1
|
Jovanovic MZ, Stanojevic J, Stevanovic I, Ninkovic M, Ilic TV, Nedeljkovic N, Dragic M. Prolonged intermittent theta burst stimulation restores the balance between A2AR- and A1R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease. Neural Regen Res 2025; 20:2053-2067. [PMID: 39254566 PMCID: PMC11691459 DOI: 10.4103/nrr.nrr-d-23-01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00027/figure1/v/2024-09-09T124005Z/r/image-tiff An imbalance in adenosine-mediated signaling, particularly the increased A2AR-mediated signaling, plays a role in the pathogenesis of Parkinson's disease. Existing therapeutic approaches fail to alter disease progression, demonstrating the need for novel approaches in PD. Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease. However, the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown. The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling. Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test. Immunoblot, quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen. Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals. A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen. Treatment with intermittent theta burst stimulation began 7 days after the lesion, coinciding with the onset of motor symptoms. After treatment with prolonged intermittent theta burst stimulation, complete motor recovery was observed. This improvement was accompanied by downregulation of the eN/CD73-A2AR pathway and a return to physiological levels of A1R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation. Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A1R and elevated the expression of A2AR. Intermittent theta burst stimulation reversed these effects by restoring the abundances of A1R and A2AR to control levels. The shift in ARs expression likely restored the balance between dopamine-adenosine signaling, ultimately leading to the recovery of motor control.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Kristof Z, Szabo D, Sperlagh B, Torok D, Gonda X. From Childhood Woes to Adult Blues: Unmasking the Role of Early Traumas, P2X7 Receptor, and Neuroinflammation in Anxiety and Depression. Int J Mol Sci 2025; 26:4687. [PMID: 40429831 PMCID: PMC12111330 DOI: 10.3390/ijms26104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Early-life stress may increase the risk of neuropsychiatric disorders via immune activation. While the purinergic signaling pathway is implicated in psychiatric disorders, the specific role of the P2X7 receptor (P2X7R) in anxiety, depression, and childhood trauma still requires further clarification. Upon chronic stress, excessive ATP release activates purinergic P2X7R signalling in the brain contributing to long-lasting neuroinflammation, which potentially promotes the development of psychiatric disorders. There is also a putative link between the P2X7 receptor gene, located on chromosome 12q24, and the development of anxiety and depression. This review aims to systematically examine how P2X7R contributes to the pathophysiology of anxiety and depressive disorders, with a particular focus on early-life stress (ELS). It offers a comprehensive synthesis of the current findings, emphasizing the previously unexplored intersections between P2X7R signaling, early-life stress, and psychiatric disorders. These interactions may shape long-term neuroinflammation, contributing to the development of anxiety and depression, and offer new insights into potential therapeutic targets. The review integrates the role of P2X7R regarding both indirect mechanisms-such as the modulation and long-term transmission of neuroinflammation following environmental stressors and vulnerability-and direct genetic associations with psychiatric conditions, including the influence of single-nucleotide polymorphisms (SNPs), haplotypes, and other variants within the P2X7 gene. Special emphasis is placed on the impact of early-life stress, drawing primarily on preclinical findings to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Dorottya Szabo
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary; (D.S.); (B.S.)
- Janos Szentagothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary; (D.S.); (B.S.)
| | - Dora Torok
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary;
- Center of Pharmacology and Drug Research & Development, Semmelweis University, 1089 Budapest, Hungary
- Hungarian Brain Research Program, NAP3.0-SE Neuropsychopharmacology Research Group, 1089 Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary;
- Center of Pharmacology and Drug Research & Development, Semmelweis University, 1089 Budapest, Hungary
- Hungarian Brain Research Program, NAP3.0-SE Neuropsychopharmacology Research Group, 1089 Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, 1082 Budapest, Hungary
- Department of Clinical Psychology, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
3
|
Stoessel MB, Stowell RD, Lowery RL, Le LHD, Vu AN, Whitelaw BS, Majewska AK. The effects of P2Y12 loss on microglial gene expression, dynamics, and injury response in the cerebellum and cerebral cortex. Brain Behav Immun 2025; 128:99-120. [PMID: 40174868 DOI: 10.1016/j.bbi.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025] Open
Affiliation(s)
- Mark B Stoessel
- Department of Neuroscience, Delmonte Institute for Neuroscience, University of Rochester, Rochester NY 14642, USA; Neuroscience Graduate Program, University of Rochester, Rochester, NY 14642, USA.
| | - Rianne D Stowell
- Department of Neuroscience, Delmonte Institute for Neuroscience, University of Rochester, Rochester NY 14642, USA.
| | - Rebecca L Lowery
- Department of Neuroscience, Delmonte Institute for Neuroscience, University of Rochester, Rochester NY 14642, USA
| | - Linh H D Le
- Department of Neuroscience, Delmonte Institute for Neuroscience, University of Rochester, Rochester NY 14642, USA; Neuroscience Graduate Program, University of Rochester, Rochester, NY 14642, USA.
| | - Andy N Vu
- Department of Neuroscience, Delmonte Institute for Neuroscience, University of Rochester, Rochester NY 14642, USA
| | - Brendan S Whitelaw
- Department of Neuroscience, Delmonte Institute for Neuroscience, University of Rochester, Rochester NY 14642, USA; Neuroscience Graduate Program, University of Rochester, Rochester, NY 14642, USA; Medical Scientist Training Program, University of Rochester 14642, USA
| | - Ania K Majewska
- Department of Neuroscience, Delmonte Institute for Neuroscience, University of Rochester, Rochester NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
5
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2025; 69:427-448. [PMID: 38565403 PMCID: PMC11954808 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Campagno KE, Lu W, Sripinun P, Albalawi F, Cenaj A, Mitchell CH. Priming and release of cytokine IL-1β in microglial cells from the retina. Exp Eye Res 2025; 252:110246. [PMID: 39848558 DOI: 10.1016/j.exer.2025.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from Cx3CR1+/GFP mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level. Isolated retinal microglia were ramified and expressed low levels of polarization markers unless provoked. Over 90% of isolated microglial cells expressed P2X7R, with cytoplasmic Ca2+ elevation following receptor stimulation. ATP induced a dose-dependent release of IL-1β from primed microglial cells that was blocked by P2X7R antagonist A839977 and emulated by agonist BzATP. P2X7R stimulation also primed Il1b mRNA in isolated microglia cells. BzATP increased IL-1β immunostaining and GFP fluorescence throughout lamina of retinal wholemounts from CX3CR1+/GFP mice. Some of the IL-1β and GFP signals colocalized, particularly in the outer retina, and in projections extending distally through photoreceptor layers. The inner retina had more microglia without IL-1β, and more IL-1β staining without microglia. Substantial IL-1β release was also detected from rat retinal microglial cells, but not optic nerve head astrocytes. In summary, this study implicates microglial cells as a key source of released IL-1β when levels of extracellular ATP are increased following retinal damage, and suggest a greater participation in the outer retina.
Collapse
Affiliation(s)
- Keith E Campagno
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wennan Lu
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Puttipong Sripinun
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Farraj Albalawi
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Preventive Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Aurora Cenaj
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Claire H Mitchell
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
7
|
Huang Y, Li H, Yu Q, Pan Y. A narrative review of autophagy in migraine. Front Neurosci 2025; 19:1500189. [PMID: 40027467 PMCID: PMC11868061 DOI: 10.3389/fnins.2025.1500189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Background and objective Autophagy is a natural process regulated by autophagy-related genes in eukaryotic cells that involves the degradation of cytoplasmic proteins and old or damaged organelles via the lysosomal pathway to help maintain cell homeostasis. Previous studies have suggested a potential association between autophagy and migraine, while the underlying mechanisms remain unclear. This review seeks to evaluate the possible involvement of autophagy in the pathophysiology of migraine, aiming to clarify its role and implications for future research and therapeutic strategies. Methods A search in PubMed was conducted for English-language articles until December 5, 2024. Key terms of "autophagy," "migraine," "microglia," "neurogenic inflammation," "central sensitization," "mitophagy" and "neuropathic pain" in different combinations. Results In the context of migraine, the activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) signaling pathway exerts a direct influence on the mammalian target of rapamycin (mTOR), leading to a reduction in autophagy levels. Moreover, the stimulation of purinergic ligand-gated ion channel type 7 receptor (P2X7R) in microglia can hinder autophagy by interfering with the fusion of autophagosomes and lysosomes, which impedes the degradation of substrates within the autophagolysosome. Increased levels of calcitonin gene-related peptide (CGRP) may also modulate autophagy through the Akt/mTOR or protein kinase A (PKA)/mTOR signaling pathways. Additionally, research indicates that mitophagy may be partially impaired in individuals suffering from migraine. Furthermore, autophagy could contribute to the dysregulation of synaptic plasticity by influencing the processes of long-term potentiation (LTP) and long-term depression (LTD), both of which are associated with central sensitization in chronic migraine. Conclusion These findings suggest that autophagy may play an important role in the pathophysiology of migraine, particularly in its development and central sensitization. Research on autophagy modulators related to migraine will provide valuable insights for treatment strategies.
