1
|
Feng Z, Hou Y, Yu C, Li T, Fu H, Lv F, Li P. Mitophagy in perioperative neurocognitive disorder: mechanisms and therapeutic strategies. Eur J Med Res 2025; 30:270. [PMID: 40211418 PMCID: PMC11987364 DOI: 10.1186/s40001-025-02400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/20/2025] [Indexed: 04/13/2025] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common neurological complication after surgery/anesthesia in elderly patients that affect postoperative outcome and long-term quality of life, which increases the cost of family and social resources. The pathological mechanism of PND is complex and not fully understood, and the methods of prevention and treatment of PND are very limited, so it is particularly important to analyze the mechanism of PND. Research indicates that mitochondrial dysfunction is pivotal in the initiation and progression of PND, although the precise mechanisms remain elusive and could involve disrupted mitophagy. We reviewed recent studies on the link between mitophagy and PND, highlighting the role of key proteins in abnormal mitophagy and discussing therapeutic strategies aimed at mitophagy regulation. This provides insights into the mechanisms underlying PND and potential therapeutic targets.
Collapse
Affiliation(s)
- Zhen Feng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, 301 Nancheng Avenue, Nan'an District, Chongqing, Chongqing, 400000, People's Republic of China
| | - Yan Hou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, 301 Nancheng Avenue, Nan'an District, Chongqing, Chongqing, 400000, People's Republic of China
| | - Chang Yu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Ting Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Haoyang Fu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China.
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
2
|
Vaziri N, Shutt TE, Karim W, Raedler TJ, Pantelis C, Thomas N, Jayaram M, Greenway SC, Bousman CA. Examination of mitochondria- and inflammasome-mediated mechanisms of clozapine-induced myocarditis using patient-derived iPSC cardiomyocytes. Mol Psychiatry 2025. [DOI: 10.1038/s41380-025-02935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025]
|
3
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Liu X, Wang FY, Chi S, Liu T, Yang HL, Zhong RJ, Li XY, Gao J. Mitochondria-targeting peptide SS-31 attenuates ferroptosis via inhibition of the p38 MAPK signaling pathway in the hippocampus of epileptic rats. Brain Res 2024; 1836:148882. [PMID: 38521160 DOI: 10.1016/j.brainres.2024.148882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Ferroptosis is a newly identified form of non-apoptotic regulated cell death (RCD) andplaysanimportantrole in epileptogenesis. The p38 mitogen-activated protein kinase (p38 MAPK) pathway has been confirmed to be involved in ferroptosis. The mitochondria-targeting antioxidant Elamipretide (SS-31) can reduce the generation of lipid peroxidation and the buildup of reactive oxygen species (ROS). Collectively, our present study was to decipher whether SS-31 inhibits ferroptosis via the p38 MAPK signaling pathway in the rat epilepsy model induced by pilocarpine (PILO).Adult male Wistar rats were randomly divided into four groups: control group (CON group), epilepsy group (EP group), SS-31 treatment group (SS group), and p38 MAPK inhibitor (SB203580) treatment group (SB group). Our results demonstrated that the rat hippocampal neurons after epilepsy were followed by accumulated iron and malondialdehyde (MDA) content, upregulated phosphorylated p38 MAPK protein (P-p38) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels, reduced glutathione peroxidase 4 (Gpx4) content, and depleted glutathione (GSH) activity. Morphologically, mitochondrial ultrastructural damage under electron microscopy was manifested by a partial increase in outer membrane density, disappearance of mitochondrial cristae, and mitochondrial shrinkage. SS-31 and SB203580 treatment blocked the initiation and progression of ferroptosis in the hippocampus of epileptic rats via reducing the severity of epileptic seizures, reversing the expression of Gpx4, P-p38 , decreasing the levels of iron and MDA, as well as increasing the activity of GSH and Nrf2. To summarize, our findings proved that ferroptosis was coupled with the pathology of epilepsy, and SS-31 can inhibit PILO-induced seizures by preventing ferroptosis, which may be connected to the inhibition of p38 MAPK phosphorylation, highlighting the potential therapeutic value for targeting ferroptosis process in individuals with seizure-related diseases.
Collapse
Affiliation(s)
- Xue Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fei-Yu Wang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hai-Lin Yang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ru-Jie Zhong
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiao-Yu Li
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
5
|
Ji Y, Ma Y, Ma Y, Wang Y, Zhao X, Jin D, Xu L, Ge S. SS-31 inhibits mtDNA-cGAS-STING signaling to improve POCD by activating mitophagy in aged mice. Inflamm Res 2024; 73:641-654. [PMID: 38411634 DOI: 10.1007/s00011-024-01860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Neuroinflammation is crucial in the development of postoperative cognitive dysfunction (POCD), and microglial activation is an active participant in this process. SS-31, a mitochondrion-targeted antioxidant, is widely regarded as a potential drug for neurodegenerative diseases and inflammatory diseases. In this study, we sought to explore whether SS-31 plays a neuroprotective role and the underlying mechanism. METHODS Internal fixation of tibial fracture was performed in 18-month-old mice to induce surgery-associated neurocognitive dysfunction. LPS was administrated to BV2 cells to induce neuroinflammation. Neurobehavioral deficits, hippocampal injury, protein expression, mitophagy level and cell state were evaluated after treatment with SS-31, PHB2 siRNA and an STING agonist. RESULTS Our study revealed that SS-31 interacted with PHB2 to activate mitophagy and improve neural damage in surgically aged mice, which was attributed to the reduced cGAS-STING pathway and M1 microglial polarization by decreased release of mitochondrial DNA (mtDNA) but not nuclear DNA (nDNA). In vitro, knockdown of PHB2 and an STING agonist abolished the protective effect of SS-31. CONCLUSIONS SS-31 conferred neuroprotection against POCD by promoting PHB2-mediated mitophagy activation to inhibit mtDNA release, which in turn suppressed the cGAS-STING pathway and M1 microglial polarization.
