreational synthetic tetrahydrocannabinol use and healthy control. Cutan Ocul Toxicol 2023; 42:179-183. [PMID: 37417942 DOI: 10.1080/15569527.2023.2234042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To evaluate retinal thickness (RT), retinal nerve fiber layer thickness (RNFLT), and choroidal thickness (CT) changes in synthetic cannabinoid (SC) users. METHODS This prospective study evaluated the RT, RNFLT, and CT values of 56 SC users and 58 healthy controls. The individuals using SCs were referred to us by our hospital's forensic medicine department. Retinal and choroidal images were obtained using spectral-domain optical coherence tomography (OCT). Measurements (one subfoveal, three temporals, three nasal) were taken at 500 μm intervals up to 1500 μm using the caliper system. Only the right eye was used for subsequent analysis. RESULTS Mean ages were 27.7 ± 5.7 years in the SC-user group and 25.4 ± 6.7 in the control group. Subfoveal Global RNFLT was in the SCs group 102.3 ± 10.5 μm and 105.6 ± 20.2 μm in the control group (p = 0.271). Subfoveal CT was in the SC group mean of 316.1 ± 100.2 μm and in the control group mean 346.4 ± 81.8 μm (p = 0.065). RT, T500 (283.3 ± 36.7 μm, 296.6 ± 20.5 μm, p = 0.011) and N1500 (355.1 ± 14.3 μm, 349.3 ± 18.1 μm, p = 0.049) were significantly higher in the SC group than in the control group, respectively. CONCLUSION Analysis of OCT findings of individuals who had been using SC for more than one year revealed no statistically significant difference between RNFLT and CT, although N1500 was significantly higher in RT. Further studies in the field of OCT are important to explore the pathology of SC.
Collapse
Affiliation(s)
- Mehmet Tahir Eski
- Department of Ophthalmology, Erzincan Private Neon Hospital, Erzincan, Turkey
| | - Kuddusi Teberik
- Department of Ophthalmology, Duzce University School of Medicine, Duzce, Turkey
| | - Sezer Taha
- Department of Ophthalmology, Duzce University School of Medicine, Duzce, Turkey
| | - Bora Büken
- Department of Forensic Medicine, Duzce University
| | | |
Collapse
|
8
|
Matheson J, Bourgault Z, Le Foll B. Sex Differences in the Neuropsychiatric Effects and Pharmacokinetics of Cannabidiol: A Scoping Review. Biomolecules 2022; 12:1462. [PMID: 36291671 PMCID: PMC9599539 DOI: 10.3390/biom12101462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid compound with diverse molecular targets and potential therapeutic effects, including effects relevant to the treatment of psychiatric disorders. In this scoping review, we sought to determine the extent to which sex and gender have been considered as potential moderators of the neuropsychiatric effects and pharmacokinetics of CBD. In this case, 300 articles were screened, retrieved from searches in PubMed/Medline, Scopus, Google Scholar, PsycInfo and CINAHL, though only 12 met our eligibility criteria: eight studies in preclinical models and four studies in humans. Among the preclinical studies, three suggested that sex may influence long-term effects of gestational or adolescent exposure to CBD; two found no impact of sex on CBD modulation of addiction-relevant effects of Δ⁹-tetrahydrocannabinol (THC); two found antidepressant-like effects of CBD in males only; and one found greater plasma and liver CBD concentrations in females compared to males. Among the human studies, two found no sex difference in CBD pharmacokinetics in patient samples, one found greater plasma CBD concentrations in healthy females compared to males, and one found no evidence of sex differences in the effects of CBD on responses to trauma recall in patients with post-traumatic stress disorder (PTSD). No studies were identified that considered the role of gender in CBD treatment effects. We discuss potential implications and current limitations of the existing literature.