Collapse
|
8
|
Yang SS, Brooks NAH, Da Silva DE, Gibon J, Islam H, Klegeris A. Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells. Purinergic Signal 2025:10.1007/s11302-025-10066-x. [PMID: 39833586 DOI: 10.1007/s11302-025-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca2+]i), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.
Collapse
Affiliation(s)
- Sijie Shirley Yang
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Noah A H Brooks
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Dylan E Da Silva
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
9
|
Domingos LB, Silva Júnior AFD, Diniz CRAF, Rosa J, Terzian ALB, Resstel LBM. P2X7 receptors modulate acquisition of cue fear extinction and contextual background memory generalization in male mice. Neuropharmacology 2024; 261:110177. [PMID: 39366651 DOI: 10.1016/j.neuropharm.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The purinergic P2X7 receptors (P2X7R) are activated by adenosine triphosphate (ATP) in several brain regions, particularly those involved with emotional control and the regulation of fear-related memories. Here, we investigate the role of P2X7R in fear learning memory, specifically in the acquisition and consolidation phases of the cued fear conditioning paradigm. C57Bl/6 wildtype (WT) male mice that received a single i.p. injection of the selective P2X7R antagonist A438079 prior the conditioning session showed generalization of cued fear memory and impaired fear extinction recall in the test session, while those treated prior the extinction session exhibited a similar behavior profile accompanied by resistance in the extinction learning. However, no effects were observed when this drug was administered immediately after the conditioning, extinction, or before the test session. Our results with P2X7R knockout (P2X7 KO) mice showed a behavioral profile that mirrored the collective effects observed across all pharmacological treatment conditions. This suggests that the P2X7R KO model effectively replicates the behavioral changes induced by the pharmacological interventions, demonstrating that we have successfully isolated the role of P2X7R in the fear and extinction phases of memory. These findings highlight the role of P2X7R in the acquisition and recall of extinction memory and supports P2X7R as a promising candidate for controlling abnormal fear processing, with potential applications for stress exposure-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Luana Barreto Domingos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center for Neuroscience, University of California, Davis, CA, USA
| | | | - Ana Luisa B Terzian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
10
|
Duret T, Elmallah M, Rollin J, Gatault P, Jiang LH, Roger S. Role of purinoreceptors in the release of extracellular vesicles and consequences on immune response and cancer progression. Biomed J 2024; 48:100805. [PMID: 39510381 PMCID: PMC12164022 DOI: 10.1016/j.bj.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Cell-to-cell communication is a major process for accommodating cell functioning to changes in the environments and to preserve tissue and organism homeostasis. It is achieved by different mechanisms characterized by the origin of the message, the molecular nature of the messenger, its speed of action and its reach. Purinergic signalling is a powerful mechanism initiated by extracellular nucleotides, such as ATP, acting on plasma membrane purinoreceptors. Purinergic signalling is tightly controlled in time and space by the action of ectonucleotidases. Recent studies have highlighted the critical role of purinergic signalling in controlling the generation, release and fate of extracellular vesicles and, in this way, mediating long-distance responses. Most of these discoveries have been made in immune and cancer cells. This review is aimed at establishing the current knowledge on the way which purinoreceptors control extracellular vesicle-mediated communications and consequences for recipient cells.
Collapse
Affiliation(s)
- Thomas Duret
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France
| | - Mohammed Elmallah
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France
| | - Jérôme Rollin
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service d'Hématologie-Hémostase, CHRU de Tours, Tours, France
| | - Philippe Gatault
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Service de Néphrologie, Hypertension, Dialyse et Transplantation Rénale, Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; School of Basic Medical Sciences, Xinxiang Medical University, Henan, China; School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- Université de Tours, Inserm UMR1327 ISCHEMIA « Membrane Signalling and Inflammation in Reperfusion Injuries », Tours, France; Fédération Hospitalo-Universitaire Survival Optimization in Organ Transplantation (FHU SUPORT), Tours, France.
| |
Collapse
|
11
|
Tsourmas KI, Butler CA, Kwang NE, Sloane ZR, Dykman KJG, Maloof GO, Prekopa CA, Krattli RP, El-Khatib SM, Swarup V, Acharya MM, Hohsfield LA, Green KN. Myeloid-derived β-hexosaminidase is essential for neuronal health and lysosome function: implications for Sandhoff disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619538. [PMID: 39484433 PMCID: PMC11526954 DOI: 10.1101/2024.10.21.619538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lysosomal storage disorders (LSDs) are a large disease class involving lysosomal dysfunction, often resulting in neurodegeneration. Sandhoff disease (SD) is an LSD caused by a deficiency in the β subunit of the β-hexosaminidase enzyme (Hexb). Although Hexb expression in the brain is specific to microglia, SD primarily affects neurons. To understand how a microglial gene is involved in maintaining neuronal homeostasis, we demonstrated that β-hexosaminidase is secreted by microglia and integrated into the neuronal lysosomal compartment. To assess therapeutic relevance, we treated SD mice with bone marrow transplant and colony stimulating factor 1 receptor inhibition, which broadly replaced Hexb -/- microglia with Hexb-sufficient cells. This intervention reversed apoptotic gene signatures, improved behavior, restored enzymatic activity and Hexb expression, ameliorated substrate accumulation, and normalized neuronal lysosomal phenotypes. These results underscore the critical role of myeloid-derived β-hexosaminidase in neuronal lysosomal function and establish microglial replacement as a potential LSD therapy.
Collapse
Affiliation(s)
- Kate I. Tsourmas
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Claire A. Butler
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Nellie E. Kwang
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Zachary R. Sloane
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Koby J. G. Dykman
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Ghassan O. Maloof
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Christiana A. Prekopa
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Robert P. Krattli
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Sanad M. El-Khatib
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Munjal M. Acharya
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
- Department of Radiation Oncology; University of California; Irvine, CA 92697; USA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Kim N. Green
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| |
Collapse
|
12
|
Li Y, Tang F, Luo Y. The cellular distribution of P2X7, P2Y6, and P2Y12 during or after pilocarpine-induced status epilepticus and literature review. Brain Circ 2024; 10:343-353. [PMID: 40012593 PMCID: PMC11850937 DOI: 10.4103/bc.bc_27_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND When a seizure occurs, the distribution of purine receptors in different cell types at various time points remains poorly understood. Our literature review revealed that P2X7, P2Y6, and P2Y12 are expressed in different cells during epilepsy pathogenesis. Therefore, we studied the protein expression patterns of the purinergic receptors P2X7, P2Y6, and P2Y12 in the normal mice hippocampus, as well as during or after pilocarpine-induced status epilepticus (DPISE or APISE). MATERIALS AND METHODS Immunohistochemical staining and double-labeling immunofluorescence staining were used to study the cellular distribution of various purinergic receptors across several groups: control, 2-hour DPISE, 1-day APISE, 2-day APISE, 3-day APISE, and 1-week APISE. RESULTS In the normal mouse brain, P2X7, P2Y6, and P2Y12 were predominantly expressed in the neurons. Microglia and astrocytes were found to express these receptors at the onset of seizures. Immunofluorescence analysis showed that P2X7 and P2Y12 are expressed in microglia, whereas P2Y6 is mainly expressed in astrocytes. CONCLUSION Different purinergic receptors are expressed in neurons, microglia, and astrocytes, mediate their interactions, and are involved in epileptogenesis.
