1
|
Xiao CL, Lai HT, Zhou JJ, Liu WY, Zhao M, Zhao K. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 2025; 62:2230-2249. [PMID: 39093381 DOI: 10.1007/s12035-024-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hong-Tong Lai
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Jiang-Jun Zhou
- Hospital 908, Joint Logistics Support Force, 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang City, Jiangxi Province, 330001, People's Republic of China
| | - Wu-Yang Liu
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Min Zhao
- Department of Spine Surgery, Yingtan People's Hospital, 116 Shengli West Road, Yuehu District, Yingtan City, Jiangxi Province, 335000, People's Republic of China.
| | - Kai Zhao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
2
|
Vazquez-Coto D, Perez-Oliveira S, Menéndez-González M, Coto E, Álvarez V. Assessing the association between common functional Nuclear Factor Kappa-b gene polymorphisms (NFKB1, NFKBIZ, NFKBIA) and Alzheimer´s disease. Behav Brain Res 2025; 476:115264. [PMID: 39322062 DOI: 10.1016/j.bbr.2024.115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The Nuclear Factor Kappa-b (NF-Κb) pathway has been implicated in the pathogenesis of Alzheimer´s disease (AD). We determined whether common variants in the NF-Κb genes were associated with the risk of developing late-onset AD (LOAD). A total of 639 Spanish LOAD and 500 controls were genotyped for the NFKB1 rs28362491/rs7667496, NFKBIA rs696, NFKBIZ rs3217713 and APOE-Ɛ2/3/4 polymorphisms. Rs7667496 C was increased in the patients (p<0.001) with the CC genotype showing a significant risk (CC vs T+, OR= 1.58, 95 %CI=1.25-2.01). The CC genotype was significantly associated with LOAD after correction by APOE-4+ genotypes, age and sex (p=0.0003, OR=1.88, 95 %CI=1.28-2.78). The NFKB1 rs28362491 I - rs7667496 C haplotype was significantly increased in the patients (p=0.02). NFKBIA and NFKBIZ variants were not associated with the risk of LOAD in our population. In conclusion, NFKB1 variants were associated with the risk of LOAD in our population. This finding encourages further studies to determine the involvement of the NF-kB components in LOAD.
Collapse
Affiliation(s)
- Daniel Vazquez-Coto
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | - Sergio Perez-Oliveira
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel Menéndez-González
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Servicio de Neurología Hospital Universitario Central de Asturias, Oviedo 33011, Spain; Universidad de Oviedo
| | - Eliecer Coto
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Universidad de Oviedo
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
3
|
WU Z, ZHU Q, KONG L, SONG P, ZHOU X, GUO G, ZHANG S, HE T, CHENG Y, FANG M. Tuina alleviates neuropathic pain through regulate the activation of microglia and the secretion of inflammatory cytokine in spinal cord. J TRADIT CHIN MED 2024; 44:762-769. [PMID: 39066537 PMCID: PMC11337246 DOI: 10.19852/j.cnki.jtcm.20240515.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To observe the analgesic effects of Tuina on neuropathic pain (NPP) and the underlying mechanisms. METHODS Forty-eight Sprague-Dawley (SD) rats were assigned by random into three treatment groups: sham, chronic constriction injury (CCI), and Tuina. Each group contained sixteen rats. CCI model was generated by ligating the right sciatic nerve. Behavioral changes of CCI were assessed by the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, biochemical techniques such as immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to profile levels of microglia activation and inflammatory factors in the spinal dorsal horn (SDH) of rats. Tuina (clockwise pressing and rubbing) was performed at Chengshan (BL57) to observe the analgesic effects on CCI rats and the underlying mechanisms. RESULTS Rats with CCI experienced significant reduction in the PWT and PWL of the right hind paw relative to CCI group at day 3. Tuina treatment rescued this situation significantly on days 10 and 14. Besides, Iba-1, microglia M1 receptor CD68, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were higher in the right SDH for CCI group compared to the sham group on day 14. As expected, Tuina partially downregulated the CCI-induced overexpressed Iba-1, CD68, TNF-α, and IL-1β in the SDH of CCI model. CONCLUSION Tuina induces a time-dependent cumulative analgesic effect in CCI rats by inhibiting the activation of microglia and the secretion of IL-1β and TNF-α in SDH.
Collapse
Affiliation(s)
- Zhiwei WU
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qingguang ZHU
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lingjun KONG
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Pengfei SONG
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xin ZHOU
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guangxin GUO
- 4 Department of Acupuncture and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuaipan ZHANG
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Tianxiang HE
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Yanbin CHENG
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
| | - Min FANG
- 1 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- 2 Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200437, China
- 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
4
|
Zhang L, Xiao Z, Su Z, Wang X, Tian H, Su M. Repetitive transcranial magnetic stimulation promotes motor function recovery in mice after spinal cord injury via regulation of the Cx43-autophagy loop. J Orthop Surg Res 2024; 19:387. [PMID: 38956661 PMCID: PMC11218133 DOI: 10.1186/s13018-024-04879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Spinal cord injury (SCI) is a severe condition with an extremely high disability rate. It is mainly manifested as the loss of motor, sensory and autonomic nerve functions below the injury site. High-frequency transcranial magnetic stimulation, a recently developed neuromodulation method, can increase motor function in mice with spinal cord injury. This study aimed to explore the possible mechanism by which transcranial magnetic stimulation (TMS) restores motor function after SCI. A complete T8 transection model of the spinal cord was established in mice, and the mice were treated daily with 15 Hz high-frequency transcranial magnetic stimulation. The BMS was used to evaluate the motor function of the mice after SCI. Western blotting and immunofluorescence were used to detect the expression of Connexin43 (CX43) and autophagy-related proteins in vivo and in vitro, and correlation analysis was performed to study the relationships among autophagy, CX43 and motor function recovery after SCI in mice. Western blotting was used to observe the effect of magnetic stimulation on the expression of mTOR pathway members. In the control group, the expression of CX43 was significantly decreased, and the expression of microtubule-associated protein 1 A/1b light chain 3 (LC3II) and P62 was significantly increased after 4 weeks of spinal cord transection. After high-frequency magnetic stimulation, the level of CX43 decreased, and the levels of LC3II and P62 increased in primary astrocytes. The BMS of the magnetic stimulation group was greater than that of the control group. High-frequency magnetic stimulation can inhibit the expression of CX43, which negatively regulates autophagic flux. HF-rTMS increased the expression levels of mTOR, p-mTOR and p-S6. Our experiments showed that rTMS can restore hindlimb motor function in mice after spinal cord injury via regulation of the Cx43-autophagy loop and activation of the mTOR signalling pathway.