Collapse
Affiliation(s)
- Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yimei Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Danfeng Jin
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Du X, Zeng Q, Luo Y, He L, Zhao Y, Li N, Han C, Zhang G, Liu W. Application research of novel peptide mitochondrial-targeted antioxidant SS-31 in mitigating mitochondrial dysfunction. Mitochondrion 2024; 75:101846. [PMID: 38237649 DOI: 10.1016/j.mito.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Due to the pivotal role of mitochondria in the generation of adenosine triphosphate (ATP) and the regulation of cellular homeostasis, mitochondrial dysfunction may exert a profound impact on various physiological systems, potentially precipitating a spectrum of distinct diseases. Consequently, research pertaining to mitochondrial therapeutics has assumed increasing significance, warranting heightened scrutiny. In recent years, the field of mitochondrial therapy has witnessed noteworthy advancements, with active exploration into diverse pharmacological agents aimed at ameliorating mitochondrial function. Elamipretide (SS-31), a novel synthetic mitochondrial-targeted antioxidant, has emerged as a promising candidate with extensive therapeutic potential. Its notable attributes encompass the mitigation of oxidative stress, the suppression of inflammatory processes, the maintenance of mitochondrial dynamics, and the prevention of cellular apoptosis. As such, SS-31 may emerge as a viable choice for the treatment of mitochondrial dysfunction-related ailments in the foreseeable future. This article extensively expounds upon the superiority of SS-31 over natural antioxidants and traditional mitochondrial-targeted antioxidants, delves into its mechanisms of modulating mitochondrial function, and comprehensively summarizes its applications in alleviating mitochondrial dysfunction-associated disorders. Furthermore, we offer a comprehensive outlook on the expansive prospects of SS-31's future development and application.
Collapse
Affiliation(s)
- Xinrong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China; Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yunchang Luo
- Biology Major, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Yuhong Zhao
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China; School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu 610083, China.
| | - Ninjing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Changli Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Weixin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| |
Collapse
|
7
|
Zhang H, Niu Y, Qiu L, Yang J, Sun J, Xia J. Melatonin-mediated mitophagy protects against long-term impairments after repeated neonatal sevoflurane exposures. Int Immunopharmacol 2023; 125:111210. [PMID: 37976600 DOI: 10.1016/j.intimp.2023.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Melatonin is known to have protective effects in aging, neurodegenerative disorders and mitochondria-related diseases, while there is a poor understanding of the effects of melatonin treatment on mitophagy in neonatal cognitive dysfunction after repeated sevoflurane exposures. This study explores the protective effects of melatonin on mitophagy and cognition in developing rats exposed to sevoflurane. METHODS Postnatal day six (P6) neonatal rats were exposed to 3 % sevoflurane for 2 h daily from P6 to P8. In the intervention groups, rats received 3-Methyladenine (3-MA) intracerebroventricularly from P6 to P8 and melatonin intraperitoneally from P6 to P8 following water drinking once daily from P21 to P41, respectively. Behavioral tests, including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests, were performed to assess cognitive function during young adulthood. In another experiment, rat brains were harvested for biochemical, histopathological, and electron microscopy studies. RESULTS Rats exposed to sevoflurane showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mitophagy marker proteins (microtubule-associated protein 1 light chain 3 (LC3) II/I, and parkin), decreased autophagy marker protein (sequestosome 1 (P62/SQSTM1)), electron transport chain (ETC) proteins and ATP levels. Immunofluorescent staining of LC3 was co-localized mostly with a neuronal marker and microglial marker but was not co-localized with a marker for astrocytes in rats exposed to sevoflurane. These rats had poorer performance in the NOR and FC tests than control rats during young adulthood. Melatonin treatment reversed the abnormal expression of mitophagy proteins, mitochondrial energy metabolism, the activity of microglia, and impaired cognition. These ameliorations were blocked by an autophagy inhibitor, 3-MA, except for the activation of microglia. CONCLUSION We have demonstrated that melatonin inhibits microglial activation by enhancing mitophagy and finally significantly reduces sevoflurane-induced deficits in cognition in neonatal rats. These results suggest that melatonin might be beneficial if considered when the anesthesia must be administered at a very young age.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yingqiao Niu
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Chen M, Yan R, Ding L, Luo J, Ning J, Zhou R. Research Advances of Mitochondrial Dysfunction in Perioperative Neurocognitive Disorders. Neurochem Res 2023; 48:2983-2995. [PMID: 37294392 DOI: 10.1007/s11064-023-03962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
Perioperative neurocognitive disorders (PND) increases postoperative dementia and mortality in patients and has no effective treatment. Although the detailed pathogenesis of PND is still elusive, a large amount of evidence suggests that damaged mitochondria may play an important role in the pathogenesis of PND. A healthy mitochondrial pool not only provides energy for neuronal metabolism but also maintains neuronal activity through other mitochondrial functions. Therefore, exploring the abnormal mitochondrial function in PND is beneficial for finding promising therapeutic targets for this disease. This article summarizes the research advances of mitochondrial energy metabolism disorder, inflammatory response and oxidative stress, mitochondrial quality control, mitochondria-associated endoplasmic reticulum membranes, and cell death in the pathogenesis of PND, and briefly describes the application of mitochondria-targeted therapies in PND.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
9
|
Hogarth K, Tarazi D, Maynes JT. The effects of general anesthetics on mitochondrial structure and function in the developing brain. Front Neurol 2023; 14:1179823. [PMID: 37533472 PMCID: PMC10390784 DOI: 10.3389/fneur.2023.1179823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
The use of general anesthetics in modern clinical practice is commonly regarded as safe for healthy individuals, but exposures at the extreme ends of the age spectrum have been linked to chronic cognitive impairments and persistent functional and structural alterations to the nervous system. The accumulation of evidence at both the epidemiological and experimental level prompted the addition of a warning label to inhaled anesthetics by the Food and Drug Administration cautioning their use in children under 3 years of age. Though the mechanism by which anesthetics may induce these detrimental changes remains to be fully elucidated, increasing evidence implicates mitochondria as a potential primary target of anesthetic damage, meditating many of the associated neurotoxic effects. Along with their commonly cited role in energy production via oxidative phosphorylation, mitochondria also play a central role in other critical cellular processes including calcium buffering, cell death pathways, and metabolite synthesis. In addition to meeting their immense energy demands, neurons are particularly dependent on the proper function and spatial organization of mitochondria to mediate specialized functions including neurotransmitter trafficking and release. Mitochondrial dependence is further highlighted in the developing brain, requiring spatiotemporally complex and metabolically expensive processes such as neurogenesis, synaptogenesis, and synaptic pruning, making the consequence of functional alterations potentially impactful. To this end, we explore and summarize the current mechanistic understanding of the effects of anesthetic exposure on mitochondria in the developing nervous system. We will specifically focus on the impact of anesthetic agents on mitochondrial dynamics, apoptosis, bioenergetics, stress pathways, and redox homeostasis. In addition, we will highlight critical knowledge gaps, pertinent challenges, and potential therapeutic targets warranting future exploration to guide mechanistic and outcomes research.