Collapse
Affiliation(s)
- Justin Matheson
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada
| | - Zoe Bourgault
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Ursula Franklin Street, Toronto, ON M5S 2S1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 1A8, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
| |
Collapse
|
9
|
Baltodano-Calle MJ, Onton-Díaz M, Gonzales GF. Androgens, brain and androgen deprivation therapy in paraphilic disorders: A narrative review. Andrologia 2022; 54:e14561. [PMID: 35995581 DOI: 10.1111/and.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022] Open
Abstract
Sexual delinquency is a global problem where those with paraphilic disorders, such as paedophiles, are more likely to commit and reoffend. Androgen deprivation therapy (ADT) has been suggested as a solution. The objective of this narrative review is to present current information on its risks, benefits and limitations as a treatment for paraphilias. The importance of testosterone in sexual function, the effect of its deficiency by age or by pharmacological treatment (anti-androgens, GnRH agonists and GnRH antagonists) and the effect of testosterone replacement therapy will be reviewed. The relationship between androgens, brain, sexual behaviour and pathophysiology of paraphilic disorders will also be explored. ADT reduces sexual urges, but has adverse effects and, because its reversible nature, it does not ensure less recidivism. Likewise, the research quality of ADT drugs is limited and not enough to support their use. Child sex offenders, and not paraphilic subjects who have not committed assaults, show signs of elevated prenatal exposure to androgens and a higher methylation state of the androgen receptor gene. Sexual behaviour is regulated by subcortical (hypothalamus, brainstem and spinal cord) and cortical structures of the brain, in addition to brain circuits (dopaminergic, serotonergic). Those with paraphilic disorders show abnormalities at these levels that could relate to the risk of sexual offences. In conclusion, androgens represent a significant part of the pathophysiology of paraphilias and therefore, ADT seems promising. Nonetheless, more studies are needed to make definite conclusions about the efficacy of long-term ADT in paraphilic patients.
Collapse
Affiliation(s)
| | - Melisa Onton-Díaz
- Faculty of Medicine, Cayetano Heredia Peruvian University., Lima, Peru
| | - Gustavo F Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
10
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Murlanova K, Hasegawa Y, Kamiya A, Pletnikov MV. Cannabis effects on the adolescent brain. CANNABIS AND THE DEVELOPING BRAIN 2022:283-330. [DOI: 10.1016/b978-0-12-823490-7.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Kim HJJ, Zagzoog A, Smolyakova AM, Ezeaka UC, Benko MJ, Holt T, Laprairie RB. In vivo Evidence for Brain Region-Specific Molecular Interactions Between Cannabinoid and Orexin Receptors. Front Neurosci 2021; 15:790546. [PMID: 34992518 PMCID: PMC8724524 DOI: 10.3389/fnins.2021.790546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid and orexin neuromodulatory systems serve key roles in many of the same biological functions such as sleep, appetite, pain processing, and emotional behaviors related to reward. The type 1 cannabinoid receptor (CB1R) and both subtypes of the orexin receptor, orexin receptor type 1 (OX1R) and orexin receptor type 2 (OX2R) are not only expressed in the same brain regions modulating these functions, but physically interact as heterodimers in recombinant and neuronal cell cultures. In the current study, male and female C57BL/6 mice were co-treated with the cannabinoid receptor agonist CP55,940 and either the OX2R antagonist TCS-OX2-29 or the dual orexin receptor antagonist (DORA) TCS-1102. Mice were then evaluated for catalepsy, body temperature, thermal anti-nociception, and locomotion, after which their brains were collected for receptor colocalization analysis. Combined treatment with the DORA TCS-1102 and CP55,940 potentiated catalepsy more than CP55,940 alone, but this effect was not observed for changes in body temperature, nociception, locomotion, or via selective OX2R antagonism. Co-treatment with CP55,940 and TCS-1102 also led to increased CB1R-OX1R colocalization in the ventral striatum. This was not seen following co-treatment with TCS-OX2-29, nor in CB1R-OX2R colocalization. The magnitude of effects following co-treatment with CP55,940 and either the DORA or OX2R-selective antagonist was greater in males than females. These data show that CB1R-OX1R colocalization in the ventral striatum underlies cataleptic additivity between CP55,940 and the DORA TCS-1102. Moreover, cannabinoid-orexin receptor interactions are sex-specific with regards to brain region and functionality. Physical or molecular interactions between these two systems may provide valuable insight into drug-drug interactions between cannabinoid and orexin drugs for the treatment of insomnia, pain, and other disorders.