Collapse
Affiliation(s)
- Lechi Zhang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Rehabilitation, Soochow University, Suzhou, China
- Rehabilitation Medicine Center of Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhihang Xiao
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Rehabilitation, Soochow University, Suzhou, China
| | - Zelin Su
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Rehabilitation, Soochow University, Suzhou, China
| | - Xinlong Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Rehabilitation, Soochow University, Suzhou, China
- Rehabilitation Medicine Center of Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Huifang Tian
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Rehabilitation, Soochow University, Suzhou, China
| | - Min Su
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Rehabilitation, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
6
|
Wang XX, Li ZH, Du HY, Liu WB, Zhang CJ, Xu X, Ke H, Peng R, Yang DG, Li JJ, Gao F. The role of foam cells in spinal cord injury: challenges and opportunities for intervention. Front Immunol 2024; 15:1368203. [PMID: 38545108 PMCID: PMC10965697 DOI: 10.3389/fimmu.2024.1368203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024] Open
Abstract
Spinal cord injury (SCI) results in a large amount of tissue cell debris in the lesion site, which interacts with various cytokines, including inflammatory factors, and the intrinsic glial environment of the central nervous system (CNS) to form an inhibitory microenvironment that impedes nerve regeneration. The efficient clearance of tissue debris is crucial for the resolution of the inhibitory microenvironment after SCI. Macrophages are the main cells responsible for tissue debris removal after SCI. However, the high lipid content in tissue debris and the dysregulation of lipid metabolism within macrophages lead to their transformation into foamy macrophages during the phagocytic process. This phenotypic shift is associated with a further pro-inflammatory polarization that may aggravate neurological deterioration and hamper nerve repair. In this review, we summarize the phenotype and metabolism of macrophages under inflammatory conditions, as well as the mechanisms and consequences of foam cell formation after SCI. Moreover, we discuss two strategies for foam cell modulation and several potential therapeutic targets that may enhance the treatment of SCI.
Collapse
Affiliation(s)
- Xiao-Xin Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Wu-Bo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
7
|
Komai M, Noda Y, Ikeda A, Kaneshiro N, Kamikubo Y, Sakurai T, Uehara T, Takasugi N. Nuclear SphK2/S1P signaling is a key regulator of ApoE production and Aβ uptake in astrocytes. J Lipid Res 2024; 65:100510. [PMID: 38280459 PMCID: PMC10907773 DOI: 10.1016/j.jlr.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid β (Aβ)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aβ uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aβ production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.
Collapse
Affiliation(s)
- Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yuka Noda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nanaka Kaneshiro
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan.
| |
Collapse
|
8
|
Li W, Tang T, Yao S, Zhong S, Fan Q, Zou T. Low-dose Lipopolysaccharide Alleviates Spinal Cord Injury-induced Neuronal Inflammation by Inhibiting microRNA-429-mediated Suppression of PI3K/AKT/Nrf2 Signaling. Mol Neurobiol 2024; 61:294-307. [PMID: 37605094 DOI: 10.1007/s12035-023-03483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023]
Abstract
This study investigated the impact of low-dose lipopolysaccharide (LPS) on spinal cord injury (SCI) and the potential molecular mechanism. Rats were randomly assigned to four groups: Sham, SCI, SCI + LPS, and SCI + LPS + agomir. Allen's weight-drop method was used to establish an in vivo SCI model. The Basso Bcattie Bresnahan rating scale was employed to monitor locomotor function. An in vitro SCI model was constructed by subjecting PC12 cells to oxygen and glucose deprivation/ reoxygenation (OGD/R). Enzyme-linked immunosorbent assay (ELISA) was applied for the determination interleukin (IL)-1β and IL-6. The dual luciferase reporter assay was used to validate the targeting of microRNA (miR)-429 with PI3K. Immunohistochemical staining was used to assess the expression of PI3K, phosphorylated AKT and Nrf2 proteins. The Nrf2-downstream anti-oxidative stress proteins, OH-1 and NQO1, were detected by western blot assay. MiR-429 expression was detected by fluorescence in situ hybridization and real-time quantitative reverse transcription PCR. In vitro, low-dose LPS decreased miR-429 expression, activated PI3K/AKT/Nrf2, inhibited oxidative stress and inflammation, and attenuated SCI. MiR-429 was found to target and negatively regulate PI3K. Inhibition of miR-429 suppressed low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. In vivo, miR-429 was detectable in neurons. Inhibition of miR-429 blocked low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. Overall, low-dose LPS was found to alleviate SCI-induced neuronal oxidative stress and inflammatory response by down-regulating miR-429 to activate the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Weichao Li
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Tao Tang
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shaoping Yao
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Shixiao Zhong
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qianbo Fan
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tiannan Zou
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China.
| |
Collapse
|
9
|
Xu A, Yang Y, Shao Y, Jiang M, Sun Y, Feng B. FHL2 regulates microglia M1/M2 polarization after spinal cord injury via PARP14-depended STAT1/6 pathway. Int Immunopharmacol 2023; 124:110853. [PMID: 37708708 DOI: 10.1016/j.intimp.2023.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Neuronal apoptosis and inflammation exacerbate the secondary injury after spinal cord injury (SCI). Four and a half domains 2 (FHL2) is a multifunctional scaffold protein with tissue- and cell-type specific effects on the regulation of inflammation, but its role in SCI remains unclear. The T10 mouse spinal cord contusion model was established, and the mice were immediately injected with lentiviruses carrying FHL2 shRNA after SCI. The results showed that FHL2 expression was increased following SCI, and then gradually decreased. Moreover, FHL2 depletion aggravated functional impairment, neuronal necrosis, and enlarged lesion cavity areas in the injured spinal cord. FHL2 deficiency facilitated neuronal apoptosis by elevating cleaved caspase 3/9 expression, neuroinflammation by regulating microglia polarization, and bone loss. Indeed, FHL2 deficiency increased the secretion of TNF-α and IL-6, M1 microglia polarization, and the activation of STAT1 pathway but decreased the secretion of IL-10 and IL-4, M2 microglia polarization, and the activation of the STAT6 pathway in the spinal cord. In vitro, FHL2 silencing promoted LPS + IFN-γ-induced microglia M1 polarization through activating the STAT1 pathway and alleviated IL-4-induced microglia M2 polarization via inhibiting the STAT6 pathway. FHL2 positively regulated the expression of poly (ADP-ribose) polymerase family member 14 (PARP14) by promoting its transcription. PARP14 overexpression inhibited FHL2 silencing-induced microglia M1 polarization and relieved the inhibitory effect of FHL2 silencing on microglia M2 polarization. Collectively, the study suggests that FHL2 reduces the microglia M1/M2 polarization-mediated inflammation via PARP14-dependent STAT1/6 pathway and thereby improves functional recovery after SCI.