Collapse
Affiliation(s)
- Kaley Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Doorsa Tarazi
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Fehr T, Janssen WG, Park J, Baxter MG. Neonatal exposures to sevoflurane in rhesus monkeys alter synaptic ultrastructure in later life. iScience 2022; 25:105685. [PMID: 36567715 PMCID: PMC9772858 DOI: 10.1016/j.isci.2022.105685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Repeated or prolonged early life exposure to anesthesia is neurotoxic in animals and associated with neurocognitive impairment in later life in humans. We used electron microscopy with unbiased stereological sampling to assess synaptic ultrastructure in dorsolateral prefrontal cortex (dlPFC) and hippocampal CA1 of female and male rhesus monkeys, four years after three 4-h exposures to sevoflurane during the first five postnatal weeks. This allowed us to ascertain long-term consequences of anesthesia exposure without confounding effects of surgery or illness. Synapse areas were reduced in the largest synapses in CA1 and dlPFC, predominantly in perforated spinous synapses in CA1 and nonperforated spinous synapses in dlPFC. Mitochondrial morphology and localization changed subtly in both areas. Synapse areas in CA1 correlated with response to a mild social stressor. Thus, exposure to anesthesia in infancy can cause long-term ultrastructural changes in primates, which may be substrates for long-term alterations in synaptic transmission and behavioral deficits.
Collapse
Affiliation(s)
- Tristan Fehr
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - William G.M. Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janis Park
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA,Corresponding author
| |
Collapse
|
11
|
Yılmaz H, Şengelen A, Demirgan S, Paşaoğlu HE, Çağatay M, Erman İE, Bay M, Güneyli HC, Önay-Uçar E. Acutely increased aquaporin-4 exhibits more potent protective effects in the cortex against single and repeated isoflurane-induced neurotoxicity in the developing rat brain. Toxicol Mech Methods 2022; 33:279-292. [PMID: 36127839 DOI: 10.1080/15376516.2022.2127389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Damage to hippocampus, cerebellum, and cortex associated with cognitive functions due to anesthetic-induced toxicity early in life may cause cognitive decline later. Aquaporin 4 (AQP4), a key protein in waste clearance pathway of brain, is involved in synaptic plasticity and neurocognition. We investigated the effects of single and repeated isoflurane (Iso) anesthesia on AQP4 levels and brain damage. Postnatal-day (P)7 Wistar albino rats were randomly assigned to Iso or Control (C) groups. For single-exposure, pups were exposed to 1.5% Iso in 30% oxygenated-air for 3-h at P7 (Iso1). For repeated-exposure, pups were exposed to Iso for 3 days, 3-h each day, at 1-day intervals (P7 + 9+11) starting at P7 (Iso3). C1 and C3 groups received only 30% oxygenated-air. Based on HE-staining and immunoblotting (Bax/Bcl-2, cleaved-caspase3 and PARP1) analyses, Iso exposures caused a higher degree of apoptosis in hippocampus. Anesthesia increased 4HNE, oxidative stress marker; the highest ROS accumulation was determined in cerebellum. Increased inflammation (TNF-α, NF-κB) was detected. Multiple Iso-exposures caused more significant damage than single exposure. Moreover, 4HNE and TNF-α contributed synergistically to Iso-induced neurotoxicity. After anesthesia, higher expression of AQP4 was detected in cortex than hippocampus and cerebellum. There was an inverse correlation between increased AQP4 levels and apoptosis/ROS/inflammation. Correlation analysis indicated that AQP4 had a more substantial protective profile against oxidative stress than apoptosis. Remarkably, acutely increased AQP4 against Iso exhibited a more potent neuroprotective effect in cortex, especially frontal cortex. These findings promote further research to understand better the mechanisms underlying anesthesia-induced toxicity in the developing brain.
Collapse
Affiliation(s)
- Habip Yılmaz
- Department of Public Hospital Services, Istanbul Health Directorate, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Serdar Demirgan
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hüsniye Esra Paşaoğlu
- Department of Pathology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Melike Çağatay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Emre Erman
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Bay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hasan Cem Güneyli
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Mitchell W, Tamucci JD, Ng EL, Liu S, Birk AV, Szeto HH, May ER, Alexandrescu AT, Alder NN. Structure-activity relationships of mitochondria-targeted tetrapeptide pharmacological compounds. eLife 2022; 11:75531. [PMID: 35913044 PMCID: PMC9342957 DOI: 10.7554/elife.75531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria play a central role in metabolic homeostasis, and dysfunction of this organelle underpins the etiology of many heritable and aging-related diseases. Tetrapeptides with alternating cationic and aromatic residues such as SS-31 (elamipretide) show promise as therapeutic compounds for mitochondrial disorders. In this study, we conducted a quantitative structure-activity analysis of three alternative tetrapeptide analogs, benchmarked against SS-31, that differ with respect to aromatic side chain composition and sequence register. We present the first structural models for this class of compounds, obtained with Nuclear Magnetic Resonance (NMR) and molecular dynamics approaches, showing that all analogs except for SS-31 form compact reverse turn conformations in the membrane-bound state. All peptide analogs bound cardiolipin-containing membranes, yet they had significant differences in equilibrium binding behavior and membrane interactions. Notably, analogs had markedly different effects on membrane surface charge, supporting a mechanism in which modulation of membrane electrostatics is a key feature of their mechanism of action. The peptides had no strict requirement for side chain composition or sequence register to permeate cells and target mitochondria in mammalian cell culture assays. All four peptides were pharmacologically active in serum withdrawal cell stress models yet showed significant differences in their abilities to restore mitochondrial membrane potential, preserve ATP content, and promote cell survival. Within our peptide set, the analog containing tryptophan side chains, SPN10, had the strongest impact on most membrane properties and showed greatest efficacy in cell culture studies. Taken together, these results show that side chain composition and register influence the activity of these mitochondria-targeted peptides, helping provide a framework for the rational design of next-generation therapeutics with enhanced potency.
