1
|
Birnie MT, Baram TZ. The evolving neurobiology of early-life stress. Neuron 2025; 113:1474-1490. [PMID: 40101719 PMCID: PMC12097948 DOI: 10.1016/j.neuron.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Because early-life stress is common and constitutes a strong risk factor for cognitive and mental health disorders, it has been the focus of a multitude of studies in humans and experimental models. Yet, we have an incomplete understanding of what is perceived as stressful by the developing brain, what aspects of stress influence brain maturation, what developmental ages are particularly vulnerable to stress, which molecules mediate the effects of stress on brain operations, and how transient stressful experiences can lead to enduring emotional and cognitive dysfunctions. Here, we discuss these themes, highlight the challenges and progress in resolving them, and propose new concepts and avenues for future research.
Collapse
Affiliation(s)
- Matthew T Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Lancaster KL, Wass SV. Finding order in chaos: influences of environmental complexity and predictability on development. Trends Cogn Sci 2025; 29:344-355. [PMID: 39706766 DOI: 10.1016/j.tics.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024]
Abstract
Environments are dynamic and complex. Some children experience more predictable early life environments than others. Here, we consider how moment-by-moment complexity and predictability in our early environments influence development. New studies using wearable sensors are quantifying this environmental variability at a fine temporal resolution across hierarchically structured physical and social features. We identify three types of predictability: periodicities ('at X time intervals, Y happens'), stability ('given statex, statex+1 is known'), and contingency ('when I do X, Y happens'). We discuss how the temporal dynamics of environments may differ between individuals and the diverse developmental neural pathways through which this may influence outcomes, such as central nervous system (CNS) arousal and executive control. Finally, we discuss practical consequences and directions for future research.
Collapse
|
3
|
Glynn LM, Liu SR, Golden C, Weiss M, Lucas CT, Cooper DM, Ehwerhemuepha L, Stern HS, Baram TZ. Contribution of an under-recognized adversity to child health risk: large-scale, population-based ACEs screening. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.04.25321682. [PMID: 39974059 PMCID: PMC11838625 DOI: 10.1101/2025.02.04.25321682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background and Objectives Whereas adverse early life experiences (ACEs) correlate with cognitive, emotional and physical health at the population level, existing ACEs screens are only weakly predictive of outcomes for an individual child. This raises the possibility that important elements of the early-life experiences that drive vulnerability and resilience are not being captured. We previously demonstrated that unpredictable parental and household signals constitute an ACE with cross-cultural relevance. We created the 5-item Questionnaire of Unpredictability in Childhood (QUIC-5) that can be readily administered in pediatric clinics. Here, we tested if combined screening with the QUIC-5 and an ACEs measure in this real-world setting significantly improved prediction of child health outcomes. Methods Leveraging existing screening with the Pediatric ACEs and Related Life Events Screener (PEARLS) at annual well-child visits, we implemented QUIC-5 screening in 19 pediatric clinics spanning the diverse sociodemographic constituency of Orange County, CA. Children (12yr+) and caregivers (for children 0-17years) completed both screens. Health diagnoses were abstracted from electronic health records (N=29,305 children). Results For both screeners, increasing exposures were associated with a higher probability of a mental (ADHD, anxiety, depression, externalizing problems, sleep disorder) or physical (obesity abdominal pain, asthma, headache) health diagnosis. Across most diagnoses, PEARLS and QUIC provided unique predictive contributions. Importantly, for three outcomes (depression, obesity, sleep disorders) QUIC-5 identified vulnerable individuals that were missed by PEARLS alone. Conclusions Screening for unpredictability as an additional ACE in primary care is feasible, acceptable and provides unique, actionable information about child psychopathology and physical health.
Collapse
Affiliation(s)
- Laura M Glynn
- Department of Psychology, Chapman University, Orange, CA
| | - Sabrina R Liu
- Department of Human Development, California State University, San Marcos, CA
| | - Charles Golden
- Children's Hospital of Orange County, Orange, CA
- Department of Pediatrics, University of California-Irvine, Irvine, CA
| | - Michael Weiss
- Children's Hospital of Orange County, Orange, CA
- Department of Pediatrics, University of California-Irvine, Irvine, CA
| | | | - Dan M Cooper
- Department of Pediatrics, University of California-Irvine, Irvine, CA
| | | | - Hal S Stern
- Department of Statistics, University of California-Irvine, Irvine, CA
| | - Tallie Z Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA
- Department of Neurology, University of California-Irvine, Irvine, CA
| |
Collapse
|
4
|
Morin EL, Siebert ER, Howell BR, Higgins M, Jovanovic T, Kazama AM, Sanchez MM. Effects of early maternal care on anxiety and threat learning in adolescent nonhuman primates. Dev Cogn Neurosci 2025; 71:101480. [PMID: 39642805 PMCID: PMC11665541 DOI: 10.1016/j.dcn.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
Early life adverse experiences, including childhood maltreatment, are major risk factors for psychopathology, including anxiety disorders with dysregulated fear responses. Consistent with human studies, maltreatment by the mother (MALT) leads to increased emotional reactivity in rhesus monkey infants. Whether this persists and results in altered emotion regulation, due to enhanced fear learning or impaired utilization of safety signals as shown in human stress-related disorders, is unclear. Here we used a rhesus model of MALT to examine long-term effects on state anxiety and threat/safety learning in 25 adolescents, using a fear conditioning paradigm (AX+/BX-) with acoustic startle amplitude as the peripheral measure. The AX+/BX- paradigm measures baseline startle, fear-potentiated startle, threat/safety cue discrimination, startle attenuation by safety signals, and extinction. Baseline startle was higher in MALT animals, suggesting elevated state anxiety. No differences in threat learning, or threat/safety discrimination were detected. However, MALT animals showed generalized blunted responses to the conditioned threat cue, regardless of the safety cue presence in the transfer test, and took longer to extinguish spontaneously recovered threat. These findings suggest adverse caregiving experiences have long-term impacts on adolescent emotion regulation, including elevated state anxiety and blunted fear conditioning responses, consistent with reports in children with maltreatment exposure.
