1
|
Chen K, Ashtiani KC, Monfared RV, Baldi P, Alachkar A. Circadian cilia transcriptome in mouse brain across physiological and pathological states. Mol Brain 2024; 17:67. [PMID: 39304885 PMCID: PMC11414107 DOI: 10.1186/s13041-024-01143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Primary cilia are dynamic sensory organelles that continuously undergo structural modifications in response to environmental and cellular signals, many of which exhibit rhythmic patterns. Building on our previous findings of rhythmic cilia-related gene expression in diurnal primates (baboon), this study extends the investigation to the nocturnal mouse brain to identify circadian patterns of cilia gene expression across brain regions. We used computational techniques and transcriptomic data from four publicly available databases, to examine the circadian expression of cilia-associated genes within six brain areas: brainstem, cerebellum, hippocampus, hypothalamus, striatum, and suprachiasmatic nucleus. Our analysis reveals that a substantial proportion of cilia transcripts exhibit circadian rhythmicity across the examined regions, with notable overrepresentation in the striatum, hippocampus, and cerebellum. We also demonstrate region-specific variations in the abundance and timing of circadian cilia genes' peaks, indicating an adaptation to the distinct physiological roles of each brain region. Additionally, we show that the rhythmic patterns of cilia transcripts are shifted under various physiological and pathological conditions, including modulation of the dopamine system, high-fat diet, and epileptic conditions, indicating the adaptable nature of cilia transcripts' oscillation. While limited to a few mouse brain regions, our study provides initial insights into the distinct circadian patterns of cilia transcripts and highlights the need for future research to expand the mapping across wider brain areas to fully understand the role of cilia's spatiotemporal dynamics in brain functions.
Collapse
Affiliation(s)
- Kiki Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Kousha Changizi Ashtiani
- Departments of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, 92697-4625, USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Pierre Baldi
- Departments of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, 92697-4625, USA.
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA.
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA.
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Hernández-Cáceres MP, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Criollo A, Yañez MJ, Morselli E. Role of lipids in the control of autophagy and primary cilium signaling in neurons. Neural Regen Res 2024; 19:264-271. [PMID: 37488876 PMCID: PMC10503597 DOI: 10.4103/1673-5374.377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is, after the adipose tissue, the organ with the greatest amount of lipids and diversity in their composition in the human body. In neurons, lipids are involved in signaling pathways controlling autophagy, a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium, a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development. A crosstalk between primary cilia and autophagy has been established; however, its role in the control of neuronal activity and homeostasis is barely known. In this review, we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons. Then we review the recent literature about specific lipid subclasses in the regulation of autophagy, in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions, specifically focusing on neurons, an area of research that could have major implications in neurodevelopment, energy homeostasis, and neurodegeneration.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Daniela Pinto-Nuñez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Patricia Rivera
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Francisco Díaz-Castro
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Maria Jose Yañez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| |
Collapse
|
4
|
Lucarelli M, Camuso S, Di Pietro C, Bruno F, La Rosa P, Marazziti D, Fiorenza MT, Canterini S. Reduced Cerebellar BDNF Availability Affects Postnatal Differentiation and Maturation of Granule Cells in a Mouse Model of Cholesterol Dyshomeostasis. Mol Neurobiol 2023; 60:5395-5410. [PMID: 37314654 PMCID: PMC10415459 DOI: 10.1007/s12035-023-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal lipid storage disorder due to mutations in the NPC1 gene resulting in the accumulation of cholesterol within the endosomal/lysosomal compartments. The prominent feature of the disorder is the progressive Purkinje cell degeneration leading to ataxia.In a mouse model of NPC1 disease, we have previously demonstrated that impaired Sonic hedgehog signaling causes defective proliferation of granule cells (GCs) and abnormal cerebellar morphogenesis. Studies conducted on cortical and hippocampal neurons indicate a functional interaction between Sonic hedgehog and brain-derived neurotrophic factor (BDNF) expression, leading us to hypothesize that BDNF signaling may be altered in Npc1 mutant mice, contributing to the onset of cerebellar alterations present in NPC1 disease before the appearance of signs of ataxia.We characterized the expression/localization patterns of the BDNF and its receptor, tropomyosin-related kinase B (TrkB), in the early postnatal and young adult cerebellum of the Npc1nmf164 mutant mouse strain.In Npc1nmf164 mice, our results show (i) a reduced expression of cerebellar BDNF and pTrkB in the first 2 weeks postpartum, phases in which most GCs complete the proliferative/migrative program and begin differentiation; (ii) an altered subcellular localization of the pTrkB receptor in GCs, both in vivo and in vitro; (iii) reduced chemotactic response to BDNF in GCs cultured in vitro, associated with impaired internalization of the activated TrkB receptor; (iv) an overall increase in dendritic branching in mature GCs, resulting in impaired differentiation of the cerebellar glomeruli, the major synaptic complex between GCs and mossy fibers.