Collapse
Affiliation(s)
- Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Manyu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Feng
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Zhang S, Zhao J, Wu M, Zhou Y, Wu X, Du A, Tao Y, Huang S, Cai S, Zhou M, Wei T, Zhang Y, Xie L, Wu Y, Xiao J. Over-activation of TRPM2 ion channel accelerates blood-spinal cord barrier destruction in diabetes combined with spinal cord injury rat. Int J Biol Sci 2023; 19:2475-2494. [PMID: 37215981 PMCID: PMC10197895 DOI: 10.7150/ijbs.80672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that often results in loss of motor and sensory function. Diabetes facilitates the blood-spinal cord barrier (BSCB) destruction and aggravates SCI recovery. However, the molecular mechanism underlying it is still unclear. Our study has focused on transient receptor potential melastatin 2 (TRPM2) channel and investigated its regulatory role on integrity and function of BSCB in diabetes combined with SCI rat. We have confirmed that diabetes is obviously not conductive to SCI recovery through accelerates BSCB destruction. Endothelial cells (ECs) are the important component of BSCB. It was observed that diabetes significantly worsens mitochondrial dysfunction and triggers excessive apoptosis of ECs in spinal cord from SCI rat. Moreover, diabetes impeded neovascularization in spinal cord from SCI rat with decreases of VEGF and ANG1. TRPM2 acts as a cellular sensor of ROS. Our mechanistic studies showed that diabetes significantly induces elevated ROS level to activate TRPM2 ion channel of ECs. Then, TRPM2 channel mediated the Ca2+ influx and subsequently activated p-CaMKII/eNOS pathway, and which in turn triggered the ROS production. Consequently, over-activation of TRPM2 ion channel results in excessive apoptosis and weaker angiogenesis during SCI recovery. Inhibition of TRPM2 with 2-Aminoethyl diphenylborinate (2-APB) or TRPM2 siRNA will ameliorate the apoptosis of ECs and promote angiogenesis, subsequently enhance BSCB integrity and improve the locomotor function recovery of diabetes combined with SCI rat. In conclusion, TRPM2 channel may be a key target for the treatment of diabetes combined with SCI rat.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiaxin Zhao
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Man Wu
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yongxiu Zhou
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xuejuan Wu
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Anyu Du
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibing Tao
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shanshan Huang
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shufang Cai
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Mei Zhou
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Tao Wei
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Ling Xie
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
11
|
Miličić I, Mikuš M, Vrbanić A, Kalafatić D. The Role of Gene Expression in Stress Urinary Incontinence: An Integrative Review of Evidence. Medicina (B Aires) 2023; 59:medicina59040700. [PMID: 37109658 PMCID: PMC10142382 DOI: 10.3390/medicina59040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Stress urinary incontinence (SUI) is defined as unintentional urine leakage occurring as a consequence of increased intraabdominal pressure due to absent or weak musculus detrusor contractility. It affects postmenopausal women more often than premenopausal and is associated with quality of life (QoL) deterioration. The complex SUI etiology is generally perceived as multifactorial; however, the overall impact of environmental and genetic influences is deficiently understood. In this research report, we have disclosed the upregulation of 15 genes and the downregulation of 2 genes in the genetic etiology of SUI according to the accessible scientific literature. The analytical methods used for the analysis of gene expression in the studies investigated were immunohistochemistry, immunofluorescence staining, PCR, and Western blot. In order to facilitate the interpretation of the results, we have used GeneMania, a potent software which describes genetic expression, co-expression, co-localization, and protein domain similarity. The importance of this review on the genetic pathophysiology of SUI lies in determining susceptibility for targeted genetic therapy, detecting clinical biomarkers, and other possible therapeutic advances. The prevention of SUI with the timely recognition of genetic factors may be important for avoiding invasive operative urogynecological methods.
Collapse
Affiliation(s)
- Iva Miličić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Mislav Mikuš
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Adam Vrbanić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Držislav Kalafatić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
- Medical School, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
12
|
Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Res 2023; 37:438-451. [PMID: 36114802 DOI: 10.1002/ptr.7625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is a serious injury that can lead to irreversible motor dysfunction. Due to its complicated pathogenic mechanism, there are no effective drug treatments. Piperine, a natural active alkaloid extracted from black pepper, has been reported to influence neurogenesis and exert a neuroprotective effect in traumatic brain injury. The aim of this study was to investigate the therapeutic effect of piperine in an SCI model. SCI was induced in mice by clamping the spinal cord with a vascular clip for 1 min. Before SCI and every 2 days post-SCI, evaluations using the Basso mouse scale and inclined plane tests were performed. On day 28 after SCI, footprint analyses, and HE/Masson staining of tissues were performed. On a postoperative Day 3, the spinal cord was harvested to assess the levels of pyroptosis, reactive oxygen species (ROS), inflammation, and autophagy. Piperine enhanced functional recovery after SCI. Additionally, piperine reduced inflammation, oxidative stress, pyroptosis, and activated autophagy. However, the effects of piperine on functional recovery after SCI were reversed by autophagy inhibition. The study demonstrated that piperine facilitated functional recovery after SCI by inhibiting inflammatory, oxidative stress, and pyroptosis, mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Haohan Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanlin Chen
- Spinal Surgery Department, The Central Hospital of Lishui City, Lishui, People's Republic of China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
13
|
Miao G, Zhuo D, Han X, Yao W, Liu C, Liu H, Cao H, Sun Y, Chen Z, Feng T. From degenerative disease to malignant tumors: Insight to the function of ApoE. Biomed Pharmacother 2023; 158:114127. [PMID: 36516696 DOI: 10.1016/j.biopha.2022.114127] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein involved in lipid transport and lipoprotein metabolism, mediating lipid distribution/redistribution in tissues and cells. It can also regulate inflammation and immune function, maintain cytoskeleton stability, and improve neural tissue Function. Due to genetic polymorphisms of ApoE (ε2, ε3, and ε4), its three common structural isoforms (ApoE2, ApoE3, ApoE4) are also associated with the risk of many diseases, especially degenerative diseases, such as vascular degenerative diseases including atherosclerosis (AS), coronary heart disease (CHD), and neurodegenerative disease like Alzheimer's disease (AD). The frequency of the ε4 allele and APOE variants were significantly higher than that of the ε2 and ε3 alleles in the patients with CHD or AD. In recent years, ApoE has frequently appeared in tumor research and become a tumor biomarker gradually. It has been found that ApoE is highly expressed in most solid tumor tissues, such as glioblastoma, gastric cancer, pancreatic ductal cell carcinoma, etc. Studies illustrated that ApoE could regulate the polarization changes of macrophages, participate in the construction of tumor immune microenvironment, regulate tumor inflammation and immune response and play a role in tumor progression, invasion, and metastasis. Of course, many functions of ApoE and its relationship with diseases are still under research. By reviewing the structure and function of ApoE from degeneration diseases to tumor neoplasms, we hope to better understand such a biomarker and further explore the value of ApoE in later studies.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China; Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Han
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Yao XQ, Chen JY, Yu ZH, Huang ZC, Hamel R, Zeng YQ, Huang ZP, Tu KW, Liu JH, Lu YM, Zhou ZT, Pluchino S, Zhu QA, Chen JT. Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Front Immunol 2022; 13:964138. [PMID: 36091018 PMCID: PMC9448857 DOI: 10.3389/fimmu.2022.964138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.