Collapse
Affiliation(s)
- Yue Li
- Department of Education, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Anatomy, National University of Singapore, Singapore
| | - Fengru Tang
- Department of Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Yumin Luo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Stoessel MB, Stowell RD, Lowery RL, Le L, Vu AN, Whitelaw BS, Majewska AK. The effects of P2Y12 loss on microglial gene expression, dynamics, and injury response in the cerebellum and cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614526. [PMID: 39386439 PMCID: PMC11463386 DOI: 10.1101/2024.09.25.614526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite the emerging consensus that microglia are critical to physiological and pathological brain function, it is unclear how microglial roles and their underlying mechanisms differ between brain regions. Microglia throughout the brain express common markers, such as the purinergic receptor P2Y12, that delineate them from peripheral macrophages. P2Y12 is a critical sensor of injury but also contributes to the sensing of neuronal activity and remodeling of synapses, with microglial loss of P2Y12 resulting in behavioral deficits. P2Y12 has largely been studied in cortical microglia, despite the fact that a growing body of evidence suggests that microglia exhibit a high degree of regional specialization. Cerebellar microglia, in particular, exhibit transcriptional, epigenetic, and functional profiles that set them apart from their better studied cortical and hippocampal counterparts. Here, we demonstrate that P2Y12 deficiency does not alter the morphology, distribution, or dynamics of microglia in the cerebellum. In fact, loss of P2Y12 does little to disturb the distinct transcriptomic profiles of cortical and cerebellar microglia. However, unlike in cortex, P2Y12 is not required for a full microglial response to focal injury, suggesting that cerebellar and cortical microglia use different cues to respond to injury. Finally, we show that P2Y12 deficiency impairs cerebellar learning in a delay eyeblink conditioning task, a common test of cerebellar plasticity and circuit function. Our findings suggest not only region-specific roles of microglial P2Y12 signaling in the focal injury response, but also indicate a conserved role for P2Y12 in microglial modulation of plasticity across regions.
Collapse
|
14
|
Alves M, Gil B, Villegas-Salmerón J, Salari V, Martins-Ferreira R, Arribas Blázquez M, Menéndez Méndez A, Da Rosa Gerbatin R, Smith J, de Diego-Garcia L, Conte G, Sierra-Marquez J, Merino Serrais P, Mitra M, Fernandez Martin A, Wang Y, Kesavan J, Melia C, Parras A, Beamer E, Zimmer B, Heiland M, Cavanagh B, Parcianello Cipolat R, Morgan J, Teng X, Prehn JHM, Fabene PF, Bertini G, Artalejo AR, Ballestar E, Nicke A, Olivos-Oré LA, Connolly NMC, Henshall DC, Engel T. Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice. Brain Behav Immun 2024; 120:121-140. [PMID: 38777288 DOI: 10.1016/j.bbi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Beatriz Gil
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; The SFI Centre for Research Training in Genomics Data Science, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Valentina Salari
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Immunogenetics Laboratory, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Autoimmunity and Neuroscience Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Marina Arribas Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odon, Spain
| | - Rogerio Da Rosa Gerbatin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Ocupharm Research Group, Faculty of Optics and Optometry, Complutense University of Madrid, Avda. Arcos de Jalon, 118 (28037), Madrid, Spain
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Juan Sierra-Marquez
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Paula Merino Serrais
- Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Meghma Mitra
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ana Fernandez Martin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Yitao Wang
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jaideep Kesavan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ciara Melia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; VivoArchitect, Route de la Corniche 5, 1066 Epalinges, Vaud, Switzerland
| | - Alberto Parras
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mona Heiland
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Rafael Parcianello Cipolat
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - James Morgan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy; Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, Faculty of Medicine, University of Verona, Verona, Italy; Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, Faculty of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
15
|
Thakku Sivakumar D, Jain K, Alfehaid N, Wang Y, Teng X, Fischer W, Engel T. The Purinergic P2X7 Receptor as a Target for Adjunctive Treatment for Drug-Refractory Epilepsy. Int J Mol Sci 2024; 25:6894. [PMID: 39000004 PMCID: PMC11241490 DOI: 10.3390/ijms25136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.
Collapse
Affiliation(s)
- Divyeshz Thakku Sivakumar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Krishi Jain
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Noura Alfehaid
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Yitao Wang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | - Xinchen Teng
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | | | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
16
|
Mishra S, Jayadev S, Young JE. Differential effects of SORL1 deficiency on the endo-lysosomal network in human neurons and microglia. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220389. [PMID: 38368935 PMCID: PMC10874699 DOI: 10.1098/rstb.2022.0389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/27/2023] [Indexed: 02/20/2024] Open
Abstract
The endosomal gene SORL1 is a strong Alzheimer's disease (AD) risk gene that harbours loss-of-function variants causative for developing AD. The SORL1 protein SORL1/SORLA is an endosomal receptor that interacts with the multi-protein sorting complex retromer to traffic various cargo through the endo-lysosomal network (ELN). Impairments in endo-lysosomal trafficking are an early cellular symptom in AD and a novel therapeutic target. However, the cell types of the central nervous system are diverse and use the ELN differently. If this pathway is to be effectively therapeutically targeted, understanding how key molecules in the ELN function in various cell types and how manipulating them affects cell-type specific responses relative to AD is essential. Here, we discuss an example where deficiency of SORL1 expression in a human model leads to stress on early endosomes and recycling endosomes in neurons, but preferentially leads to stress on lysosomes in microglia. The differences observed in these organelles could relate to the unique roles of these cells in the brain as neurons are professional secretory cells and microglia are professional phagocytic cells. Experiments to untangle these differences are fundamental to advancing the understanding of cell biology in AD and elucidating important pathways for therapeutic development. Human-induced pluripotent stem cell models are a valuable platform for such experiments. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Suman Jayadev
- Deparment of Neurology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
17
|
Funaki M, Nio-Kobayashi J, Suzuki R, Bando Y. Galectin-3 Plays a Role in Neuroinflammation in the Visual Pathway in Experimental Optic Neuritis. Cells 2024; 13:612. [PMID: 38607051 PMCID: PMC11011492 DOI: 10.3390/cells13070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) featuring numerous neuropathologies, including optic neuritis (ON) in some patients. However, the molecular mechanisms of ON remain unknown. Galectins, β-galactoside-binding lectins, are involved in various pathophysiological processes. We previously showed that galectin-3 (gal-3) is associated with the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the current study, we investigated the expression of gal-3 in the visual pathway in EAE mice to clarify its role in the pathogenesis of ON. Immunohistochemical analysis revealed upregulation of gal-3 in the visual pathway of the EAE mice during the peak stage of the disease, compared with naïve and EAE mice during the chronic stage. Gal-3 was detected mainly in microglia/macrophages and astrocytes in the visual pathway in EAE mice. In addition, gal-3+/Iba-1+ cells, identified as phagocytic by immunostaining for cathepsin D, accumulated in demyelinating lesions in the visual pathway during the peak disease stage of EAE. Moreover, NLRP3 expression was detected in most gal-3+/Iba-1+ cells. These results strongly suggest that gal-3 regulates NLRP3 signaling in microglia/macrophages and neuroinflammatory demyelination in ON. In astrocytes, gal-3 was expressed from the peak to the chronic disease stages. Taken together, our findings suggest a critical role of gal-3 in the pathogenesis of ON. Thus, gal-3 in glial cells may serve as a potential therapeutic target for ON.
