1
|
Lu H, Li Y, Zhang Y, Qin W, Su Z, Qiu S, Zheng L. VSIG4 Alleviates Intracranial Hemorrhage Injury by Regulating Oxidative Stress and Neuroinflammation in Macrophages via the NRF2/HO-1 Signaling Pathway. FRONT BIOSCI-LANDMRK 2025; 30:37810. [PMID: 40302349 DOI: 10.31083/fbl37810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Oxidative stress and neuroinflammation are important secondary injury mechanisms in intracranial hemorrhage (ICH). V-set and immunoglobulin domain-containing 4 (VSIG4) has an inhibitory effect on oxidative stress and the inflammatory response. This study aimed to explore the possible role of VSIG4 in ICH-related neuropathology. METHODS In this study, VSIG4 levels were investigated in an ICH mouse model and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Moreover, we examined oxidative stress levels, pro-inflammatory cytokine production, neuronal damage, inflammatory cell activation, brain water content, and neurological function. We performed these assays in ICH mice and macrophages with different VSIG4 levels. Additionally, the critical role of the nuclear factor erythroid 2 related factor 2/heme oxygenase-1 (NRF2/HO-1) signaling pathway in VSIG4 function was verified. RESULTS VSIG4 ameliorated neurological deficits in ICH mice (p < 0.01), alleviated cerebral edema (p < 0.05), and increased glutathione (p < 0.05) and decreased superoxide dismutase (SOD) levels (p < 0.01) in the perihematomal area and LPS-stimulated RAW264.7 cells. It also reduced Malondialdehyde (MDA) accumulation (p < 0.01), alleviated oxidative stress, and decreased interleukin-1β (IL-1β) (p < 0.01) and tumor necrosis factor-alpha (TNF-α) levels (p < 0.01), thereby attenuating the inflammatory response. Additionally, treatment of LPS-stimulated RAW264.7 cells with VSIG4 resulted in less damage to HT22 cells (p < 0.05). To further validate the involvement of the NRF2/HO-1 pathway in VSIG4-mediated neuroprotection, brusatol (an NRF2 inhibitor) was administered. CONCLUSION Our study demonstrates the neuroprotective effect and mechanism of action of VSIG4 in ICH.
Collapse
Affiliation(s)
- Haofan Lu
- Department of Neurosurgery, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), 313000 Huzhou, Zhejiang, China
- Department of Neurosurgery, Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, 313000 Huzhou, Zhejiang, China
| | - Yuntao Li
- Department of Neurosurgery, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), 313000 Huzhou, Zhejiang, China
- Department of Neurosurgery, Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, 313000 Huzhou, Zhejiang, China
| | - Yonggang Zhang
- Department of Neurosurgery, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), 313000 Huzhou, Zhejiang, China
| | - Wen Qin
- College of Pharmacy, Shenzhen Technology University, 518118 Shenzhen, Guangdong, China
| | - Zhongzhou Su
- Department of Neurosurgery, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), 313000 Huzhou, Zhejiang, China
| | - Sheng Qiu
- Department of Neurosurgery, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), 313000 Huzhou, Zhejiang, China
- Department of Neurosurgery, Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, 313000 Huzhou, Zhejiang, China
| | - Lifang Zheng
- Department of Neurology, Southern University of Sciences and Technology Yantian Hospital, 518081 Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Klaeske K, Dieterlen MT, Kang J, Detzer Z, Ginther A, Ossmann S, Borger MA, Kiefer P, Hoyer AA. Cerebral Inflammation in an Animal Ischemia-Reperfusion Model Comparing Histidine-Tryptophan-α-Ketoglutarate and Del Nido Cardioplegia. Life (Basel) 2025; 15:451. [PMID: 40141795 PMCID: PMC11943810 DOI: 10.3390/life15030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Brain injury and cerebral inflammation are frequent complications following cardiopulmonary bypass (CPB) resulting in neurocognitive dysfunction, encephalopathy, or stroke. We compared cerebral inflammation induced by del Nido and histidine-tryptophan-α-ketoglutarate (HTK) cardioplegia in a porcine model. Pigs underwent 90 min cardiac arrest using HTK (n = 9) or Jonosteril®-based del Nido cardioplegia (n = 9), followed by a 120 min reperfusion. Brain biopsies were collected and analyzed for the mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α) and cytokines. HTK induced a decrease in blood sodium, chloride, and calcium concentration (cross-clamp aorta: psodium < 0.01, pchloride < 0.01, pcalcium < 0.01; 90 min ischemia: psodium < 0.01, pchloride < 0.01, pcalcium = 0.03) compared to the more stable physiological electrolyte concentrations during del Nido cardioplegia. Hyponatremia and hypochloremia persisted after a 120 min reperfusion in the HTK group (psodium < 0.01, pchloride = 0.04). Compared to del Nido, a higher mRNA expression of the proinflammatory cytokine IL-1β was detected in the frontal cortex (HTK: ∆Ct 6.5 ± 1.7; del Nido: ∆Ct 8.8 ± 1.5, p = 0.01) and the brain stem (HTK: ∆Ct 5.7 ± 1.5; del Nido: ∆Ct 7.5 ± 1.6, p = 0.02) of the HTK group. In conclusion, we showed comparability of HTK and del Nido for cerebral inflammation except for IL-1β expression. Based on our study results, we conclude that del Nido cardioplegia is a suitable and safe alternative to the conventional HTK solution.
Collapse
|
3
|
Gong Z, Guo D, Lin Y, Liu Z, Lv M, Liu X, Yao Y, Wang S, Wang Y, Wang Z. A single-cell transcriptome analysis reveals astrocyte heterogeneity and identifies CHI3L1 as a diagnostic biomarker in Parkinson's disease. Heliyon 2025; 11:e42051. [PMID: 39931480 PMCID: PMC11808505 DOI: 10.1016/j.heliyon.2025.e42051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by motor and non-motor symptoms. It has been reported that astrocytes play a critical role in the pathogenesis and progression of PD. Here, we aimed to identify the heterogeneity of astrocytes and investigate genes associated with astrocyte differentiation trajectories in PD. Methods The single-cell transcriptomic profiles of PD samples were collected from the GEO database. We have identified subsets of astrocytes and analyzed their functions. The differentiation trajectory of astrocyte subtypes was explored using Monocle2. Inflammatory response scores were determined using AUCell. The levels of CHI3L1 mRNA and protein expressions in astrocytes were analyzed using qRT-PCR and Western Blot assay, respectively. Results We characterized seven cell types within the substantia nigra region of both PD and normal samples. Our analysis revealed that astrocytes comprised the second-highest proportion of cell types. Additionally, we identified three distinct subpopulations of astrocytes: Astro-C0, Astro-C1, and Astro-C2. Notably, Astro-C0 was associated with inflammatory signaling pathways. Trajectory analysis indicated that Astro-C0 occupies an intermediate stage of differentiation. The astrocyte-related gene CHI3L1 was found to be highly expressed in the Astro-C0 subpopulation. Furthermore, we observed increased levels of CHI3L1 mRNA and protein in LPS-induced astrocytes. Astrocytes exhibiting elevated CHI3L1 levels demonstrated interactions with microglia in PD patients. Lastly, we discovered that CHI3L1 was significantly overexpressed in PD patients and exhibited strong diagnostic potential for the disease. Conclusion This study clarified the heterogeneity of astrocytes in PD based on the single-cell transcriptomic profiles and found that CHI3L1 may be a diagnostic biomarker for PD.
Collapse
Affiliation(s)
- Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Dan Guo
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yufeng Lin
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Zhiwei Liu
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Mengdi Lv
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Xinxin Liu
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yang Yao
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Sijia Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yuan Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
4
|
Mallick R, Basak S, Chowdhury P, Bhowmik P, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies. Pharmaceuticals (Basel) 2025; 18:104. [PMID: 39861166 PMCID: PMC11769149 DOI: 10.3390/ph18010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited. Traditional anti-inflammatory and immunomodulatory drugs are effective in peripheral inflammatory illnesses. Still, they face substantial hurdles when applied to the central nervous system (CNS), such as the blood-brain barrier (BBB) and unwanted systemic effects. This review highlights the developing treatment techniques for modifying cytokine-driven neuroinflammation, focusing on advances that selectively target critical cytokines involved in brain pathology. Novel approaches, including cytokine-specific inhibitors, antibody-based therapeutics, gene- and RNA-based interventions, and sophisticated drug delivery systems like nanoparticles, show promise with respect to lowering neuroinflammation with greater specificity and safety. Furthermore, developments in biomarker discoveries and neuroimaging techniques are improving our ability to monitor inflammatory responses, allowing for more accurate and personalized treatment regimens. Preclinical and clinical trial data demonstrate the therapeutic potential of these tailored techniques. However, significant challenges remain, such as improving delivery across the BBB and reducing off-target effects. As research advances, the creation of personalized, cytokine-centered therapeutics has the potential to alter the therapy landscape for brain illnesses, giving patients hope for better results and a higher quality of life.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Premanjali Chowdhury
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden;
- Department of Textile Engineering, Green University of Bangladesh, Narayanganj 1461, Bangladesh
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico;
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
5
|
Nakagoshi N, Locatelli FM, Kitamura S, Hirota S, Kawano T. The impact of preoperative stress on age-related cognitive dysfunction after abdominal surgery: a study using a rat model. BMC Res Notes 2024; 17:369. [PMID: 39702453 DOI: 10.1186/s13104-024-07023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE This study examines the impact of preoperative stress on postoperative neuroinflammation and associated cognitive dysfunction, with a focus on aged individuals. The goal is to determine whether managing preoperative stress can enhance postoperative outcomes and lower the risk of cognitive impairment. RESULTS In aged rats, preoperative restraint stress significantly worsened neuroinflammation and cognitive deficits following abdominal surgery. Elevated levels of pro-inflammatory cytokines were observed in the hippocampus and medial prefrontal cortex two days post-surgery, and these effects persisted for twenty-eight days. In contrast, adult rats did not show significant changes in neuroinflammation or cognitive function due to preoperative restraint stress. An ex vivo analysis indicated that hippocampal microglia from aged rats exhibited an intensified proinflammatory response to lipopolysaccharide stimulation, further heightened by preoperative restraint stress. These findings suggest that managing preoperative stress could mitigate these adverse effects, leading to better postoperative recovery and cognitive health in elderly patients.