Collapse
Affiliation(s)
- Hye Ji J. Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anna Maria Smolyakova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Udoka C. Ezeaka
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael J. Benko
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teagan Holt
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Methylomic Investigation of Problematic Adolescent Cannabis Use and Its Negative Mental Health Consequences. J Am Acad Child Adolesc Psychiatry 2021; 60:1524-1532. [PMID: 33631312 PMCID: PMC8380262 DOI: 10.1016/j.jaac.2021.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The impact of adolescent cannabis use is a pressing public health question owing to the high rates of use and links to negative outcomes. This study considered the association between problematic adolescent cannabis use and methylation. METHOD Using an enrichment-based sequencing approach, a methylome-wide association study (MWAS) was performed of problematic adolescent cannabis use in 703 adolescent samples from the Great Smoky Mountain Study. Using epigenomic deconvolution, MWASs were performed for the main cell types in blood: granulocytes, T cells, B cells, and monocytes. Enrichment testing was conducted to establish overlap between cannabis-associated methylation differences and variants associated with negative mental health effects of adolescent cannabis use. RESULTS Whole-blood analyses identified 45 significant CpGs, and cell type-specific analyses yielded 32 additional CpGs not identified in the whole-blood MWAS. Significant overlap was observed between the B-cell MWAS and genetic studies of education attainment and intelligence. Furthermore, the results from both T cells and monocytes overlapped with findings from an MWAS of psychosis conducted in brain tissue. CONCLUSION In one of the first methylome-wide association studies of adolescent cannabis use, several methylation sites located in genes of importance for potentially relevant brain functions were identified. These findings resulted in several testable hypotheses by which cannabis-associated methylation can impact neurological development and inflammation response as well as potential mechanisms linking cannabis-associated methylation to potential downstream mental health effects.
Collapse
|
14
|
Müller-Vahl KR, Fremer C, Beals C, Ivkovic J, Loft H, Schindler C. Endocannabinoid Modulation Using Monoacylglycerol Lipase Inhibition in Tourette Syndrome: A Phase 1 Randomized, Placebo-Controlled Study. PHARMACOPSYCHIATRY 2021; 55:148-156. [PMID: 34847610 PMCID: PMC9110099 DOI: 10.1055/a-1675-3494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction
Tourette syndrome (TS) is a complex neurodevelopmental
disorder characterized by chronic motor and vocal tics. While consistently
effective treatment is lacking, evidence indicates that the modulation of
endocannabinoid system is potentially beneficial. Lu AG06466 (previously
ABX-1431) is a highly selective inhibitor of monoacylglycerol lipase, the
primary enzyme responsible for the degradation of the endocannabinoid ligand
2-arachidonoylglycerol. This exploratory study aimed to determine the effect of
Lu AG06466 versus placebo on tics and other symptoms in patients with TS.
Methods
In this phase 1b cross-over study, 20 adult patients with TS on
standard-of-care medications were randomized to a single fasted dose of Lu
AG06466 (40 mg) or placebo in period 1, followed by the other treatment
in period 2. The effects on tics, premonitory urges, and psychiatric
comorbidities were evaluated using a variety of scaled approaches at different
time points before and after treatment.
Results
All scales showed an overall trend of tic reduction, with two out
of three tic scales (including the Total Tic Score of the Yale Global Tic
Severity Score) showing a significant effect of a single dose of Lu AG06466
versus placebo at various timepoints. Treatment with Lu AG06466 resulted in a
significant reduction in premonitory urges versus placebo. Single doses of Lu
AG06466 were generally well-tolerated, and the most common adverse events were
headache, somnolence, and fatigue.