Collapse
Affiliation(s)
- Elyse L Morin
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Erin R Siebert
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| | - Melinda Higgins
- School of Nursing, Emory University, Atlanta, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Andrew M Kazama
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States.
| |
Collapse
|
5
|
Rincón-Cortés M. Mothering matters: Towards a better understanding of disrupted infant-caregiver relationships in both mother and offspring. Neurobiol Stress 2025; 34:100701. [PMID: 39801763 PMCID: PMC11719408 DOI: 10.1016/j.ynstr.2024.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The mother-infant bond is among the strongest social relationships formed in humans and nonhuman mammals. As such, disrupted infant-caregiver relationships have the capacity to result in potent adverse effects not only in the offspring, but also in the mother. Here, I provide a brief overview of my prior work showing adversity-induced alterations in offspring and maternal behavioral and brain function. I also share my vision for future directions for developmental and maternal neurobiology research in the context of stress and/or adversity exposure.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience School of Behavioral Brain Sciences University of Texas at Dallas Richardson, TX, 75080, USA
| |
Collapse
|
6
|
Forest TA, McCormick SA, Davel L, Mlandu N, Zieff MR, Amso D, Donald KA, Gabard-Durnam LJ. Early Caregiver Predictability Shapes Neural Indices of Statistical Learning Later in Infancy. Dev Sci 2025; 28:e13570. [PMID: 39352772 DOI: 10.1111/desc.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Caregivers play an outsized role in shaping early life experiences and development, but we often lack mechanistic insight into how exactly caregiver behavior scaffolds the neurodevelopment of specific learning processes. Here, we capitalized on the fact that caregivers differ in how predictable their behavior is to ask if infants' early environmental input shapes their brains' later ability to learn about predictable information. As part of an ongoing longitudinal study in South Africa, we recorded naturalistic, dyadic interactions between 103 (46 females and 57 males) infants and their primary caregivers at 3-6 months of age, from which we calculated the predictability of caregivers' behavior, following caregiver vocalization and overall. When the same infants were 6-12-months-old they participated in an auditory statistical learning task during EEG. We found evidence of learning-related change in infants' neural responses to predictable information during the statistical learning task. The magnitude of statistical learning-related change in infants' EEG responses was associated with the predictability of their caregiver's vocalizations several months earlier, such that infants with more predictable caregiver vocalization patterns showed more evidence of statistical learning later in the first year of life. These results suggest that early experiences with caregiver predictability influence learning, providing support for the hypothesis that the neurodevelopment of core learning and memory systems is closely tied to infants' experiences during key developmental windows.
Collapse
Affiliation(s)
| | - Sarah A McCormick
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Lauren Davel
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Nwabisa Mlandu
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Michal R Zieff
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Dima Amso
- Department of Psychology, Columbia University, New York, New York, USA
| | - Kirsty A Donald
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
7
|
Doom JR, Han D, Rivera KM, Tseten T. Childhood unpredictability research within the developmental psychopathology framework: Advances, implications, and future directions. Dev Psychopathol 2024; 36:2452-2463. [PMID: 38506038 DOI: 10.1017/s0954579424000610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Greater unpredictability in childhood from the level of the caregiver-child dyad to broader family, home, or environmental instability is consistently associated with disruptions in cognitive, socioemotional, behavioral, and biological development in humans. These findings are bolstered by experimental research in non-human animal models suggesting that early life unpredictability is an important environmental signal to the developing organism that shapes neurodevelopment and behavior. Research on childhood unpredictability has surged in the past several years, guided in part by theoretical grounding from the developmental psychopathology framework (shaped largely by Dr. Dante Cicchetti's innovative work). The current review focuses on future directions for unpredictability research, including probing intergenerational effects, the role of predictability in resilience, cultural and contextual considerations, and novel developmental outcomes that should be tested in relation to childhood unpredictability. We urge the integration of multidisciplinary perspectives and collaborations into future research on unpredictability. We also provide ideas for translating this research to real-world practice and policy and encourage high-quality research testing whether incorporating predictability into interventions and policy improves developmental outcomes, which would support further dissemination of these findings.