Collapse
Affiliation(s)
- Natsuki Nakagoshi
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko-cho, Kohasu, Nankoku, 783-8505, Kochi, Japan
| | - Fabricio M Locatelli
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko-cho, Kohasu, Nankoku, 783-8505, Kochi, Japan
| | - Sonoe Kitamura
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko-cho, Kohasu, Nankoku, 783-8505, Kochi, Japan
| | - Seiji Hirota
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko-cho, Kohasu, Nankoku, 783-8505, Kochi, Japan
| | - Takashi Kawano
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Oko-cho, Kohasu, Nankoku, 783-8505, Kochi, Japan.
| |
Collapse
|
6
|
Parekh P, Serra M, Allaw M, Perra M, Pinna A, Manconi M, Morelli M. Extract from Nasco pomace loaded in nutriosomes exerts anti-inflammatory effects in the MPTP mouse model of Parkinson's disease. Exp Neurol 2024; 382:114958. [PMID: 39303846 DOI: 10.1016/j.expneurol.2024.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Neuroinflammation has recently emerged as a key event in Parkinson's disease (PD) pathophysiology and as a potential target for disease-modifying therapies. Plant-derived extracts, rich in bioactive phytochemicals with antioxidant properties, have shown potential in this regard. Yet their clinical utility is hampered by poor systemic availability and rapid metabolism. Recently, our group demonstrated that intragastric delivery of Nasco pomace extract via nutriosomes (NN), a novel nanoliposome formulation, contrasts the degeneration of nigrostriatal dopaminergic neurons in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In the present study, we investigated the impact of intragastric NN treatment on the reactivity of glial cells in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu) of MPTP-treated mice. To this scope, in mice exposed to MPTP (20 mg/kg/day, × 4 days), we conducted immunohistochemistry analyses of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1) to assess the responsiveness of astrocytes and microglial cells, respectively. Additionally, we studied the co-localization of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF)-α with IBA1 to obtain insights into microglial phenotype. Immunohistochemical results showed that NN administration significantly mitigated astrogliosis and microgliosis in the CPu and SNc of mice receiving subacute MPTP treatment, with region-specific variations in anti-inflammatory efficacy. Remarkably, the CPu showed a heightened response to NN treatment, including a pronounced decrease in microglial IL-1β and TNF-α production. Altogether, these findings underscore the anti-inflammatory effects of NN treatment and provide a potential mechanism underlying the neuroprotective effects previously observed in a subacute MPTP mouse model of PD.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Italy.
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
7
|
Mao Z, Zhang Y, Liang Y, Xia C, Tang L. Liver X receptor α contribution to neuroinflammation and glial cells activation induced by MPTP: Implications for Parkinson's disease. Neuroscience 2024; 560:109-119. [PMID: 39306319 DOI: 10.1016/j.neuroscience.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder whose etiology remains unknown. The immune system has been implicated in hallmarks of PD including aggregation of α-synuclein and death of dopaminergic neurons in the substantia nigra. As a core regulator of immune response and inflammation, liver X receptors (LXRs) have been shown to have protective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. With two isoforms of LXRs (LXRα and LXRβ) expressed in the brain, their roles and distributions in this tissue remain largely unexplored. Here, we used MPTP to mimic symptoms and biomedical changes seen in PD in LXRα-/- and wild-type mice to investigate the role of LXRα in the etiology and progression of PD. We found that MPTP is unable to induce motor deficits, anxiety-like behavior in LXRα-/- mice, which has been seen in WT mice. Gene ontology analysis of RNA sequencing revealed that knockout of LXRα led to enrichment of the process, including immune response and inflammation in the midbrain. In addition, MPTP did not lead to dopaminergic neuron death in the striatum and substantia nigra in LXRα-/- mice, the basal GFAP protein level, and pro-inflammatory cytokines were elevated in LXRα-/- mice. Lastly, the microglia activation and astrogliosis caused by MPTP intoxication we found in WT mice were abolished in LXRα-/- mice. To sum up, we conclude that LXRα is a critical regulator in MPTP intoxication and may play a unique role in astrogliosis seen in the neuroinflammation of PD.
Collapse
Affiliation(s)
- Zhihao Mao
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuning Zhang
- Department of Pharmacy, Nanfang hospital, Southern Medical University, Guangzhou 510515, China
| | - Yirong Liang
- College of Biological Science, University of California Davis, Davis, CA 95616, USA
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Toumi HR, Sallabi SM, Lubbad L, Al-Salam S, Hammad FT. The Effect of Nerolidol on Renal Dysfunction following Bilateral Ureteral Obstruction. Biomedicines 2024; 12:2285. [PMID: 39457599 PMCID: PMC11505435 DOI: 10.3390/biomedicines12102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Obstructive uropathy is a common cause of renal impairment. Recently, there has been a burgeoning interest in exploring natural products as potential alternative remedies for many conditions due to their low toxicity, affordability and wide availability. Methods: We investigated the effect of nerolidol in a rat model of bilateral ureteral obstruction (BUO) injury. Nerolidol, dissolved in a vehicle, was administered orally as a single daily dose of 200 mg/kg to Wistar rats. Sham group (n = 12) underwent sham surgery, whereas the BUO (n = 12) and BUO/NR groups (n = 12) underwent reversible 24-h BUO and received the vehicle or nerolidol, respectively. The treatment started 9 days prior to the BUO/sham surgery and continued for 3 days after reversal. Renal functions were assessed before starting the treatment, just prior to the intervention and 3 days after BUO reversal. Results: Neither nerolidol nor the vehicle affected the basal renal functions. Nerolidol resulted in a significant attenuation in the BUO-induced alterations in renal functional parameters such as serum creatinine and urea, creatinine clearance and urinary albumin-creatinine ratio. Nerolidol also attenuated the changes in several markers associated with renal injury, inflammation, apoptosis and oxidative stress and mitigated the histological alterations. Conclusions: The findings of this study demonstrated the potent reno-protective effects of nerolidol in mitigating the adverse renal effects of bilateral ureteral obstruction. This is attributed to its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-oxidant properties. These effects were reflected in the partial recovery of renal functions and histological features. These findings may have potential therapeutic implications.
Collapse
Affiliation(s)
- Harun R. Toumi
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Sundus M. Sallabi
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Loay Lubbad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Fayez T. Hammad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| |
Collapse
|
9
|
Gerasimova T, Poberezhniy D, Nenasheva V, Stepanenko E, Arsenyeva E, Novosadova L, Grivennikov I, Illarioshkin S, Lagarkova M, Tarantul V, Novosadova E. Inflammatory Intracellular Signaling in Neurons Is Influenced by Glial Soluble Factors in iPSC-Based Cell Model of PARK2-Associated Parkinson's Disease. Int J Mol Sci 2024; 25:9621. [PMID: 39273568 PMCID: PMC11395490 DOI: 10.3390/ijms25179621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Neuroinflammation is considered to be one of the driving factors in Parkinson's disease (PD). This study was conducted using neuronal and glial cell cultures differentiated from induced pluripotent stem cells (iPSC) of healthy donors (HD) and PD patients with different PARK2 mutations (PD). Based on the results of RNA sequencing, qPCR and ELISA, we revealed transcriptional and post-transcriptional changes in HD and PD neurons cultivated in HD and PD glial-conditioned medium. We demonstrated that if one or both of the components of the system, neurons or glia, is Parkin-deficient, the interaction resulted in the down-regulation of a number of key genes related to inflammatory intracellular pathways and negative regulation of apoptosis in neurons, which might be neuroprotective. In PD neurons, the stress-induced up-regulation of APLNR was significantly stronger compared to HD neurons and was diminished by glial soluble factors, both HD and PD. PD neurons in PD glial conditioned medium increased APLN expression and also up-regulated apelin synthesis and release into intracellular fluid, which represented another compensatory action. Overall, the reported results indicate that neuronal self-defense mechanisms contribute to cell survival, which might be characteristic of PD patients with Parkin-deficiency.
Collapse
Affiliation(s)
- Tatiana Gerasimova
- Laboratory of Translative Biomedicine, Lopukhin Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Daniil Poberezhniy
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Elena Arsenyeva
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Lyudmila Novosadova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Igor Grivennikov
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | | | - Maria Lagarkova
- Laboratory of Translative Biomedicine, Lopukhin Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Ekaterina Novosadova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| |
Collapse
|
10
|
Carbone MG, Maremmani I. Chronic Cocaine Use and Parkinson's Disease: An Interpretative Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1105. [PMID: 39200714 PMCID: PMC11354226 DOI: 10.3390/ijerph21081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024]
Abstract
Over the years, the growing "epidemic" spread of cocaine use represents a crucial public health and social problem worldwide. According to the 2023 World Drug Report, 0.4% of the world's population aged 15 to 64 report using cocaine; this number corresponds to approximately 24.6 million cocaine users worldwide and approximately 1 million subjects with cocaine use disorder (CUD). While we specifically know the short-term side effects induced by cocaine, unfortunately, we currently do not have exhaustive information about the medium/long-term side effects of the substance on the body. The scientific literature progressively highlights that the chronic use of cocaine is related to an increase in cardio- and cerebrovascular risk and probably to a greater incidence of psychomotor symptoms and neurodegenerative processes. Several studies have highlighted an increased risk of antipsychotic-induced extrapyramidal symptoms (EPSs) in patients with psychotic spectrum disorders comorbid with psychostimulant abuse. EPSs include movement dysfunction such as dystonia, akathisia, tardive dyskinesia, and characteristic symptoms of Parkinsonism such as rigidity, bradykinesia, and tremor. In the present paper, we propose a model of interpretation of the neurobiological mechanisms underlying the hypothesized increased vulnerability in chronic cocaine abusers to neurodegenerative disorders with psychomotor symptoms. Specifically, we supposed that the chronic administration of cocaine produces significant neurobiological changes, causing a complex dysregulation of various neurotransmitter systems, mainly affecting subcortical structures and the dopaminergic pathways. We believe that a better understanding of these cellular and molecular mechanisms involved in cocaine-induced neuropsychotoxicity may have helpful clinical implications and provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Division of Psychiatry, Department of Medicine and Surgery, University of Insubria, Viale Luigi Borri 57, 21100 Varese, Italy;
- VP Dole Research Group, G. De Lisio Institute of Behavioural Sciences, Via di Pratale 3, 56121 Pisa, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Icro Maremmani
- VP Dole Research Group, G. De Lisio Institute of Behavioural Sciences, Via di Pratale 3, 56121 Pisa, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Addiction Research Methods Institute, World Federation for the Treatment of Opioid Dependence, 225 Varick Street, Suite 402, New York, NY 10014, USA
| |
Collapse
|
11
|
Singh S, Chauhan K. Pharmacological approach using doxycycline and tocopherol in rotenone induced oxidative stress, neuroinflammation and Parkinson's like symptoms. Int J Neurosci 2024; 134:866-881. [PMID: 36453937 DOI: 10.1080/00207454.2022.2154670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a second most common neurodegenerative disorder characterized by the selective and progressive degeneration of dopaminergic neurons in substantia nigra pars compacta. Rotenone is a neurotoxin which selectively degenerate dopaminergic neurons in striatum, leading to cause PD like symptoms. METHOD Rotenone was administered at a dose of 1.5 mg/kg, i.p. from day 1 to day 40. Treatment with doxycycline (50 and 100 mg/kg, p.o), tocopherol (5 mg and 10 mg/kg, p.o) alone, doxycycline (50 mg/kg, p.o) in combination with tocopherol (10 mg/kg, p.o), and ropinirole (0.5 mg/kg, i.p.) was given for 40 days 1 h prior to administration of rotenone. All behavioral parameters were analyzed on weekly basis. On day 41, animals were sacrificed and the striatum region was isolated for neurotransmitters estimation (dopamine, serotonin, norepinephrine, GABA and glutamate), biochemical analysis (GSH, nitrite, LPO, mitochondrial complexes I and IV), inflammatory markers estimation (IL-6, IL-1β and TNF-α) and activity of MAO-A, MAO-B. RESULT Doxycycline and tocopherol in combination significantly attenuated behavioral, neurotransmitters and biochemical alterations induced by rotenone in experimental rats as compared to alone treatment with DOX and TOCO. Similarly, DOX and TOCO combination significantly reduced the level of inflammatory markers, prevented the biochemical changes, decreased MAO-A and MAO-B and improved complex-I, complex-IV, cAMP levels significantly. CONCLUSION The current study revealed that a combination of doxycycline with tocopherol contributed to the prevention of PD like symptoms in rats by antioxidant, anti-inflammatory, MAO inhibitory and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kanupriya Chauhan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
12
|
K. A, Singh S. Neuro-inflammatory Responses in Alzheimer’s v/s Parkinson’s Diseases. ADVANCES IN DIAGNOSTICS AND IMMUNOTHERAPEUTICS FOR NEURODEGENERATIVE DISEASES 2024:17-31. [DOI: 10.2174/9789815238754124010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders and are
the leading cause of morbidity and disability. These are described by the progressive
degeneration of the neurons and impaired function of the central nervous system.