Collapse
Affiliation(s)
- Micaela Lucarelli
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Serena Camuso
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Italy
| | - Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP, 88046, Lamezia Terme, Catanzaro, Italy
- Association for Neurogenetic Research (ARN), 88046, Lamezia Terme, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy.
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
5
|
Wang Q, Gu X, Liu Y, Liu S, Lu W, Wu Y, Lu H, Huang J, Tu W. Insights into the circadian rhythm alterations of the novel PFOS substitutes F-53B and OBS on adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130959. [PMID: 36860044 DOI: 10.1016/j.jhazmat.2023.130959] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS), 6:2 Cl-PFESA (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are frequently detected in aquatic environments, but little is known about their neurotoxicity, especially in terms of circadian rhythms. In this study, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B and OBS for 21 days taking circadian rhythm-dopamine (DA) regulatory network as an entry point to comparatively investigate their neurotoxicity and underlying mechanisms. The results showed that PFOS may affect the response to heat rather than circadian rhythms by reducing DA secretion due to disruption of calcium signaling pathway transduction caused by midbrain swelling. In contrast, F-53B and OBS altered the circadian rhythms of adult zebrafish, but their mechanisms of action were different. Specifically, F-53B might alter circadian rhythms by interfering with amino acid neurotransmitter metabolism and disrupting blood-brain barrier (BBB) formation, whereas OBS mainly inhibited canonical Wnt signaling transduction by reducing cilia formation in ependymal cells and induced midbrain ventriculomegaly, finally triggering imbalance in DA secretion and circadian rhythm changes. Our study highlights the need to focus on the environmental exposure risks of PFOS alternatives and the sequential and interactive mechanisms of their multiple toxicities.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Huiqiang Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
6
|
Bruno F, Camuso S, Capuozzo E, Canterini S. The Antifungal Antibiotic Filipin as a Diagnostic Tool of Cholesterol Alterations in Lysosomal Storage Diseases and Neurodegenerative Disorders. Antibiotics (Basel) 2023; 12:antibiotics12010122. [PMID: 36671323 PMCID: PMC9855188 DOI: 10.3390/antibiotics12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Cholesterol is the most considerable member of a family of polycyclic compounds understood as sterols, and represents an amphipathic molecule, such as phospholipids, with the polar hydroxyl group located in position 3 and the rest of the molecule is completely hydrophobic. In cells, it is usually present as free, unesterified cholesterol, or as esterified cholesterol, in which the hydroxyl group binds to a carboxylic acid and thus generates an apolar molecule. Filipin is a naturally fluorescent antibiotic that exerts a primary antifungal effect with low antibacterial activity, interfering with the sterol stabilization of the phospholipid layers and favoring membrane leakage. This polyene macrolide antibiotic does not bind to esterified sterols, but only to non-esterified cholesterol, and it is commonly used as a marker to label and quantify free cholesterol in cells and tissues. Several lines of evidence have indicated that filipin staining could be a good diagnostic tool for the cholesterol alterations present in neurodegenerative (e.g., Alzheimer's Disease and Huntington Disease) and lysosomal storage diseases (e.g., Niemann Pick type C Disease and GM1 gangliosidosis). Here, we have discussed the uses and applications of this fluorescent molecule in lipid storage diseases and neurodegenerative disorders, exploring not only the diagnostic strength of filipin staining, but also its limitations, which over the years have led to the development of new diagnostic tools to combine with filipin approach.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | - Serena Camuso
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Capuozzo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| |