Collapse
Affiliation(s)
- Jenalee R Doom
- Department of Psychology, University of Denver, Denver, CO, USA
| | - Deborah Han
- Department of Psychology, University of Denver, Denver, CO, USA
| | - Kenia M Rivera
- Department of Psychology, University of Denver, Denver, CO, USA
| | - Tenzin Tseten
- Graduate School of Professional Psychology, University of Denver, Denver, CO, USA
| |
Collapse
|
8
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Glynn LM, Liu SR, Lucas CT, Davis EP. Leveraging the science of early life predictability to inform policies promoting child health. Dev Cogn Neurosci 2024; 69:101437. [PMID: 39260117 PMCID: PMC11415967 DOI: 10.1016/j.dcn.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Addressing the tremendous burden of early-life adversity requires constructive dialogues between scientists and policy makers to improve population health. Whereas dialogues focused on several aspects of early-life adversity have been initiated, discussion of an underrecognized form of adversity that has been observed across multiple contexts and cultures is only now emerging. Here we provide evidence for "why unpredictability?", including: 1. Evidence that exposures to unpredictability affect child neurodevelopment, with influences that persist into adulthood. 2. The existence of a translational non-human animal model of exposure to early life unpredictability that can be capitalized upon to causally probe neurobiological mechanisms. 3. Evidence that patterns of signals in the early environment promote brain maturation across species. 4. The uneven distribution of unpredictability across demographic populations that illuminates a possible focal point for enhancing health equity. We then outline the potential of unpredictability in terms of the "what"; that is, how might the concept of unpredictability be leveraged to inform policy? We emphasize the importance of interdisciplinary and community partnerships to the success of this work and describe our community-engaged research project. Finally, we highlight opportunities for the science of unpredictability to inform policies in areas such as screening, immigration, criminal justice, education, childcare, child welfare, employment, healthcare and housing.
Collapse
Affiliation(s)
- Laura M Glynn
- Department of Psychology, Chapman University, United States.
| | - Sabrina R Liu
- Department of Human Development, California State University San Marcos, United States
| | | | - Elysia Poggi Davis
- Department of Pediatrics, University of California Irvine, United States; Department of Psychology, University of Denver, United States
| |
Collapse
|
11
|
Davis EP, Leonard BT, Jirsaraie RJ, Keator DB, Small SL, Sandman CA, Risbrough VB, Stern HS, Glynn LM, Yassa MA, Baram TZ, Rasmussen JM. Sex-Specific Effects of Early Life Unpredictability on Hippocampal and Amygdala Responses to Novelty in Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614130. [PMID: 39345394 PMCID: PMC11429980 DOI: 10.1101/2024.09.20.614130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Unpredictable childhood experiences are an understudied form of early life adversity that impacts neurodevelopment in a sex-specific manner. The neurobiological processes by which exposure to early-life unpredictability impacts development and vulnerability to psychopathology remain poorly understood. The present study investigates the sex-specific consequences of early-life unpredictability on the limbic network, focusing on the hippocampus and the amygdala. Methods Participants included 150 youth (54% female). Early life unpredictability was assessed using the Questionnaire of Unpredictability in Childhood (QUIC). Participants engaged in a task-fMRI scan between the ages of 8 and 17 (223 total observations) measuring BOLD responses to novel and familiar scenes. Results Exposure to early-life unpredictability associated with BOLD contrast (novel vs. familiar) in a sex-specific manner. For males, but not females, higher QUIC scores were associated with lower BOLD activation in response to novel vs. familiar stimuli in the hippocampal head and amygdala. Secondary psychophysiological interaction (PPI) analyses revealed complementary sex-specific associations between QUIC and condition-specific functional connectivity between the right and left amygdala, as well as between the right amygdala and hippocampus bilaterally. Conclusion Exposure to unpredictability in early life has persistent implications for the functional operations of limbic circuits. Importantly, consistent with emerging experimental animal and human studies, the consequences of early life unpredictability differ for males and females. Further, impacts of early-life unpredictability were independent of other risk factors including lower household income and negative life events, indicating distinct consequences of early-life unpredictability over and above more commonly studied types of early life adversity.
Collapse
Affiliation(s)
- Elysia Poggi Davis
- Department of Psychology, University of Denver, Colorado 80208
- Department of Pediatrics, University of California, Irvine, California 92697
| | - Bianca T. Leonard
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Robert J. Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - David B. Keator
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
- Change Your Brain Change Your Life Foundation, Costa Mesa, California, Amen Clinics, Costa Mesa, CA, USA
| | - Steven L. Small
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Texas 75080
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Victoria B Risbrough
- Centre of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Hal S. Stern
- Department of Statistics, University of California, Irvine, Irvine, California
| | - Laura M. Glynn
- Department of Psychology, Chapman University, California 92866
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Tallie Z. Baram
- Department of Pediatrics, University of California, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Jerod M. Rasmussen
- Department of Pediatrics, University of California, Irvine, California 92697
| |
Collapse
|
12
|
Gautier KN, Higley SL, Mendoza JM, Morrison KE. The impact of pubertal stress and adult hormone exposure on the transcriptome of the developing hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.559350. [PMID: 37873227 PMCID: PMC10592881 DOI: 10.1101/2023.10.03.559350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Why individuals suffer negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when in the lifespan the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted hypothalamic-pituitary-adrenal axis glucocorticoid response in peripartum humans and mice. In mice, our prior examination of the paraventricular nucleus (PVN) of the hypothalamus showed that pubertal stress led to an upregulation of baseline mRNA expression of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. In the current study, we further examined a potential mechanistic role for the IEGs in the PVN. We found that in pubertally stressed adult female, but not male, mice, intra-PVN allopregnanolone was sufficient to recapitulate the baseline IEG mRNA expression profile previously observed in pubertally stressed, pregnant mice. We also examined baseline IEG mRNA expression during adolescence, where we found that IEGs have developmental trajectories that showed sex-specific disruption by pubertal stress. Altogether, these data establish that IEGs may act as a key molecular switch involved in increased vulnerability to negative outcomes in adult, pubertally stressed animals. How the factors that produce vulnerability combine throughout the lifespan is key to our understanding of the etiology of stress-related disorders.