Collapse
Affiliation(s)
- Masako Funaki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Junko Nio-Kobayashi
- Department of Functional Glycobiology in Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
18
|
McIlwrath SL, Carroll-Portillo AC, Lin HC, Westlund KN. In vivo imaging of cathepsin B in activated glia in the brain after orofacial formalin test. Sci Rep 2024; 14:4517. [PMID: 38402255 PMCID: PMC10894209 DOI: 10.1038/s41598-024-52854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/24/2024] [Indexed: 02/26/2024] Open
Abstract
PURPOSE Cathepsin B (Cat B) is a cysteine lysosomal protease that is upregulated in many inflammatory diseases and widely expressed in the brain. Here, we used a Cat B activatable near-infrared (NIR) imaging probe to measure glial activation in vivo in the formalin test, a standard orofacial inflammatory pain model. The probe's efficacy was quantified with immunohistochemical analysis of the somatosensory cortex. PROCEDURES Three different concentrations of Cat B imaging probe (30, 50, 100 pmol/200 g bodyweight) were injected intracisternally into the foramen magnum of rats under anesthesia. Four hours later formalin (1.5%, 50 μl) was injected into the upper lip and the animal's behaviors recorded for 45 min. Subsequently, animals were repeatedly scanned using the IVIS Spectrum (8, 10, and 28 h post imaging probe injection) to measure extracellular Cat B activity. Aldehyde fixed brain sections were immunostained with antibodies against microglial marker Iba1 or astrocytic GFAP and detected with fluorescently labeled secondary antibodies to quantify co-localization with the fluorescent probe. RESULTS The Cat B imaging probe only slightly altered the formalin test results. Nocifensive behavior was only reduced in phase 1 in the 100 pmol group. In vivo measured fluorescence efficiency was highest in the 100 pmol group 28 h post imaging probe injection. Post-mortem immunohistochemical analysis of the somatosensory cortex detected the greatest amount of NIR fluorescence localized on microglia and astrocytes in the 100 pmol imaging probe group. Sensory neuron neuropeptide and cell injury marker expression in ipsilateral trigeminal ganglia was not altered by the presence of fluorescent probe. CONCLUSIONS These data demonstrate a concentration- and time-dependent visualization of extracellular Cat B in activated glia in the formalin test using a NIR imaging probe. Intracisternal injections are well suited for extracellular CNS proteinase detection in conditions when the blood-brain barrier is intact.
Collapse
Affiliation(s)
| | - Amanda C Carroll-Portillo
- New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Henry C Lin
- New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Karin N Westlund
- New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| |
Collapse
|
19
|
Garaschuk O, Verkhratsky A. Calcium Signalling in Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:123-133. [PMID: 39207689 DOI: 10.1007/978-3-031-55529-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Intracellular Ca2+ signalling represents the substrate of microglial excitability. Spatially and temporally organised changes in the free cytoplasmic Ca2+ concentration ([Ca2+]i) are generated in response to physiological and pathological stimuli. Parameters of these intracellular Ca2+ signals are defined by Ca2+ signalling toolkits that may change with age or context therefore increasing adaptive capabilities of microglia. Main Ca2+ signalling pathways in microglial cells are associated with dynamic endoplasmic reticulum Ca2+ stores and with plasmalemmal Ca2+ entry mediated by several sets of Ca2+-permeable channels including transient receptor potential (TRP) channels, ORAI channels and P2X4/7 purinoceptors. Microglial Ca2+ dynamics is also linked to TREM2 signalling cascade, contributing to neuroprotection in neurodegenerative diseases. Microglial Ca2+ signals act as reliable and precise sensors of brain dyshomeostasis and pathological insults.
Collapse
Affiliation(s)
- Olga Garaschuk
- Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
20
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
21
|
Sainz RM, Rodriguez-Quintero JH, Maldifassi MC, Stiles BM, Wennerberg E. Tumour immune escape via P2X7 receptor signalling. Front Immunol 2023; 14:1287310. [PMID: 38022596 PMCID: PMC10643160 DOI: 10.3389/fimmu.2023.1287310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
While P2X7 receptor expression on tumour cells has been characterized as a promotor of cancer growth and metastasis, its expression by the host immune system is central for orchestration of both innate and adaptive immune responses against cancer. The role of P2X7R in anti-tumour immunity is complex and preclinical studies have described opposing roles of the P2X7R in regulating immune responses against tumours. Therefore, few P2X7R modulators have reached clinical testing in cancer patients. Here, we review the prognostic value of P2X7R in cancer, how P2X7R have been targeted to date in tumour models, and we discuss four aspects of how tumours skew immune responses to promote immune escape via the P2X7R; non-pore functional P2X7Rs, mono-ADP-ribosyltransferases, ectonucleotidases, and immunoregulatory cells. Lastly, we discuss alternative approaches to offset tumour immune escape via P2X7R to enhance immunotherapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Ricardo M. Sainz
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jorge Humberto Rodriguez-Quintero
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Maria Constanza Maldifassi
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Brendon M. Stiles
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
22
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Autophagy may protect the brain against prolonged consequences of headache attacks: A narrative/hypothesis review. Headache 2023; 63:1154-1166. [PMID: 37638395 DOI: 10.1111/head.14625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE To assess the potential of autophagy in migraine pathogenesis. BACKGROUND The interplay between neurons and microglial cells is important in migraine pathogenesis. Migraine-related effects, such as cortical spreading depolarization and release of calcitonin gene-related peptide, may initiate adenosine triphosphate (ATP)-mediating pro-nociceptive signaling in the meninges causing headaches. Such signaling may be induced by the interaction of ATP with purinergic receptor P2X 7 (P2X7R) on microglial cells leading to a Ca2+ -mediated pH increase in lysosomes and release of autolysosome-like vehicles from microglial cells indicating autophagy impairment. METHODS A search in PubMed was conducted with the use of the terms "migraine," "autophagy," "microglia," and "degradation" in different combinations. RESULTS Impaired autophagy in microglia may activate secretory autophagy and release of specific proteins, including brain-derived neurotrophic factor (BDNF), which can be also released through the pores induced by P2X7R activation in microglial cells. BDNF may be likewise released from microglial cells upon ATP- and Ca2+ -mediated activation of another purinergic receptor, P2X4R. BDNF released from microglia might induce autophagy in neurons to clear cellular debris produced by oxidative stress, which is induced in the brain as the response to migraine-related energy deficit. Therefore, migraine-related signaling may impair degradative autophagy, stimulate secretory autophagy in microglia, and degradative autophagy in neurons. These effects are mediated by purinergic receptors P2X4R and P2X7R, BDNF, ATP, and Ca2+ . CONCLUSION Different effects of migraine-related events on degradative autophagy in microglia and neurons may prevent prolonged changes in the brain related to headache attacks.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Quick JD, Silva C, Wong JH, Lim KL, Reynolds R, Barron AM, Zeng J, Lo CH. Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration. J Neuroinflammation 2023; 20:185. [PMID: 37543564 PMCID: PMC10403868 DOI: 10.1186/s12974-023-02866-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications.
Collapse
Affiliation(s)
- Joseph D Quick
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Silva
- Faculty of Graduate Studies, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jia Hui Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
24
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
25
|
Sequeira MK, Bolton JL. Stressed Microglia: Neuroendocrine-Neuroimmune Interactions in the Stress Response. Endocrinology 2023; 164:bqad088. [PMID: 37279575 PMCID: PMC11491833 DOI: 10.1210/endocr/bqad088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Stressful life experiences are associated with the development of neuropsychiatric disorders like depression. Emerging evidence indicates that microglia, the specialized resident macrophages of the brain, may be a key mediator of the relationship between psychosocial stressor exposure and adaptive or maladaptive responses at the level of synaptic, circuit, and neuroimmune alterations. Here, we review current literature regarding how psychosocial stressor exposure changes microglial structure and function, thereby altering behavioral and brain outcomes, with a particular focus on age- and sex-dependent effects. We argue that additional emphasis should be placed in future research on investigating sex differences and the impacts of stressor exposure during sensitive periods of development, as well as going beyond traditional morphological measurements to interrogate microglial function. The bidirectional relationship between microglia and the stress response, particularly the role of microglia in the neuroendocrine control of stress-related circuits, is also an important area for future investigation. Finally, we discuss emerging themes and future directions that point to the possibility of the development of novel therapeutics for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
26
|
Janho Dit Hreich S, Hofman P, Vouret-Craviari V. The Role of IL-18 in P2RX7-Mediated Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24119235. [PMID: 37298187 DOI: 10.3390/ijms24119235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide despite the variety of treatments that are currently used. This is due to an innate or acquired resistance to therapy that encourages the discovery of novel therapeutic strategies to overcome the resistance. This review will focus on the role of the purinergic receptor P2RX7 in the control of tumor growth, through its ability to modulate antitumor immunity by releasing IL-18. In particular, we describe how the ATP-induced receptor activities (cationic exchange, large pore opening and NLRP3 inflammasome activation) modulate immune cell functions. Furthermore, we recapitulate our current knowledge of the production of IL-18 downstream of P2RX7 activation and how IL-18 controls the fate of tumor growth. Finally, the potential of targeting the P2RX7/IL-18 pathway in combination with classical immunotherapies to fight cancer is discussed.