Prevailing neurodegenerative diseases in the world include Alzheimer's disease and
Parkinson's disease and reports predict that on average, the prevalence of both diseases
will double in a span of the next twenty years. Pieces of evidence showed that the
immune system is profoundly involved in brain development, maintenance, and repair
as well as in damage, therefore, may provide a wide scope to focus on the
neuroinflammation-based therapeutic approaches. In this chapter, the various
neuroinflammatory responses will be discussed during the onset and progression of
both Alzheimer’s and Parkinson’s disease pathologies. We will be focusing on both
central and peripheral inflammatory responses and their consideration for disease
diagnosis and therapeutics.
Collapse
Affiliation(s)
- Amrutha K.
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute,
Lucknow-226031, India
| | - Sarika Singh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Grieco M, Giorgi A, Giacovazzo G, Maggiore A, Ficchì S, d'Erme M, Mosca L, Mignogna G, Maras B, Coccurello R. β-Hexachlorocyclohexane triggers neuroinflammatory activity, epigenetic histone post-translational modifications and cognitive dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116487. [PMID: 38810285 DOI: 10.1016/j.ecoenv.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Persistent organic pollutants (POPs), which encompass pesticides and industrial chemicals widely utilized across the globe, pose a covert threat to human health. β-hexachlorocyclohexane (β-HCH) is an organochlorine pesticide with striking stability, still illegally dumped in many countries, and recognized as responsible for several pathogenetic mechanisms. This study represents a pioneering exploration into the neurotoxic effects induced by the exposure to β-HCH specifically targeting neuronal cells (N2a), microglia (BV-2), and C57BL/6 mice. As shown by western blot and qPCR analyses, the administration of β-HCH triggered a modulation of NF-κB, a key factor influencing both inflammation and pro-inflammatory cytokines expression. We demonstrated by proteomic and western blot techniques epigenetic modifications in H3 histone induced by β-HCH. Histone acetylation of H3K9 and H3K27 increased in N2a, and in the prefrontal cortex of C57BL/6 mice administered with β-HCH, whereas it decreased in BV-2 cells and in the hippocampus. We also observed a severe detrimental effect on recognition memory and spatial navigation by the Novel Object Recognition Test (NORT) and the Object Place Recognition Task (OPRT) behavioural tests. Cognitive impairment was linked to decreased expression of the genes BDNF and SNAP-25, which are mediators involved in synaptic function and activity. The obtained results expand our understanding of the harmful impact produced by β-HCH exposure by highlighting its implication in the pathogenesis of neurological diseases. These findings will support intervention programs to limit the risk induced by exposure to POPs. Regulatory agencies should block further illicit use, causing environmental hazards and endangering human and animal health.
Collapse
Affiliation(s)
- Maddalena Grieco
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, Rome, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Serena Ficchì
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | | | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University, Rome, Italy.
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy; Institute for Complex Systems, National Research Council (CNR), Roma, Italy
| |
Collapse
|
14
|
Brash-Arias D, García LI, Pérez-Estudillo CA, Rojas-Durán F, Aranda-Abreu GE, Herrera-Covarrubias D, Chi-Castañeda D. The Role of Astrocytes and Alpha-Synuclein in Parkinson's Disease: A Review. NEUROSCI 2024; 5:71-86. [PMID: 39483813 PMCID: PMC11523690 DOI: 10.3390/neurosci5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
The search for new therapies to reduce symptoms and find a cure for Parkinson's disease has focused attention on two key points: the accumulation of alpha-synuclein aggregates and astrocytes. The former is a hallmark of the disease, while the latter corresponds to a type of glial cell with an important role in both the prevention and development of this neurodegenerative disorder. Traditionally, research has focused on therapies targeting dopaminergic neurons. Currently, as more is known about the genetic and molecular factors and the neuroglial interaction in the disease, great emphasis has been placed on the neuroprotective role of astrocytes in the early stages of the disease and on the astrocytic capture of alpha-synuclein under both physiological and pathological conditions. This review aims to analyze the contribution of alpha-synuclein and astrocytes to the development and progression of Parkinson's disease, as well as to evaluate recent therapeutic proposals specifically focused on synucleopathies and astroglial cells as potential therapies for the disease.
Collapse
Affiliation(s)
- David Brash-Arias
- Doctorado en Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico;
| | - Luis I. García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | | | - Donaji Chi-Castañeda
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
15
|
Sakib S, Zou S. Attenuation of Chronic Inflammation in Intestinal Organoids with Graphene Oxide-Mediated Tumor Necrosis Factor-α_Small Interfering RNA Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38325360 PMCID: PMC10883062 DOI: 10.1021/acs.langmuir.3c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract with a complex and multifactorial etiology, making it challenging to treat. While recent advances in immunomodulatory biologics, such as antitumor necrosis factor-α (TNF-α) antibodies, have shown moderate success, systemic administration of antibody therapeutics may lead to several adverse effects, including the risk of autoimmune disorders due to systemic cytokine depletion. Transient RNA interference using exogenous short interfering RNA (siRNA) to regulate target gene expression at the transcript level offers an alternative to systemic immunomodulation. However, siRNAs are susceptible to premature degradation and have poor cellular uptake. Graphene oxide (GO) nanoparticles have been shown to be effective nanocarriers for biologics due to their reduced cytotoxicity and enhanced bioavailability. In this study, we evaluate the therapeutic efficacy of GO mediated TNF-α_siRNA using in vitro models of chronic inflammation generated by treating murine small intestines (enteroids) and large intestines (colonoids) with inflammatory agents IL-1β, TNF-α, and LPS. The organotypic mouse enteroids and colonoids developed an inflammatory phenotype similar to that of IBD, characterized by impaired epithelial homeostasis and an increased production of inflammatory cytokines such as TNF-α, IL-1β, and IL-6. We assessed siRNA delivery to these inflamed organoids using three different GO formulations. Out of the three, small-sized GO with polymer and dendrimer modifications (smGO) demonstrated the highest transfection efficiency, which led to the downregulation of inflammatory cytokines, indicating an attenuation of the inflammatory phenotype. Moreover, the transfection efficiency and inflammation-ameliorating effects could be further enhanced by increasing the TNF-α_siRNA/smGO ratio from 1:1 to 3:1. Overall, the results of this study demonstrate that ex vivo organoids with disease-specific phenotypes are invaluable models for assessing the therapeutic potential of nanocarrier-mediated drug and biologic delivery systems.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| |
Collapse
|
16
|
Yang J, Du C, Li Y, Liu R, Jing C, Xie J, Wang J. Contrasting Iron Metabolism in Undifferentiated Versus Differentiated MO3.13 Oligodendrocytes via IL-1β-Induced Iron Regulatory Protein 1. Neurochem Res 2024; 49:466-476. [PMID: 37917337 DOI: 10.1007/s11064-023-04047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of iron in the substantia nigra. While iron accumulation and inflammation are implicated in PD pathogenesis, their impact on oligodendrocytes, the brain's myelin-forming cells, remains elusive. This study investigated the influence of interleukin-1β (IL-1β), an elevated proinflammatory cytokine in PD, on iron-related proteins in MO3.13 oligodendrocytes. We found that IL-1β treatment in undifferentiated MO3.13 oligodendrocytes increased iron regulatory protein 1 and transferrin receptor 1 (TfR1) expression while decreasing ferroportin 1 (FPN1) expression. Consequently, iron uptake was enhanced, and iron release was reduced, leading to intracellular iron accumulation. Conversely, IL-1β treatment in differentiated MO3.13 oligodendrocytes exhibited the opposite effect, with decreased TfR1 expression, increased FPN1 expression, and reduced iron uptake. These findings suggest that IL-1β-induced dysregulation of iron metabolism in oligodendrocytes may contribute to the pathological processes observed in PD. IL-1β can increase the iron content in undifferentiated oligodendrocytes, thus facilitating the differentiation of undifferentiated MO3.13 oligodendrocytes. In differentiated oligodendrocytes, IL-1β may facilitate iron release, providing a potential source of iron for neighboring dopaminergic neurons, thereby initiating a cascade of deleterious events. This study provides valuable insights into the intricate interplay between inflammation, abnormal iron accumulation, and oligodendrocyte dysfunction in PD. Targeting the IL-1β-mediated alterations in iron metabolism may hold therapeutic potential for mitigating neurodegeneration and preserving dopaminergic function in PD.
Collapse
Affiliation(s)
- Jiahua Yang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenchen Du
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Institute of Senior Care and Art, Guangdong Vocational College of Hotel Management, Dongguan, China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Rong Liu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Cuiting Jing
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
17
|
Bhushan B, Singh NK. Role of Astrogliosis in the Pathogenesis of Parkinson's Disease: Insights into Astrocytic Nrf2 Pathway as a Potential Therapeutic Target. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1015-1029. [PMID: 37817521 DOI: 10.2174/0118715273270473231002104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
Recently, Parkinson's disease (PD) has become a remarkable burden on families and society with an acceleration of population aging having several pathological hallmarks such as dopaminergic neuronal loss of the substantia nigra pars compacta, α-synucleinopathy, neuroinflammation, autophagy, last but not the least astrogliosis. Astrocyte, star-shaped glial cells perform notable physiological functions in the brain through several molecular and cellular mechanisms including nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. It has been well established that the downregulation of the astrocytic Nrf2 signaling pathway plays a crucial role in the pathogenesis of PD because it is a master regulator of cellular defense mechanism along with a regulator of numerous detoxifying and antioxidant enzymes gene expression. Fascinatingly, upregulation of the astrocytic Nrf2 signaling pathway attenuates the degeneration of nigrostriatal neurons, restores neuronal proliferation, rejuvenates astrocytic functions, and exhibits neuroprotective effects via numerous cellular and molecular mechanisms in the PD-like brain of the experimental animal. Here, we discuss the numerous in-vitro and in-vivo studies that evaluate the neuroprotective potential of the astrocytic Nrf2 signaling pathway against experimentally-induced PD-like manifestation. In conclusion, based on available preclinical reports, it can be assumed that the astrocytic Nrf2 signaling pathway could be an alternative target in the drug discovery process for the prevention, management, and treatment of PD.