Collapse
Affiliation(s)
- Karissa N Gautier
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Samantha L Higley
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - John M Mendoza
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Kathleen E Morrison
- Department of Psychology, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
13
|
Ahmed S, Polis B, Kaffman A. Microglia: The Drunken Gardeners of Early Adversity. Biomolecules 2024; 14:964. [PMID: 39199352 PMCID: PMC11353196 DOI: 10.3390/biom14080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Early life adversity (ELA) is a heterogeneous group of negative childhood experiences that can lead to abnormal brain development and more severe psychiatric, neurological, and medical conditions in adulthood. According to the immune hypothesis, ELA leads to an abnormal immune response characterized by high levels of inflammatory cytokines. This abnormal immune response contributes to more severe negative health outcomes and a refractory response to treatment in individuals with a history of ELA. Here, we examine this hypothesis in the context of recent rodent studies that focus on the impact of ELA on microglia, the resident immune cells in the brain. We review recent progress in our ability to mechanistically link molecular alterations in microglial function during a critical period of development with changes in synaptic connectivity, cognition, and stress reactivity later in life. We also examine recent research showing that ELA induces long-term alterations in microglial inflammatory response to "secondary hits" such as traumatic brain injury, substance use, and exposure to additional stress in adulthood. We conclude with a discussion on future directions and unresolved questions regarding the signals that modify microglial function and the clinical significance of rodent studies for humans.
Collapse
Affiliation(s)
| | | | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; (S.A.); (B.P.)
| |
Collapse
|
14
|
Foster JC, Hodges HR, Beloborodova A, Cohodes EM, Phillips MQ, Anderson E, Fagbenro B, Gee DG. Integrating developmental neuroscience with community-engaged approaches to address mental health outcomes for housing-insecure youth: Implications for research, practice, and policy. Dev Cogn Neurosci 2024; 68:101399. [PMID: 38875770 PMCID: PMC11225708 DOI: 10.1016/j.dcn.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
One in three children in the United States is exposed to insecure housing conditions, including unaffordable, inconsistent, and unsafe housing. These exposures have detrimental impacts on youth mental health. Delineating the neurobehavioral pathways linking exposure to housing insecurity with children's mental health has the potential to inform interventions and policy. However, in approaching this work, carefully considering the lived experiences of youth and families is essential to translating scientific discovery to improve health outcomes in an equitable and representative way. In the current paper, we provide an introduction to the range of stressful experiences that children may face when exposed to insecure housing conditions. Next, we highlight findings from the early-life stress literature regarding the potential neurobehavioral consequences of insecure housing, focusing on how unpredictability is associated with the neural circuitry supporting cognitive and emotional development. We then delineate how community-engaged research (CEnR) approaches have been leveraged to understand the effects of housing insecurity on mental health, and we propose future research directions that integrate developmental neuroscience research and CEnR approaches to maximize the impact of this work. We conclude by outlining practice and policy recommendations that aim to improve the mental health of children exposed to insecure housing.
Collapse
Affiliation(s)
- Jordan C Foster
- Yale University, Department of Psychology, New Haven, CT, United States.
| | - H R Hodges
- University of Minnesota, Institute of Child Development, Minneapolis, MN, United States
| | - Anna Beloborodova
- Yale University, Department of Psychology, New Haven, CT, United States
| | - Emily M Cohodes
- Yale University, Department of Psychology, New Haven, CT, United States
| | | | | | | | - Dylan G Gee
- Yale University, Department of Psychology, New Haven, CT, United States.
| |
Collapse
|
15
|
Chen J, Bornstein AM. The causal structure and computational value of narratives. Trends Cogn Sci 2024; 28:769-781. [PMID: 38734531 PMCID: PMC11305923 DOI: 10.1016/j.tics.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024]
Abstract
Many human behavioral and brain imaging studies have used narratively structured stimuli (e.g., written, audio, or audiovisual stories) to better emulate real-world experience in the laboratory. However, narratives are a special class of real-world experience, largely defined by their causal connections across time. Much contemporary neuroscience research does not consider this key property. We review behavioral and neuroscientific work that speaks to how causal structure shapes comprehension of and memory for narratives. We further draw connections between this work and reinforcement learning, highlighting how narratives help link causes to outcomes in complex environments. By incorporating the plausibility of causal connections between classes of actions and outcomes, reinforcement learning models may become more ecologically valid, while simultaneously elucidating the value of narratives.