Collapse
Affiliation(s)
- Wayne Mitchell
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jeffrey D Tamucci
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Emery L Ng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Shaoyi Liu
- Social Profit Network, Menlo Park, CA, United States
| | - Alexander V Birk
- Department of Biology, York College of CUNY, New York, NY, United States
| | - Hazel H Szeto
- Social Profit Network, Menlo Park, CA, United States
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
13
|
He K, Zhang J, Zhang W, Wang S, Li D, Ma X, Wu X, Chai X, Liu Q. Hippocampus-Based Mitochondrial Respiratory Function Decline Is Responsible for Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 14:772066. [PMID: 35221986 PMCID: PMC8865419 DOI: 10.3389/fnagi.2022.772066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are a type of cognitive dysfunction occurring with a higher incidence in elderly patients. However, the pathological mechanism of PND and effective treatment remain elusive. We generated a PND mouse model by providing wild-type mice with surgical trauma; in our case, we used tibial fracture to investigate PND pathology. Mice aged 7–8 months were randomly divided into two groups: the surgery (tibial fracture) group and the control (sham) group. All mice were subjected to anesthesia. We examined the transcriptome-wide response in the hippocampus, a brain region that is tightly associated with memory formation, of control mice and mice subjected to surgical trauma at day 1 and day 3 after the surgical procedure. We observed reduced transcript levels of respiratory complex components as early as day 1 after surgery, and subsequent protein changes were found at day 3 after surgical trauma. Consequently, the activities of respiratory complexes were reduced, and adenosine triphosphate (ATP) production was decreased in the hippocampus of mice with surgical operations, supporting that respiratory chain function was impaired. In support of these conclusions, the mitochondrial membrane potential (MMP) levels were decreased, and the reactive oxygen species (ROS) levels were significantly increased. Mechanistically, we demonstrated that surgery induced a significant increase in cytokine IL-1β levels at day 1 after surgery, which concomitantly occurred with transcript changes in respiratory complex components. We further uncovered that transcription factors PGC-1α and NRF-1 were responsible for the observed transcript changes in mitochondrial complex components. Importantly, HT22 cells treated with the cytokine IL-1β resulted in similar reductions in PGC-1α and NRF-1, leading to a reduction of both the transcript and protein levels of respiratory complex subunits. Consequently, respiratory function was impaired in HT22 cells treated with IL-1β. Taken together, we demonstrated that reductions in respiratory complex components and subsequent impairment in mitochondrial functions serve as a novel mechanism for PND pathology, providing a potential therapeutic target for PND treatment.
Collapse
Affiliation(s)
- Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Xiaolin Ma
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xiaofan Wu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoqing Chai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xiaoqing Chai,
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Qiang Liu,
| |
Collapse
|
14
|
Nhu NT, Xiao SY, Liu Y, Kumar VB, Cui ZY, Lee SD. Neuroprotective Effects of a Small Mitochondrially-Targeted Tetrapeptide Elamipretide in Neurodegeneration. Front Integr Neurosci 2022; 15:747901. [PMID: 35111001 PMCID: PMC8801496 DOI: 10.3389/fnint.2021.747901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Neural mitochondrial dysfunction, neural oxidative stress, chronic neuroinflammation, toxic protein accumulation, and neural apoptosis are common causes of neurodegeneration. Elamipretide, a small mitochondrially-targeted tetrapeptide, exhibits therapeutic effects and safety in several mitochondria-related diseases. In neurodegeneration, extensive studies have shown that elamipretide enhanced mitochondrial respiration, activated neural mitochondrial biogenesis via mitochondrial biogenesis regulators (PCG-1α and TFAM) and the translocate factors (TOM-20), enhanced mitochondrial fusion (MNF-1, MNF-2, and OPA1), inhibited mitochondrial fission (Fis-1 and Drp-1), as well as increased mitophagy (autophagy of mitochondria). In addition, elamipretide has been shown to attenuate neural oxidative stress (hydrogen peroxide, lipid peroxidation, and ROS), neuroinflammation (TNF, IL-6, COX-2, iNOS, NLRP3, cleaved caspase-1, IL-1β, and IL-18), and toxic protein accumulation (Aβ). Consequently, elamipretide could prevent neural apoptosis (cytochrome c, Bax, caspase 9, and caspase 3) and enhance neural pro-survival (Bcl2, BDNF, and TrkB) in neurodegeneration. These findings suggest that elamipretide may prevent the progressive development of neurodegenerative diseases via enhancing mitochondrial respiration, mitochondrial biogenesis, mitochondrial fusion, and neural pro-survival pathway, as well as inhibiting mitochondrial fission, oxidative stress, neuroinflammation, toxic protein accumulation, and neural apoptosis. Elamipretide or mitochondrially-targeted peptide might be a targeted agent to attenuate neurodegenerative progression.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Shu-Yun Xiao
- Department of Brain and Mental Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - V. Bharath Kumar
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Intranasal insulin rescues repeated anesthesia-induced deficits in synaptic plasticity and memory and prevents apoptosis in neonatal mice via mTORC1. Sci Rep 2021; 11:15490. [PMID: 34326413 PMCID: PMC8322102 DOI: 10.1038/s41598-021-94849-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Long-lasting cognitive impairment in juveniles undergoing repeated general anesthesia has been observed in numerous preclinical and clinical studies, yet, the underlying mechanisms remain unknown and no preventive treatment is available. We found that daily intranasal insulin administration to juvenile mice for 7 days prior to repeated isoflurane anesthesia rescues deficits in hippocampus-dependent memory and synaptic plasticity in adulthood. Moreover, intranasal insulin prevented anesthesia-induced apoptosis of hippocampal cells, which is thought to underlie cognitive impairment. Inhibition of the mechanistic target of rapamycin complex 1 (mTORC1), a major intracellular effector of insulin receptor, blocked the beneficial effects of intranasal insulin on anesthesia-induced apoptosis. Consistent with this finding, mice lacking mTORC1 downstream translational repressor 4E-BP2 showed no induction of repeated anesthesia-induced apoptosis. Our study demonstrates that intranasal insulin prevents general anesthesia-induced apoptosis of hippocampal cells, and deficits in synaptic plasticity and memory, and suggests that the rescue effect is mediated via mTORC1/4E-BP2 signaling.