Conclusion
In this exploratory trial, a single dose of Lu AG06466 showed
statistically significant positive effects on key measures of TS symptoms.
Collapse
Affiliation(s)
- Kirsten R Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Carolin Fremer
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | | | | | - Christoph Schindler
- Clinical Research Center Core Facility, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Abstract
OBJECTIVE Recent cannabis exposure has been associated with lower rates of neurocognitive impairment in people with HIV (PWH). Cannabis's anti-inflammatory properties may underlie this relationship by reducing chronic neuroinflammation in PWH. This study examined relations between cannabis use and inflammatory biomarkers in cerebrospinal fluid (CSF) and plasma, and cognitive correlates of these biomarkers within a community-based sample of PWH. METHODS 263 individuals were categorized into four groups: HIV- non-cannabis users (n = 65), HIV+ non-cannabis users (n = 105), HIV+ moderate cannabis users (n = 62), and HIV+ daily cannabis users (n = 31). Differences in pro-inflammatory biomarkers (IL-6, MCP-1/CCL2, IP-10/CXCL10, sCD14, sTNFR-II, TNF-α) by study group were determined by Kruskal-Wallis tests. Multivariable linear regressions examined relationships between biomarkers and seven cognitive domains, adjusting for age, sex/gender, race, education, and current CD4 count. RESULTS HIV+ daily cannabis users showed lower MCP-1 and IP-10 levels in CSF compared to HIV+ non-cannabis users (p = .015; p = .039) and were similar to HIV- non-cannabis users. Plasma biomarkers showed no differences by cannabis use. Among PWH, lower CSF MCP-1 and lower CSF IP-10 were associated with better learning performance (all ps < .05). CONCLUSIONS Current daily cannabis use was associated with lower levels of pro-inflammatory chemokines implicated in HIV pathogenesis and these chemokines were linked to the cognitive domain of learning which is commonly impaired in PWH. Cannabinoid-related reductions of MCP-1 and IP-10, if confirmed, suggest a role for medicinal cannabis in the mitigation of persistent inflammation and cognitive impacts of HIV.
Collapse
|
16
|
Kesner AJ, Lovinger DM. Cannabis use, abuse, and withdrawal: Cannabinergic mechanisms, clinical, and preclinical findings. J Neurochem 2021; 157:1674-1696. [PMID: 33891706 PMCID: PMC9291571 DOI: 10.1111/jnc.15369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Cannabis sativa is the most widely used illicit drug in the world. Its main psychoactive component is delta-9-tetrahydrocannabinol (THC), one of over 100 phytocannabinoid compounds produced by the cannabis plant. THC is the primary compound that drives cannabis abuse potential and is also used and prescribed medically for therapeutic qualities. Despite its therapeutic potential, a significant subpopulation of frequent cannabis or THC users will develop a drug use syndrome termed cannabis use disorder. Individuals suffering from cannabis use disorder exhibit many of the hallmarks of classical addictions including cravings, tolerance, and withdrawal symptoms. Currently, there are no efficacious treatments for cannabis use disorder or withdrawal symptoms. This makes both clinical and preclinical research on the neurobiological mechanisms of these syndromes ever more pertinent. Indeed, basic research using animal models has provided valuable evidence of the neural molecular and cellular actions of cannabis that mediate its behavioral effects. One of the main components being central action on the cannabinoid type-one receptor and downstream intracellular signaling related to the endogenous cannabinoid system. Back-translational studies have provided insight linking preclinical basic and behavioral biology research to better understand symptoms observed at the clinical level. This narrative review aims to summarize major research elucidating the molecular, cellular, and behavioral manifestations of cannabis/THC use that play a role in cannabis use disorder and withdrawal.