Collapse
Affiliation(s)
- Xin-Qiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Ying Chen
- Department of Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zi-Han Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zu-Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Regan Hamel
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Yong-Qiang Zeng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Wu Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Hao Liu
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan-Meng Lu
- Center of Electron Microscopy, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Center of Electron Microscopy, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Qing-An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Li Y, Lei Z, Ritzel RM, He J, Li H, Choi HMC, Lipinski MM, Wu J. Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice. Theranostics 2022; 12:5364-5388. [PMID: 35910787 PMCID: PMC9330534 DOI: 10.7150/thno.72713] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Autophagy is a catabolic process that degrades cytoplasmic constituents and organelles in the lysosome, thus serving an important role in cellular homeostasis and protection against insults. We previously reported that defects in autophagy contribute to neuronal cell damage in traumatic spinal cord injury (SCI). Recent data from other inflammatory models implicate autophagy in regulation of immune and inflammatory responses, with low levels of autophagic flux associated with pro-inflammatory phenotypes. In the present study, we examined the effects of genetically or pharmacologically manipulating autophagy on posttraumatic neuroinflammation and motor function after SCI in mice. Methods: Young adult male C57BL/6, CX3CR1-GFP, autophagy hypomorph Becn1+/- mice, and their wildtype (WT) littermates were subjected to moderate thoracic spinal cord contusion. Neuroinflammation and autophagic flux in the injured spinal cord were assessed using flow cytometry, immunohistochemistry, and NanoString gene expression analysis. Motor function was evaluated with the Basso Mouse Scale and horizontal ladder test. Lesion volume and spared white matter were evaluated by unbiased stereology. To stimulate autophagy, disaccharide trehalose, or sucrose control, was administered in the drinking water immediately after injury and for up to 6 weeks after SCI. Results: Flow cytometry demonstrated dysregulation of autophagic function in both microglia and infiltrating myeloid cells from the injured spinal cord at 3 days post-injury. Transgenic CX3CR1-GFP mice revealed increased autophagosome formation and inhibition of autophagic flux specifically in activated microglia/macrophages. NanoString analysis using the neuroinflammation panel demonstrated increased expression of proinflammatory genes and decreased expression of genes related to neuroprotection in Becn1+/- mice as compared to WT controls at 3 days post-SCI. These findings were further validated by qPCR, wherein we observed significantly higher expression of proinflammatory cytokines. Western blot analysis confirmed higher protein expression of the microglia/macrophage marker IBA-1, inflammasome marker, NLRP3, and innate immune response markers cGAS and STING in Becn1+/- mice at 3 day after SCI. Flow cytometry demonstrated that autophagy deficit did not affect either microglial or myeloid counts at 3 days post-injury, instead resulting in increased microglial production of proinflammatory cytokines. Finally, locomotor function showed significantly worse impairments in Becn1+/- mice up to 6 weeks after SCI, which was accompanied by worsening tissue damage. Conversely, treatment with a naturally occurring autophagy inducer trehalose, reduced protein levels of p62, an adaptor protein targeting cargo to autophagosomes as well as the NLRP3, STING, and IBA-1 at 3 days post-injury. Six weeks of trehalose treatment after SCI led to improved motor function recovery as compared to control group, which was accompanied by reduced tissue damage. Conclusions: Our data indicate that inhibition of autophagy after SCI potentiates pro-inflammatory activation in microglia and is associated with worse functional outcomes. Conversely, increasing autophagy with trehalose, decreased inflammation and improved outcomes. These findings highlight the importance of autophagy in spinal cord microglia and its role in secondary injury after SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Harry M C Choi
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Marta M Lipinski
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| |
Collapse
|
16
|
Liu X, Jiang X, Yu Q, Shen W, Tian H, Mei X, Wu C. Sodium alginate and Naloxone loaded macrophage-derived nanovesicles for the treatment of spinal cord injury. Asian J Pharm Sci 2021; 17:87-101. [PMID: 35261646 PMCID: PMC8888181 DOI: 10.1016/j.ajps.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) causes Ca2+ overload, which can lead to inflammation and neuronal apoptosis. In this study, we prepared a nanovesicle derived from macrophage membrane (MVs), which encapsulated sodium alginate (SA) and naloxone (NAL) to inhibit inflammation and protect neurons by reducing the free Ca2+concentration at the SCI site. Based on the transmission electron microscopy (TEM) image, the encapsulated sample (NAL–SA–MVs) had a particle size of approximately 134 ± 11 nm and exhibited a sustained release effect. The encapsulation rate of NAL and SA was 82.07% ± 3.27% and 72.13% ± 2.61% in NAL–SA–MVs, respectively. Targeting tests showed that the NAL–SA–MVs could accumulate in large quantities and enhance the concentration of SA and NAL at the lesion sites. In vivo and in vitro studies indicated that the NAL–SA–MVs could decrease the concentration of free Ca2+, which should further alleviate the inflammatory response and neuronal apoptosis. Anti-inflammation results demonstrated that the NAL–SA–MVs could reduce the pro-inflammation factors (iNOS, TNF-α, IL-1β, IL-6) and increase the expression of anti-inflammation factors (IL-10) at the cell and animal level. Concurrently, fluorescence, flow cytometry and western blot characterization showed that the apoptotic condition of the neurons was significantly inhibited. In addition, the motor function of C57 mice were significantly improved after NAL–SA–MVs treatment. In conclusion, it is suggested that the NAL–SA–MVs has tremendous potential in the treatment of SCI.
Collapse
Affiliation(s)
- Xiaoyao Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - Xue Jiang
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - Qi Yu
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - Wenwen Shen
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, China
- Corresponding author.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou 121001, China
- Corresponding author.
| |
Collapse
|
17
|
Abstract
Apolipoprotein E (APOE) has three different isoforms, with APOE4 carriers representing a major risk factor for the development of Alzheimer’s disease (AD). AD is the most common form of dementia, and is a relentlessly progressive disorder that afflicts the aged, characterized by severe memory loss. Presently, AD does not have a cure, increasing the urgency for the development of novel therapeutics for the prevention/treatment of AD. The APOE4 isoform is associated with many pathological mechanisms, such as increased neuroinflammation and a reduction in β-amyloid (Aβ) clearance. The accumulation of Aβ plaques in the brain is a hallmark of AD. The presence of APOE4 can increase neuroinflammation via overactivation of the nuclear factor kappa B (NF-κB) pathway. The NF-κB pathway is a family of transcription factors involved with regulating over 400 genes involved with inflammation. AD is associated with sustained inflammation and an overactivation of the NF-κB pathway. Therefore, targeting the APOE4 isoform and suppressing the NF-κB pathway using anti-inflammatory compounds may result in the development of novel therapeutics for the prevention/treatment of AD.
Collapse
Affiliation(s)
- Don A. Davies
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
18
|
Multi-Omics Approach to Elucidate Cerebrospinal Fluid Changes in Dogs with Intervertebral Disc Herniation. Int J Mol Sci 2021; 22:ijms222111678. [PMID: 34769107 PMCID: PMC8583948 DOI: 10.3390/ijms222111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Herniation of the intervertebral disc (IVDH) is the most common cause of neurological and intervertebral disc degeneration-related diseases. Since the disc starts to degenerate before it can be observed by currently available diagnostic methods, there is an urgent need for novel diagnostic approaches. To identify molecular networks and pathways which may play important roles in intervertebral disc herniation, as well as to reveal the potential features which could be useful for monitoring disease progression and prognosis, multi-omics profiling, including high-resolution liquid chromatography-mass spectrometry (LC-MS)-based metabolomics and tandem mass tag (TMT)-based proteomics was performed. Cerebrospinal fluid of nine dogs with IVDH and six healthy controls were used for the analyses, and an additional five IVDH samples were used for proteomic data validation. Furthermore, multi-omics data were integrated to decipher a complex interaction between individual omics layers, leading to an improved prediction model. Together with metabolic pathways related to amino acids and lipid metabolism and coagulation cascades, our integromics prediction model identified the key features in IVDH, namely the proteins follistatin Like 1 (FSTL1), secretogranin V (SCG5), nucleobindin 1 (NUCB1), calcitonin re-ceptor-stimulating peptide 2 precursor (CRSP2) and the metabolites N-acetyl-D-glucosamine and adenine, involved in neuropathic pain, myelination, and neurotransmission and inflammatory response, respectively. Their clinical application is to be further investigated. The utilization of a novel integrative interdisciplinary approach may provide new opportunities to apply innovative diagnostic and monitoring methods as well as improve treatment strategies and personalized care for patients with degenerative spinal disorders.