Collapse
|
16
|
Liu Y, Fu H, Wu Y, Nie B, Liu F, Wang T, Xiao W, Yang S, Kan M, Fan L. Elamipretide (SS-31) Improves Functional Connectivity in Hippocampus and Other Related Regions Following Prolonged Neuroinflammation Induced by Lipopolysaccharide in Aged Rats. Front Aging Neurosci 2021; 13:600484. [PMID: 33732135 PMCID: PMC7956963 DOI: 10.3389/fnagi.2021.600484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been recognized as a major cause for neurocognitive diseases. Although the hippocampus has been considered an important region for cognitive dysfunction, the influence of hippocampal neuroinflammation on brain functional connectivity (FC) has been rarely studied. In this study, lipopolysaccharide (LPS) was used to induce systemic inflammation and neuroinflammation in the aged rat brain, while elamipretide (SS-31) was used for treatment. Systemic and hippocampal inflammation were determined using ELISA, while astrocyte responses during hippocampal neuroinflammation were determined by interleukin 1 beta (IL-1β)/tumor necrosis factor alpha (TNFα) double staining immunofluorescence. Oxidative stress was determined by reactive oxidative species (ROS), electron transport chain (ETC) complex, and superoxide dismutase (SOD). Short- (<7 days) and long-term (>30 days) learning and spatial working memory were tested by the Morris water maze (MWM). Resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyze the brain FC by placing seed voxels on the left and right hippocampus. Compared with the vehicle group, rats with the LPS exposure showed an impaired MWM performance, higher oxidative stress, higher levels of inflammatory cytokines, and astrocyte activation in the hippocampus. The neuroimaging examination showed decreased FC on the right orbital cortex, right olfactory bulb, and left hippocampus on day 3, 7, and 31, respectively, after treatment. In contrast, rats with SS-31 treatment showed lower levels of inflammatory cytokines, less astrocyte activation in the hippocampus, and improved MWM performance. Neuroimaging examination showed increased FC on the left-parietal association cortex (L-PAC), left sensory cortex, and left motor cortex on day 7 with the right flocculonodular lobe on day 31 as compared with those without SS-31 treatment. Our study demonstrated that inhibiting neuroinflammation in the hippocampus not only reduces inflammatory responses in the hippocampus but also improves the brain FC in regions related to the hippocampus. Furthermore, early anti-inflammatory treatment with SS-31 has a long-lasting effect on reducing the impact of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Binbin Nie
- Institue of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fangyan Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xiao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyi Yang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Minhui Kan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Long Fan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Cheng F, Chang H, Yan F, Yang A, Liu J, Liu Y. Agomelatine Attenuates Isoflurane-Induced Inflammation and Damage in Brain Endothelial Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5589-5598. [PMID: 33376303 PMCID: PMC7755371 DOI: 10.2147/dddt.s281582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Background and Purpose Neurotoxicity of anesthetics has been widely observed by clinicians. It is reported that inflammation and oxidative stress are involved in the pathological process. In the present study, we aimed to assess the therapeutic effects of agomelatine against isoflurane-induced inflammation and damage to brain endothelial cells. Materials and Methods MTT assay was used to detect cell viability in order to determine the optimized concentration of agomelatine. The bEnd.3 brain endothelial cells were treated with 2% isoflurane in the presence or absence of agomelatine (5, 10 μM) for 24 h. LDH release was evaluated and the ROS levels were checked using DHE staining assay. The expressions of IL-6, IL-8, TNF-α, VEGF, TF, VCAM-1, and ICAM-1 were evaluated using real-time PCR and ELISA. Real-time PCR and Western blot analysis were used to determine the expression level of Egr-1. Results The decreased cell viability promoted LDH release and elevated ROS levels induced by isoflurane were significantly reversed by the introduction of agomelatine in a dose-dependent manner. The expression levels of IL-6, IL-8, TNF-α, VEGF, TF, VCAM-1, and ICAM-1 were elevated by stimulation with isoflurane, which were significantly suppressed by the administration of agomelatine. The up-regulation of transcriptional factor Egr-1 induced by isoflurane was down-regulated by agomelatine. Conclusion Agomelatine might attenuate isoflurane-induced inflammation and damage via down-regulating Egr-1 in brain endothelial cells.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Huanxian Chang
- Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Fengfeng Yan
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Aixing Yang
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Jing Liu
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Yuliang Liu
- Department of Neurosurgery, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| |
Collapse
|
18
|
Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8837893. [PMID: 33354280 PMCID: PMC7735836 DOI: 10.1155/2020/8837893] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Mitochondria are the main organelles that produce adenosine 5′-triphosphate (ATP) and reactive oxygen species (ROS) in eukaryotic cells and meanwhile susceptible to oxidative damage. The irreversible oxidative damage in mitochondria has been implicated in various human diseases. Increasing evidence indicates the therapeutic potential of mitochondria-targeted antioxidants (MTAs) for oxidative damage-associated diseases. In this article, we introduce the advantageous properties of MTAs compared with the conventional (nontargeted) ones, review different mitochondria-targeted delivery systems and antioxidants, and summarize their experimental results for various disease treatments in different animal models and clinical trials. The combined evidence demonstrates that mitochondrial redox homeostasis is a potential target for disease treatment. Meanwhile, the limitations and prospects for exploiting MTAs are discussed, which might pave ways for further trial design and drug development.
Collapse
|
19
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
20
|
Wu J, Dou Y, Ladiges WC. Adverse Neurological Effects of Short-Term Sleep Deprivation in Aging Mice Are Prevented by SS31 Peptide. Clocks Sleep 2020; 2:325-333. [PMID: 33089207 PMCID: PMC7573804 DOI: 10.3390/clockssleep2030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022] Open
Abstract
Sleep deprivation is a potent stress factor that disrupts regulatory pathways in the brain resulting in cognitive dysfunction and increased risk of neurodegenerative disease with increasing age. Prevention of the adverse effects of sleep deprivation could be beneficial in older individuals by restoring healthy brain function. We report here on the ability of SS31, a mitochondrial specific peptide, to attenuate the negative neurological effects of short-term sleep deprivation in aging mice. C57BL/6 female mice, 20 months old, were subcutaneously injected with SS31 (3 mg/kg) or saline daily for four days. Sleep deprivation was 4 h daily for the last two days of SS31 treatment. Mice were immediately tested for learning ability followed by collection of brain and other tissues. In sleep deprived mice treated with SS31, learning impairment was prevented, brain mitochondrial ATP levels and synaptic plasticity regulatory proteins were restored, and reactive oxygen species (ROS) and inflammatory cytokines levels were decreased in the hippocampus. This observation suggests possible therapeutic benefits of SS31 for alleviating adverse neurological effects of short-term sleep loss.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA; (J.W.); (Y.D.)
| | - Yan Dou
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA; (J.W.); (Y.D.)
| | - Warren C Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA; (J.W.); (Y.D.)
| |
Collapse
|
21
|
Zuo Y, Yin L, Cheng X, Li J, Wu H, Liu X, Gu E, Wu J. Elamipretide Attenuates Pyroptosis and Perioperative Neurocognitive Disorders in Aged Mice. Front Cell Neurosci 2020; 14:251. [PMID: 32903868 PMCID: PMC7439217 DOI: 10.3389/fncel.2020.00251] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pyroptosis is a recently characterized inflammatory form of programmed cell death that is thought to be involved in the pathogenesis of perioperative neurocognitive disorders (PND). Elamipretide (SS-31), a mitochondrial-targeted peptide with multiple pharmacological properties, including anti-inflammatory activity, has been demonstrated to protect against many neurological diseases. However, the effect of elamipretide on pyroptosis in PND has not been studied. We established an animal model of PND by performing an exploratory laparotomy on mice under isoflurane anesthesia and examined the effects of elamipretide on cognitive function, synaptic integrity, neuroinflammation, mitochondrial function, and signaling controlling pyroptosis. Our results showed that anesthesia and surgery caused mitochondrial dysfunction and abnormal morphology, activation of canonicalnod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-caspase-1 dependent pyroptosis, and downregulation of synaptic integrity-related proteins in the hippocampus in aged mice, thus leading to learning and memory deficits in behavioral tests. Remarkably, treatment with the mitochondrial-targeted peptide elamipretide not only had protective effects against mitochondrial dysfunction but also attenuated surgery-induced pyroptosis and cognitive deficits. Our results provide a promising strategy for the treatment of PND involving mitochondrial dysfunction and pyroptosis.