Collapse
Affiliation(s)
- Serena Janho Dit Hreich
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| | - Paul Hofman
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, 06108 Nice, France
- Hospital-Related Biobank, Pasteur Hospital, 06108 Nice, France
| | - Valérie Vouret-Craviari
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| |
Collapse
|
27
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
28
|
Simões JL, Sobierai LD, Leal IF, Dos Santos MV, Coiado JV, Bagatini MD. Action of the Purinergic and Cholinergic Anti-inflammatory Pathways on Oxidative Stress in Patients with Alzheimer's Disease in the Context of the COVID-19 Pandemic. Neuroscience 2023; 512:110-132. [PMID: 36526078 PMCID: PMC9746135 DOI: 10.1016/j.neuroscience.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the 2019 coronavirus disease (COVID-19), has affected more than 20 million people in Brazil and caused a global health emergency. This virus has the potential to affect various parts of the body and compromise metabolic functions. The virus-mediated neural inflammation of the nervous system is due to a storm of cytokines and oxidative stress, which are the clinical features of Alzheimer's disease (AD). This neurodegenerative disease is aggravated in cases involving SARS-CoV-2 and its inflammatory biomarkers, accelerating accumulation of β-amyloid peptide, hyperphosphorylation of tau protein, and production of reactive oxygen species, which lead to homeostasis imbalance. The cholinergic system, through neurons and the neurotransmitter acetylcholine (ACh), modulates various physiological pathways, such as the response to stress, sleep and wakefulness, sensory information, and the cognitive system. Patients with AD have low concentrations of ACh; hence, therapeutic methods are aimed at adjusting the ACh titers available to the body for maintaining functionality. Herein, we focused on acetylcholinesterase inhibitors, responsible for the degradation of ACh in the synaptic cleft, and muscarinic and nicotinic receptor agonists of the cholinergic system owing to the therapeutic potential of the cholinergic anti-inflammatory pathway in AD associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Júlia L.B. Simões
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Inayá F. Leal
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete D. Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil,Corresponding author
| |
Collapse
|
29
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
30
|
Ou-Yang P, Cai ZY, Zhang ZH. Molecular Regulation Mechanism of Microglial Autophagy in the Pathology of Alzheimer's Disease. Aging Dis 2023:AD.2023.0106. [PMID: 37163443 PMCID: PMC10389815 DOI: 10.14336/ad.2023.0106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 05/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive accumulation of abnormal protein aggregates, neuronal loss, synaptic dysfunction, and neuroinflammation. Microglia are resident macrophages of the central nervous system (CNS). Evidence has shown that impaired microglial autophagy exerts considerable detrimental impact on the CNS, thus contributing to AD pathogenesis. This review highlights the association between microglial autophagy and AD pathology, with a focus on the inflammatory response, defective clearance, and propagation of Aβ and Tau, and synaptic dysfunction. Mechanistically, several lines of research support the roles of microglial receptors in autophagy regulation during AD. In light of accumulating evidence, a strategy for inducing microglial autophagy has great potential in AD drug development.
Collapse
Affiliation(s)
- Pei Ou-Yang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhi-Yu Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
31
|
Udinia S, Suar M, Kumar D. Host-directed therapy against tuberculosis: Concept and recent developments. J Biosci 2023; 48:54. [PMID: 38088376 DOI: 10.1007/s12038-023-00374-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 01/04/2025]
Abstract
Tuberculosis (TB) continues to remain at the forefront of the infectious disease burden globally, albeit with some aberrations during the COVID-19 pandemic. Among many factors, the emergence of drug resistance or antimicrobial resistance (AMR) has necessitated a renewed focus on developing novel and repurposed drugs against TB. Host-directed therapy (HDT) has emerged as an attractive alternative and a complementary strategy to the conventional antibiotic-based therapy of tuberculosis since HDT enjoys the advantage of disarming the pathogen of its ability to develop drug resistance. Considering the imminent threat of AMR across the spectrum of bacterial pathogens, HDT promises to overcome the drug shortage against superbugs. While all these make HDT a very attractive strategy, identifying the right set of host targets to develop HDT remains a challenge, despite remarkable development in the field over the past decade. In this review, we examine the host mechanisms, that either inadvertently or through targeted perturbation by the pathogen, help TB pathogenesis, and we discuss the latest developments in the targeting of some of the key pathways to achieve newer TB therapeutics.
Collapse
Affiliation(s)
- Sonakshi Udinia
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
32
|
Babazadeh Z. Involvement of NLRP3 Inflammasome in SARS-Cov-2-Induced Multiorgan Dysfunction in Patients with COVID-19: A Review of Molecular Mechanisms. TANAFFOS 2023; 22:40-52. [PMID: 37920322 PMCID: PMC10618576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat protein- 3 (NLRP3) inflammasome is a critical component of the innate immune system. The inflammasome activation is correlated with the COVID- 19 severity. Furthermore, the underlying conditions are accompanied by hyperactivation of NLRP3 inflammasome and poor outcomes. Herein, we presented the involvement of NLRP3 inflammasome in the pathogenies of SARS-CoV-2-induced multiorgan dysfunction and potential therapeutics. Overexpression of NLRP3 inflammasome components and subsequently increased levels of cytokines following viral infection leads to the cytokine storm and indirectly affects the organ functions. Besides, invading host cells via SARS-CoV-2 further activates the NLRP3 inflammasome and induces pyroptosis in immune cells, resulting in the secretion of higher levels of proinflammatory cytokines into the extracellular matrix. These events continued by induction of fibrosis and organ dysfunction following infection with SARS-CoV-2 in critically ill patients. This condition can be observed in individuals with comorbidities (e.g., diabetes, obesity, etc.) due to a primed state of immunity, which can cause severe disease or death in this population. Therefore, understanding the mechanisms underlying host-SARS-CoV-2 interaction may help to clarify the pathophysiology of SARS-CoV-2- induced multiorgan dysfunction and introduce potential therapeutic strategies.
Collapse
Affiliation(s)
- Zahra Babazadeh
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
33
|
Xiao QH, Sun XH, Cui ZQ, Hu XY, Yang T, Guan JW, Gu Y, Li HY, Zhang HY. TMEM16F may be a new therapeutic target for Alzheimer’s disease. Neural Regen Res 2023; 18:643-651. [DOI: 10.4103/1673-5374.350211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Zhao L, Hou C, Yan N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front Immunol 2022; 13:1059947. [PMID: 36389729 PMCID: PMC9647059 DOI: 10.3389/fimmu.2022.1059947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an important cause of irreversible blindness worldwide and lacks effective treatment strategies. Although mutations are the primary cause of RP, research over the past decades has shown that neuroinflammation is an important cause of RP progression. Due to the abnormal activation of immunity, continuous sterile inflammation results in neuron loss and structural destruction. Therapies targeting inflammation have shown their potential to attenuate photoreceptor degeneration in preclinical models. Regardless of variations in genetic background, inflammatory modulation is emerging as an important role in the treatment of RP. We summarize the evidence for the role of inflammation in RP and mention therapeutic strategies where available, focusing on the modulation of innate immune signals, including TNFα signaling, TLR signaling, NLRP3 inflammasome activation, chemokine signaling and JAK/STAT signaling. In addition, we describe epigenetic regulation, the gut microbiome and herbal agents as prospective treatment strategies for RP in recent advances.
Collapse
Affiliation(s)
- Ling Zhao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Naihong Yan,
| |
Collapse
|
35
|
Yuan J, Zhu Q, Zhang X, Wen Z, Zhang G, Li N, Pei Y, Wang Y, Pei S, Xu J, Jia P, Peng C, Lu W, Qin J, Cao Q, Xiao Y. Ezh2 competes with p53 to license lncRNA Neat1 transcription for inflammasome activation. Cell Death Differ 2022; 29:2009-2023. [PMID: 35568718 PMCID: PMC9525607 DOI: 10.1038/s41418-022-00992-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasome contributes to the pathogenesis of various inflammatory diseases, but the epigenetic mechanism controlling its activation remains elusive. Here, we found that the histone methyltransferase Ezh2 mediates the activation of multiple types of inflammasomes in macrophages/microglia independent of its methyltransferase activity and thus promotes inflammasome-related pathologies. Mechanistically, Ezh2 functions through its SANT2 domain to maintain the enrichment of H3K27 acetylation in the promoter region of the long noncoding RNA (lncRNA) Neat1, thereby promoting chromatin accessibility and facilitating p65-mediated transcription of Neat1, which is a critical mediator of inflammasome assembly and activation. In addition, the tumour suppressor protein p53 competes with Ezh2 for the same binding region in the Neat1 promoter and thus antagonises Ezh2-induced Neat1 transcription and inflammasome activation. Therefore, loss of Ezh2 strongly promotes the binding of p53, which recruits the deacetylase SIRT1 for H3K27 deacetylation of the Neat1 promoter and thus suppresses Neat1 transcription and inflammasome activation. Overall, our study demonstrates an epigenetic mechanism involved in modulating inflammasome activation through an Ezh2/p53 competition model and highlights a novel function of Ezh2 in maintaining H3K27 acetylation to support lncRNA Neat1 transcription.