Collapse
Affiliation(s)
- Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Aaron M Bornstein
- Department of Cognitive Sciences, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Hunt C, Vinograd M, Glynn LM, Davis EP, Baram TZ, Stern H, Nievergelt C, Cuccurazzu B, Napan C, Delmar D, Baker DG, Risborough VB. Childhood unpredictability is associated with increased risk for long- and short-term depression and anhedonia symptoms following combat deployment. JOURNAL OF MOOD AND ANXIETY DISORDERS 2024; 6:100045. [PMID: 38911511 PMCID: PMC11192232 DOI: 10.1016/j.xjmad.2023.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
High unpredictability has emerged as a dimension of early-life adversity that may contribute to a host of deleterious consequences later in life. Early-life unpredictability affects development of limbic and reward circuits in both rodents and humans, with a potential to increase sensitivity to stressors and mood symptoms later in life. Here, we examined the extent to which unpredictability during childhood was associated with changes in mood symptoms (anhedonia and general depression) after two adult life stressors, combat deployment and civilian reintegration, which were assessed ten years apart. We also examined how perceived stress and social support mediated and /or moderated links between childhood unpredictability and mood symptoms. To test these hypotheses, we leveraged the Marine Resiliency Study, a prospective longitudinal study of the effects of combat deployment on mental health in Active-Duty Marines and Navy Corpsman. Participants (N = 273) were assessed for depression and anhedonia before (pre-deployment) and 3-6 months after (acute post-deployment) a combat deployment. Additional assessment of depression and childhood unpredictability were collected 10 years post-deployment (chronic post-deployment). Higher childhood unpredictability was associated with higher anhedonia and general depression at both acute and chronic post-deployment timepoints (βs ≥ 0.16, ps ≤.007). The relationship between childhood unpredictability and subsequent depression at acute post-deployment was partially mediated by lower social support (b = 0.07, 95% CI [0.03, 0.15]) while depression at chronic post-deployment was fully mediated by a combination of lower social support (b = 0.14, 95% CI [0.07, 0.23]) and higher perceived stress (b = 0.09, 95% CI [0.05, 0.15]). These findings implicate childhood unpredictability as a potential risk factor for depression in adulthood and suggest that increasing the structure and predictability of childhood routines and developing social support interventions after life stressors could be helpful for preventing adult depression.
Collapse
Affiliation(s)
- Christopher Hunt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Meghan Vinograd
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, CA
| | - Elysia Poggi Davis
- Psychology Department, University of Denver, Denver, CO
- Department of Pediatrics, University of California, Irvine, Irvine, CA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA
- Department of Neurology, University of California, Irvine, Irvine, CA
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA
| | - Hal Stern
- Department of Statistics, University of California, Irvine, Irvine, CA
| | - Caroline Nievergelt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Bruna Cuccurazzu
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Cindy Napan
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Dylan Delmar
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Dewleen G Baker
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Victoria B Risborough
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| |
Collapse
|
17
|
Tabbaa M, Levitt P. Chd8 haploinsufficiency impacts rearing experience in C57BL/6 mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12892. [PMID: 38560770 PMCID: PMC10982810 DOI: 10.1111/gbb.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Mutations in CHD8 are one of the highest genetic risk factors for autism spectrum disorder. Studies in mice that investigate underlying mechanisms have shown Chd8 haploinsufficient mice display some trait disruptions that mimic clinical phenotypes, although inconsistencies have been reported in some traits across different models on the same strain background. One source of variation across studies may be the impact of Chd8 haploinsufficiency on maternal-offspring interactions. While differences in maternal care as a function of Chd8 genotype have not been studied directly, a previous study showed that pup survival was reduced when reared by Chd8 heterozygous dams compared with wild-type (WT) dams, suggesting altered maternal care as a function of Chd8 genotype. Through systematic observation of the C57BL/6 strain, we first determined the impact of Chd8 haploinsufficiency in the offspring on WT maternal care frequencies across preweaning development. We next determined the impact of maternal Chd8 haploinsufficiency on pup care. Compared with litters with all WT offspring, WT dams exhibited less frequent maternal behaviors toward litters consisting of offspring with mixed Chd8 genotypes, particularly during postnatal week 1. Dam Chd8 haploinsufficiency decreased litter survival and increased active maternal care also during postnatal week 1. Determining the impact of Chd8 haploinsufficiency on early life experiences provides an important foundation for interpreting offspring outcomes and determining mechanisms that underlie heterogeneous phenotypes.
Collapse
Affiliation(s)
- Manal Tabbaa
- Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Pat Levitt
- Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
18
|
Davis EP, Glynn LM. Annual Research Review: The power of predictability - patterns of signals in early life shape neurodevelopment and mental health trajectories. J Child Psychol Psychiatry 2024; 65:508-534. [PMID: 38374811 PMCID: PMC11283837 DOI: 10.1111/jcpp.13958] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
The global burden of early life adversity (ELA) is profound. The World Health Organization has estimated that ELA accounts for almost 30% of all psychiatric cases. Yet, our ability to identify which individuals exposed to ELA will develop mental illness remains poor and there is a critical need to identify underlying pathways and mechanisms. This review proposes unpredictability as an understudied aspect of ELA that is tractable and presents a conceptual model that includes biologically plausible mechanistic pathways by which unpredictability impacts the developing brain. The model is supported by a synthesis of published and new data illustrating the significant impacts of patterns of signals on child development. We begin with an overview of the existing unpredictability literature, which has focused primarily on longer patterns of unpredictability (e.g. years, months, and days). We then describe our work testing the impact of patterns of parental signals on a moment-to-moment timescale, providing evidence that patterns of these signals during sensitive windows of development influence neurocircuit formation across species and thus may be an evolutionarily conserved process that shapes the developing brain. Next, attention is drawn to emerging themes which provide a framework for future directions of research including the evaluation of functions, such as effortful control, that may be particularly vulnerable to unpredictability, sensitive periods, sex differences, cross-cultural investigations, addressing causality, and unpredictability as a pathway by which other forms of ELA impact development. Finally, we provide suggestions for prevention and intervention, including the introduction of a screening instrument for the identification of children exposed to unpredictable experiences.