Collapse
Affiliation(s)
- Andrew J. Kesner
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
17
|
Luoto S, Varella MAC. Pandemic Leadership: Sex Differences and Their Evolutionary-Developmental Origins. Front Psychol 2021; 12:633862. [PMID: 33815218 PMCID: PMC8015803 DOI: 10.3389/fpsyg.2021.633862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
The COVID-19 pandemic has caused a global societal, economic, and social upheaval unseen in living memory. There have been substantial cross-national differences in the kinds of policies implemented by political decision-makers to prevent the spread of the virus, to test the population, and to manage infected patients. Among other factors, these policies vary with politicians' sex: early findings indicate that, on average, female leaders seem more focused on minimizing direct human suffering caused by the SARS-CoV-2 virus, while male leaders implement riskier short-term decisions, possibly aiming to minimize economic disruptions. These sex differences are consistent with broader findings in psychology, reflecting women's stronger empathy, higher pathogen disgust, health concern, care-taking orientation, and dislike for the suffering of other people-as well as men's higher risk-taking, Machiavellianism, psychopathy, narcissism, and focus on financial indicators of success and status. This review article contextualizes sex differences in pandemic leadership in an evolutionary framework. Evolution by natural selection is the only known process in nature that organizes organisms into higher degrees of functional order, or counteracts the unavoidable disorder that would otherwise ensue, and is therefore essential for explaining the origins of human sex differences. Differential sexual selection and parental investment between males and females, together with the sexual differentiation of the mammalian brain, drive sex differences in cognition and behavioral dispositions, underlying men's and women's leadership styles and decision-making during a global pandemic. According to the sexually dimorphic leadership specialization hypothesis, general psychobehavioral sex differences have been exapted during human evolution to create sexually dimorphic leadership styles. They may be facultatively co-opted by societies and/or followers when facing different kinds of ecological and/or sociopolitical threats, such as disease outbreaks or intergroup aggression. Early evidence indicates that against the invisible viral foe that can bring nations to their knees, the strategic circumspection of empathic feminine health "worriers" may bring more effective and humanitarian outcomes than the devil-may-care incaution of masculine risk-taking "warriors".
Collapse
Affiliation(s)
- Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
18
|
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci 2020; 10:brainsci10090606. [PMID: 32899299 PMCID: PMC7564810 DOI: 10.3390/brainsci10090606] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Sex and gender deeply affect the subjective effects and pharmaco-toxicological responses to drugs. Men are more likely than women to use almost all types of illicit drugs and to present to emergency departments for serious or fatal intoxications. However, women are just as likely as men to develop substance use disorders, and may be more susceptible to craving and relapse. Clinical and preclinical studies have shown important differences between males and females after administration of “classic” drugs of abuse (e.g., Δ9-tetrahydrocannabinol (THC), morphine, cocaine). This scenario has become enormously complicated in the last decade with the overbearing appearance of the new psychoactive substances (NPS) that have emerged as alternatives to regulated drugs. To date, more than 900 NPS have been identified, and can be catalogued in different pharmacological categories including synthetic cannabinoids, synthetic stimulants (cathinones and amphetamine-like), hallucinogenic phenethylamines, synthetic opioids (fentanyls and non-fentanyls), new benzodiazepines and dissociative anesthetics (i.e., methoxetamine and phencyclidine-derivatives). This work collects the little knowledge reached so far on the effects of NPS in male and female animal and human subjects, highlighting how much sex and gender differences in the effects of NPS has yet to be studied and understood.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
- Correspondence:
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy;
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, 00187 Rome, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
- National Institute of Neuroscience (INN), University of Cagliari, 09124 Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
19
|
