1
|
Zhang J, Yu Z, Wang M, Kang X, Wu X, Yang F, Yang L, Sun S, Wu LA. Enhanced exosome secretion regulated by microglial P2X7R in the medullary dorsal horn contributes to pulpitis-induced pain. Cell Biosci 2025; 15:28. [PMID: 39987146 PMCID: PMC11847359 DOI: 10.1186/s13578-025-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Pulpitis is a prevalent oral disease characterized by severe pain. The activation of microglia in the medullary dorsal horn (MDH) is reportedly essential for the central sensitization mechanism associated with pulpitis. The P2X7 receptor (P2X7R) on microglia can trigger the secretion of exosomes enriched with IL-1β, which is involved in inflammation. Thus, we hypothesized that the enhanced exosome secretion regulated by microglial P2X7R in the MDH contributes to pulpitis-induced pain. METHODS An experimental pulpitis model was established in male SD rats to observe pain behaviors. Immunofluorescence staining, western blotting and quantitative real-time PCR were used to analyze the expression of IL-1β and Rab27a, a key protein secreted by exosomes during nociceptive processes. The effects of the exosome inhibitor GW4869 and the P2X7R antagonist Brilliant Blue G (BBG) on microglial P2X7R, exosome secretion and inflammation in the pulpitis model were analyzed. In vitro, microglial cells were cultured to collect exosomes, and stimulation with lipopolysaccharide (LPS), oxidized ATP (oxATP) and GW4869 altered the secretion of exosomes containing IL-1β. RESULTS In the experimental pulpitis model, the microglial exosome secretion and inflammatory factor release in the MDH were both correlated with the extent of pulpitis-induced pain, with the highest expression occurring on the 7th day. GW4869 and BBG inhibited Rab27a and IL-1β expression, reducing pulpitis-induced pain. In addition, exosomes were successfully extracted by ultracentrifugation in vitro, wherein LPS treatment promoted exosome secretion but GW4869 had the opposite effects on the secretion of exosomes and the IL-1β. Moreover, P2X7R inhibition by oxATP diminished exosome secretion, leading to a reduction in inflammatory responses. CONCLUSION This study highlights the regulatory role of microglial P2X7R in increased exosome secretion, indicating the potential utility of P2X7R as a promising target for pulpitis therapy. Our research highlights a new pulpitis mechanism in which exosomes enriched with IL-1β contribute to pulpitis-induced pain, suggesting the crucial roles of exosomes as pain biomarkers and harmful signaling molecules during pulpitis.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Mingjun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoning Kang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoke Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fengjiao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Li-An Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Zhang Y, Sun C, Wang B, Gu A, Zhou Z, Gu C. Brain-Derived Exosomal miR-9-5p Induces Ferroptosis in Traumatic Brain Injury-Induced Acute Lung Injury by Targeting Scd1. CNS Neurosci Ther 2024; 30:e70189. [PMID: 39723576 DOI: 10.1111/cns.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS This study aimed to explore the role and underlying mechanisms of brain-derived exosomes in traumatic brain injury-induced acute lung injury (TBI-induced ALI), with a particular focus on the potential regulation of ferroptosis through miRNAs and Scd1. METHODS To elucidate TBI-induced ALI, we used a TBI mouse model. Exosomes were isolated from the brains of these mice and characterized using TEM and NTA. LC-MS analysis revealed an increase in the level of ferroptosis in the lung tissues of mice with TBI. Subsequent miRNA and mRNA sequencing revealed the upregulation of miR-9-5p and the downregulation of Scd1 in the pulmonary tissues of these mice. Ferroptosis was assessed by quantifying the levels of ROS, MDA, and Fe2+ and the expression of proteins associated with ferroptosis. RESULTS TBI led to the release of exosomes enriched with miR-9-5p, which targeted Scd1 in lung tissue, thereby promoting ferroptosis. Treatment with antagomir 9-5p reduced the level of ALI in TBI mice, indicating that exosomal miR-9-5p plays a significant role in TBI-induced ALI. CONCLUSION This study revealed that brain-derived exosomal miR-9-5p mediates ferroptosis in TBI-induced ALI by targeting Scd1. These findings may provide new insights into the complex interplay between TBI and ALI and highlight the potential of miR-9-5p as a target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Chang Sun
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bailun Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Angran Gu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ziyi Zhou