Collapse
|
19
|
Dai N, Tang C, Liu H, Huang S. Effect of electroacupuncture on inhibition of inflammatory response and oxidative stress through activating ApoE and Nrf2 in a mouse model of spinal cord injury. Brain Behav 2021; 11:e2328. [PMID: 34423582 PMCID: PMC8442587 DOI: 10.1002/brb3.2328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Electroacupuncture protects neurons and myelinated axons after spinal cord injury by mitigating the inflammatory response and oxidative stress, but how it exerts these effects is unclear. METHODS AND RESULTS Spinal cord injury was induced in C57BL/6 wild-type and apolipoprotein E (ApoE) knockout (ApoE-/- ) mice, followed by electroacupuncture or ApoE mimetic peptide COG112 treatment. Mice with spinal cord injury suffered loss of myelinated axons and hindlimb motor function through the detections of Basso mouse scale, histology, and transmission electron microscopy; electroacupuncture partially reversed these effects in wild-type mice but not in ApoE-/- mice. Combining exogenous ApoE administration with electroacupuncture significantly mitigated the effects of spinal cord injury in both mouse strains, and these effects were associated with up-regulation of anti-inflammatory cytokines and down-regulation of pro-inflammatory cytokines which were detected by quantitative reverse transcription-polymerase chain reaction. Combination treatment also reduced oxidative stress by up-regulating ApoE and Nrf2/HO-1 signaling pathway through the detections of immunofluorescence and western blot analysis. CONCLUSIONS These results suggest that electroacupuncture protects neurons and myelinated axons following spinal cord injury through an ApoE-dependent mechanism.
Collapse
Affiliation(s)
- Ni Dai
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Desimone A, Hong J, Brockie ST, Yu W, Laliberte AM, Fehlings MG. The influence of ApoE4 on the clinical outcomes and pathophysiology of degenerative cervical myelopathy. JCI Insight 2021; 6:e149227. [PMID: 34369386 PMCID: PMC8410082 DOI: 10.1172/jci.insight.149227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most common cause of nontraumatic spinal cord injury in adults worldwide. Surgical decompression is generally effective in improving neurological outcomes and halting progression of myelopathic deterioration. However, a subset of patients experience suboptimal neurological outcomes. Given the emerging evidence that apolipoprotein E4 (ApoE4) allelic status influences neurodegenerative conditions, we examined whether the presence of the ApoE4 allele may account for the clinical heterogeneity of treatment outcomes in patients with DCM. Our results demonstrate that human ApoE4+ DCM patients have a significantly lower extent of improvement after decompression surgery. Functional analysis of our DCM mouse model in targeted-replacement mice expressing human ApoE4 revealed delayed gait recovery, forelimb grip strength, and hind limb mechanical sensitivity after decompression surgery, compared with their ApoE3 counterparts. This was accompanied by an exacerbated proinflammatory response resulting in higher concentrations of TNF-α, IL-6, CCL3, and CXCL9. At the site of injury, there was a significant decrease in gray matter area, an increase in the activation of microglia/macrophages, and increased astrogliosis after decompression surgery in the ApoE4 mice. Our study is the first to our knowledge to investigate the pathophysiological underpinnings of ApoE4 in DCM, which suggests a possible personalized medicine approach for the treatment of DCM in ApoE4 carriers.
Collapse
Affiliation(s)
- Alexa Desimone
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - Sydney T Brockie
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - Wenru Yu
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alex M Laliberte
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Sciences.,Division of Neurosurgery, Department of Surgery, and.,Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Milich LM, Choi JS, Ryan C, Cerqueira SR, Benavides S, Yahn SL, Tsoulfas P, Lee JK. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J Exp Med 2021; 218:e20210040. [PMID: 34132743 PMCID: PMC8212781 DOI: 10.1084/jem.20210040] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
The wound healing process that occurs after spinal cord injury is critical for maintaining tissue homeostasis and limiting tissue damage, but eventually results in a scar-like environment that is not conducive to regeneration and repair. A better understanding of this dichotomy is critical to developing effective therapeutics that target the appropriate pathobiology, but a major challenge has been the large cellular heterogeneity that results in immensely complex cellular interactions. In this study, we used single-cell RNA sequencing to assess virtually all cell types that comprise the mouse spinal cord injury site. In addition to discovering novel subpopulations, we used expression values of receptor-ligand pairs to identify signaling pathways that are predicted to regulate specific cellular interactions during angiogenesis, gliosis, and fibrosis. Our dataset is a valuable resource that provides novel mechanistic insight into the pathobiology of not only spinal cord injury but also other traumatic disorders of the CNS.
Collapse
Affiliation(s)
- Lindsay M. Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - James S. Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Christine Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - Susana R. Cerqueira
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Sofia Benavides
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Stephanie L. Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
- University of Miami Neuroscience Graduate Program, Miami, FL
| | - Pantelis Tsoulfas
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Jae K. Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
22
|
Xia N, Gao Z, Hu H, Li D, Zhang C, Mei X, Wu C. Nerve growth factor loaded macrophage-derived nanovesicles for inhibiting neuronal apoptosis after spinal cord injury. J Biomater Appl 2021; 36:276-288. [PMID: 34167336 DOI: 10.1177/08853282211025912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is an extremely destructive central nervous system lesion. Studies have shown that NGF can promote nerve regeneration after SCI. However, it cannot produce the desired effect due to its stability in the body and is difficulty in passing through the blood-brain barrier. In this study, we prepared nanovesicles derived from macrophage membrane encapsulating NGF (NGF-NVs) as a drug carrier for the treatment of SCI. Cell experiments showed that NGF-NVs were effectively taken up by PC12 cells and inhibited neuronal apoptosis. In vivo imaging experiments, a large quantity of NGF was delivered to the injured site with the aid of the good targeting of NVs. In animal experiments, NGF-NVs improved the survival of neurons by significantly activating the PI3K/AKT signaling pathway and had good behavioral and histological recovery effects after SCI. Therefore, NVs are a potential drug delivery vector for SCI therapy.
Collapse
Affiliation(s)
- Nan Xia
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Hengshuo Hu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Daoyong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chuanjie Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning province, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
23
|
From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. Pain Rep 2021; 6:e898. [PMID: 33981930 PMCID: PMC8108589 DOI: 10.1097/pr9.0000000000000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 plays a major role in the regulation of neuroinflammation, neurodegeneration, neuroregeneration, neuropathic pain, and deficient cognitive functions. This review describes the roles of the low-density lipoprotein receptor–related protein 1 (LRP-1) in inflammatory pathways, nerve nerve degeneration and -regeneration and in neuropathic pain. Induction of LRP-1 is able to reduce the activation of the proinflammatory NFκB-mediated pathway and the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase and p38 signaling pathways, in turn decreasing the production of inflammatory mediators. Low-density lipoprotein receptor-related protein 1 activation also decreases reactive astrogliosis and polarizes microglial cells and macrophages from a proinflammatory phenotype (M1) to an anti-inflammatory phenotype (M2), attenuating the neuroinflammatory environment. Low-density lipoprotein receptor-related protein 1 can also modulate the permeability of the blood–brain barrier and the blood–nerve barrier, thus regulating the infiltration of systemic insults and cells into the central and the peripheral nervous system, respectively. Furthermore, LRP-1 is involved in the maturation of oligodendrocytes and in the activation, migration, and repair phenotype of Schwann cells, therefore suggesting a major role in restoring the myelin sheaths upon injury. Low-density lipoprotein receptor-related protein 1 activation can indirectly decrease neurodegeneration and neuropathic pain by attenuation of the inflammatory environment. Moreover, LRP-1 agonists can directly promote neural cell survival and neurite sprouting, decrease cell death, and attenuate pain and neurological disorders by the inhibition of MAPK c-Jun N-terminal kinase and p38-pathway and activation of MAPK extracellular signal–regulated kinase pathway. In addition, activation of LRP-1 resulted in better outcomes for neuropathies such as Alzheimer disease, nerve injury, or diabetic peripheral neuropathy, attenuating neuropathic pain and improving cognitive functions. To summarize, LRP-1 plays an important role in the development of different experimental diseases of the nervous system, and it is emerging as a very interesting therapeutic target.