Ellis RJ, Peterson SN, Li Y, Schrier R, Iudicello J, Letendre S, Morgan E, Tang B, Grant I, Cherner M. Recent cannabis use in HIV is associated with reduced inflammatory markers in CSF and blood. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/5/e809. [PMID: 32554630 PMCID: PMC7309527 DOI: 10.1212/nxi.0000000000000809] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine whether cannabis may reduce HIV-related persistent inflammation, we evaluated the relationship of cannabis use in people with HIV (PWH) to inflammatory cytokines in CSF and blood plasma. METHODS We measured a panel of proinflammatory cytokines (interleukin [IL]-16, C-reactive protein [CRP], IL-6, interferon gamma-induced protein [IP]-10, soluble CD14, and soluble tumor necrosis factor receptor type II [sTNFRII]) in CSF and blood plasma in PWH and HIV- individuals who did or did not use cannabis at various levels of exposure. Participants in this observational cohort were recruited from community sources and underwent lumbar puncture and phlebotomy. Cannabis use parameters were characterized by self-report based on a semistructured timeline follow-back interview. Cytokines were measured using commercially available immunoassays. Data were analyzed using factor analysis. RESULTS Participants were 35 PWH and 21 HIV- individuals, mean (SD) age 45.4 (14.5) years, 41 cannabis ever users, and 15 never users. PWH and HIV- were not different in recency, cumulative months, grams, or density of cannabis use. A factor analysis using CSF biomarkers yielded a factor loading on CRP, IL-16, and sTNFRII that was significantly associated with recency of cannabis use (more recent use associated with lower factor 1 values, reflecting less inflammation; r = 0.331 [95% CI 0.0175, 0.586]). In particular, more recent cannabis use was related to lower IL-16 levels (r = 0.549 [0.282, 0.737]). Plasma biomarkers yielded a factor loading on sTNFRII and IP-10 that was associated with more recent cannabis use (more recent use related to less inflammation; r = 0.374 [0.0660, 0.617]). CONCLUSIONS Recent cannabis use was associated with lower levels of inflammatory biomarkers, both in CSF and blood, but in different patterns. These results are consistent with compartmentalization of immune effects of cannabis. The principal active components of cannabis are highly lipid soluble and sequestered in brain tissue; thus, our findings are consistent with specific anti-neuroinflammatory effects that may benefit HIV neurologic dysfunction.
Collapse
Affiliation(s)
- Ronald J Ellis
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego.
| | - Scott N Peterson
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Yueling Li
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego.
| | - Rachel Schrier
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Jenny Iudicello
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Scott Letendre
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Erin Morgan
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Bin Tang
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Igor Grant
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| | - Mariana Cherner
- From the Departments of Neurosciences and Psychiatry (R.J.E.), University of California, San Diego; Sanford Burnham Prebys Medical Discovery Institute (S.N.P.); LECOM health - Millcreek Community Hospital (Y.L.), Erie, PA; Department of Pathology (R.S.), Department of Psychiatry (J.I., E.M., B.T., I.G., M.C.), and Departments of Medicine and Psychiatry (S.L.), University of California, San Diego
| |
Collapse
|
20
|
Mullen C, Whalley BJ, Schifano F, Baker JS. Anabolic androgenic steroid abuse in the United Kingdom: An update. Br J Pharmacol 2020; 177:2180-2198. [PMID: 31989581 PMCID: PMC7174889 DOI: 10.1111/bph.14995] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/03/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Anabolic androgenic steroids (AASs) are prescribed for medical conditions related to low testosterone. Abuse of AASs has surged as they become recognised as potent image enhancement drugs. The primary goal of most abusers is to obtain a more attractive outward appearance. Abuse is complex. There are a vast range of AAS substances illegally available, the nature of their true composition is difficult to evaluate. Users follow dosing patterns which incorporate a number of different AASs, in addition to other pharmaceutical substances believed to complement the desired physical effects or manage unwanted effects. Animal work and medical case reports suggest potential to cause serious hepatotoxicity, plus possible neurotoxicity, nephrotoxicity and damage to the cardiovascular and reproductive systems. As the long-term AASs users reach maturity, further controlled experimentation, with larger sample sizes, is required. Data gathering should be directed towards the most vulnerable group of AAS users, females and adolescent boys.