Collapse
Affiliation(s)
- Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, CA, United States
| |
Collapse
|
19
|
Wass S, Greenwood E, Esposito G, Smith C, Necef I, Phillips E. Annual Research Review: 'There, the dance is - at the still point of the turning world' - dynamic systems perspectives on coregulation and dysregulation during early development. J Child Psychol Psychiatry 2024; 65:481-507. [PMID: 38390803 DOI: 10.1111/jcpp.13960] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
During development we transition from coregulation (where regulatory processes are shared between child and caregiver) to self-regulation. Most early coregulatory interactions aim to manage fluctuations in the infant's arousal and alertness; but over time, coregulatory processes become progressively elaborated to encompass other functions such as sociocommunicative development, attention and executive control. The fundamental aim of coregulation is to help maintain an optimal 'critical state' between hypo- and hyperactivity. Here, we present a dynamic framework for understanding child-caregiver coregulatory interactions in the context of psychopathology. Early coregulatory processes involve both passive entrainment, through which a child's state entrains to the caregiver's, and active contingent responsiveness, through which the caregiver changes their behaviour in response to behaviours from the child. Similar principles, of interactive but asymmetric contingency, drive joint attention and the maintenance of epistemic states as well as arousal/alertness, emotion regulation and sociocommunicative development. We describe three ways in which active child-caregiver regulation can develop atypically, in conditions such as Autism, ADHD, anxiety and depression. The most well-known of these is insufficient contingent responsiveness, leading to reduced synchrony, which has been shown across a range of modalities in different disorders, and which is the target of most current interventions. We also present evidence that excessive contingent responsiveness and excessive synchrony can develop in some circumstances. And we show that positive feedback interactions can develop, which are contingent but mutually amplificatory child-caregiver interactions that drive the child further from their critical state. We discuss implications of these findings for future intervention research, and directions for future work.
Collapse
Affiliation(s)
- Sam Wass
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Emily Greenwood
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Giovanni Esposito
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Celia Smith
- Institute of Psychology Psychiatry and Neuroscience, King's College, London, UK
| | - Isil Necef
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Emily Phillips
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| |
Collapse
|
20
|
Aran Ö, Swales DA, Bailey NA, Korja R, Holmberg E, Eskola E, Nolvi S, Perasto L, Nordenswan E, Karlsson H, Karlsson L, Sandman CA, Stern HS, Baram TZ, Glynn LM, Davis EP. Across ages and places: Unpredictability of maternal sensory signals and child internalizing behaviors. J Affect Disord 2024; 347:557-567. [PMID: 38007106 PMCID: PMC10843791 DOI: 10.1016/j.jad.2023.11.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Patterns of sensory inputs early in life play an integral role in shaping the maturation of neural circuits, including those implicated in emotion and cognition. In both experimental animal models and observational human research, unpredictable sensory signals have been linked to aberrant developmental outcomes, including poor memory and effortful control. These findings suggest that sensitivity to unpredictable sensory signals is conserved across species and sculpts the developing brain. The current study provides a novel investigation of unpredictable maternal sensory signals in early life and child internalizing behaviors. We tested these associations in three independent cohorts to probe the generalizability of associations across continents and cultures. METHOD The three prospective longitudinal cohorts were based in Orange, USA (n = 163, 47.2 % female, Mage = 1 year); Turku, Finland (n = 239, 44.8 % female, Mage = 5 years); and Irvine, USA (n = 129, 43.4 % female, Mage = 9.6 years). Unpredictability of maternal sensory signals was quantified during free-play interactions. Child internalizing behaviors were measured via parent report (Orange & Turku) and child self-report (Irvine). RESULTS Early life exposure to unpredictable maternal sensory signals was associated with greater child fearfulness/anxiety in all three cohorts, above and beyond maternal sensitivity and sociodemographic factors. The association between unpredictable maternal sensory signals and child sadness/depression was relatively weaker and did not reach traditional thresholds for statistical significance. LIMITATIONS The correlational design limits our ability to make causal inferences. CONCLUSIONS Findings across the three diverse cohorts suggest that unpredictable maternal signals early in life shape the development of internalizing behaviors, particularly fearfulness and anxiety.
Collapse
Affiliation(s)
- Özlü Aran
- Department of Psychology, University of Denver, Denver, CO, USA.
| | - Danielle A Swales
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA.
| | - Natasha A Bailey
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Riikka Korja
- University of Turku, Department of Psychology and Speech-Language Pathology, Turku, Finland; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Turku, Turku, Finland
| | - Eeva Holmberg
- University of Turku, Department of Psychology and Speech-Language Pathology, Turku, Finland; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland
| | - Eeva Eskola
- University of Turku, Department of Psychology and Speech-Language Pathology, Turku, Finland; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland
| | - Saara Nolvi
- University of Turku, Department of Psychology and Speech-Language Pathology, Turku, Finland; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland
| | - Laura Perasto
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Elisabeth Nordenswan
- University of Turku, Department of Psychology and Speech-Language Pathology, Turku, Finland; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Turku, Turku, Finland; Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California-Irvine, Irvine, CA, USA
| | - Hal S Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA; Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, CA, USA
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, USA; Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
21
|
Gautier KN, Higley SL, Mendoza JM, Morrison KE. The impact of pubertal stress and adult hormone exposure on the transcriptome of the developing hypothalamus. Stress 2024; 27:2357330. [PMID: 38775373 PMCID: PMC11323331 DOI: 10.1080/10253890.2024.2357330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/09/2024] [Indexed: 08/16/2024] Open
Abstract
Why individuals suffer negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when in the lifespan the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted hypothalamic-pituitary-adrenal axis glucocorticoid response in peripartum humans and mice. In mice, our prior examination of the paraventricular nucleus (PVN) of the hypothalamus showed that pubertal stress led to an upregulation of baseline mRNA expression of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. In the current study, we further examined a potential mechanistic role for the IEGs in the PVN. We found that in pubertally stressed adult female, but not male, mice, intra-PVN allopregnanolone was sufficient to recapitulate the baseline IEG mRNA expression profile previously observed in pubertally stressed, pregnant mice. We also examined baseline IEG mRNA expression during adolescence, where we found that IEGs have developmental trajectories that showed sex-specific disruption by pubertal stress. Altogether, these data establish that IEGs may act as a key molecular switch involved in increased vulnerability to negative outcomes in adult, pubertally stressed animals. How the factors that produce vulnerability combine throughout the lifespan is key to our understanding of the etiology of stress-related disorders.