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Changping Gu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Liu X, Meng P, Liu Z, Tian X, Xi J, Du M, Yang H, Long Q. New insights on targeting extracellular vesicle release by GW4869 to modulate lipopolysaccharide-induced neuroinflammation in mice model. Nanomedicine (Lond) 2024; 19:2619-2632. [PMID: 39569636 DOI: 10.1080/17435889.2024.2422811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: This study aims to elucidate the regulatory role of extracellular vesicle (EV) release in glial cell activation, microglia-astrocyte interactions and neurological outcomes.Materials & methods: We employed a pharmacological intervention using GW4869 to modulate EV release, investigating its impact on primary cultures of microglia and astrocytes, microglia-astrocyte interactions, neuroinflammation and behavioral changes in lipopolysaccharide (LPS)-induced cell and animal models.Results: We isolated the EVs from glial cells and confirmed their positivity for CD9, CD63 and CD81. Our findings demonstrate that GW4869 significantly reduced EV protein concentrations secreted by glial cells within 6-12 h. Utilizing ELISA, immunostaining and western blot analyses, we observed that treatment with GW4869 attenuated glial cell activation and inflammatory responses both in vitro and in vivo. Transwell assays indicated that controlled EV release from activated microglia and astrocytes mitigated neurotoxic reactivity in normal astrocytes and microglia, respectively. Furthermore, GW4869 administration in LPS-injected mice resulted in notable improvements in spatial memory, anxiety-like behaviors and exploratory activity compared with vehicles.Conclusion: Our study suggests that modulating glia-derived EV dynamics effectively reduce neuroinflammation and enhance behavioral outcomes in mice. These findings underscore the potential of targeting EV release as a novel therapeutic approach for neurological disorders.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| | - Panpan Meng
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- Mini-invasive Neurosurgery & Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5b Road, Xincheng District, Xi'an, 710003, P.R. China
- Lon-EV Biotechnology Limited Company, West Cloud Valley, Fengxi New Town, Xixian District, Xi'an 710054, China
| | - Zhiyong Liu
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- Mini-invasive Neurosurgery & Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5b Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Xiao Tian
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- Mini-invasive Neurosurgery & Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5b Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Junxiu Xi
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- Mini-invasive Neurosurgery & Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5b Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| | - Minghao Du
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- Mini-invasive Neurosurgery & Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5b Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| | - Hao Yang
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| | - Qianfa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5a Road, Xincheng District, Xi'an, 710003, P.R. China
- Mini-invasive Neurosurgery & Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University. No. 161, West 5b Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| |
Collapse
|
4
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
5
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
6
|
Yin X, Xia Y, Shen L, Zhu X, Lu L, Meng X. Postoperative hyperglycemia in patients with traumatic brain injury: development of a prediction model. Arch Med Sci 2024; 21:131-137. [PMID: 40190316 PMCID: PMC11969510 DOI: 10.5114/aoms/188007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 04/09/2025] Open
Abstract
Introduction Blood glucose monitoring and management are very important for the prognosis of patients with traumatic brain injury (TBI). It is necessary to evaluate the status and influencing factors of hyperglycemia within 48 h after the operation in patients with TBI. Material and methods Patients with TBI who received craniocerebral surgery between March 1, 2022, and October 31, 2023, were enrolled. We assessed the clinical characteristics of TBI patients with and without the development of postoperative hyperglycemia. To identify potential risk factors associated with postoperative hyperglycemia, we performed both univariate and multivariate logistic regression analyses. Utilizing the regression coefficients derived from each significant risk factor, we subsequently constructed a predictive model aimed at forecasting postoperative hyperglycemia. Results A total of 216 TBI patients were included. The incidence of postoperative hyperglycemia was 31.48%. Correlation analysis indicated that age (r = 0.415), body mass index (BMI) (r = 0.441), diabetes (r = 0.513), Glasgow Coma Scale (GCS) score (r = 0.545) and length of hospital stay (r = 0.456) were all correlated with the postoperative hyperglycemia in TBI patients (all p < 0.05). Age ≥ 60 years (OR = 2.556, 95% CI: 1.831-3.641), BMI ≥ 24 kg/m2 (OR = 2.793, 95% CI: 2.305-3.679), diabetes (OR = 3.081, 95% CI: 2.326-3.811) and GCS score ≤ 8 (OR = 3.603, 95% CI: 1.956-4.086) were the independent factors influencing postoperative hyperglycemia in TBI patients (all p < 0.05). The area under the receiver operating characteristic curve and 95% CI were 0.795 (0.712, 0.849). The model had good discriminative ability to distinguish the occurrence of postoperative hyperglycemia in TBI patients (all p < 0.05). Conclusions Postoperative hyperglycemia in patients with TBI is common. For TBI patients with a total score ≥ 6 in the prediction model, early interventions and care are needed to reduce the postoperative hyperglycemia.