Collapse
Affiliation(s)
- Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, NH-19, Mathura-Delhi Road, Chaumuhan, Mathura 281406, U.P. India
| |
Collapse
|
18
|
Huang J, Jiang Z, Wu M, Zhang J, Chen C. Gallic acid exerts protective effects in spinal cord injured rats through modulating microglial polarization. Physiol Behav 2024; 273:114405. [PMID: 37939829 DOI: 10.1016/j.physbeh.2023.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly traumatic injury that causes mechanical damage to the spinal cord. Our study aimed to investigate whether gallic acid has protective effects against SCI injury. METHODS Adult male rats were subjected to contusive spinal cord injuries. For behavioural evaluation, the rats were given gallic acid by i.p. injection at the doses of 10, 50 or 100 mg/kg immediately after SCI once daily for consecutive 28 days. Behavioral tests were used to evaluate locomotor functions, mechanical sensitivity and nerve conduction functions. For biochemical experiments, the rats were randomly divided into three groups: sham group, SCI group and SCI+gallic acid group. The rats in the SCI+gallic acid group were given gallic acid at the dose of 100 mg/kg immediately after SCI once daily for consecutive 14 days. The levels of inflammatory factors were evaluated. RESULTS Gallic acid treatment could improve locomotive and sensory function and reduce the functional impairments in SCI rats. The effects were more effective with increasing gallic acid dose. The levels of M1 markers (inducible nitric oxide synthase and cyclooxygenase-2) were decreased in gallic acid-treated SCI rats, whereas the levels of M2 markers (arginase 1 and cluster of differentiation 206) were increased in response to gallic acid administration. Gallic acid treatment resulted in a significant reduction in pro-inflammatory cytokines and an increase in anti-inflammatory cytokine levels. CONCLUSION Gallic acid enhances the recovery in SCI rats by regulating microglial polarization. The underlying mechanism may involve the promotion of M2 polarization and the suppression of M1 polarization in microglia.
Collapse
Affiliation(s)
- Jianxing Huang
- Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China; Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China.
| | - Zhixian Jiang
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China
| | - Manzhen Wu
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China
| | - Jinning Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China.
| | - Chunmei Chen
- Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China.
| |
Collapse
|
19
|
Farhangi P, Kaveh M, Afrooghe A, Jafari RM, Aryannejad A, Mashinchi B, Rezaie Y, Abdollahi A, Dehpour AR. Desmopressin enhances random-pattern skin flap survival in rats: Possible role of vasopressin Type-1a and 2 receptors. Eur J Pharmacol 2023; 961:176203. [PMID: 37979830 DOI: 10.1016/j.ejphar.2023.176203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Many drugs have been explored for their role in improving skin flap survival. 1-deamino-8-D-arginine vasopressin (DDAVP or desmopressin) is a synthesized form of anti-diuretic hormone (ADH) and a selective agonist for vasopressin type-2 receptors (V2 receptors). Desmopressin has been shown to improve endothelial function, induce vasodilation, and reduce inflammation. We aimed to evaluate its efficacy in enhancing flap survival and assess the role of vasopressin receptors in this process. MATERIALS AND METHODS We randomly assigned six male Wistar rats to each study group. Different doses of desmopressin were injected intraperitoneally to find the most effective amount (8 μg/rat). SR-49059, a selective V1a receptor antagonist, was given at 2μg/rat before providing the most effective dose of desmopressin (8μg/rat). Histopathological assessments, quantitative measurements of interleukin-1β (IL-1β), Tumor necrosis factor-alpha (TNF-α), and Nuclear Factor-κB (NF-κB), optical imaging, and measurement of the expression levels of V2 receptor in the rat skin tissue were performed. RESULTS Desmopressin (8μg/rat) significantly reduced the mean percentage of necrotic area compared to the control group (19.35% vs 73.57%). Histopathological evaluations revealed a notable reduction in tissue inflammation, edema, and degeneration following administration of desmopressin (8). The expression of the V2 receptor was increased following desmopressin administration. It also led to a reduction in IL-1β, TNF-α, and NF-κB levels. The protective effect of desmopressin on flap survival was reversed upon giving SR-49059. The optical imaging revealed enhanced blood flow in the desmopressin group compared to the control group. CONCLUSIONS Desmopressin could be repurposed to improve flap survival. V1a and V2 receptors probably mediate this effect.
Collapse
Affiliation(s)
- Pourya Farhangi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Kaveh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Afrooghe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Armin Aryannejad
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Baharnaz Mashinchi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Rezaie
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Telerman A, Ravid U, Dudai N, Elmann A. Therapeutic Effects of Geranium Oil in MPTP-Induced Parkinsonian Mouse Model. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:768-775. [PMID: 37819493 DOI: 10.1007/s11130-023-01112-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disease characterized by motor and non-motor disabilities resulting from neuronal cell death in the substantia nigra and striatum. Microglial activation and oxidative stress are two of the primary mechanisms driving that neuronal death. Here, we evaluated the effects of geranium oil on 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) mouse model for PD, on microglial activation, and oxidative stress. We demonstrate that oral treatment with geranium oil improved motor performance in this model. The therapeutic effects of geranium oil were observed as a significant increase in rotarod latency and distance among the mice treated with geranium oil, as compared to vehicle-treated MPTP mice. Geranium oil also prevented dopaminergic neuron death in the substantia nigra of the treated mice. These therapeutic effects can be partially attributed to the antioxidant and anti-inflammatory properties of geranium oil, which were observed as attenuated accumulation of reactive oxygen species and inhibition of the secretion of proinflammatory cytokines from geranium oil-treated activated microglial cells. A repeated-dose oral toxicity study showed that geranium oil is not toxic to mice. In light of that finding and since geranium oil is defined by the FDA as generally recognized as safe (GRAS), we do not foresee any toxicity problems in the future and suggest that geranium oil may be a safe and effective oral treatment for PD. Since the MPTP model is only one of the preclinical models for PD, further studies are needed to confirm that geranium oil can be used to prevent or treat PD.
Collapse
Affiliation(s)
- Alona Telerman
- Department of Food Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Uzi Ravid
- Medicinal and Aromatic Plants Unit, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Nativ Dudai
- Medicinal and Aromatic Plants Unit, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Anat Elmann
- Department of Food Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
21
|
Dos Santos JCC, Rebouças CDSM, Oliveira LF, Cardoso FDS, Nascimento TDS, Oliveira AV, Lima MPP, de Andrade GM, de Castro Brito GA, de Barros Viana GS. The role of gut-brain axis in a rotenone-induced rat model of Parkinson's disease. Neurobiol Aging 2023; 132:185-197. [PMID: 37837734 DOI: 10.1016/j.neurobiolaging.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative condition affecting millions globally. This investigation centered on the gut-brain axis in a rotenone-induced PD rat model. Researchers monitored behavioral shifts, histological modifications, neurodegeneration, and inflammation markers throughout the rats' bodies. Results revealed that rotenone-treated rats displayed reduced exploration (p = 0.004) and motor coordination (p < 0.001), accompanied by decreased Nissl staining and increased alpha-synuclein immunoreactivity in the striatum (p = 0.009). Additionally, these rats exhibited weight loss (T3, mean = 291.9 ± 23.67; T19, mean = 317.5 ± 17.53; p < 0.05) and substantial intestinal histological alterations, such as shortened villi, crypt architecture loss, and inflammation. In various regions, researchers noted elevated immunoreactivity to ionized binding adapter molecule (IBA)-1 (p < 0.05) and reduced immunoreactivity to glial fibrillary acidic protein (p < 0.05) and S100B (p < 0.001), indicating altered glial cell activity. Overall, these findings imply that PD is influenced by gut-brain axis changes and may originate in the intestine, impacting bidirectional gut-brain communication.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Medical School of the Christus University Center-UNICHRISTUS, Fortaleza, CE, Brazil; Graduate Program in Morphofunctional Sciences, Federal University of Ceará-UFC, Fortaleza, CE, Brazil.
| | - Conceição da Silva Martins Rebouças
- Graduate Program in Morphofunctional Sciences, Federal University of Ceará-UFC, Fortaleza, CE, Brazil; Morphology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | | - Fabrizio Dos Santos Cardoso
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil; Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| | | | - Alfaete Vieira Oliveira
- Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | | - Geanne Matos de Andrade
- Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | - Gerly Anne de Castro Brito
- Morphology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil; Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | |
Collapse
|
22
|
Srivastava P, Nishiyama S, Zhou F, Lin SH, Srivastava A, Su C, Xu Y, Peng W, Levy M, Schwarzschild M, Chen X. Peripheral MC1R Activation Modulates Immune Responses and is Neuroprotective in a Mouse Model of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:704-717. [PMID: 38110615 PMCID: PMC10769915 DOI: 10.1007/s11481-023-10094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Melanocortin 1 receptor (MC1R) is a key pigmentation gene, and loss-of-function of MC1R variants that produce red hair may be associated with Parkinson's disease (PD). We previously reported compromised dopaminergic neuron survival in Mc1r mutant mice and dopaminergic neuroprotective effects of local injection of a MC1R agonist to the brain or a systemically administered MC1R agonist with appreciable central nervous system (CNS) permeability. Beyond melanocytes and dopaminergic neurons, MC1R is expressed in other peripheral tissues and cell types, including immune cells. The present study investigates the impact of NDP-MSH, a synthetic melanocortin receptor (MCR) agonist that does not cross BBB, on the immune system and the nigrostriatal dopaminergic system in mouse model of PD. METHODS C57BL/6 mice were treated systemically with MPTP.HCl (20 mg/kg) and LPS (1 mg/kg) from day 1 to day 4 and NDP-MSH (400 µg/kg) or vehicle from day 1 to day 12 following which the mice were sacrificed. Peripheral and CNS immune cells were phenotyped and inflammatory markers were measured. The nigrostriatal dopaminergic system was assessed behaviorally, chemically, immunologically, and pathologically. To understand the role of regulatory T cells (Tregs) in this model, CD25 monoclonal antibody was used to deplete CD25 + Tregs. RESULTS Systemic NDP-MSH administration significantly attenuated striatal dopamine depletion and nigral dopaminergic neuron loss induced by MPTP + LPS. It improved the behavioral outcomes in the pole test. Mc1r mutant mice injected with NDP-MSH in the MPTP and LPS paradigm showed no changes in striatal dopamine levels suggesting that the NDP-MSH acts through the MC1R pathway. Although no NDP-MSH was detected in the brain, peripheral, NDP-MSH attenuated neuroinflammation as observed by diminished microglial activation in the nigral region, along with reduced TNF-α and IL1β levels in the ventral midbrain. Depletion of Tregs was associated with diminished neuroprotective effects of NDP-MSH. CONCLUSIONS Our study demonstrates that peripherally acting NDP-MSH confers protection on dopaminergic nigrostriatal neurons and reduces hyperactivated microglia. NDP-MSH modulates peripheral immune responses, and Tregs may be involved in the neuroprotective effect of NDP-MSH.