Collapse
Affiliation(s)
- Carrie Mullen
- School of Computing, Engineering and Physical SciencesUniversity of the West of ScotlandPaisleyUK
| | - Benjamin J. Whalley
- School of Chemistry, Food and Nutritional Sciences, and PharmacyThe University of ReadingReadingUK
| | - Fabrizio Schifano
- School of Life and Medical SciencesUniversity of HertfordshireHatfieldUK
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and HealthHong Kong Baptist UniversityKowloon TongHong Kong
| |
Collapse
|
21
|
Bhatt D, Hazari A, Yamakawa GR, Salberg S, Sgro M, Shultz SR, Mychasiuk R. Investigating the cumulative effects of Δ9-tetrahydrocannabinol and repetitive mild traumatic brain injury on adolescent rats. Brain Commun 2020; 2:fcaa042. [PMID: 32954298 PMCID: PMC7425386 DOI: 10.1093/braincomms/fcaa042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
The prevalence of mild traumatic brain injury is highest amongst the adolescent population and can lead to complications including neuroinflammation and excitotoxicity. Also pervasive in adolescents is recreational cannabis use. Δ9-Tetrahydrocannabinol, the main psychoactive component of cannabis, is known to have anti-inflammatory properties and serves as a neuroprotective agent against excitotoxicity. Thus, we investigated the effects of Δ9-tetrahydrocannabinol on recovery when administered either prior to or following repeated mild brain injuries. Male and female Sprague-Dawley rats were randomly assigned to receive Δ9-tetrahydrocannabinol or vehicle either prior to or following the repeated injuries. Rats were then tested on a behavioural test battery designed to measure post-concussive symptomology. The hippocampus, nucleus accumbens and prefrontal cortex were extracted from all animals to examine mRNA expression changes (Bdnf, Cnr1, Comt, GR, Iba-1 and Vegf-2R). We hypothesized that, in both experiments, Δ9-tetrahydrocannabinol administration would provide neuroprotection against mild injury outcomes and confer therapeutic benefit. Δ9-Tetrahydrocannabinol administration following repeated mild traumatic brain injury was beneficial to three of the six behavioural outcomes affected by injury (reducing anxiety and depressive-like behaviours while also mitigating injury-induced deficits in short-term working memory). Δ9-Tetrahydrocannabinol administration following injury also showed beneficial effects on the expression of Cnr1, Comt and Vegf-2R in the hippocampus, nucleus accumbens and prefrontal cortex. There were no notable benefits of Δ9-tetrahydrocannabinol when administered prior to injury, suggesting that Δ9-tetrahydrocannabinol may have potential therapeutic benefit on post-concussive symptomology when administered post-injury, but not pre-injury.
Collapse
Affiliation(s)
- Dhyey Bhatt
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ali Hazari
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Glenn R Yamakawa
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sabrina Salberg
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Richelle Mychasiuk
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
22
|
Sex and Gender Interactions on the Use and Impact of Recreational Cannabis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020509. [PMID: 31947505 PMCID: PMC7014129 DOI: 10.3390/ijerph17020509] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Cannabis is the second most frequently used substance in the world and regulated or legalized for recreational use in Canada and fourteen US states and territories. As with all substances, a wide range of sex and gender related factors have an influence on how substances are consumed, their physical, mental and social impacts, and how men and women respond to treatment, health promotion, and policies. Given the widespread use of cannabis, and in the context of its increasing regulation, it is important to better understand the sex and gender related factors associated with recreational cannabis use in order to make more precise clinical, programming, and policy decisions. However, sex and gender related factors include a wide variety of processes, features and influences that are rarely fully considered in research. This article explores myriad features of both sex and gender as concepts, illustrates their impact on cannabis use, and focuses on the interactions of sex and gender that affect three main areas of public interest: the development of cannabis use dependence, the impact on various routes of administration (ROA), and the impact on impaired driving. We draw on two separate scoping reviews to examine available evidence in regard to these issues. These three examples are described and illustrate the need for more comprehensive and precise integration of sex and gender in substance use research, as well as serious consideration of the results of doing so, when addressing a major public health issue such as recreational cannabis use.