Collapse
Affiliation(s)
- Xiangyi Yin
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yi Xia
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Liuyan Shen
- Department of Neurosurgery, The 904 Hospital of the Joint Logistics Support Force of Chinese People’s Liberation Army, Wuxi, China
| | - Xiaowen Zhu
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lichun Lu
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xianlan Meng
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| |
Collapse
|
7
|
Fallahi S, Zangbar HS, Farajdokht F, Rahbarghazi R, Mohaddes G, Ghiasi F. Exosomes as a therapeutic tool to promote neurorestoration and cognitive function in neurological conditions: Achieve two ends with a single effort. CNS Neurosci Ther 2024; 30:e14752. [PMID: 38775149 PMCID: PMC11110007 DOI: 10.1111/cns.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/16/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too. Exosomes are not only a diagnostic tool but also their inhibition or administration from various sources like mesenchymal stem cells and serum, which have shown a worthy potential to treat multiple neurological disorders. In addition to neurodegenerative manifestations, cognitive deficiencies are an integral part of neurological diseases, and applying exosomes in improving both aspects of these diseases has been promising. This review discusses the status of exosome therapy in improving neurorestorative and cognitive function following neurological disease.
Collapse
Affiliation(s)
- Solmaz Fallahi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Fereshteh Farajdokht
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Gisou Mohaddes
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Biomedical EducationCalifornia Health Sciences University, College of Osteopathic MedicineClovisCaliforniaUSA
| | - Fariba Ghiasi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Chen J, Chen Z, Yu D, Yan Y, Hao X, Zhang M, Zhu T. Neuroprotective Effect of Hydrogen Sulfide Subchronic Treatment Against TBI-Induced Ferroptosis and Cognitive Deficits Mediated Through Wnt Signaling Pathway. Cell Mol Neurobiol 2023; 43:4117-4140. [PMID: 37624470 PMCID: PMC10661805 DOI: 10.1007/s10571-023-01399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Emerging evidence shows that targeting ferroptosis may be a potential therapeutic strategy for treating traumatic brain injury (TBI). Hydrogen sulfide (H2S) has been proven to play a neuroprotective role in TBI, but little is known about the effects of H2S on TBI-induced ferroptosis. In addition, it is reported that the Wnt signaling pathway can also actively regulate ferroptosis. However, whether H2S inhibits ferroptosis via the Wnt signaling pathway after TBI remains unclear. In this study, we first found that in addition to alleviating neuronal damage and cognitive impairments, H2S remarkably attenuated abnormal iron accumulation, decreased lipid peroxidation, and improved the expression of glutathione peroxidase 4, demonstrating the potent anti-ferroptosis action of H2S after TBI. Moreover, Wnt3a or liproxstatin-1 treatment obtained similar results, suggesting that activation of the Wnt signaling pathway can render the cells less susceptible to ferroptosis post-TBI. More importantly, XAV939, an inhibitor of the Wnt signaling pathway, almost inversed ferroptosis inactivation and reduction of neuronal loss caused by H2S treatment, substantiating the involvement of the Wnt signaling pathway in anti-ferroptosis effects of H2S. In conclusion, the Wnt signaling pathway might be the critical mechanism in realizing the anti-ferroptosis effects of H2S against TBI. TBI induces ferroptosis-related changes characterized by iron overload, impaired antioxidant system, and lipid peroxidation at the chronic phase after TBI. However, NaHS subchronic treatment reduces the susceptibility to TBI-induced ferroptosis, at least partly by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yufei Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
9
|