Collapse
Affiliation(s)
- Pranay Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Shuhei Nishiyama
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Fang Zhou
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sonia H Lin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Akriti Srivastava
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Chienwen Su
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yuehang Xu
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Weiyi Peng
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Michael Levy
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Michael Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
23
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
24
|
Knappe E, Rudolph F, Klein C, Seibler P. Cytokine Profiling in Human iPSC-Derived Dopaminergic Neuronal and Microglial Cultures. Cells 2023; 12:2535. [PMID: 37947613 PMCID: PMC10650774 DOI: 10.3390/cells12212535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Aside from the degeneration of dopaminergic neurons, inflammation is a key component in the movement disorder Parkinson's disease (PD). Microglia activation as well as elevated cytokine levels were observed in the brains of PD patients, but the specific role of microglia in the disease process is unknown. Here, we generate human cellular models by differentiating iPSCs into dopaminergic neurons and microglia. We combine these cells in co-culture to perform cytokine profiling, representing the final functional outcome of various signaling pathways. For this, we used unstimulated conditions and treatment with inflammatory stressors. Importantly, only co-cultures but not the monocultures responded to IL-1β treatment suggesting co-culture-related crosstalk. Moreover, we identified the main types of released cytokines and chemokines in this model system and found a preference for the activation of the chemotaxis pathway in response to all treatments, which informs future studies on the cell-type-specific reaction to inflammatory stimulation. Finally, we detected protein level changes in PD risk factor GPNMB upon stress in microglia, further confirming the link between PD-associated genes and inflammation in human-derived cellular models.
Collapse
Affiliation(s)
| | | | | | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (E.K.); (F.R.); (C.K.)
| |
Collapse
|
25
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Oliva CA, Lira M, Jara C, Catenaccio A, Mariqueo TA, Lindsay CB, Bozinovic F, Cavieres G, Inestrosa NC, Tapia-Rojas C, Rivera DS. Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1250342. [PMID: 37810621 PMCID: PMC10557460 DOI: 10.3389/fnagi.2023.1250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Centro para la Transversalización de Género en I+D+i+e, Vicerrectoría de Investigación y Doctorados, Universidad Autónoma de Chile, Santiago, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Catenaccio
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Trinidad A. Mariqueo
- Centro de Investigaciones Médicas, Laboratorio de Neurofarmacología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Carolina B. Lindsay
- Laboratory of Neurosystems, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Daniela S. Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
27
|
Li X, Deng R, Li J, Li H, Xu Z, Zhang L, Feng L, Shu C, Zhen M, Wang C. Oral [60]fullerene reduces neuroinflammation to alleviate Parkinson's disease via regulating gut microbiome. Theranostics 2023; 13:4936-4951. [PMID: 37771782 PMCID: PMC10526674 DOI: 10.7150/thno.85711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Neuroinflammation is considered to drive the pathogenic process of neuronal degeneration in Parkinson's disease (PD). However, effective anti-neuroinflammation therapeutics for PD still remain dissatisfactory. Here we explore a robust therapeutic strategy for PD using anti-neuroinflammatory fullerenes. Methods: Oral fullerene was prepared by a ball-milling method. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was used to investigate the therapeutic effects and mechanisms of it. The gut microenvironment was evaluated by 16S rRNA gene sequencing, gas chromatography-mass spectrometry, quantitative polymerase chain reaction (Q-PCR), and western blot (WB). The neuroinflammation and neurodegeneration were evaluated by pathological analysis, Elisa kits, transmission electron microscopy, Q-PCR, WB and so on. Toxicity was assessed by weight, blood test and hematoxylin-eosin (HE) staining. Results: Oral fullerene therapeutic system that dissolved [60]fullerene into olive oil (abbreviated as OFO) was dexterously designed, which could reduce neuroinflammation via regulating the diversity of gut microbiome, increasing the contents of short chain fatty acids (SCFAs) and recovering the integrity of gut barrier. Accordingly, the reduction of neuroinflammation prevented dopaminergic neuronal degeneration. And thus, OFO significantly ameliorated motor deficits and fundamentally reversed dopamine (DA) loss in MPTP-induced PD mice. Of note, OFO exhibited low toxicity towards the living body. Conclusion: Our findings suggest that OFO is a safe-to-use, easy-to-apply, and prospective candidate for PD treatment in clinic, opening a therapeutic window for neuroinflammation-triggered neurodegeneration.
Collapse
Affiliation(s)
- Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Beijing Fullcan Biotechnology Co., Ltd., Beijing, 100085, China
| | - Zhe Xu
- Chifeng Fullcan Biotechnology Co., Ltd., Inner Mongolia, 024099, China
| | - Lei Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linyin Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Wu H, Wei J, Zhao X, Liu Y, Chen Z, Wei K, Lu J, Chen W, Jiang M, Li S, Chen T. Neuroprotective effects of an engineered Escherichia coli Nissle 1917 on Parkinson's disease in mice by delivering GLP-1 and modulating gut microbiota. Bioeng Transl Med 2023; 8:e10351. [PMID: 37693045 PMCID: PMC10487327 DOI: 10.1002/btm2.10351] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 09/12/2023] Open
Abstract
Considerable evidence suggests that insulin resistance is closely linked to Parkinson's disease (PD), leading to agents aiming at treating diabetes can be regarded as new neuroprotective strategies in PD, notably glucagon-like peptide-1 (GLP-1). However, the extremely short half-life of GLP-1 due to degradation by the ubiquitous proteolytic enzyme limits its clinical application. In this study, we engineered the recombinant integrant probiotic strain Escherichia coli Nissle 1917 (EcN) to create a strain EcN-GLP-1 that effectively delivers the heterologous GLP-1 molecule. Subsequently, we assessed its neuroprotective effects on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. We demonstrated that EcN-GLP-1 treatment could improve motor deficits, increase tyrosine hydroxylase-positive neurons, suppress microglia and astrocyte activation, reduce brain and colon inflammation, and ameliorate colonic barrier function damaged by MPTP induction. Meanwhile, we confirmed that the oral administration of EcN-GLP-1 could restore the disturbance of gut microbiota in the MPTP-induced PD mice, by reducing the relative abundances of Akkermansia and Oscillospira, and increasing the level of Prevotella in the gut. These results support further development of an engineered probiotic platform in which production of GLP-1 for gut-brain disorders, such as PD.
Collapse
Affiliation(s)
- Heng Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Xiumiao Zhao
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Ying Liu
- Institute of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Zhihang Chen
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Kehong Wei
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Jiachen Lu
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Wenjie Chen
- Queen Mary SchoolNanchang UniversityNanchangJiangxiChina
| | - Meixiu Jiang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Shengjie Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational MedicineNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
29
|
Lee K, Kumazoe M, Marugame Y, Fujimura Y, Tachibana H. Dextran sulfate sodium-induced mild chronic colitis induced cognitive impairment accompanied by inhibition of neuronal maturation in adolescent mice. Biochem Biophys Res Commun 2023; 669:46-53. [PMID: 37262952 DOI: 10.1016/j.bbrc.2023.05.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Epidemiological studies indicated that inflammatory bowel disease (IBD), with Crohn's disease and ulcerative colitis as its two main types, is associated with dementia. However, little is known about how adolescents with IBD will affect their cognitive ability as adults. The hippocampus, which is crucial for memory and adult neurogenesis, is closely associated with modulation of cognitive processes. Using a low kDa dextran sulfate sodium (DSS, 5 kDa)-induced chronic colitis (mild chronic colitis) mice model in adolescent mice, we investigated the effects of mild chronic colitis on cognitive functions and hippocampal neurogenesis from adolescent mice to adult mice. METHODS We induced DSS-induced mild chronic colitis in C57BL/6J male mice by multiple-cycle administration of 1%-2% DSS in autoclaved drinking water. Mice were subjected to novel-object recognition and Y-maze tests. Neurogenesis markers and neuroinflammation-related proteins in the hippocampus of mice were measured. Tight junction proteins in the colon of mice were measured. RESULTS Mild chronic colitis induced cognitive impairment and decreased adult neurogenesis. Notably, we found a positive correlation with the protein levels between tight junction protein, ZO-1, in the colon and mature neuron marker, NeuN, in the hippocampus. Moreover, mild chronic colitis leads to hippocampal neuroinflammation in adolescent mice. CONCLUSION Our findings provide new evidence of the association between IBD and dementia risk.
Collapse
Affiliation(s)
- Kwanwoo Lee
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
30
|
Pradhan SH, Gibb M, Kramer AT, Sayes CM. Peripheral (lung-to-brain) exposure to diesel particulate matter induces oxidative stress and increased markers for systemic inflammation. ENVIRONMENTAL RESEARCH 2023; 231:116267. [PMID: 37257747 DOI: 10.1016/j.envres.2023.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Combustion-derived air pollution is a complex environmental toxicant that has become a global health concern due to urbanization. Air pollution contains pro-inflammatory stimulants such as fine and ultrafine particulate matter, gases, volatile organic compounds, and metals. This study is focused on the particulate phase, which has been shown to induce systemic inflammation after chronic exposure due to its ability to travel to the lower airway, resulting in the activation of local immune cell populations, releasing acute phase reactants to mitigate ongoing inflammation. The systemic response is a potential mechanism for the co-morbidity associated with regions with high pollution and neuropathology. We exposed diesel particulate matter (DPM) to a pulmonary cell-derived in vitro model where macrophages mimic the diffusion of cytokines into the peripheral circulation to microglia. Alveolar macrophages (transformed U937) were inoculated with resuspended DPM in an acute exposure (24-h incubation) and analyzed for MCP-1 expression and acute phase reactants (IL-1β, IL-6, IL-8, and TNF-α). Post-exposure serum was collected and filtered from cultured alveolar macrophages, introduced to a healthy culture of microglial cells (HMC3), and measured for neurotoxic cytokines, oxidative stress, and pattern recognition receptors. After DPM exposure, the macrophages significantly upregulated all measured acute phase reactants, increased H2O2 production, and increased MCP-1 expression. After collection and filtration to remove excess particulates, microglia cells were incubated with the collected serum for 48 h to allow for cytokine diffusion between the periphery of microglia. Microglia significantly upregulated IL-6, IL-8, and oxidative stress with a moderate increase in IL-1β and TNF-α. As a marker required for signaling tissue damage, CD14 indicated that compared to direct inoculation of DPM, peripheral exposure resulted in the potent activation of microglia cells. The specificity and potency of the response have implications for neuropathology through lung-to-brain mechanisms after inhalation of environmental pollutants.
Collapse
Affiliation(s)
- Sahar H Pradhan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Alec T Kramer
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
31
|
Berryer MH, Tegtmeyer M, Binan L, Valakh V, Nathanson A, Trendafilova D, Crouse E, Klein JA, Meyer D, Pietiläinen O, Rapino F, Farhi SL, Rubin LL, McCarroll SA, Nehme R, Barrett LE. Robust induction of functional astrocytes using NGN2 expression in human pluripotent stem cells. iScience 2023; 26:106995. [PMID: 37534135 PMCID: PMC10391684 DOI: 10.1016/j.isci.2023.106995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
Emerging evidence of species divergent features of astrocytes coupled with the relative inaccessibility of human brain tissue underscore the utility of human pluripotent stem cell (hPSC) technologies for the generation and study of human astrocytes. However, existing approaches for hPSC-astrocyte generation are typically lengthy or require intermediate purification steps. Here, we establish a rapid and highly scalable method for generating functional human induced astrocytes (hiAs). These hiAs express canonical astrocyte markers, respond to pro-inflammatory stimuli, exhibit ATP-induced calcium transients and support neuronal network development. Moreover, single-cell transcriptomic analyses reveal the generation of highly reproducible cell populations across individual donors, mostly resembling human fetal astrocytes. Finally, hiAs generated from a trisomy 21 disease model identify expected alterations in cell-cell adhesion and synaptic signaling, supporting their utility for disease modeling applications. Thus, hiAs provide a valuable and practical resource for the study of basic human astrocyte function and dysfunction in disease.