Collapse
|
7
|
Mustafa R, Rawas C, Mannal N, Kreiner G, Spittau B, Kamińska K, Yilmaz R, Pötschke C, Kirsch J, Liss B, Tucker KL, Parlato R. Targeted Ablation of Primary Cilia in Differentiated Dopaminergic Neurons Reduces Striatal Dopamine and Responsiveness to Metabolic Stress. Antioxidants (Basel) 2021; 10:antiox10081284. [PMID: 34439532 PMCID: PMC8389284 DOI: 10.3390/antiox10081284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Primary cilia (PC) are microtubule-based protrusions of the cell membrane transducing molecular signals during brain development. Here, we report that PC are required for maintenance of Substantia nigra (SN) dopaminergic (DA) neurons highly vulnerable in Parkinson's disease (PD). Targeted blockage of ciliogenesis in differentiated DA neurons impaired striato-nigral integrity in adult mice. The relative number of SN DA neurons displaying a typical auto-inhibition of spontaneous activity in response to dopamine was elevated under control metabolic conditions, but not under metabolic stress. Strikingly, in the absence of PC, the remaining SN DA neurons were less vulnerable to the PD neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP). Our data indicate conserved PC-dependent neuroadaptive responses to DA lesions in the striatum. Moreover, PC control the integrity and dopamine response of a subtype of SN DA neurons. These results reinforce the critical role of PC as sensors of metabolic stress in PD and other disorders of the dopamine system.
Collapse
Affiliation(s)
- Rasem Mustafa
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Chahinaz Rawas
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Nadja Mannal
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland;
| | - Björn Spittau
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Katarzyna Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland;
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348 Kraków, Poland
| | - Rüstem Yilmaz
- Mannheim Center for Translational Neuroscience, Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany;
| | - Christina Pötschke
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
| | - Birgit Liss
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
- Linacre College and New College, University of Oxford, Oxford OX1 2JD, UK
| | - Kerry L. Tucker
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Department of Biomedical Sciences, College of Osteopathic Medicine, Biddeford, ME 04005, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Rosanna Parlato
- Institute of Anatomy and Cell Biology, Heidelberg Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany; (R.M.); (J.K.); (K.L.T.)
- Institute of Applied Physiology, Ulm Medical Faculty, University of Ulm, 89081 Ulm, Germany; (C.R.); (N.M.); (C.P.); (B.L.)
- Mannheim Center for Translational Neuroscience, Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany;
- Correspondence: ; Tel.: +49-621-3835-611
| |
Collapse
|
8
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
9
|
Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett 2020; 594:3652-3667. [PMID: 32415987 DOI: 10.1002/1873-3468.13816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Cilia and microvilli are membrane protrusions that extend from the surface of many different mammalian cell types. Motile cilia or flagella are only found on specialized cells, where they control cell movement or the generation of fluid flow, whereas immotile primary cilia protrude from the surface of almost every mammalian cell to detect and transduce extracellular signals. Despite these differences, all cilia consist of a microtubule core called the axoneme. Microvilli instead contain bundled linear actin filaments and are mainly localized on epithelial cells, where they modulate the absorption of nutrients. Cilia and microvilli constitute subcellular compartments with distinctive lipid and protein repertoires and specialized functions. Here, we summarize the role of sphingolipids in defining the identity and controlling the function of cilia and microvilli in mammalian cells.
Collapse
Affiliation(s)
- Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Mylene Huebecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| |
Collapse
|