Guo M, Wang L, Yin Z, Chen F, Lei P. Small extracellular vesicles as potential theranostic tools in central nervous system disorders. Biomed Pharmacother 2023; 167:115407. [PMID: 37683594 DOI: 10.1016/j.biopha.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Small extracellular vesicles(sEVs), a subset of extracellular vesicles with a bilateral membrane structure, contain biological cargoes, such as lipids, nucleic acids, and proteins. sEVs are crucial mediators of intercellular communications in the physiological and pathological processes of the central nervous system. Because of the special structure and complex pathogenesis of the brain, central nervous system disorders are characterized by high mortality and morbidity. Increasing evidence has focused on the potential of sEVs in clinical application for central nervous system disorders. sEVs are emerging as a promising diagnostic and therapeutic tool with high sensitivity, low immunogenicity, superior safety profile, and high transfer efficiency. This review highlighted the development of sEVs in central nervous system disorder clinical application. We also outlined the role of sEVs in central nervous system disorders and discussed the limitations of sEVs in clinical translation.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
10
|
Juan SMA, Daglas M, Adlard PA. Altered amyloid precursor protein, tau-regulatory proteins, neuronal numbers and behaviour, but no tau pathology, synaptic and inflammatory changes or memory deficits, at 1 month following repetitive mild traumatic brain injury. Eur J Neurosci 2022; 56:5342-5367. [PMID: 35768153 DOI: 10.1111/ejn.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Repetitive mild traumatic brain injury, commonly experienced following sports injuries, results in various secondary injury processes and is increasingly recognised as a risk factor for the development of neurodegenerative conditions such as chronic traumatic encephalopathy, which is characterised by tau pathology. We aimed to characterise the underlying pathological mechanisms that might contribute to the onset of neurodegeneration and behavioural changes in the less-explored subacute (1-month) period following single or repetitive controlled cortical impact injury (five impacts, 48 h apart) in 12-week-old male and female C57Bl6 mice. We conducted motor and cognitive testing, extensively characterised the status of tau and its regulatory proteins via western blot and quantified neuronal populations using stereology. We report that r-mTBI resulted in neurobehavioural deficits, gait impairments and anxiety-like behaviour at 1 month post-injury, effects not seen following a single injury. R-mTBI caused a significant increase in amyloid precursor protein, an increased trend towards tau phosphorylation and significant changes in kinase/phosphatase proteins that may promote a downstream increase in tau phosphorylation, but no changes in synaptic or neuroinflammatory markers. Lastly, we report neuronal loss in various brain regions following both single and repeat injuries. We demonstrate herein that repeated impacts are required to promote the initiation of a cascade of biochemical events that are consistent with the onset of neurodegeneration subacutely post-injury. Identifying the timeframe in which these changes occur and the pathological mechanisms involved will be crucial for the development of future therapeutics to prevent the onset or mitigate the progression of neurodegeneration following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Wang D, Zhang S, Ge X, Yin Z, Li M, Guo M, Hu T, Han Z, Kong X, Li D, Zhao J, Wang L, Liu Q, Chen F, Lei P. Mesenchymal stromal cell treatment attenuates repetitive mild traumatic brain injury-induced persistent cognitive deficits via suppressing ferroptosis. J Neuroinflammation 2022; 19:185. [PMID: 35836233 PMCID: PMC9281149 DOI: 10.1186/s12974-022-02550-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
The incidence of repetitive mild traumatic brain injury (rmTBI), one of the main risk factors for predicting neurodegenerative disorders, is increasing; however, its underlying mechanism remains unclear. As suggested by several studies, ferroptosis is possibly related to TBI pathophysiology, but its effect on rmTBI is rarely studied. Mesenchymal stromal cells (MSCs), the most studied experimental cells in stem cell therapy, exert many beneficial effects on diseases of the central nervous system, yet evidence regarding the role of MSCs in ferroptosis and post-rmTBI neurodegeneration is unavailable. Our study showed that rmTBI resulted in time-dependent alterations in ferroptosis-related biomarker levels, such as abnormal iron metabolism, glutathione peroxidase (GPx) inactivation, decrease in GPx4 levels, and increase in lipid peroxidation. Furthermore, MSC treatment markedly decreased the aforementioned rmTBI-mediated alterations, neuronal damage, pathological protein deposition, and improved cognitive function compared with vehicle control. Similarly, liproxstatin-1, a ferroptosis inhibitor, showed similar effects. Collectively, based on the above observations, MSCs ameliorate cognitive impairment following rmTBI, partially via suppressing ferroptosis, which could be a therapeutic target for rmTBI.