Collapse
Affiliation(s)
- Martin H. Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Centre for Gene Therapy and Regenerative Medicine, King’s College, London, UK
| | - Loïc Binan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vera Valakh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Crouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jenny A. Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Helsinki, Helsinki, Finland
| | - Francesca Rapino
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Samouil L. Farhi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Steven A. McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Lindy E. Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
32
|
Khot M, Sood A, Pushpa Tryphena K, Pinjala P, Srivastava S, Bala Singh S, Kumar Khatri D. Dimethyl fumarate ameliorates Parkinsonian pathology by modulating autophagy and apoptosis via Nrf2-TIGAR-LAMP2/Cathepsin D axis. Brain Res 2023; 1815:148462. [PMID: 37315723 DOI: 10.1016/j.brainres.2023.148462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Mounting evidence suggests a role for oxidative stress and accumulation of dysfunctional organelle and misfolded proteins in PD. Autophagosomes mediate the clearance of these cytoplasmic proteins via delivery to lysosomes to form autophagolysosomes, followed by degradation of the protein by lysosomal enzymes. In PD, autophagolysosome accumulation occurs initiating a plethora of events resulting in neuronal death by apoptosis. This study evaluated the effect of Dimethylfumarate (DMF), an Nrf2 activator in the rotenone-induced mouse PD model. In PD mice, there was decreased expression of LAMP2 and LC3, which resulted in inhibition of autophagic flux and increased expression of cathepsin D, which mediated apoptosis. The role of Nrf2 activation in alleviating oxidative stress is well known. Our study elucidated the novel mechanism underlying the neuroprotective effect of DMF. The loss of dopaminergic neurons induced by rotenone was lessened to a significant extent by pre-treatment with DMF. DMF promoted autophagosome formation and inhibited apoptosis by removing the inhibitory effect of p53 on TIGAR. TIGAR expression upregulated LAMP2 expression and downregulated Cathepsin D, promoting autophagy and inhibiting apoptosis. Thus, it was proved that DMF confers neuroprotection against rotenone-induced dopaminergic neurodegeneration and could be used as a potential therapeutic agent for PD and its progression.
Collapse
Affiliation(s)
- Mayuri Khot
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Poojitha Pinjala
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India.
| |
Collapse
|
33
|
Sadikan MZ, Abdul Nasir NA, Bakar NS, Iezhitsa I, Agarwal R. Tocotrienol-rich fraction reduces retinal inflammation and angiogenesis in rats with streptozotocin-induced diabetes. BMC Complement Med Ther 2023; 23:179. [PMID: 37268913 DOI: 10.1186/s12906-023-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mellitus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the streptozotocin (STZ)-induced diabetic rats. METHODS Male Sprague Dawley rats weighing 200-250 g were grouped into normal rats (N) and diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF (100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB (Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflammatory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR. RESULTS TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p < 0.05) and retinal venous diameter (p < 0.001). TRF also lowered the retinal NFκB activation (p < 0.05) as well as expressions of IL-1β, IL-6, TNF-α, IFN-γ, iNOS and MCP-1 (p < 0.05) compared to vehicle-treated diabetic rats. Moreover, TRF also reduced retinal expression of VEGF (p < 0.001), IGF-1 (p < 0.001) and HIF-1α (p < 0.05) compared to vehicle-treated rats with diabetes. CONCLUSION Oral TRF provided protection against retinal inflammation and angiogenesis in rats with STZ-induced diabetes by suppressing the expression of the markers of retinal inflammation and angiogenesis.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Melaka, Malaysia
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Nor Salmah Bakar
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, Volgograd, 400131, Russia
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Kang J, Eun Y, Jang W, Cho MH, Han K, Jung J, Kim Y, Kim GT, Shin DW, Kim H. Rheumatoid Arthritis and Risk of Parkinson Disease in Korea. JAMA Neurol 2023; 80:634-641. [PMID: 37126341 PMCID: PMC10152376 DOI: 10.1001/jamaneurol.2023.0932] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/15/2023] [Indexed: 05/02/2023]
Abstract
Importance Although it has been postulated that chronic inflammation caused by rheumatoid arthritis (RA) contributes to the development of Parkinson disease (PD), the association between these 2 conditions has yet to be determined. Objective To evaluate the association between RA and subsequent PD risk. Design, Setting, and Participants This retrospective cohort study used the Korean National Health Insurance Service database to collect population-based, nationally representative data on patients with RA enrolled from 2010 to 2017 and followed up until 2019 (median follow-up, 4.3 [IQR, 2.6-6.4] years after a 1-year lag). A total of 119 788 patients who were first diagnosed with RA (83 064 with seropositive RA [SPRA], 36 724 with seronegative RA [SNRA]) were identified during the study period and included those who underwent a national health checkup within 2 years before the RA diagnosis date (64 457 patients). After applying exclusion criteria (eg, age <40 years, other rheumatic diseases, previous PD), 54 680 patients (39 010 with SPRA, 15 670 with SNRA) were included. A 1:5 age- and sex-matched control group of patients without RA was also included for a total control population of 273 400. Exposures Rheumatoid arthritis as defined using International Classification of Diseases, Tenth Revision codes M05 for SPRA and M06 (except M06.1 and M06.4) for SNRA; prescription of any disease-modifying antirheumatic drug; and enrollment in the Korean Rare and Intractable Diseases program. Main Outcomes and Measures The main outcome was newly diagnosed PD. Data were analyzed from May 10 through August 1, 2022, using Cox proportional hazards regression analyses. Results From the 328 080 individuals analyzed (mean [SD] age, 58.6 [10.1] years; 74.9% female and 25.1% male), 1093 developed PD (803 controls and 290 with RA). Participants with RA had a 1.74-fold higher risk of PD vs controls (95% CI, 1.52-1.99). An increased risk of PD was found in patients with SPRA (adjusted hazard ratio [aHR], 1.95; 95% CI, 1.68-2.26) but not in patients with SNRA (aHR, 1.20; 95% CI, 0.91-1.57). Compared with the SNRA group, those with SPRA had a higher risk of PD (aHR, 1.61; 95% CI, 1.20-2.16). There was no significant interaction between covariates on risk of PD. Conclusions and Relevance In this study, RA was associated with an increased risk of PD, and seropositivity of RA conferred an augmented risk of PD. The findings suggest that physicians should be aware of the elevated risk of PD in patients with RA and promptly refer patients to a neurologist at onset of early motor symptoms of PD without synovitis.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Family Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yeonghee Eun
- Division of Rheumatology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College, Ulsan, Republic of Korea
| | - Mi Hee Cho
- Samsung C&T Medical Clinic, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Jinhyoung Jung
- Department of Medical Statistics, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Gun-tae Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyungjin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Humanities, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Cilostazol novel neuroprotective mechanism against rotenone-induced Parkinson's disease in rats: Correlation between Nrf2 and HMGB1/TLR4/PI3K/Akt/mTOR signaling. Int Immunopharmacol 2023; 117:109986. [PMID: 37012873 DOI: 10.1016/j.intimp.2023.109986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Neuroinflammation induced by activation of the high mobility group box 1/ toll-like receptor 4 (HMGB1/TLR4) axis is one of the principal mechanisms involved in dopaminergic neuronal loss in Parkinson's disease (PD), and its activation exacerbates oxidative stress augmenting neurodegeneration. AIMS This study investigated the novel neuroprotective effect of cilostazol on rotenone-intoxicated rats focusing on the HMGB1/TLR4 axis, erythroid-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1), and phosphoinositide 3-kinase (PI3K)/Protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) pathway. The aim is extended to correlate the Nrf2 expression with all assessed parameters as promising therapeutic targets for neuroprotection. MAIN METHODS Our experiment was designed as follows: vehicle group, cilostazol group, rotenone group (1.5 mg/kg, s.c), and the rotenone pretreated with cilostazol (50 mg/kg, p.o.) group. Eleven rotenone injections were injected day after day, while cilostazol was administered daily for 21 days. KEY FINDINGS Cilostazol significantly improved the neurobehavioral analysis, the histopathological examination, and dopamine levels. Moreover, the immunoreactivity of tyrosine hydroxylase (TH) in substantia nigra pars compacta (SNpc) enhanced. These effects were associated with enhancement of the antioxidant expression of Nrf2 and HO-1 by 1.01 and 1.08-fold, respectively, and repression of HMGB1/TLR4 pathway by 50.2 % and 39.3 %, respectively. Upregulation of the neuro-survival PI3K and Akt expression by 2.26 and 2.69-fold, respectively, and readjusting mTOR overexpression. SIGNIFICANCE Cilostazol exerts a novel neuroprotective strategy against rotenone-induced neurodegeneration via activation of Nrf2/HO-1, suppression of HMGB1/TLR4 axis, upregulation of PI3K/Akt besides mTOR inhibition that compels more investigations with different PD models to clarify its precise role.
Collapse
|
36
|
Bearoff F, Dhavale D, Kotzbauer P, Kortagere S. Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells. Mol Immunol 2023; 154:1-10. [PMID: 36571978 PMCID: PMC9905308 DOI: 10.1016/j.molimm.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by chronic neuroinflammation, loss of dopaminergic neurons in the substantia nigra, and in several cases accumulation of alpha-synuclein fibril (α-syn) containing Lewy-bodies (LBs). Peripheral inflammation may play a causal role in inducing and perpetuating neuroinflammation in PD and accumulation of fibrillar α-syn has been reported at several peripheral sites including the gut and liver. Peripheral fibrillar α-syn may induce activation of monocytes via recognition by toll-like receptors (TLRs) and stimulation of downstream NF-κB signaling; however, the specific mechanism by which this occurs is not defined. In this study we utilized the THP-1 monocytic cell line to model the peripheral transcriptional response to preformed fibrillar (PFF) α-syn. Compared to monomeric α-syn, PFF α-syn displays overt inflammatory gene upregulation and pathway activation including broad pan-TLR signaling pathway activation and increases in TNF and IL1B gene expression. Notably, the non-canonical NF-κB signaling pathway gene and PD genome wide association study (GWAS) candidate NFKB2 was upregulated. Additionally, non-canonical NF-κB activation-associated RANK and CD40 pathways were also upregulated. Transcriptional-phenotype analysis suggests PFFs induce transcriptional programs associated with differentiation of monocytes towards macrophages and osteoclasts via non-canonical NF-κB signaling as a potential mechanism in which myeloid/monocyte cells may contribute to peripheral inflammation and pathogenesis in PD.
Collapse
Affiliation(s)
- Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dhruva Dhavale
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paul Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
37
|
Gerasimova T, Stepanenko E, Novosadova L, Arsenyeva E, Shimchenko D, Tarantul V, Grivennikov I, Nenasheva V, Novosadova E. Glial Cultures Differentiated from iPSCs of Patients with PARK2-Associated Parkinson's Disease Demonstrate a Pro-Inflammatory Shift and Reduced Response to TNFα Stimulation. Int J Mol Sci 2023; 24:ijms24032000. [PMID: 36768317 PMCID: PMC9916517 DOI: 10.3390/ijms24032000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra. Mutations in the PARK2 gene are a frequent cause of familial forms of PD. Sustained chronic neuroinflammation in the central nervous system makes a significant contribution to neurodegeneration events. In response to inflammatory factors produced by activated microglia, astrocytes change their transcriptional programs and secretion profiles, thus acting as immunocompetent cells. Here, we investigated iPSC-derived glial cell cultures obtained from healthy donors (HD) and from PD patients with PARK2 mutations in resting state and upon stimulation by TNFα. The non-stimulated glia of PD patients demonstrated higher IL1B and IL6 expression levels and increased IL6 protein synthesis, while BDNF and GDNF expression was down-regulated when compared to that of the glial cells of HDs. In the presence of TNFα, all of the glial cultures displayed a multiplied expression of genes encoding inflammatory cytokines: TNFA, IL1B, and IL6, as well as IL6 protein synthesis, although PD glia responded to TNFα stimulation less strongly than HD glia. Our results demonstrated a pro-inflammatory shift, a suppression of the neuroprotective gene program, and some depletion of reactivity to TNFα in PARK2-deficient glia compared to glial cells of HDs.