Collapse
Affiliation(s)
- Jia Yuan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingli Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Guiheng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, 201210, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
36
|
Yang CJ, Li X, Feng XQ, Chen Y, Feng JG, Jia J, Wei JC, Zhou J. Activation of LRP1 Ameliorates Cerebral Ischemia/Reperfusion Injury and Cognitive Decline by Suppressing Neuroinflammation and Oxidative Stress through TXNIP/NLRP3 Signaling Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8729398. [PMID: 36035210 PMCID: PMC9410841 DOI: 10.1155/2022/8729398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a clinical event associated with high morbidity and mortality. Neuroinflammation plays a crucial role in the pathogenesis of I/R-induced brain injury and cognitive decline. Low-density lipoprotein receptor-related protein-1 (LRP1) can exert strong neuroprotection in experimental intracerebral hemorrhage. However, whether LRP1 can confer neuroprotective effects after cerebral I/R is yet to be elucidated. The present study is aimed at investigating the effects of LRP1 activation on cerebral I/R injury and deducing the underlying mechanism involving TXNIP/NLRP3 signaling pathway. Cerebral I/R injury was induced in mice by bilateral common carotid artery occlusion. LPR1 ligand, apoE-mimic peptide COG1410, was administered intraperitoneally. To elucidate the underlying mechanism, overexpression of TXNIP was achieved via the hippocampal injection of AAV-TXNIP before COG1410 treatment. Neurobehavioral tests, brain water content, immunofluorescence, Western blot, enzyme-linked immunosorbent assay, HE, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were performed. Our results showed that the expressions of endogenous LRP1, TXNIP, NLRP3, procaspase-1, and cleaved caspase-1 were increased after cerebral I/R. COG1410 significantly ameliorated cerebral I/R-induced neurobehavioral deficits, brain edema, histopathological damage, and poor survival rate. Interestingly, COG1410 inhibited microglia proinflammatory polarization and promoted anti-inflammatory polarization, decreased oxidative stress, attenuated apoptosis, and inhibited the expression of the TXNIP/NLRP3 signaling pathway. However, the benefits of COG1410 were abolished by TXNIP overexpression. Thus, our study suggested that LRP1 activation with COG1410 attenuated cerebral I/R injury at least partially related to modulating microglial polarization through TXNIP/NLRP3 signaling pathway in mice. Thus, COG1410 treatment might serve as a promising therapeutic approach in the management of cerebral I/R patients.
Collapse
Affiliation(s)
- Cheng-Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Xin Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Xiao-Qing Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ji-Cheng Wei
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Fehér J, Élő Á, István L, Nagy ZZ, Radák Z, Scuderi G, Artico M, Kovács I. Microbiota mitochondria disorders as hubs for early age-related macular degeneration. GeroScience 2022; 44:2623-2653. [PMID: 35978068 PMCID: PMC9385247 DOI: 10.1007/s11357-022-00620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/01/2022] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease affecting the central area (macula lutea) of the retina. Research on the pathogenic mechanism of AMD showed complex cellular contribution governed by such risk factors as aging, genetic predisposition, diet, and lifestyle. Recent studies suggested that microbiota is a transducer and a modifier of risk factors for neurodegenerative diseases, and mitochondria may be one of the intracellular targets of microbial signaling molecules. This review explores studies supporting a new concept on the contribution of microbiota-mitochondria disorders to AMD. We discuss metabolic, vascular, immune, and neuronal mechanism in AMD as well as key alterations of photoreceptor cells, retinal pigment epithelium (RPE), Bruch's membrane, choriocapillaris endothelial, immune, and neuronal cells. Special attention was paid to alterations of mitochondria contact sites (MCSs), an organelle network of mitochondria, endoplasmic reticulum, lipid droplets (LDs), and peroxisomes being documented based on our own electron microscopic findings from surgically removed human eyes. Morphometry of Bruch's membrane lipids and proteoglycans has also been performed in early AMD and aged controls. Microbial metabolites (short-chain fatty acids, polyphenols, and secondary bile acids) and microbial compounds (lipopolysaccharide, peptidoglycan, and bacterial DNA)-now called postbiotics-in addition to local effects on resident microbiota and mucous membrane, regulate systemic metabolic, vascular, immune, and neuronal mechanisms in normal conditions and in various common diseases. We also discuss their antioxidant, anti-inflammatory, and metabolic effects as well as experimental and clinical observations on regulating the main processes of photoreceptor renewal, mitophagy, and autophagy in early AMD. These findings support an emerging concept that microbiota-mitochondria disorders may be a crucial pathogenic mechanism of early AMD; and similarly, to other age-related neurodegenerative diseases, new treatment approaches should be targeted at these disorders.
Collapse
Affiliation(s)
- János Fehér
- PRIMAVERA Program, Nutripharma Hungaria Ltd., Budapest, Hungary
| | - Ágnes Élő
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lilla István
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zsolt Radák
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Gianluca Scuderi
- grid.7841.aOphthalmology Unit, NESMOS Department, Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- grid.417007.5Department of Sensory Organs, “Sapienza” University of Rome, Roma, Italy
| | - Illés Kovács
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary ,grid.5386.8000000041936877XDepartment of Ophthalmology, Weill Cornell Medical College, New York City, NY USA
| |
Collapse
|
38
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
39
|
Mckenzie ADJ, Garrett TR, Werry EL, Kassiou M. Purinergic P2X 7 Receptor: A Therapeutic Target in Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:1479-1490. [PMID: 35512313 DOI: 10.1021/acschemneuro.2c00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by upper and lower motor neuron loss. The pathomechanisms of ALS are still poorly understood with current hypotheses involving genetic mutations, excitotoxicity, and reactive oxygen species formation. In the absence of a disease-altering clinically approved therapeutic, there is an ever-increasing need to identify new targets to develop drugs that delay disease onset and/or progression. The purinergic P2X7 receptor (P2X7R) has been implicated widely across the ALS realm, providing a potential therapeutic strategy. This review summarizes the current understanding of ALS, the P2X7R and its role in ALS, the current landscape of P2X7R antagonists, and the in vivo potential of these antagonists in preclinical ALS models.
Collapse
Affiliation(s)
- André D. J. Mckenzie
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Taylor R. Garrett
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Eryn L. Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
40
|
Nobili P, Shen W, Milicevic K, Bogdanovic Pristov J, Audinat E, Nikolic L. Therapeutic Potential of Astrocyte Purinergic Signalling in Epilepsy and Multiple Sclerosis. Front Pharmacol 2022; 13:900337. [PMID: 35586058 PMCID: PMC9109958 DOI: 10.3389/fphar.2022.900337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy and multiple sclerosis (MS), two of the most common neurological diseases, are characterized by the establishment of inflammatory environment in the central nervous system that drives disease progression and impacts on neurodegeneration. Current therapeutic approaches in the treatments of epilepsy and MS are targeting neuronal activity and immune cell response, respectively. However, the lack of fully efficient responses to the available treatments obviously shows the need to search for novel therapeutic candidates that will not exclusively target neurons or immune cells. Accumulating knowledge on epilepsy and MS in humans and analysis of relevant animal models, reveals that astrocytes are promising therapeutic candidates to target as they participate in the modulation of the neuroinflammatory response in both diseases from the initial stages and may play an important role in their development. Indeed, astrocytes respond to reactive immune cells and contribute to the neuronal hyperactivity in the inflamed brain. Mechanistically, these astrocytic cell to cell interactions are fundamentally mediated by the purinergic signalling and involve metabotropic P2Y1 receptors in case of astrocyte interactions with neurons, while ionotropic P2X7 receptors are mainly involved in astrocyte interactions with autoreactive immune cells. Herein, we review the potential of targeting astrocytic purinergic signalling mediated by P2Y1 and P2X7 receptors to develop novel approaches for treatments of epilepsy and MS at very early stages.