Collapse
|
24
|
McComb M, Browne RW, Bhattacharya S, Bodziak ML, Jakimovski D, Weinstock-Guttman B, Kuhle J, Zivadinov R, Ramanathan M. The cholesterol autoxidation products, 7-ketocholesterol and 7β-hydroxycholesterol are associated with serum neurofilaments in multiple sclerosis. Mult Scler Relat Disord 2021; 50:102864. [PMID: 33677412 DOI: 10.1016/j.msard.2021.102864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) is an established marker of neuroaxonal injury in multiple sclerosis (MS). OBJECTIVES To investigate if oxysterols produced from non-enzymatic and enzymatic cholesterol oxidation are differentially associated with sNfL measurements in MS. METHODS This longitudinal study included 62 relapsing-remitting (RR-MS) and 36 progressive MS (PMS) patients with baseline and 5-year follow-up measures of serum levels of 6 oxysterols, sNfL and lipids. The oxysterols, 24-hydroxycholesterol (24HC), 25HC, 27HC, 7αHC, 7βHC and 7-ketocholesterol (7KC), were measured using liquid chromatography-mass spectrometry. sNfL was measured using single molecular array assay. Serum high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were obtained from a lipid profile. RESULTS The enzymatically produced oxysterols 24HC, 25HC, 27HC and 7αHC were not associated with sNfL. However, baseline levels of reactive oxygen species (ROS) produced oxysterols, 7KC (p = 0.032) and 7βHC (p = 0.0025), were positively associated with sNfL levels at follow-up. Follow-up 7KC (p = 0.038) levels were also associated with follow-up sNfL levels. The associations of 7KC or 7βHC with sNfL remained significant after adjusting for LDL-C or HDL-C. CONCLUSIONS 7KC and 7βHC, produced by ROS-mediated cholesterol oxidation are associated with neuroaxonal injury as assessed by sNfL in MS.
Collapse
Affiliation(s)
- Mason McComb
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, United States
| | - Sonia Bhattacharya
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, United States
| | - Mary Lou Bodziak
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Zivadinov
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States.
| |
Collapse
|
25
|
Xing L, Cai Y, Yang T, Yu W, Gao M, Chai R, Ding S, Wei J, Pan J, Chen G. Epitranscriptomic m6A regulation following spinal cord injury. J Neurosci Res 2020; 99:843-857. [PMID: 33271625 DOI: 10.1002/jnr.24763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
RNA methylation is involved in multiple physiological and pathological processes. However, the role of RNA methylation in spinal cord regeneration has not been reported. In this study, we find an altered m6A (N6-methyladenosine) RNA methylation profiling following zebrafish spinal cord injury (SCI), in line with an altered transcription level of the m6A methylase Mettl3. Interestingly, many of the differential m6A-tagged genes associated with neural regeneration are hypomethylated, but their transcription levels are upregulated in SCI. Moreover, we find that METTL3 may be important for spinal cord regeneration. We also show a conserved feature of METTL3 changes in mouse SCI model, in which the expression of METTL3 is increased in both astrocytes and neural stem cells. Together, our results indicate that m6A RNA methylation is dynamic and conserved following SCI and may contribute to spinal cord regeneration.
Collapse
Affiliation(s)
- Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yunyun Cai
- Department of Physiology, School of medicine, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Weiwei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengdie Gao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rui Chai
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sujun Ding
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinhuan Wei
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Jingying Pan
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
26
|
Sai N, Shi X, Zhang Y, Jiang QQ, Ji F, Yuan SL, Sun W, Guo WW, Yang SM, Han WJ. Involvement of Cholesterol Metabolic Pathways in Recovery from Noise-Induced Hearing Loss. Neural Plast 2020; 2020:6235948. [PMID: 32617095 PMCID: PMC7306080 DOI: 10.1155/2020/6235948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to explore the molecular mechanisms of acute noise-induced hearing loss and recovery of steady-state noise-induced hearing loss using miniature pigs. We used miniature pigs exposed to white noise at 120 dB (A) as a model. Auditory brainstem response (ABR) measurements were made before noise exposure, 1 day and 7 days after noise exposure. Proteomic Isobaric Tags for Relative and Absolute Quantification (iTRAQ) was used to observe changes in proteins of the miniature pig inner ear following noise exposure. Western blot and immunofluorescence were performed for further quantitative and qualitative analysis of proteomic changes. The average ABR-click threshold of miniature pigs before noise exposure, 1 day and 7 days after noise exposure, were 39.4 dB SPL, 67.1 dB SPL, and 50.8 dB SPL, respectively. In total, 2,158 proteins were identified using iTRAQ. Both gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses showed that immune and metabolic pathways were prominently involved during the impairment stage of acute hearing loss. During the recovery stage of acute hearing loss, most differentially expressed proteins were related to cholesterol metabolism. Western blot and immunofluorescence showed accumulation of reactive oxygen species and nuclear translocation of NF-κB (p65) in the hair cells of miniature pig inner ears during the acute hearing loss stage after noise exposure. Nuclear translocation of NF-κB (p65) may be associated with overexpression of downstream inflammatory factors. Apolipoprotein (Apo) A1 and Apo E were significantly upregulated during the recovery stage of hearing loss and may be related to activation of cholesterol metabolic pathways. This is the first study to use proteomics analysis to analyze the molecular mechanisms of acute noise-induced hearing loss and its recovery in a large animal model (miniature pigs). Our results showed that activation of metabolic, inflammatory, and innate immunity pathways may be involved in acute noise-induced hearing loss, while cholesterol metabolic pathways may play an important role in recovery of hearing ability following noise-induced hearing loss.
Collapse
Affiliation(s)
- Na Sai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Xi Shi
- Clinical Hearing Center of Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qing-qing Jiang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fei Ji
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei-Ju Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| |
Collapse
|
27
|
Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways. Acta Pharmacol Sin 2020; 41:612-619. [PMID: 31796867 PMCID: PMC7468309 DOI: 10.1038/s41401-019-0317-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
Increasing studies show that inflammatory processes may be involved in depressive disorders. Nuclear factor erythroid-2 related factor 2 (Nrf2) modulates tissue microglial M1 phenotypic changes to the M2 phenotype, which is implicated in protection against inflammatory diseases. We have reported that the adipose-derived mesenchymal stem cells (ADSCs) display anti-inflammatory activity. In this study we explored whether the mechanism of anti-inflammatory activity of ADSCs was related to Nrf2. ADSCs were isolated from mouse fat pads and intravenously administered to chronic mild stress (CMS)-exposed C57BL/6 mice at the dose of 1 × 106 once a week for 3 weeks. We showed that ADSC administration significantly remedied CMS-induced depressive-like behaviors in sucrose preference test, tail suspension test, and forced swim test accompanied by suppressing microglial activation and the expression of inflammatory factors including MCP-1, TNF-α, IL-1β, and IL-6. Furthermore, ADSC administration promoted both the expression of BDNF and TrkB, and promoted Nrf2/HO-1 signaling but suppressed TLR4/NF-κB signaling in brain tissue. In order to elucidate the role of Nrf2/HO-1 signaling in ADSC-caused neuroprotection, Nrf2-modified ADSCs were cocultured with BV2 microglial cells, then exposed to lipopolysaccharide (LPS). Downregulation of Nrf2 in ADSCs decreased the protective effects of ADSCs against LPS-induced microglial activation and M1 polarization. Nrf2 overexpression in ADSCs markedly suppressed LPS-induced TLR4 and NF-κB expression in microglial cells. These results suggest a possible antidepressive mechanism correlated with microglial polarization for anti-inflammatory agents, which may provide a new microglia-targeted strategy for depression therapy.