Collapse
Affiliation(s)
- Youmei Zuo
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lei Yin
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Xinqi Cheng
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hao Wu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Erwei Gu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Wu J, Yang JJ, Cao Y, Li H, Zhao H, Yang S, Li K. Iron overload contributes to general anaesthesia-induced neurotoxicity and cognitive deficits. J Neuroinflammation 2020; 17:110. [PMID: 32276637 PMCID: PMC7149901 DOI: 10.1186/s12974-020-01777-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Increasing evidence suggests that multiple or long-time exposure to general anaesthesia (GA) could be detrimental to cognitive development in young subjects and might also contribute to accelerated neurodegeneration in the elderly. Iron is essential for normal neuronal function, and excess iron in the brain is implicated in several neurodegenerative diseases. However, the role of iron in GA-induced neurotoxicity and cognitive deficits remains elusive. Methods We used the primary hippocampal neurons and rodents including young rats and aged mice to examine whether GA impacted iron metabolism and whether the impact contributed to neuronal outcomes. In addition, a pharmacological suppression of iron metabolism was performed to explore the molecular mechanism underlying GA-mediated iron overload in the brain. Results Our results demonstrated that GA, induced by intravenous ketamine or inhalational sevoflurane, disturbed iron homeostasis and caused iron overload in both in vitro hippocampal neuron culture and in vivo hippocampus. Interestingly, ketamine- or sevoflurane-induced cognitive deficits, very likely, resulted from a novel iron-dependent regulated cell death, ferroptosis. Notably, iron chelator deferiprone attenuated the GA-induced mitochondrial dysfunction, ferroptosis, and further cognitive deficits. Moreover, we found that GA-induced iron overload was activated by NMDAR-RASD1 signalling via DMT1 action in the brain. Conclusion We conclude that disturbed iron metabolism may be involved in the pathogenesis of GA-induced neurotoxicity and cognitive deficits. Our study provides new vision for consideration in GA-associated neurological disorders.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Jian-Jun Yang
- Department of Anesthesiology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Cao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Huihui Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| |
Collapse
|
23
|
Desflurane and Surgery Exposure During Pregnancy Decrease Synaptic Integrity and Induce Functional Deficits in Juvenile Offspring Mice. Neurochem Res 2019; 45:418-427. [DOI: 10.1007/s11064-019-02932-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
|
24
|
Kelleci Çelik F, Charehsaz M, Aydin A. Toxicological evaluation of the interaction between circadian rhythm activator; KL001 and general anesthetic; isoflurane. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1698808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Feyza Kelleci Çelik
- Department of Pharmaceutical Toxicology, Sağlık Bilimleri University Faculty of Pharmacy, İstanbul, Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical Toxicology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Ahmet Aydin
- Department of Pharmaceutical Toxicology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
25
|
Zhao W, Xu Z, Cao J, Fu Q, Wu Y, Zhang X, Long Y, Zhang X, Yang Y, Li Y, Mi W. Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. J Neuroinflammation 2019; 16:230. [PMID: 31747905 PMCID: PMC6865061 DOI: 10.1186/s12974-019-1627-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background It is widely accepted that mitochondria have a direct impact on neuronal function and survival. Oxidative stress caused by mitochondrial abnormalities play an important role in the pathophysiology of lipopolysaccharide (LPS)-induced memory impairment. Elamipretide (SS-31) is a novel mitochondrion-targeted antioxidant. However, the impact of elamipretide on the cognitive sequelae of inflammatory and oxidative stress is unknown. Methods We utilized MWM and contextual fear conditioning test to assess hippocampus-related learning and memory performance. Molecular biology techniques and ELISA were used to examine mitochondrial function, oxidative stress, and the inflammatory response. TUNEL and Golgi-staining was used to detect neural cell apoptosis and the density of dendritic spines in the mouse hippocampus. Results Mice treated with LPS exhibited mitochondrial dysfunction, oxidative stress, an inflammatory response, neural cell apoptosis, and loss of dendritic spines in the hippocampus, leading to impaired hippocampus-related learning and memory performance in the MWM and contextual fear conditioning test. Treatment with elamipretide significantly ameliorated LPS-induced learning and memory impairment during behavioral tests. Notably, elamipretide not only provided protective effects against mitochondrial dysfunction and oxidative stress but also facilitated the regulation of brain-derived neurotrophic factor (BDNF) signaling, including the reversal of important synaptic-signaling proteins and increased synaptic structural complexity. Conclusion These findings indicate that LPS-induced memory impairment can be attenuated by the mitochondrion-targeted antioxidant elamipretide. Consequently, elamipretide may have a therapeutic potential in preventing damage from the oxidative stress and neuroinflammation that contribute to perioperative neurocognitive disorders (PND), which makes mitochondria a potential target for treatment strategies for PND.
Collapse
Affiliation(s)
- Weixing Zhao
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhipeng Xu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jiangbei Cao
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Qiang Fu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yishuang Wu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiaoying Zhang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yue Long
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xuan Zhang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yitian Yang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, 100850, China
| | - Weidong Mi
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
26
|
Machiraju P, Wang X, Sabouny R, Huang J, Zhao T, Iqbal F, King M, Prasher D, Lodha A, Jimenez-Tellez N, Ravandi A, Argiropoulos B, Sinasac D, Khan A, Shutt TE, Greenway SC. SS-31 Peptide Reverses the Mitochondrial Fragmentation Present in Fibroblasts From Patients With DCMA, a Mitochondrial Cardiomyopathy. Front Cardiovasc Med 2019; 6:167. [PMID: 31803760 PMCID: PMC6873783 DOI: 10.3389/fcvm.2019.00167] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/31/2019] [Indexed: 12/04/2022] Open
Abstract
We used patient dermal fibroblasts to characterize the mitochondrial abnormalities associated with the dilated cardiomyopathy with ataxia syndrome (DCMA) and to study the effect of the mitochondrially-targeted peptide SS-31 as a potential novel therapeutic. DCMA is a rare and understudied autosomal recessive disorder thought to be related to Barth syndrome but caused by mutations in DNAJC19, a protein of unknown function localized to the mitochondria. The clinical disease is characterized by 3-methylglutaconic aciduria, dilated cardiomyopathy, abnormal neurological development, and other heterogeneous features. Until recently no effective therapies had been identified and affected patients frequently died in early childhood from intractable heart failure. Skin fibroblasts from four pediatric patients with DCMA were used to establish parameters of mitochondrial dysfunction. Mitochondrial structure, reactive oxygen species (ROS) production, cardiolipin composition, and gene expression were evaluated. Immunocytochemistry with semi-automated quantification of mitochondrial structural metrics and transmission electron microscopy demonstrated mitochondria to be highly fragmented in DCMA fibroblasts compared to healthy control cells. Live-cell imaging demonstrated significantly increased ROS production in patient cells. These abnormalities were reversed by treating DCMA fibroblasts with SS-31, a synthetic peptide that localizes to the inner mitochondrial membrane. Levels of cardiolipin were not significantly different between control and DCMA cells and were unaffected by SS-31 treatment. Our results demonstrate the abnormal mitochondria in fibroblasts from patients with DCMA and suggest that SS-31 may represent a potential therapy for this devastating disease.