Collapse
Affiliation(s)
- Paola Nobili
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Weida Shen
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Katarina Milicevic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Jelena Bogdanovic Pristov
- Department of Life Sciences, University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Etienne Audinat
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ljiljana Nikolic
- Department of Neurophysiology, University of Belgrade, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, Belgrade, Serbia
| |
Collapse
|
41
|
Santos SACS, Persechini PM, Henriques-Santos BM, Bello-Santos VG, Castro NG, Costa de Sousa J, Genta FA, Santiago MF, Coutinho-Silva R, Savio LEB, Kurtenbach E. P2X7 Receptor Triggers Lysosomal Leakage Through Calcium Mobilization in a Mechanism Dependent on Pannexin-1 Hemichannels. Front Immunol 2022; 13:752105. [PMID: 35222364 PMCID: PMC8863609 DOI: 10.3389/fimmu.2022.752105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor is a critical purinergic receptor in immune cells. Its activation was associated with cathepsin release into macrophage cytosol, suggesting its involvement in lysosomal membrane permeabilization (LMP) and leakage. Nevertheless, the mechanisms by which P2X7 receptor activation induces LMP and leakage are unclear. This study investigated cellular mechanisms associated with endosomal and lysosomal leakage triggered by P2X7 receptor activation. We found that ATP at 500 μM and 5 mM (but not 50 μM) induced LMP in non-stimulated peritoneal macrophages. This effect was not observed in P2X7-deficient or A740003-pretreated macrophages. We found that the P2X7 receptor and pannexin-1 channels mediate calcium influx that might be important for activating specific ion channels (TRPM2 and two-pore channels) on the membranes of late endosomes and lysosomes leading to LMP leakage and consequent cathepsin release. These findings suggest the critical role of the P2X7 receptor in inflammatory and infectious diseases via lysosomal dysfunction.
Collapse
Affiliation(s)
- Stephanie Alexia Cristina Silva Santos
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Muanis Persechini
- Laboratory of Immuno-Biophysics, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Monteiro Henriques-Santos
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Victória Gabriela Bello-Santos
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Newton G Castro
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlia Costa de Sousa
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcelo Felippe Santiago
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Udayar V, Chen Y, Sidransky E, Jagasia R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci 2022; 45:184-199. [PMID: 35034773 PMCID: PMC8854344 DOI: 10.1016/j.tins.2021.12.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023]
Abstract
The understanding of lysosomes has come a long way since the initial discovery of their role in degrading cellular waste. The lysosome is now recognized as a highly dynamic organelle positioned at the crossroads of cell signaling, transcription, and metabolism. Underscoring its importance is the observation that, in addition to rare monogenic lysosomal storage disorders, genes regulating lysosomal function are implicated in common sporadic neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Developing therapies for these disorders is particularly challenging, largely due to gaps in knowledge of the underlying molecular and cellular processes. In this review, we discuss technological advances that have propelled deeper understanding of the lysosome in neurodegeneration, from elucidating the functions of lysosome-related disease risk variants at the level of the organelle, cell, and tissue, to the development of disease-specific biological models that recapitulate disease manifestations. Finally, we identify key questions to be addressed to successfully bridge the gap to the clinic.
Collapse
Affiliation(s)
- Vinod Udayar
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ravi Jagasia
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
43
|
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181:154-165. [PMID: 35149216 DOI: 10.1016/j.freeradbiomed.2022.02.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Regeneration is the process of replacing/restoring a damaged cell/tissue/organ to its full function and is limited respecting complexity of specific organ structures and the level of differentiation of the cells. Unlike physiological cell turnover, this tissue replacement form is activated upon pathological stimuli such as injury and/or disease that usually involves inflammatory response. To which extent will tissue repair itself depends on many factors and involves different mechanisms. Oxidative stress is one of them, either acute, as in case of traumatic brin injury or chronic, as in case of neurodegeneration, oxidative stress within brain involves lipid peroxidation, which generates reactive aldehydes, such as 4-hydroxynonenal (4-HNE). While 4-HNE is certainly neurotoxic and causes disruption of the blood brain barrier in case of severe injuries, it is also physiologically produced by glial cells, especially astrocytes, but its physiological roles within CNS are not understood. Because 4-HNE can regulate the response of the other cells in the body to stress, enhance their antioxidant capacities, proliferation and differentiation, we could assume that it may also have some beneficial role for neuroregeneration. Therefore, future studies on the relevance of 4-HNE for the interaction between neuronal cells, notably stem cells and reactive astrocytes might reveal novel options to better monitor and treat consequences or brain injuries, neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Morana Jaganjac
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, Neuropathology Unit, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| |
Collapse
|
44
|
Bianca Maria Platania C, Drago F, Bucolo C. The P2X7 receptor as a new pharmacological target for retinal diseases. Biochem Pharmacol 2022; 198:114942. [PMID: 35134386 DOI: 10.1016/j.bcp.2022.114942] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/02/2022]
|
45
|
Francistiová L, Vörös K, Lovász Z, Dinnyés A, Kobolák J. Detection and Functional Evaluation of the P2X7 Receptor in hiPSC Derived Neurons and Microglia-Like Cells. Front Mol Neurosci 2022; 14:793769. [PMID: 35095416 PMCID: PMC8791009 DOI: 10.3389/fnmol.2021.793769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
A large body of evidence suggests the involvement of the ATP-gated purinergic receptor P2X7 (P2X7R) in neurodegenerative diseases, including Alzheimer's disease. While it is well-described to be present and functional on microglia cells contributing to inflammatory responses, some reports suggest a neuronal expression of the receptor as well. Here, we present experimental results showing P2X7 receptors to be expressed on human hiPSC-derived microglia-like cells, hiPSC-derived neuronal progenitors and hiPSC-derived matured neuronal cells. By applying cell surface protein detection assays, we show that P2X7R is not localized on the cell membrane, despite being detected in neuronal cells and thus may not be available for directly mediating neurotoxicity. On hiPSC-derived microglia-like cells, a clear membranous expression was detected. Additionally, we have not observed differences in P2X7R functions between control and familial Alzheimer's disease patient-derived neuronal cells. Functional assays employing a P2X7R antagonist JNJ 47965567 confirm these findings by showing P2X7R-dependent modulation of microglia-like cells viability upon treatment with P2X7R agonists ATP and BzATP, while the same effect was absent from neuronal cells. Since the majority of P2X7R research was done on rodent models, our work on human hiPSC-derived cells presents a valuable contribution to the field, extending the work on animal models to the human cellular system and toward clinical translation.
Collapse
Affiliation(s)
- Linda Francistiová
- Biotalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Kinga Vörös
- Biotalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - András Dinnyés
- Biotalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- College of Life Sciences, Sichuan University, Chengdu, China
| | | |
Collapse
|
46
|
Inflammasome activation in neurodegenerative diseases. Essays Biochem 2021; 65:885-904. [PMID: 34846519 DOI: 10.1042/ebc20210021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Approximately ten million people are diagnosed with dementia annually since they experience difficulties with memory and thinking skills. Since neurodegenerative diseases are diagnosed late, most of them are difficult to treat. This is due to the increased severity of the disease during the progression when neuroinflammation plays a critical role. The activation of immune cells, especially microglia, plays a crucial role in the development of neurodegenerative diseases. Molecular sensors within these microglia, such as the NLRP3 inflammasome, are activated by signals that represent the hallmarks of neurodegenerative diseases. Here, we first summarize the two activation steps of NLRP3 inflammasome activation. Furthermore, we discuss the key factors that contribute to NLRP3 inflammasome activation in the different neuroinflammatory diseases, like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The prominent NLRP3 inflammasome triggers include amyloid β and tau oligomers in AD, α-synuclein in PD, and superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP43) in ALS. NLRP3 inhibitor treatment has shown promising results in several preclinical mouse models of AD, PD, and ALS. Finally, we postulate that current understandings underpin the potential for NLRP3 inhibitors as a therapeutic target in neurodegenerative diseases.