Collapse
|
28
|
Yang Z, Bao Y, Chen W, He Y. Melatonin exerts neuroprotective effects by attenuating astro- and microgliosis and suppressing inflammatory response following spinal cord injury. Neuropeptides 2020; 79:102002. [PMID: 31902595 DOI: 10.1016/j.npep.2019.102002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/17/2023]
Abstract
Reactive gliosis and inflammatory reaction are common pathological change to spinal cord injury (SCI). Whereas, the effects of melatonin (MT) on the astro- and microgliosis and their related inflammatory response in the injured spinal cord are not fully understood. In this study, MT's effects on the accumulation and proliferation of microglia and astrocytes and their related inflammatory response were investigated in an acute SCI model. The effects of MT on oxidative stress, neuronal survival and behavioral performance were also tested. It was found that MT treatment significantly suppressed the accumulation and the proliferation of microglia and astrocytes. Quantitative PCR data showed that MT significantly down-regulated the pro-inflammatory markers iNOS, IL-1β and TNF-α expressions. The data showed that MT led to the rise in SOD, CAT and GSH-Px contents and the decrease in MDA content. Western blotting analysis verified that MT significantly down-regulated caspase-3, Bax and GFAP expressions, up-regulated Bcl-2 expression. Compared with the SCI vehicle-treated group, the SCI MT-treated group exhibited a greater Basso Mouse Scale (BMS) locomotor rating score. On the whole, these findings implied that MT exerts its neuroprotective effects by suppressing the accumulation and the proliferation of microglia and astrocytes and reducing the release of pro-inflammatory cytokines, which might be one of the underlying mechanisms of the MT's neuroprotective effect after SCI. Accordingly, MT may be a promising therapeutic candidate for acute SCI.
Collapse
Affiliation(s)
- Zhijie Yang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yingying Bao
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weigang Chen
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuqin He
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
29
|
Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Microtubule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9741369. [PMID: 31998447 PMCID: PMC6969994 DOI: 10.1155/2020/9741369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease that may lead to lifelong disability. Thus, seeking for valid drugs that are beneficial to promoting axonal regrowth and elongation after SCI has gained wide attention. Metformin, a glucose-lowering agent, has been demonstrated to play roles in various central nervous system (CNS) disorders. However, the potential protective effect of metformin on nerve regeneration after SCI is still unclear. In this study, we found that the administration of metformin improved functional recovery after SCI through reducing neuronal cell apoptosis and repairing neurites by stabilizing microtubules via PI3K/Akt signaling pathway. Inhibiting the PI3K/Akt pathway with LY294002 partly reversed the therapeutic effects of metformin on SCI in vitro and vivo. Furthermore, metformin treatment weakened the excessive activation of oxidative stress and improved the mitochondrial function by activating the nuclear factor erythroid-related factor 2 (Nrf2) transcription and binding to the antioxidant response element (ARE). Moreover, treatment with Nrf2 inhibitor ML385 partially abolished its antioxidant effect. We also found that the Nrf2 transcription was partially reduced by LY294002 in vitro. Taken together, these results revealed that the role of metformin in nerve regeneration after SCI was probably related to stabilization of microtubules and inhibition of the excessive activation of Akt-mediated Nrf2/ARE pathway-regulated oxidative stress and mitochondrial dysfunction. Overall, our present study suggests that metformin administration may provide a potential therapy for SCI.
Collapse
|
30
|
Toro CA, Das DK, Cai D, Cardozo CP. Elucidating the Role of Apolipoprotein E Isoforms in Spinal Cord Injury-Associated Neuropathology. J Neurotrauma 2019; 36:3317-3322. [PMID: 31218915 DOI: 10.1089/neu.2018.6334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating, life-altering, neurological event that affects ∼300,000 individuals in the United States. Currently, there are no effective treatments to reverse the neurological impairments caused by the lesion. Until a cure is available, there is an urgent need for strategies that can either spare injured neurons or promote neuroplasticity and functional recovery. Genetic links to outcomes after SCI may provide insights into the pathological mechanisms, and possible new avenues for drug development. In the present review, we discuss the current knowledge linking apolipoprotein E genotypes with better or worse functional outcomes after an SCI, and the possible molecular mechanisms that may contribute to this association.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Dibash K Das
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Dongming Cai
- Neurology Service, James J. Peters VA, Bronx, New York
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Bronx, New York
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
- Department of Rehabilitative Medicine, Icahn School of Medicine at Mount Sinai, Bronx, New York
| |
Collapse
|
31
|
Wang C, Zhang L, Ndong JDLC, Hettinghouse A, Sun G, Chen C, Zhang C, Liu R, Liu CJ. Progranulin deficiency exacerbates spinal cord injury by promoting neuroinflammation and cell apoptosis in mice. J Neuroinflammation 2019; 16:238. [PMID: 31775776 PMCID: PMC6882111 DOI: 10.1186/s12974-019-1630-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Spinal cord injury (SCI) often results in significant and catastrophic dysfunction and disability and imposes a huge economic burden on society. This study aimed to determine whether progranulin (PGRN) plays a role in the progressive damage following SCI and evaluate the potential for development of a PGRN derivative as a new therapeutic target in SCI. METHODS PGRN-deficient (Gr-/-) and wild-type (WT) littermate mice were subjected to SCI using a weight-drop technique. Local PGRN expression following injury was evaluated by Western blotting and immunofluorescence. Basso Mouse Scale (BMS), inclined grid walking test, and inclined plane test were conducted at indicated time points to assess neurological recovery. Inflammation and apoptosis were examined by histology (Hematoxylin and Eosin (H&E) staining and Nissl staining, TUNEL assays, and immunofluorescence), Western blotting (from whole tissue protein for iNOS/p-p65/Bax/Bcl-2), and ex vivo ELISA (for TNFα/IL-1β/IL-6/IL-10). To identify the prophylactic and therapeutic potential of targeting PGRN, a PGRN derived small protein, Atsttrin, was conjugated to PLGA-PEG-PLGA thermosensitive hydrogel and injected into intrathecal space prior to SCI. BMS was recorded for neurological recovery and Western blotting was applied to detect the inflammatory and apoptotic proteins. RESULTS After SCI, PGRN was highly expressed in activated macrophage/microglia and peaked at day 7 post-injury. Grn-/- mice showed a delayed neurological recovery after SCI at day 21, 28, 35, and 42 post-injury relative to WT controls. Histology, TUNEL assay, immunofluorescence, Western blotting, and ELISA all indicated that Grn-/- mice manifested uncontrolled and expanded inflammation and apoptosis. Administration of control-released Atsttrin could improve the neurological recovery and the pro-inflammatory/pro-apoptotic effect of PGRN deficiency. CONCLUSION PGRN deficiency exacerbates SCI by promoting neuroinflammation and cellular apoptosis, which can be alleviated by Atsttrin. Collectively, our data provide novel evidence of using PGRN derivatives as a promising therapeutic approach to improve the functional recovery for patients with spinal cord injury.