Collapse
Affiliation(s)
| | | | - John M. Mendoza
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Kathleen E. Morrison
- Department of Psychology, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Short AK, Weber R, Kamei N, Thai CW, Arora H, Mortazavi A, Stern HS, Glynn L, Baram TZ. Within-subject changes in methylome profile identify individual signatures of early-life adversity, with a potential to predict neuropsychiatric outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571594. [PMID: 38187766 PMCID: PMC10769190 DOI: 10.1101/2023.12.16.571594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Adverse early-life experiences (ELA), including poverty, trauma and neglect, affect a majority of the world's children. Whereas the impact of ELA on cognitive and emotional health throughout the lifespan is well-established, it is not clear how distinct types of ELA influence child development, and there are no tools to predict for an individual child their vulnerability or resilience to the consequences of ELAs. Epigenetic markers including DNA-methylation profiles of peripheral cells may encode ELA and provide a predictive outcome marker. However, the rapid dynamic changes in DNA methylation in childhood and the inter-individual variance of the human genome pose barriers to identifying profiles predicting outcomes of ELA exposure. Here, we examined the relation of several dimensions of ELA to changes of DNA methylation, using a longitudinal within-subject design and a high threshold for methylation changes in the hope of mitigating the above challenges. Methods We analyzed DNA methylation in buccal swab samples collected twice for each of 110 infants: neonatally and at 12 months. We identified CpGs differentially methylated across time, calculated methylation changes for each child, and determined whether several indicators of ELA associated with changes of DNA methylation for individual infants. We then correlated select dimensions of ELA with methylation changes as well as with measures of executive function at age 5 years. We examined for sex differences, and derived a sex-dependent 'impact score' based on sites that most contributed to the methylation changes. Findings Setting a high threshold for methylation changes, we discovered that changes in methylation between two samples of an individual child reflected age-related trends towards augmented methylation, and also correlated with executive function years later. Among the tested factors and ELA dimensions, including income to needs ratios, maternal sensitivity, body mass index and sex, unpredictability of parental and household signals was the strongest predictor of executive function. In girls, an interaction was observed between a measure of high early-life unpredictability and methylation changes, in presaging executive function. Interpretation These findings establish longitudinal, within-subject changes in methylation profiles as a signature of some types of ELA in an individual child. Notably, such changes are detectable beyond the age-associated DNA methylation dynamics. Future studies are required to determine if the methylation profile changes identified here provide a predictive marker of vulnerabilities to poorer cognitive and emotional outcomes.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA 92697
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia, 6009 (current)
- Division of Paediatrics/Centre for Child Health Research, Medical School, University of Western Australia, Crawley, WA, Australia, 6009 (current)
| | - Ryan Weber
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697
| | - Noriko Kamei
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA 92697
| | - Christina Wilcox Thai
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697
| | - Hina Arora
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697
| | - Hal S. Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697
| | - Laura Glynn
- Department of Psychology, Chapman University, Orange, CA, 92866
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California- Irvine, Irvine, CA 92697
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697
| |
Collapse
|
23
|
Jhaveri DJ, McGonigal A, Becker C, Benoliel JJ, Nandam LS, Soncin L, Kotwas I, Bernard C, Bartolomei F. Stress and Epilepsy: Towards Understanding of Neurobiological Mechanisms for Better Management. eNeuro 2023; 10:ENEURO.0200-23.2023. [PMID: 37923391 PMCID: PMC10626502 DOI: 10.1523/eneuro.0200-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Stress has been identified as a major contributor to human disease and is postulated to play a substantial role in epileptogenesis. In a significant proportion of individuals with epilepsy, sensitivity to stressful events contributes to dynamic symptomatic burden, notably seizure occurrence and frequency, and presence and severity of psychiatric comorbidities [anxiety, depression, posttraumatic stress disorder (PTSD)]. Here, we review this complex relationship between stress and epilepsy using clinical data and highlight key neurobiological mechanisms including the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, altered neuroplasticity within limbic system structures, and alterations in neurochemical pathways such as brain-derived neurotrophic factor (BNDF) linking epilepsy and stress. We discuss current clinical management approaches of stress that help optimize seizure control and prevention, as well as psychiatric comorbidities associated with epilepsy. We propose that various shared mechanisms of stress and epilepsy present multiple avenues for the development of new symptomatic and preventative treatments, including disease modifying therapies aimed at reducing epileptogenesis. This would require close collaborations between clinicians and basic scientists to integrate data across multiple scales, from genetics to systems biology, from clinical observations to fundamental mechanistic insights. In future, advances in machine learning approaches and neuromodulation strategies will enable personalized and targeted interventions to manage and ultimately treat stress-related epileptogenesis.