Collapse
|
47
|
New Insights into the Role of Cysteine Cathepsins in Neuroinflammation. Biomolecules 2021; 11:biom11121796. [PMID: 34944440 PMCID: PMC8698589 DOI: 10.3390/biom11121796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, which is mediated by microglia and astrocytes, is associated with the progression of neurodegenerative diseases. Increasing evidence shows that activated microglia induce the expression and secretion of various lysosomal cathepsins, particularly during the early stage of neuroinflammation. This trigger signaling cascade that aggravate neurodegeneration. To date, most research on neuroinflammation has focused on the role of cysteine cathepsins, the largest cathepsin family. Cysteine cathepsins are primarily responsible for protein degradation in lysosomes; however, they also play a role in regulating a number of other important physiological and pathological processes. This review focuses on the functional roles of cysteine cathepsins in the central nervous system during neuroinflammation, with an emphasis on their roles in the polarization of microglia and neuroinflammation signaling, which in turn causes neuronal death and thus neurodegeneration.
Collapse
|
48
|
Dragić M, Mitrović N, Adžić M, Nedeljković N, Grković I. Microglial- and Astrocyte-Specific Expression of Purinergic Signaling Components and Inflammatory Mediators in the Rat Hippocampus During Trimethyltin-Induced Neurodegeneration. ASN Neuro 2021; 13:17590914211044882. [PMID: 34569324 PMCID: PMC8495514 DOI: 10.1177/17590914211044882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the involvement of purinergic signaling components in
the rat model of hippocampal degeneration induced by trimethyltin (TMT)
intoxication (8 mg/kg, single intraperitoneal injection), which results in
behavioral and neurological dysfunction similar to neurodegenerative disorders.
We investigated spatial and temporal patterns of ecto-nucleoside triphosphate
diphosphohydrolase 1 (NTPDase1/CD39) and ecto-5′ nucleotidase (eN/CD73)
activity, their cell-specific localization, and analyzed gene expression pattern
and/or cellular localization of purinoreceptors and proinflammatory mediators
associated with reactive glial cells. Our study demonstrated that all Iba1+
cells at the injured area, irrespective of their morphology, upregulated
NTPDase1/CD39, while induction of eN/CD73 has been observed at amoeboid Iba1+
cells localized within the hippocampal neuronal layers with pronounced cell
death. Marked induction of P2Y12R, P2Y6R, and
P2X4-messenger RNA at the early stage of TMT-induced
neurodegeneration might reflect the functional properties, migration, and
chemotaxis of microglia, while induction of P2X7R at amoeboid cells
probably modulates their phagocytic role. Reactive astrocytes expressed
adenosine A1, A2A, and P2Y1 receptors, revealed
induction of complement component C3, inducible nitric oxide synthase, nuclear
factor-kB, and proinflammatory cytokines at the late stage of TMT-induced
neurodegeneration. An increased set of purinergic system components on activated
microglia (NTPDase1/CD39, eN/CD73, and P2X7) and astrocytes
(A1R, A2AR, and P2Y1), and loss of
homeostatic glial and neuronal purinergic pathways (P2Y12 and
A1R) may shift purinergic signaling balance toward excitotoxicity
and inflammation, thus favoring progression of pathological events. These
findings may contribute to a better understanding of the involvement of
purinergic signaling components in the progression of neurodegenerative
disorders that could be target molecules for the development of novel
therapies.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, 89101University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Center for Laser Microscopy, 98829Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, 89101University of Belgrade, Belgrade, Serbia
| |
Collapse
|
49
|
Campagno KE, Lu W, Jassim AH, Albalawi F, Cenaj A, Tso HY, Clark SP, Sripinun P, Gómez NM, Mitchell CH. Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. J Neuroinflammation 2021; 18:217. [PMID: 34544431 PMCID: PMC8454080 DOI: 10.1186/s12974-021-02251-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The identification of endogenous signals that lead to microglial activation is a key step in understanding neuroinflammatory cascades. As ATP release accompanies mechanical strain to neural tissue, and as the P2X7 receptor for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7 receptor stimulation in vivo and in vitro and investigated the contribution of the P2X7 receptor in a model of increased intraocular pressure (IOP). METHODS In vivo experiments involved intravitreal injections and both transient and sustained elevation of IOP. In vitro experiments were performed on isolated mouse retinal and brain microglial cells. Morphological changes were quantified in vivo using Sholl analysis. Expression of mRNA for M1- and M2-like genes was determined with qPCR. The luciferin/luciferase assay quantified retinal ATP release while fura-2 indicated cytoplasmic calcium. Microglial migration was monitored with a Boyden chamber. RESULTS Sholl analysis of Iba1-stained cells showed retraction of microglial ramifications 1 day after injection of P2X7 receptor agonist BzATP into mouse retinae. Mean branch length of ramifications also decreased, while cell body size and expression of Nos2, Tnfa, Arg1, and Chil3 mRNA increased. BzATP induced similar morphological changes in ex vivo tissue isolated from Cx3CR1+/GFP mice, suggesting recruitment of external cells was unnecessary. Immunohistochemistry suggested primary microglial cultures expressed the P2X7 receptor, while functional expression was demonstrated with Ca2+ elevation by BzATP and block by specific antagonist A839977. BzATP induced process retraction and cell body enlargement within minutes in isolated microglial cells and increased Nos2 and Arg1. While ATP increased microglial migration, this required the P2Y12 receptor and not P2X7 receptor. Transient elevation of IOP led to microglial process retraction, cell body enlargement, and gene upregulation paralleling changes observed with BzATP injection, in addition to retinal ATP release. Pressure-dependent changes were reduced in P2X7-/- mice. Death of retinal ganglion cells accompanied increased IOP in C57Bl/6J, but not P2X7-/- mice, and neuronal loss showed some association with microglial activation. CONCLUSIONS P2X7 receptor stimulation induced rapid morphological activation of microglial cells, including process retraction and cell body enlargement, and upregulation of markers linked to both M1- and M2-type activation. Parallel responses accompanied IOP elevation, suggesting ATP release and P2X7 receptor stimulation influence the early microglial response to increased pressure.
Collapse
Affiliation(s)
- Keith E Campagno
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Wennan Lu
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Assraa Hassan Jassim
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Farraj Albalawi
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Preventive Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Aurora Cenaj
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Huen-Yee Tso
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Sophia P Clark
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Puttipong Sripinun
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Néstor Más Gómez
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Claire H Mitchell
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Platinum nanoparticles Protect Against Lipopolysaccharide-Induced Inflammation in Microglial BV-2 Cells via Decreased Oxidative Damage and Increased Phagocytosis. Neurochem Res 2021; 46:3325-3341. [PMID: 34432181 DOI: 10.1007/s11064-021-03434-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and oxidative stress cooperate to compromise the function of the central nervous system (CNS). Colloidal platinum nanoparticles (Pt NPs) are ideal candidates for reducing the deleterious effects of neuroinflammation since they act as free radical scavengers. Here we evaluated the effects of Pt NPs on several markers of lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. BV-2 cells were treated with increased dilutions (1-100 ppm) of Colloidal Pt and/or LPS (1-10 µg/mL) at different exposure times. Three different protocols of exposure were used combining Pt NPs and LPS: (a) conditioning-protective effect (pre-post-treat), (b) therapeutic effect (co-treat) and (c) conditioning-therapeutic effect (pre-co-treat). After exposure to LPS for 24 h, cells were used for assessment of cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) activity, apoptosis and caspase-3 levels, cell proliferation, mitochondrial membrane potential, inducible nitric oxide (iNOS) activity, pro-inflammatory cytokine (IL-1β, TNF-α and IL-6) levels, and phagocytic activity. Low concentrations (below or equal to 10 ppm) of Colloidal Pt prevented or ameliorated the LPS-induced increase in ROS formation, loss of mitochondrial membrane potential, induction of apoptosis, increase in LDH release, increase in pro-inflammatory cytokines and iNOS, inhibition of phagocytosis linked to microglial persistence in the M1 phase phenotype, loss of cell adhesion, differentiation and/or proliferation, as well as loss of cell viability. These protective effects were evident when cells were preconditioned with Pt NPs prior to LPS treatment. Collectively, the findings demonstrate that at low concentrations, Pt NPs can regulate the function and phenotype of BV-2 cells, activating protective mechanisms to maintain the microglial homeostasis and reduce inflammatory events triggered by the inflammatory insults induced by LPS. These preventive/protective effects on the LPS pro-inflammatory model are linked to the antioxidant properties and phagocytic activity of these NPs.
Collapse
|