Collapse
Affiliation(s)
- Chao Wang
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA.,Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lu Zhang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jean De La Croix Ndong
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA
| | - Guodong Sun
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA
| | - Changhong Chen
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA
| | - Chen Zhang
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, USA. .,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
32
|
Liu PY, Zhang Z, Liu Y, Tang XL, Shu S, Bao XY, Zhang Y, Gu Y, Xu Y, Cao X. TMEM16A Inhibition Preserves Blood-Brain Barrier Integrity After Ischemic Stroke. Front Cell Neurosci 2019; 13:360. [PMID: 31447648 PMCID: PMC6691060 DOI: 10.3389/fncel.2019.00360] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
The inflammatory response plays a pivotal role in Blood–Brain Barrier (BBB) destruction following ischemic brain injury. Enhanced leukocyte adhesion to vascular endothelial cells is an essential event in the inflammatory process. TMEM16A, a newly discovered protein regulating calcium-activated chloride channels, is widely expressed in eukaryotes. Recent studies have suggested that upregulated expression of TMEM16A is associated with the occurrence and development of many diseases. However, the role of TMEM16A in regulating BBB integrity after ischemic stroke has not been fully investigated. In this study, we found that TMEM16A is mainly expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. Caccinh-A01, an TMEM16A inhibitor that reduced its upregulation, attenuated brain infarct size and neurological deficits after ischemic stroke. ICAM-1 and MPO expression and BBB permeability were decreased after TMEM16A inhibitor administration. In addition, TMEM16A silencing rescued oxygen-glucose deprivation/reoxygenation (OGD/R)-induced transendothelial permeability in vitro accompanied by decreased ICAM-1 expression and leukocyte adhesion. Furthermore, our mechanistic study showed that TMEM16A knockdown alleviated NF-κB activation and nuclear translocation, indicating that TMEM16A knockdown downregulated OGD/R-induced ICAM-1 expression in an NF-κB-dependent manner. Finally, NF-κB inhibitor treatment also alleviated OGD/ R-induced BBB permeability, confirming that activated NF-κB and increased ICAM-1 are essential factors involved in ischemia-induced BBB damage. Thus, our research provides a promising treatment strategy against BBB destruction after ischemic stroke, and TMEM16A may become a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pin-Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xue-Lian Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
33
|
Isali I, Mahran A, Khalifa AO, Sheyn D, Neudecker M, Qureshi A, Conroy B, Schumacher FR, Hijaz AK, El-Nashar SA. Gene expression in stress urinary incontinence: a systematic review. Int Urogynecol J 2019; 31:1-14. [PMID: 31312847 DOI: 10.1007/s00192-019-04025-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023]
Abstract
INTRODUCTION A contribution of genetic factors to the development of stress urinary incontinence (SUI) is broadly acknowledged. This study aimed to: (1) provide insight into the genetic pathogenesis of SUI by gathering and synthesizing the available data from studies evaluating differential gene expression in SUI patients and (2) identify possible novel therapeutic targets and leads. METHODS A systematic literature search was conducted through September 2017 for the concepts of genetics and SUI. Gene networking connections and gene-set functional analyses of the identified genes as differentially expressed in SUI were performed using GeneMANIA software. RESULTS Of 3019 studies, 4 were included in the final analysis. A total of 13 genes were identified as being differentially expressed in SUI patients. Eleven genes were overexpressed: skin-derived antileukoproteinase (SKALP/elafin), collagen type XVII alpha 1 chain (COL17A1), plakophilin 1 (PKP1), keratin 16 (KRT16), decorin (DCN), biglycan (BGN), protein bicaudal D homolog 2 (BICD2), growth factor receptor-bound protein 2 (GRB2), signal transducer and activator of transcription 3 (STAT3), apolipoprotein E (APOE), and Golgi SNAP receptor complex member 1 (GOSR1), while two genes were underexpressed: fibromodulin (FMOD) and glucocerebrosidase (GBA). GeneMANIA revealed that these genes are involved in intermediate filament cytoskeleton and extracellular matrix organization. CONCLUSION Many genes are involved in the pathogenesis of SUI. Furthermore, whole-genome studies are warranted to identify these genetic connections. This study lays the groundwork for future research and the development of novel therapies and SUI biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Amr Mahran
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Urology, Assiut University, Assiut, Egypt
| | - Ahmad O Khalifa
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Urology, Menoufia University, Menoufia, Egypt
| | - David Sheyn
- Department of Obstetrics and Gynecology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mandy Neudecker
- Core Library, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Arshna Qureshi
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Britt Conroy
- Department of Family Medicine, Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Adonis K Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sherif A El-Nashar
- Department of Obstetrics and Gynecology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
34
|
Wang Y, Jiao J, Ren P, Wu M. Upregulation of miRNA-223-3p ameliorates RIP3-mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury. J Cell Biochem 2019; 120:11582-11592. [PMID: 30821011 DOI: 10.1002/jcb.28438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Spinal cord injury (SCI) has been a major burden on the society because of the high rate of disability. Receptor-interacting protein 3 (RIP3)-mediated necroptosis is a newly discovered pathway of programmed cell death and is involved in multiple pathologies of various human diseases. Micro RNAs (miRNAs) have been shown to be a potential target for therapeutic interventions after SCI. The aim of the present study is to explore the potential role of miR-223-3p and possible mechanism in SCI. We found that miR-223-3p was significantly downregulated in spinal neurons after H2 O 2 -induced damage, while RIP3-mediated necroptosis was elevated. Accordingly, RIP3-mediated necroptosis and the inflammatory factor secretion could be significantly inhibited by Nec-1 treatment. In adittion, overexpression of miR-223-3p in spinal neurons protected against H 2 O 2 -induced necroptosis, and ablation of miR-223-3p exhibited the opposite effect. We found that miR-223-3p bound to the 3'-untranslated region of RIP3 mRNA to negatively regulate the expression of RIP3. Moreover, the activated RIP3 reversed the inhibition of RIP3 and MLKL expression and the levels of TNF-α, IL-1β, and lactate dehydrogenase, which were induced by transfection with miR-223-3p in a H 2 O 2 -induced model. Finally, these results indicate that miR-223-3p negatively regulates the RIP3 necroptotic signaling cascades and inflammatory factor secretion, which significantly relieves injury of spinal neurons. The miR-223-3p/RIP3 pathway offers a novel therapeutic target for the protection of spinal neurons after SCI.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
35
|
Yuan J, Botchway BOA, Zhang Y, Tan X, Wang X, Liu X. Curcumin Can Improve Spinal Cord Injury by Inhibiting TGF-β-SOX9 Signaling Pathway. Cell Mol Neurobiol 2019; 39:569-575. [PMID: 30915623 PMCID: PMC11462994 DOI: 10.1007/s10571-019-00671-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a severe nervous system disease with high morbidity and disability rate. Signaling pathways play a key role in the neuronal restorative mechanism following SCI. SRY-related high mobility group (HMG)-box gene 9 (SOX9) affects glial scar formation via Transforming growth factor beta (TGF-β) signaling pathway. Activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is transferred into nucleus to upregulate TGF-β-SOX9. Curcumin exhibits potent anti-inflammatory and anti-oxidant properties. Curcumin can play an important role in SCI recovery by inhibiting the expression of NF-κB and TGF-β-SOX9. Herein, we review the potential mechanism of curcumin-inhibiting SOX9 signaling pathway in SCI treatment. The inhibition of NF-κB and SOX9 signaling pathway by curcumin has the potentiality of serving as neuronal regenerative mechanism following SCI.
Collapse
Affiliation(s)
- Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China.
| |
Collapse
|