Collapse
Affiliation(s)
- Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shishuang Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaodong Kong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
12
|
Cell-Derived Exosomes as Therapeutic Strategies and Exosome-Derived microRNAs as Biomarkers for Traumatic Brain Injury. J Clin Med 2022; 11:jcm11113223. [PMID: 35683610 PMCID: PMC9181755 DOI: 10.3390/jcm11113223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex, life-threatening condition that causes mortality and disability worldwide. No effective treatment has been clinically verified to date. Achieving effective drug delivery across the blood–brain barrier (BBB) presents a major challenge to therapeutic drug development for TBI. Furthermore, the field of TBI biomarkers is rapidly developing to cope with the many aspects of TBI pathology and enhance clinical management of TBI. Exosomes (Exos) are endogenous extracellular vesicles (EVs) containing various biological materials, including lipids, proteins, microRNAs, and other nucleic acids. Compelling evidence exists that Exos, such as stem cell-derived Exos and even neuron or glial cell-derived Exos, are promising TBI treatment strategies because they pass through the BBB and have the potential to deliver molecules to target lesions. Meanwhile, Exos have decreased safety risks from intravenous injection or orthotopic transplantation of viable cells, such as microvascular occlusion or imbalanced growth of transplanted cells. These unique characteristics also create Exos contents, especially Exos-derived microRNAs, as appealing biomarkers in TBI. In this review, we explore the potential impact of cell-derived Exos and exosome-derived microRNAs on the diagnosis, therapy, and prognosis prediction of TBI. The associated challenges and opportunities are also discussed.
Collapse
|
13
|
Li P, Luo X, Luo Z, He GL, Shen TT, Yu XT, Wang ZZ, Tan YL, Liu XQ, Yang XS. Increased miR-155 in Microglial Exosomes Following Heat Stress Accelerates Neuronal Autophagy via Their Transfer Into Neurons. Front Cell Neurosci 2022; 16:865568. [PMID: 35634460 PMCID: PMC9132214 DOI: 10.3389/fncel.2022.865568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background Heat stroke is the outcome of excessive heat stress, which results in core temperatures exceeding 40°C accompanied by a series of complications. The brain is particularly vulnerable to damage from heat stress. In our previous studies, both activated microglia and increased neuronal autophagy were found in the cortices of mice with heat stroke. However, whether activated microglia can accelerate neuronal autophagy under heat stress conditions is still unknown. In this study, we aimed to investigate the underlying mechanism that caused neuronal autophagy upregulation in heat stroke from the perspective of exosome-mediated intercellular communication. Methods In this study, BV2 and N2a cells were used instead of microglia and neurons, respectively. Exosomes were extracted from BV2 culture supernatants by ultracentrifugation and then characterized via transmission electron microscopy, nanoparticle tracking analysis and Western blotting. N2a cells pretreated with/without miR-155 inhibitor were cocultured with microglial exosomes that were treated with/without heat stress or miR-155 overexpression and subsequently subjected to heat stress treatment. Autophagy in N2a cells was assessed by detecting autophagosomes and autophagy-related proteins through transmission electron microscopy, immunofluorescence, and Western blotting. The expression of miR-155 in BV2 and BV2 exosomes and N2a cells was measured using real-time reverse transcription polymerase chain reaction. Target binding analysis was verified via a dual-luciferase reporter assay. Results N2a autophagy moderately increased in response to heat stress and accelerated by BV2 cells through transferring exosomes to neurons. Furthermore, we found that neuronal autophagy was positively correlated with the content of miR-155 in microglial exosomes. Inhibition of miR-155 partly abolished autophagy in N2a cells, which was increased by coculture with miR-155-upregulated exosomes. Mechanistic analysis confirmed that Rheb is a functional target of miR-155 and that microglial exosomal miR-155 accelerated heat stress-induced neuronal autophagy mainly by regulating the Rheb-mTOR signaling pathway. Conclusion Increased miR-155 in microglial exosomes after heat stroke can induce neuronal autophagy via their transfer into neurons. miR-155 exerted these effects by targeting Rheb, thus inhibiting the activity of mTOR signaling. Therefore, miR-155 could be a promising target for interventions of neuronal autophagy after heat stroke.
Collapse
Affiliation(s)
- Ping Li
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Gen-Lin He
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ting-Ting Shen
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue-Ting Yu
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ze-Ze Wang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Yu-Long Tan
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xiao-Qian Liu
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue-Sen Yang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
- *Correspondence: Xue-Sen Yang,
| |
Collapse
|