Collapse
Affiliation(s)
- Tatiana Gerasimova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Correspondence:
| | - Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Lyudmila Novosadova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Elena Arsenyeva
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Darya Shimchenko
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Igor Grivennikov
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Ekaterina Novosadova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| |
Collapse
|
38
|
Fu J, Chen S, Liu J, Yang J, Ou R, Zhang L, Chen X, Shang H. Serum inflammatory cytokines levels and the correlation analyses in Parkinson's disease. Front Cell Dev Biol 2023; 11:1104393. [PMID: 36875766 PMCID: PMC9978777 DOI: 10.3389/fcell.2023.1104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Objective: To investigate the serum levels of inflammatory cytokines and the correlations with Parkinson's disease (PD) clinical symptoms. Methods: Serum levels of the cytokines, including IL-6, IL-8, and TNF-α, were measured in 273 PD patients and 91 healthy controls (HCs). The clinical manifestations of PD were assessed with nine different scales to evaluate the cognitive function, non-motor symptoms, motor symptoms, and disease severity. The differences in these inflammatory indicators were examined between PD patients and HCs, and the correlations of these inflammatory indicators with clinical variables were analyzed in PD patients. Results: Serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in PD patients were higher than those in HCs, but serum interleukin-8 (IL-8) level was not significantly different from that in HCs. In PD patients, serum IL-6 level was positively correlated with age of onset, the Hamilton Depression Scale (HAMD), and the Non-Motor Symptom Scale (NMSS), UPDRS part I, part II, and part III, but it was inversely correlated with the Frontal Assessment Battery (FAB) and the Montreal Cognitive Assessment (MoCA) scores. Serum TNF-α level was positively correlated with age of onset and H&Y stage in PD patients (p = .037), but negatively correlated with FAB scores in PD patients (p = .010). However, no associations were found between all the clinical variables and the serum IL-8 level. The forward binary logistic regression model revealed that serum IL-6 level was associated with MoCA (p = .023) and UPDRS I scores (p = .023), but no associations was found with the remaining factors. The ROC curve of TNF-α for the diagnosis of PD showed the area under the curve (AUC) was .719 (p < .05, 95% CI: .655-.784), and the critical value of TNF-α was 5.380 pg/ml, with a diagnostic sensitivity of 76.0% and a specificity of 59.3%. Conclusion: Our results suggest increased serum levels of IL-6 and TNF-α in PD, we further found that IL-6 level was associated with non-motor symptoms and cognitive dysfunction, and IL-6 may play a role in the pathophysiology of non-motor symptoms in PD. At the same time, we also propose that TNF-α has a good diagnostic value for PD despite its irrelevance to clinical symptoms.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Prabhakar P, Ahmed BA, Chidambaram SB, Kumar A, Pandian A. In Vitro Ameliorative Effects of Sinapic Acid on Parkinson Related Neurotoxicity in SHSY5Y Cell Lines. INTERNATIONAL JOURNAL OF NUTRITION, PHARMACOLOGY, NEUROLOGICAL DISEASES 2023; 13:16-24. [DOI: 10.4103/ijnpnd.ijnpnd_67_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2025]
Abstract
The neuroprotective effects of polyphenols have been reported in the prevention of the early onset or delay of the progression of various neurodegenerative diseases, including Parkinson disease (PD). Neuroinflammation, oxidative stress, and mitochondrial dysfunction play significant roles in the pathophysiology of PD. Sinapic acid (SNP) is a naturally occurring polyphenol belonging to a group of hydroxycinnamic acids, which has gained importance owing to its beneficial effects, including antioxidant and anti-inflammatory properties. The present study aimed to develop an insight into the effects of sinapic acid on mitigating the inflammatory markers, oxidative stress, and deranged mitochondrial dynamics in human neuroblastoma cells (SHSY5Y) intoxicated with MPP+. The modulating variations of SNP on apoptosis, mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS), and expression of proteins like PARKIN, PINK1, DJ-1, Bax, and BCl2 were analyzed in MPP+ induced PD-like toxic conditions. Pre-treatment with SNP decreased the levels of ROS and improved MMP. Also, SNP down-regulated the expression of PARKIN1, caspase-3, and DJ-1, along with a reduction in the expression of inflammatory markers such as IL-1β and TNF-α. Further, SNP was observed to increase the levels of BCl2, an anti-apoptotic protein, and the activity of superoxide dismutase (SOD), an enzymatic antioxidant. Based on the above results, the authors concluded that SNP exhibited neurotherapeutic potential in PD-like neurotoxic conditions. The present study reported the preclinical and mechanistic approach to identify the exact mechanism of action of SNP in PD.
Collapse
Affiliation(s)
- Preeja Prabhakar
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | | | - Arun Kumar
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Arjun Pandian
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
40
|
Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232416184. [PMID: 36555826 PMCID: PMC9788636 DOI: 10.3390/ijms232416184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a crucial role in the progression of neurodegenerative disorders, particularly Parkinson's disease (PD). Glial cell activation and subsequent adaptive immune involvement are neuroinflammatory features in familial and idiopathic PD, resulting in the death of dopaminergic neuron cells. An oxidative stress response, inflammatory mediator production, and immune cell recruitment and activation are all hallmarks of this activation, leading to chronic neuroinflammation and progressive neurodegeneration. Several studies in PD patients' cerebrospinal fluid and peripheral blood revealed alterations in inflammatory markers and immune cell populations that may lead to or exacerbate neuroinflammation and perpetuate the neurodegenerative process. Most of the genes causing PD are also expressed in astrocytes and microglia, converting their neuroprotective role into a pathogenic one and contributing to disease onset and progression. Nuclear receptor-related transcription factor 1 (NURR1) regulates gene expression linked to dopaminergic neuron genesis and functional maintenance. In addition to playing a key role in developing and maintaining neurotransmitter phenotypes in dopaminergic neurons, NURR1 agonists have been shown to reverse behavioral and histological abnormalities in animal PD models. NURR1 protects dopaminergic neurons from inflammation-induced degeneration, specifically attenuating neuronal death by suppressing the expression of inflammatory genes in microglia and astrocytes. This narrative review highlights the inflammatory changes in PD and the advances in NURR1-regulated neuroinflammation associated with PD. Further, we present new evidence that targeting this inflammation with a variety of potential NURR1 target therapy medications can effectively slow the progression of chronic neuroinflammation-induced PD.
Collapse
|
41
|
Chauhan S, Behl T, Sehgal A, Singh S, Sharma N, Gupta S, Albratty M, Najmi A, Meraya AM, Alhazmi HA. Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 2022; 40:1758-1773. [PMID: 36564606 DOI: 10.1007/s12640-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease causes loss of memory and deterioration of mental abilities is utmost predominant neurodegenerative disease accounting 70-80% cases of dementia. The appearance of plaques of amyloid-β and neurofibrillary tangles in the brain post-mortems of Alzheimer's patients established them as key participants in the etiology of Alzheimer's disease. Exosomes exist as extracellular vesicles of nano-size which are present throughout the body. Exosomes are known to spread toxic hyperphosphorylated tau and amyloid-β between the cells and are linked to the loss of neurons by inducing apoptosis. Exosomes have progressed from cell trashcans to multifunctional organelles which are involved in various functions like internalisation and transmission of macromolecules such as lipids, proteins, and nucleic acids. This review covers current findings on relationship of exosomes in biogenesis and angiogenesis of Alzheimer's disease and functions of exosomes in the etiology of AD. Furthermore, the roles of exosomes in development, diagnosis, treatment, and its importance as therapeutic targets and biomarkers for Alzheimer's disease have also been highlighted.
Collapse
Affiliation(s)
- Simran Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Uttarakhand, Dehradun, 248007, India.
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Sadhar, Ludhiana, Punjab, Gurusar, 141104, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India.
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Jazan Uniersity, Jazan, 45124, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jzan University, Jazan, 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jzan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
42
|
Saleem U, Khalid S, Chauhdary Z, Anwar F, Shah MA, Alsharif I, Babalghith AO, Khayat RO, Albalawi AE, Baokbah TAS, Farrukh M, Vargas-De-La-Cruz C, Panichayupakaranant P. The curative and mechanistic acumen of curcuminoids formulations against haloperidol induced Parkinson's disease animal model. Metab Brain Dis 2022; 38:1051-1066. [PMID: 36437394 DOI: 10.1007/s11011-022-01122-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is slowly developing neurodegenerative disorder associated with gradual decline in cerebration and laboriousness to perform routine piece of work. PD imposed a social burden on society through higher medical cost and by loss of social productivity in current era. The available treatment options are expensive and associated with serious adverse effect after long term use. Therefore, there is a critical clinical need to develop alternative pharmacotherapies from natural sources to prevent and cure the pathological hall marks of PD with minimal cost. Our study aimed to scrutinize the antiparkinsonian potential of curcuminoids-rich extract and its binary and ternary inclusion complexes. In healthy rats, 1 mg/kg haloperidol daily intraperitoneally, for 3 weeks was used to provoke Parkinsonism like symptoms except control group. Curcuminoids rich extract, binary and ternary inclusion complexes formulations 15-30 mg/kg, L-dopa and carbidopa (100 + 25 mg/kg) were orally administered on each day for 3 weeks. Biochemical, histopathological and RT-qPCR analyses were conducted after neurobehavioral observations. Findings of current study indicated that all curcuminoids formulations markedly mitigated the behavioral abnormalities, recovered the level of antioxidant enzymes, acetylcholinesterase inhibitory activity and neurotransmitters. Histological analysis revealed that curcuminoids supplements stabilized the neuronal loss, pigmentation and Lewy bodies' formation. The mRNA expressions of neuro-inflammatory and specific PD pathological biomarkers were downregulated by treatment with curcuminoids formulations. Therefore, it is suggested that these curcuminoids rich extract, binary and ternary supplements should be considered as promising therapeutic agents in development of modern anti-Parkinson's disease medications.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Sundas Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Raiwind Road, Lahore, Pakistan
| | | | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, , Makkah, Saudi Arabia
| | - Rana O Khayat
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam Farrukh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, 15001, Lima, Peru
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy & Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand.
| |
Collapse
|
43
|
He B, Wang K, Xiang J, Bing P, Tang M, Tian G, Guo C, Xu M, Yang J. DGHNE: network enhancement-based method in identifying disease-causing genes through a heterogeneous biomedical network. Brief Bioinform 2022; 23:6712302. [PMID: 36151744 DOI: 10.1093/bib/bbac405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
The identification of disease-causing genes is critical for mechanistic understanding of disease etiology and clinical manipulation in disease prevention and treatment. Yet the existing approaches in tackling this question are inadequate in accuracy and efficiency, demanding computational methods with higher identification power. Here, we proposed a new method called DGHNE to identify disease-causing genes through a heterogeneous biomedical network empowered by network enhancement. First, a disease-disease association network was constructed by the cosine similarity scores between phenotype annotation vectors of diseases, and a new heterogeneous biomedical network was constructed by using disease-gene associations to connect the disease-disease network and gene-gene network. Then, the heterogeneous biomedical network was further enhanced by using network embedding based on the Gaussian random projection. Finally, network propagation was used to identify candidate genes in the enhanced network. We applied DGHNE together with five other methods into the most updated disease-gene association database termed DisGeNet. Compared with all other methods, DGHNE displayed the highest area under the receiver operating characteristic curve and the precision-recall curve, as well as the highest precision and recall, in both the global 5-fold cross-validation and predicting new disease-gene associations. We further performed DGHNE in identifying the candidate causal genes of Parkinson's disease and diabetes mellitus, and the genes connecting hyperglycemia and diabetes mellitus. In all cases, the predicted causing genes were enriched in disease-associated gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, and the gene-disease associations were highly evidenced by independent experimental studies.