Collapse
|
23
|
Da Silva T, Hafizi S, Watts JJ, Weickert CS, Meyer JH, Houle S, Rusjan P, Mizrahi R. In Vivo Imaging of Translocator Protein in Long-term Cannabis Users. JAMA Psychiatry 2019; 76:1305-1313. [PMID: 31532458 PMCID: PMC6751758 DOI: 10.1001/jamapsychiatry.2019.2516] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Cannabis is the most commonly used illicit drug in the world. Cannabinoids have been shown to modulate immune responses; however, the association of cannabis with neuroimmune function has never been investigated in vivo in the human brain. OBJECTIVE To investigate neuroimmune activation or 18-kDa translocator protein (TSPO) levels in long-term cannabis users, and to evaluate the association of brain TSPO levels with behavioral measures and inflammatory blood biomarkers. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study based in Toronto, Ontario, recruited individuals from January 1, 2015, to October 30, 2018. Participants included long-term cannabis users (n = 24) and non-cannabis-using controls (n = 27). Cannabis users were included if they had a positive urine drug screen for only cannabis and if they used cannabis at least 4 times per week for the past 12 months and/or met the criteria for cannabis use disorder. All participants underwent a positron emission tomography scan with [18F]FEPPA, or fluorine F 18-labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide. MAIN OUTCOMES AND MEASURES Total distribution volume was quantified across regions of interest. Stress and anxiety as well as peripheral measures of inflammatory cytokines and C-reactive protein levels were also measured. RESULTS In total, 24 long-term cannabis users (mean [SD] age, 23.1 [3.8] years; 15 men [63%]) and 27 non-cannabis-using controls (mean [SD] age, 23.6 [4.2] years; 18 women [67%]) were included and completed all study procedures. Compared with the controls, cannabis users had higher [18F]FEPPA total distribution volume (main group effect: F1,48 = 6.5 [P = .01]; ROI effect: F1,200 = 28.4 [P < .001]; Cohen d = 0.6; 23.3% higher), with a more prominent implication for the cannabis use disorder subgroup (n = 15; main group effect: F1,39 = 8.5 [P = .006]; ROI effect: F1,164 = 19.3 [P < .001]; Cohen d = 0.8; 31.5% higher). Greater TSPO levels in the brain were associated with stress and anxiety and with higher circulating C-reactive protein levels in cannabis users. CONCLUSIONS AND RELEVANCE The results of this study suggest that TSPO levels in cannabis users, particularly in those with cannabis use disorder, are higher than those in non-cannabis-using controls. The findings emphasize the need for more complementary preclinical systems for a better understanding of the role of cannabinoids and TSPO in neuroimmune signaling.
Collapse
Affiliation(s)
- Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jeremy J. Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Jeffrey H. Meyer
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Werbinski JL, Rojek MK, Cabral MDI. The Need to Integrate Sex and Gender Differences into Pediatric Pedagogy. Adv Pediatr 2019; 66:15-35. [PMID: 31230691 DOI: 10.1016/j.yapd.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Janice L Werbinski
- Department of Obstetrics and Gynecology, Western Michigan University Homer Stryker MD School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008-1284, USA.
| | - Mary K Rojek
- Sex and Gender Health Collaborative, American Medical Women's Association, 1100 Woodfield Rd. #350, Schaumburg, IL 60173, USA
| | - Maria Demma I Cabral
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008-1284, USA
| |
Collapse
|
25
|
Luoto S, Krams I, Rantala MJ. Response to Commentaries: Life History Evolution, Causal Mechanisms, and Female Sexual Orientation. ARCHIVES OF SEXUAL BEHAVIOR 2019; 48:1335-1347. [PMID: 31119422 DOI: 10.1007/s10508-019-1439-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Arts 1, Bldg. 206, Room 616, 14A Symonds St., Auckland, 1010, New Zealand.
- School of Psychology, University of Auckland, Auckland, New Zealand.
| | - Indrikis Krams
- Department of Zoology and Animal Ecology, University of Latvia, Rīga, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | |
Collapse
|