Collapse
Affiliation(s)
- Pranav Machiraju
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xuemei Wang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rasha Sabouny
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joshua Huang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fatima Iqbal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Melissa King
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dimple Prasher
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arijit Lodha
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nerea Jimenez-Tellez
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, St. Boniface Hospital Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Timothy E. Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C. Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Mo Y, Deng S, Zhang L, Huang Y, Li W, Peng Q, Liu Z, Ai Y. SS-31 reduces inflammation and oxidative stress through the inhibition of Fis1 expression in lipopolysaccharide-stimulated microglia. Biochem Biophys Res Commun 2019; 520:171-178. [PMID: 31582222 DOI: 10.1016/j.bbrc.2019.09.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
SS-31 is a kind of mitochondrion-targeted peptide. Recent studies indicated significant neuroprotective effects of SS-31. In this study, we investigated that SS-31 protected the murine cultured microglial cells (BV-2) against lipopolysaccharide (LPS)-induced inflammation and oxidative stress through stabilizing mitochondrial morphology. The morphological study showed that SS-31 preserved LPS-induced mitochondrial ultrastructure by reducing the fission protein 1 (Fis1) expression. Flow cytometry and Western blot verified that SS-31 defended the BV-2 cells against LPS-stimulated inflammation and oxidative stress via suppressing Fis1. To sum up, our study represents that SS-31 preserves BV-2 cells from LPS-stimulated inflammation and oxidative stress by down-regulating the Fis1 expression.
Collapse
Affiliation(s)
- Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yan Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Zhiyong Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
28
|
Fan Y, Du L, Fu Q, Zhou Z, Zhang J, Li G, Wu J. Inhibiting the NLRP3 Inflammasome With MCC950 Ameliorates Isoflurane-Induced Pyroptosis and Cognitive Impairment in Aged Mice. Front Cell Neurosci 2018; 12:426. [PMID: 30524241 PMCID: PMC6262296 DOI: 10.3389/fncel.2018.00426] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Nod-like receptor protein 3 (NLRP3) inflammasome activation has been implicated in the pathogenesis of general anesthesia (GA)-induced neuroinflammation and cognitive impairment in aged rodents. However, the cellular basis for cognitive impairment is still not fully understood, and effective pharmacologic agents targeting the NLRP3 inflammasome during GA are lacking. This study explores the protective effects of the NLRP3 inflammasome inhibitor MCC950 on pyroptosis and cognitive impairment in aged mice exposed to isoflurane. Seventy-two 15-month-old male C57BL/6 mice were randomized to receive 2 h of 1.5% isoflurane plus 30% oxygen (O2) or 30% O2 alone, respectively. MCC950 (10 mg/kg) or vehicle was intraperitoneally administered 30 min before gas inhalation. Brain tissues were harvested for histochemical analysis and biochemical assays. Learning and memory abilities were evaluated by behavioral tests. We found that isoflurane GA caused upregulations of hippocampal NLRP3, cleaved caspase-1, interleukin-1β (IL-1β), and IL-18 and the activation of pyroptosis, which is NLRP3 inflammasome-dependent; this consequently gave rise to neuronal damage and cognitive impairment in aged mice. Interestingly, pretreatment with NLRP3 inflammasome inhibitor MCC950 not only provided a neuroprotective effect against the inflammasome activation but also ameliorated pyroptosis and cognitive impairment in aged mice exposed to isoflurane. Our data demonstrate that pyroptosis is involved in NLRP3 inflammasome-mediated isoflurane-induced cognitive impairment in aged mice and suggest that inhibiting the NLRP3 inflammasome with MCC950 may have clinically therapeutic benefits for elderly patients undertaking GA.
Collapse
Affiliation(s)
- Yunxia Fan
- Department of Anesthesiology, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Liwu Du
- Department of Anesthesiology, Nanjing Branch of Shanghai Changzheng Hospital, The Second Military Medical University, Nanjing, China
| | - Qun Fu
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jingyu Zhang
- Department of Anesthesiology, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Guomin Li
- Department of Anesthesiology, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Li B, Feng XJ, Hu XY, Chen YP, Sha JC, Zhang HY, Fan HG. Effect of melatonin on attenuating the isoflurane-induced oxidative damage is related to PKCα/Nrf2 signaling pathway in developing rats. Brain Res Bull 2018; 143:9-18. [PMID: 30278199 DOI: 10.1016/j.brainresbull.2018.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 11/30/2022]
Abstract
Isoflurane, an inhalational anesthesia, has frequently been used in pediatric anesthesia. However, research indicates that isoflurane can induce oxidative stress and affect neural and cognitive development. Melatonin, an endogenous hormone that exhibits antioxidant functions, can play a neuroprotective role by activating the PKCα/Nrf2 signaling pathway in response to oxidative stress. This study aims to determine whether the effect of melatonin on isoflurane-induced oxidative stress is related to activation of the PKCα/Nrf2 signaling pathway. Rat pups at postnatal day 7 were treated with control or 1.5% isoflurane for 4 h after pretreatment for 15 min with either melatonin (10 mg/kg i.p.) or 1% ethanol. The hematoxylin and eosin staining and transmission electron microscopic examination were used for observation of histopathology. The oxidative stress-related indicators were detected by using assay kits. The western blotting, immunohistochemistry and immunofluorescence were used to detect the activation of PKCα/Nrf2 signaling pathway. Results showed that isoflurane induced nerve damage in the hippocampus, and melatonin could reduce this injury. Oxidative stress-related indicators suggested that isoflurane can significantly increase reactive oxygen species and malondialdehyde levels, and decrease superoxide dismutase and glutathione activity compared with the control group, whereas melatonin ameliorated these indices. Expression of proteins associated with the PKCα/Nrf2 signaling pathway indicated that the neuroprotective effect of melatonin is related to activation of the PKCα/Nrf2 signaling pathway. These results suggest that the attenuating effect of melatonin on isoflurane-induced oxidative stress is related to activation of the PKCα/Nrf2 signaling pathway. These findings promote further research into underlying mechanisms and effective treatments to attenuate anesthesia neurotoxicity.