Collapse
Affiliation(s)
- Binsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, China.,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China.,School of pharmacy, Changsha Medical University, Changsha 410219, P. R. China
| | - Kun Wang
- School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
| | - Ju Xiang
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha 410219, China.,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China.,School of pharmacy, Changsha Medical University, Changsha 410219, P. R. China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing 100102, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Miao Xu
- Broad institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Jialiang Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.,Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China.,School of pharmacy, Changsha Medical University, Changsha 410219, P. R. China.,Geneis (Beijing) Co., Ltd., Beijing 100102, China
| |
Collapse
|
44
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
45
|
Lonnemann N, Hosseini S, Ohm M, Geffers R, Hiller K, Dinarello CA, Korte M. IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model. eLife 2022; 11:75889. [PMID: 36040311 PMCID: PMC9481244 DOI: 10.7554/elife.75889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The anti-inflammatory cytokine interleukin-37 (IL-37) belongs to the IL-1 family but is not expressed in mice. We used a human IL-37 (hIL-37tg) expressing mouse, which has been subjected to various models of local and systemic inflammation as well as immunological challenges. Previous studies reveal an immunomodulatory role of IL-37, which can be characterized as an important suppressor of innate immunity. Here, we examined the functions of IL-37 in the central nervous system and explored the effects of IL-37 on neuronal architecture and function, microglial phenotype, cytokine production and behavior after inflammatory challenge by intraperitoneal LPS-injection. In wild-type mice, decreased spine density, activated microglial phenotype and impaired long-term potentiation (LTP) were observed after LPS injection, whereas hIL-37tg mice showed no impairment. In addition, we crossed the hIL-37tg mouse with an animal model of Alzheimer’s disease (APP/PS1) to investigate the anti-inflammatory properties of IL-37 under chronic neuroinflammatory conditions. Our results show that expression of IL-37 is able to limit inflammation in the brain after acute inflammatory events and prevent loss of cognitive abilities in a mouse model of AD.
Collapse
Affiliation(s)
- Niklas Lonnemann
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Ohm
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Health, Aurora, United States
| | - Martin Korte
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
46
|
Das D, Podder S. Deregulation of ceRNA Networks in Frontal Cortex and Choroid Plexus of Brain during SARS-CoV-2 Infection Aggravates Neurological Manifestations: An Insight from Bulk and Single-Cell Transcriptomic Analyses. Adv Biol (Weinh) 2022; 6:e2101310. [PMID: 35661455 PMCID: PMC9348399 DOI: 10.1002/adbi.202101310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/20/2022] [Indexed: 01/28/2023]
Abstract
Although transcriptomic studies of SARS-CoV-2-infected brains have depicted variability in gene expression, the landscape of deregulated cell-specific regulatory circuits has not been elucidated yet. Hence, bulk and single-cell RNA-seq data are analyzed to gain detailed insights. Initially, two ceRNA networks with 19 and 3 differentially expressed (DE) hub lncRNAs are reconstructed in SARS-CoV-2 infected Frontal Cortex (FC) and Choroid Plexus (CP), respectively. Functional and pathway enrichment analyses of downstream mRNAs of deregulated ceRNA axes demonstrate impairment of neurological processes. Mapping of hub lncRNA-mRNA pairs from bulk RNA-seq with snRNA-seq data has indicated that NORAD, NEAT1, and STXBP5-AS1 are downregulated across 4, 4, and 2 FC cell types, respectively. At the same time, MIRLET7BHG and MALAT1 are upregulated in excitatory neurons of FC and neurons of CP, respectively. Here, it is hypothesized that downregulation of NORAD, NEAT1, and STXBP5-AS1, and upregulation of MIRLET7BHG and MALAT1 might deregulate respectively 51, 6, and 37, and 31 and 19 mRNAs in cell types of FC and CP. Afterward, 13 therapeutic miRNAs are traced that might safeguard against deregulated lncRNA-mRNA pairs of NORAD, NEAT1, and MIRLET7BHG in FC. This study helps to explain the plausible mechanism of post-COVID neurological manifestation and also to devise therapeutics against it.
Collapse
Affiliation(s)
- Deepyaman Das
- Department of MicrobiologyRaiganj UniversityRaiganjUttar DinajpurWest Bengal733134India
| | - Soumita Podder
- Department of MicrobiologyRaiganj UniversityRaiganjUttar DinajpurWest Bengal733134India
| |
Collapse
|
47
|
Li J, Chen K, Zhao Z. The protective effects of NE 52-QQ57 against interleukin-33-induced inflammatory response in activated synovial mast cells. J Biochem Mol Toxicol 2022; 36:e23116. [PMID: 35670019 DOI: 10.1002/jbt.23116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokines-mediated immunity is essential for the pathological development of rheumatoid arthritis (RA). Inhibition of signaling has suggested a potential remedial approach to RA. G protein-coupled receptor 4 (GPR4) has been proven to possess a broad range of physiological functions, but its function in synovial mast cells and RA is less reported. In this study, the protective effects of NE 52-QQ57, a GPR4 antagonist, against interleukin (IL)-33-challenged inflammatory response in activated synovial mast cells were investigated. We report that IL-33 amplified GPR4 expression in HMC-1 mast cells. The GPR4 antagonist NE 52-QQ57 alleviated IL-33-caused secretions of IL-17, interferon-γ, and tumor necrosis factor-α in HMC-1 mast cells. Furthermore, we note that NE 52-QQ57 reduced IL-33-induced expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9. Also, NE 52-QQ57 inhibited cyclooxygenase 2 and prostaglandin E2 expression in IL-33-challenged cells. Also, NE 52-QQ57 ameliorated IL-33-induced oxidative stress by reducing mitochondrial reactive oxygen species and 4-hydroxynonenal. Mechanistically, NE 52-QQ57 mitigated IL-33-induced activation of the p38/nuclear factor-κB signaling pathway. We conclude that targeting GPR4 might be a promising strategy for RA treatment.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| | - Kunfeng Chen
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| | - Zhijian Zhao
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| |
Collapse
|
48
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
49
|
Demir EA, Gulbol-Duran G, Urhan-Kucuk M, Dogan H, Tutuk O, Cimen F, Bayirli M, Tumer C, Duran N. Behavioral and Cognitive Consequences of Obesity in Parents and Offspring in Female and Male Rats: Implications of Neuroinflammation and Neuromodulation. Mol Neurobiol 2022; 59:3947-3968. [PMID: 35438432 DOI: 10.1007/s12035-022-02831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Obesity is a rapidly growing public health concern that can create a family-wise burden. This study was aimed to investigate behavioral, cognitive, neuroinflammatory, and neuromodulatory consequences of the diet and parental obesity. Female and male Wistar albino rats were fed on either an obesogenic or standard diet for 12 weeks, beginning with weaning. Thereafter, the animals were matched and allowed to mate. Pups born to obese or normal parents received either the diet or standard chow to the same age. The obesogenic diet and/or parental obesity increased the locomotor activity in both females and males. The diet exhibited anxiolytic-like and antidepressant-like properties, and impaired short-term object memory as well as spatial memory. Interestingly, the obesogenic diet resulted in neuroinflammation only in naïve animals, but not in the ones with parental obesity. BDNF, SIRT1, and p53 expressions were decreased, whereas RelN expression was increased in the brain with the diet, regardless of parental obesity. Multi-factor analyses demonstrated that the obesogenic diet is the prominent influencer of cognitive, neuroinflammatory, and neuromodulatory results while parental obesity has an effect on spatial memory, neuroinflammation, and hippocampal RelN and p53 expressions. Here, we provided supporting evidence for detrimental cognitive and neuroinflammatory consequences of early life consumption of the obesogenic diet which accompanies alterations in neuromodulatory factors. Surprisingly, the diet was found beneficial against anxiety-like and depression-like behaviors, and additionally, parental obesity was demonstrated to impair some aspects of cognitive performance which appears unrelated to neuroinflammation.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040.
| | - Gulay Gulbol-Duran
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Meral Urhan-Kucuk
- Department of Medical Biology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hatice Dogan
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Okan Tutuk
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Funda Cimen
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mucella Bayirli
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cemil Tumer
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey, 31040
| | - Nizami Duran
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
50
|
Dhanwani R, Lima-Junior JR, Sethi A, Pham J, Williams G, Frazier A, Xu Y, Amara AW, Standaert DG, Goldman JG, Litvan I, Alcalay RN, Peters B, Sulzer D, Arlehamn CSL, Sette A. Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. NPJ Parkinsons Dis 2022; 8:30. [PMID: 35314697 PMCID: PMC8938520 DOI: 10.1038/s41531-022-00282-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a multi-stage neurodegenerative disorder with largely unknown etiology. Recent findings have identified PD-associated autoimmune features including roles for T cells. To further characterize the role of T cells in PD, we performed RNA sequencing on PBMC and peripheral CD4 and CD8 memory T cell subsets derived from PD patients and age-matched healthy controls. When the groups were stratified by their T cell responsiveness to alpha-synuclein (α-syn) as a proxy for an ongoing inflammatory autoimmune response, the study revealed a broad differential gene expression profile in memory T cell subsets and a specific PD associated gene signature. We identified significant enrichment of transcriptomic signatures previously associated with PD, including for oxidative stress, phosphorylation, autophagy of mitochondria, cholesterol metabolism and inflammation, and the chemokine signaling proteins CX3CR1, CCR5, and CCR1. In addition, we identified genes in these peripheral cells that have previously been shown to be involved in PD pathogenesis and expressed in neurons, such as LRRK2, LAMP3, and aquaporin. Together, these findings suggest that features of circulating T cells with α-syn-specific responses in PD patients provide insights into the interactive processes that occur during PD pathogenesis and suggest potential intervention targets.
Collapse
Affiliation(s)
- Rekha Dhanwani
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - João Rodrigues Lima-Junior
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ashu Sethi
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Gregory Williams
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yaqian Xu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Amy W Amara
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - David G Standaert
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jennifer G Goldman
- Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Irene Litvan
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - David Sulzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.,Departments of Psychiatry and Pharmacology, Columbia University, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Cecilia S Lindestam Arlehamn
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|