Collapse
Affiliation(s)
- Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Aileen McGonigal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Epilepsy Unit, Department of Neurosciences, Mater Hospital, Brisbane, QLD 4101, Australia
| | - Christel Becker
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
| | - Jean-Jacques Benoliel
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
- Site Pitié-Salpêtrière, Service de Biochimie Endocrinienne et Oncologie, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, 75651, France
| | - L Sanjay Nandam
- Turner Inst for Brain & Mental Health, Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Melbourne, 3800, Australia
| | - Lisa Soncin
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Laboratoire d'Anthropologie et de Psychologie Cliniques, Cognitives et Sociales, Côte d'Azur University, Nice, 06300, France
| | - Iliana Kotwas
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| | - Christophe Bernard
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| |
Collapse
|
24
|
Arikan G, Kumru A. A person-based approach to emotion socialization in toddlerhood: Individual differences in maternal emotion regulation, mental-health and parental sense of competence. Sci Rep 2023; 13:13606. [PMID: 37604851 PMCID: PMC10442338 DOI: 10.1038/s41598-023-40850-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Mothers adopt various emotion socialization strategies and sometimes exhibit contradictory responses. Thus, it is essential to understand how mothers differentiate in their use of emotion socialization strategies, and whether a set of emotion socialization responses is associated with individual differences in emotion regulation, mental health, and parental sense of competence during toddlerhood. Therefore, we used a person-centred approach to identify mothers' emotion socialization responses and then compared mothers based on the aforementioned characteristics. The mothers (N = 680) with toddlers (M = 23.56 months) responded to the Coping with Toddlers' Negative Emotions Scale, the Emotion Regulation Questionnaire, the Brief Symptom Inventory, and the Parental Sense of Competence Scale. The 3-profile-solution revealed: Unspecified (moderate scores in all emotion socialization strategies), supportive (high scores in supportive emotion socialization strategies) and mixture profiles (high in all emotion socialization strategies). The supportive and mixture profiles scored highly in cognitive reappraisal. Unspecified and mixture profiles did not vary in expressive suppression and mental health symptoms, but they scored lower than supportive profile mothers. In the parental sense of competence, the supportive profile scored higher than the mixture profile. The results showed mothers mainly using supportive emotion socialization strategies can demonstrate adequate emotion regulation and benefit from psychological well-being that potentially boosts parenting competence.
Collapse
Affiliation(s)
- Gizem Arikan
- Department of Psychology, Ozyegin University, 34794, Istanbul, Turkey.
| | - Asiye Kumru
- Department of Psychology, Ozyegin University, 34794, Istanbul, Turkey
| |
Collapse
|
25
|
Holmberg E, Kataja EL, Davis EP, Pajulo M, Nolvi S, Lahtela H, Nordenswan E, Karlsson L, Karlsson H, Korja R. Unpredictable maternal sensory signals in caregiving behavior are associated with child effortful control. PLoS One 2022; 17:e0279384. [PMID: 36538558 PMCID: PMC9767348 DOI: 10.1371/journal.pone.0279384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that exposure to unpredictable patterns of maternal sensory signals during infancy is associated with child neurodevelopment, including poorer effortful control. However, longitudinal effects on child development and possible sex differences are understudied. The aims of the present study were to explore whether exposure to unpredictable maternal sensory signals during infancy is related to child effortful control at 5 years of age and whether child sex moderates these associations. In addition, we examined how exposure to very high vs. low/moderate unpredictability using categorical cut-offs is related to child effortful control. Participants (133 mother-child pairs, all Caucasian) were drawn from the FinnBrain Birth Cohort Study in Finland. Maternal sensory signals (auditory, visual, tactile) were coded from the 10-min free-play episode on a moment-on-moment basis using Observer XT 11 (Noldus), and the unpredictability of maternal sensory signals was characterized as the entropy rate when the infant was 8 months of age. Child effortful control was assessed via mother reports using the Child Behavior Questionnaire very short form (CBQ-VSF) when the child was 5 years old. Correlational analyses showed that higher unpredictability of maternal sensory signals had a modest association with children's poorer effortful control at 5 years of age. Notably, the linear regression model showed that child sex moderated these associations, as higher exposure to unpredictable maternal sensory signals was related to poorer effortful control among males, but not among females. Moreover, the general linear model showed that exposure to very high unpredictability was associated with poorer child effortful control at 5 years of age and remained significant when adjusted for possible confounding factors. These results are in line with previous findings and suggest that the unpredictability of maternal sensory signals is potentially an important aspect of early caregiving behavior associated with the development of child effortful control.
Collapse
Affiliation(s)
- Eeva Holmberg
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
- * E-mail:
| | - Eeva-Leena Kataja
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States of America
- Department of Pediatrics, University of California, Irvine, CA, United States of America
| | - Marjukka Pajulo
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Child Psychiatry, University of Turku, Turku, Finland
| | - Saara Nolvi
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Hetti Lahtela
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Elisabeth Nordenswan
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Linnea Karlsson
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Hospital District of Southwest Finland, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, University of Turku and Hospital District of Southwest Finland, Turku, Finland
| | - Hasse Karlsson
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Hospital District of Southwest Finland, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Riikka Korja
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| |
Collapse
|