Collapse
Affiliation(s)
- Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu Jing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue Yuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yong Ping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ji Chen Sha
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hua Yun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong-Gang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
30
|
Ye JS, Chen L, Lu YY, Lei SQ, Peng M, Xia ZY. SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus. CNS Neurosci Ther 2018; 25:355-366. [PMID: 30296006 DOI: 10.1111/cns.13053] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Increasing evidence indicates that neuroinflammatory and oxidative stress play two pivotal roles in cognitive impairment after surgery. Honokiol (HNK), as an activator of Sirtuin3 (SIRT3), has potential multiple biological functions. The aim of these experiments is to evaluate the effects of HNK on surgery/anesthesia-induced cognitive decline in mice. METHODS Adult C57BL/6 mice received a laparotomy under sevoflurane anesthesia and HNK or SIRT3 inhibitor (3-TYP) treatment. Cognitive function and locomotor activity of mice were evaluated using fear conditioning test and open field test on postoperative 1 and 3 days. Neuronal apoptosis in CA1 and CA3 area of hippocampus was examined using TUNEL assay. And Western blot was applied to measure the expression of pro-inflammatory cytokines and SIRT3/SOD2 signaling-associated proteins in hippocampus. Meanwhile, SIRT3 positive cells were calculated by immunohistochemistry. The mitochondrial membrane potential, malondialdehyde (MDA), and mitochondrial radical oxygen species (mtROS) were detected using standard methods. RESULTS Honokiol attenuated surgery-induced memory loss and neuronal apoptosis, decreased neuroinflammatory response, and ameliorated oxidative damage in hippocampus. Notably, surgery/anesthesia induced an obviously decrease in hippocampal SIRT3 expression, whereas the HNK increased SIRT3 expression and thus decreased the acetylation of superoxide dismutase 2 (SOD2). However, 3-TYP treatment inhibited the HNK's rescuing effects. CONCLUSIONS These results suggested that activation of SIRT3 by honokiol may attenuate surgery/anesthesia-induced cognitive impairment in mice through regulation of oxidative stress and neuroinflammatory in hippocampus.
Collapse
Affiliation(s)
- Ji-Shi Ye
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya-Yuan Lu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Jakaria M, Park SY, Haque ME, Karthivashan G, Kim IS, Ganesan P, Choi DK. Neurotoxic Agent-Induced Injury in Neurodegenerative Disease Model: Focus on Involvement of Glutamate Receptors. Front Mol Neurosci 2018; 11:307. [PMID: 30210294 PMCID: PMC6123546 DOI: 10.3389/fnmol.2018.00307] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Glutamate receptors play a crucial role in the central nervous system and are implicated in different brain disorders. They play a significant role in the pathogenesis of neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although many studies on NDDs have been conducted, their exact pathophysiological characteristics are still not fully understood. In in vivo and in vitro models of neurotoxic-induced NDDs, neurotoxic agents are used to induce several neuronal injuries for the purpose of correlating them with the pathological characteristics of NDDs. Moreover, therapeutic drugs might be discovered based on the studies employing these models. In NDD models, different neurotoxic agents, namely, kainic acid, domoic acid, glutamate, β-N-Methylamino-L-alanine, amyloid beta, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, rotenone, 3-Nitropropionic acid and methamphetamine can potently impair both ionotropic and metabotropic glutamate receptors, leading to the progression of toxicity. Many other neurotoxic agents mainly affect the functions of ionotropic glutamate receptors. We discuss particular neurotoxic agents that can act upon glutamate receptors so as to effectively mimic NDDs. The correlation of neurotoxic agent-induced disease characteristics with glutamate receptors would aid the discovery and development of therapeutic drugs for NDDs.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Shin-Young Park
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Md. Ezazul Haque
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Govindarajan Karthivashan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - Palanivel Ganesan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| |
Collapse
|
32
|
Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes (Basel) 2018; 9:genes9030165. [PMID: 29547561 PMCID: PMC5867886 DOI: 10.3390/genes9030165] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
Senescence is related to the loss of cellular homeostasis and functions, which leads to a progressive decline in physiological ability and to aging-associated diseases. Since mitochondria are essential to energy supply, cell differentiation, cell cycle control, intracellular signaling and Ca2+ sequestration, fine-tuning mitochondrial activity appropriately, is a tightrope walk during aging. For instance, the mitochondrial oxidative phosphorylation (OXPHOS) ensures a supply of adenosine triphosphate (ATP), but is also the main source of potentially harmful levels of reactive oxygen species (ROS). Moreover, mitochondrial function is strongly linked to mitochondrial Ca2+ homeostasis and mitochondrial shape, which undergo various alterations during aging. Since mitochondria play such a critical role in an organism’s process of aging, they also offer promising targets for manipulation of senescent cellular functions. Accordingly, interventions delaying the onset of age-associated disorders involve the manipulation of mitochondrial function, including caloric restriction (CR) or exercise, as well as drugs, such as metformin, aspirin, and polyphenols. In this review, we discuss mitochondria’s role in and impact on cellular aging and their potential to serve as a target for therapeutic interventions against age-related cellular dysfunction.
Collapse
|
33
|
Li X, Wei K, Hu R, Zhang B, Li L, Wan L, Zhang C, Yao W. Upregulation of Cdh1 Attenuates Isoflurane-Induced Neuronal Apoptosis and Long-Term Cognitive Impairments in Developing Rats. Front Cell Neurosci 2017; 11:368. [PMID: 29218001 PMCID: PMC5703863 DOI: 10.3389/fncel.2017.00368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
Neonatal exposure to isoflurane can result in neuroapoptosis and persistent cognitive impairments. However, the underlying mechanisms remain elusive. Anaphase-promoting complex/cyclosome (APC/C) and its co-activator Cdh1 are E3 ubiquitin ligases that play important roles in the central nervous system, including in the regulation of neuronal survival, synaptic development, and mammalian learning and memory. However, whether APC/C-Cdh1 is involved in isoflurane-induced neurotoxicity in developing rats remains unclear. In this study, postnatal day-7 (P7) rat pups and primary hippocampal neurons were exposed to 2% isoflurane for 6 h. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to detect neuronal apoptosis, and the expression of proteins involved in apoptosis (cleaved caspase-3, Bax and Bcl-2) was assessed by western blot. The level of Cdh1 in the hippocampus was downregulated during isoflurane-induced neuroapoptosis. Cdh1-encoding lentivirus was transfected before isoflurane-treatment to increase the level of Cdh1. Our results showed that Cdh1 overexpression by a recombinant Cdh1-encoding lentivirus reduced isoflurane-induced neuronal apoptosis. Moreover, bilateral intra-hippocampal injection with Cdh1-encoding lentivirus attenuated long-term cognitive deficits after exposure to isoflurane in developing rats. Our study indicates that Cdh1 is an important target to prevent isoflurane-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Wei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Hu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|