1
|
Liu WS, You J, Chen SD, Zhang Y, Feng JF, Xu YM, Yu JT, Cheng W. Plasma proteomics identify biomarkers and undulating changes of brain aging. NATURE AGING 2025; 5:99-112. [PMID: 39653801 DOI: 10.1038/s43587-024-00753-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/17/2024] [Indexed: 12/15/2024]
Abstract
Proteomics enables the characterization of brain aging biomarkers and discernment of changes during brain aging. We leveraged multimodal brain imaging data from 10,949 healthy adults to estimate brain age gap (BAG), an indicator of brain aging. Proteome-wide association analysis across 4,696 participants of 2,922 proteins identified 13 significantly associated with BAG, implicating stress, regeneration and inflammation. Brevican (BCAN) (β = -0.838, P = 2.63 × 10-10) and growth differentiation factor 15 (β = 0.825, P = 3.48 × 10-11) showed the most significant, and multiple, associations with dementia, stroke and movement functions. Dysregulation of BCAN affected multiple cortical and subcortical structures. Mendelian randomization supported the causal association between BCAN and BAG. We revealed undulating changes in the plasma proteome across brain aging, and profiled brain age-related change peaks at 57, 70 and 78 years, implicating distinct biological pathways during brain aging. Our findings revealed the plasma proteomic landscape of brain aging and pinpointed biomarkers for brain disorders.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| |
Collapse
|
2
|
Seiler S, Rudolf F, Gomes FR, Pavlovic A, Nebel J, Seidenbecher CI, Foo LC. Astrocyte-derived factors regulate CNS myelination. Glia 2024; 72:2038-2060. [PMID: 39092473 DOI: 10.1002/glia.24596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
The role that astrocytes play in central nervous system (CNS) myelination is poorly understood. We investigated the contribution of astrocyte-derived factors to myelination and revealed a substantial overlap in the secretomes of human and rat astrocytes. Using in vitro myelinating co-cultures of primary retinal ganglion cells and cortical oligodendrocyte precursor cells, we discovered that factors secreted by resting astrocytes, but not reactive astrocytes, facilitated myelination. Soluble brevican emerged as a new enhancer of developmental myelination in vivo, CNS and its absence was linked to remyelination deficits following an immune-mediated damage in an EAE mouse model. The observed reduction of brevican expression in reactive astrocytes and human MS lesions suggested a potential link to the compromised remyelination characteristic of neurodegenerative diseases. Our findings suggested brevican's role in myelination may be mediated through interactions with binding partners such as contactin-1 and tenascin-R. Proteomic analysis of resting versus reactive astrocytes highlighted a shift in protein expression profiles, pinpointing candidates that either facilitate or impede CNS repair, suggesting that depending on their reactivity state, astrocytes play a dual role during myelination.
Collapse
Affiliation(s)
- Sybille Seiler
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Franziska Rudolf
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Filipa Ramilo Gomes
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Anto Pavlovic
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Jana Nebel
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Lynette C Foo
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| |
Collapse
|
3
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
4
|
Pascut D, Giraudi PJ, Banfi C, Ghilardi S, Tiribelli C, Bondesan A, Caroli D, Grugni G, Sartorio A. Characterization of Circulating Protein Profiles in Individuals with Prader-Willi Syndrome and Individuals with Non-Syndromic Obesity. J Clin Med 2024; 13:5697. [PMID: 39407757 PMCID: PMC11476631 DOI: 10.3390/jcm13195697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by distinctive physical, cognitive, and behavioral manifestations, coupled with profound alterations in appetite regulation, leading to severe obesity and metabolic dysregulation. These clinical features arise from disruptions in neurodevelopment and neuroendocrine regulation, yet the molecular intricacies of PWS remain incompletely understood. Methods: This study aimed to comprehensively profile circulating neuromodulatory factors in the serum of 53 subjects with PWS and 34 patients with non-syndromic obesity, utilizing a proximity extension assay with the Olink Target 96 neuro-exploratory and neurology panels. The ANOVA p-values were adjusted for multiple testing using the Benjamani-Hochberg method. Protein-protein interaction networks were generated in STRING V.12. Corrplots were calculated with R4.2.2 by using the Hmisc, Performance Analytics, and Corrplot packages Results: Our investigation explored the potential genetic underpinnings of the circulating protein signature observed in PWS, revealing intricate connections between genes in the PWS critical region and the identified circulating proteins associated with impaired oxytocin, NAD metabolism, and sex-related neuromuscular impairment involving, CD38, KYNU, NPM1, NMNAT1, WFIKKN1, and GDF-8/MSTN. The downregulation of CD38 in individuals with PWS (p < 0.01) indicates dysregulation of oxytocin release, implicating pathways associated with NAD metabolism in which KYNU and NMNAT1 are involved and significantly downregulated in PWS (p < 0.01 and p < 0.05, respectively). Sex-related differences in the circulatory levels of WFIKKN1 and GDF-8/MSTN (p < 0.05) were also observed. Conclusions: This study highlights potential circulating protein biomarkers associated with impaired oxytocin, NAD metabolism, and sex-related neuromuscular impairment in PWS individuals with potential clinical implications.
Collapse
Affiliation(s)
- Devis Pascut
- Fondazione Italiana Fegato—ONLUS, Liver Cancer Unit, 34149 Trieste, Italy;
| | - Pablo José Giraudi
- Fondazione Italiana Fegato—ONLUS, Metabolic Liver Disease Unit, 34149 Trieste, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (C.B.)
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (C.B.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Liver Cancer Unit, 34149 Trieste, Italy;
- Fondazione Italiana Fegato—ONLUS, Metabolic Liver Disease Unit, 34149 Trieste, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Diana Caroli
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Graziano Grugni
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| |
Collapse
|
5
|
C Benincasa J, Madias MI, Kandell RM, Delgado-Garcia LM, Engler AJ, Kwon EJ, Porcionatto MA. Mechanobiological Modulation of In Vitro Astrocyte Reactivity Using Variable Gel Stiffness. ACS Biomater Sci Eng 2024; 10:4279-4296. [PMID: 38870483 PMCID: PMC11234334 DOI: 10.1021/acsbiomaterials.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
After traumatic brain injury, the brain extracellular matrix undergoes structural rearrangement due to changes in matrix composition, activation of proteases, and deposition of chondroitin sulfate proteoglycans by reactive astrocytes to produce the glial scar. These changes lead to a softening of the tissue, where the stiffness of the contusion "core" and peripheral "pericontusional" regions becomes softer than that of healthy tissue. Pioneering mechanotransduction studies have shown that soft substrates upregulate intermediate filament proteins in reactive astrocytes; however, many other aspects of astrocyte biology remain unclear. Here, we developed a platform for the culture of cortical astrocytes using polyacrylamide (PA) gels of varying stiffness (measured in Pascal; Pa) to mimic injury-related regions in order to investigate the effects of tissue stiffness on astrocyte reactivity and morphology. Our results show that substrate stiffness influences astrocyte phenotype; soft 300 Pa substrates led to increased GFAP immunoreactivity, proliferation, and complexity of processes. Intermediate 800 Pa substrates increased Aggrecan+, Brevican+, and Neurocan+ astrocytes. The stiffest 1 kPa substrates led to astrocytes with basal morphologies, similar to a physiological state. These results advance our understanding of astrocyte mechanotransduction processes and provide evidence of how substrates with engineered stiffness can mimic the injury microenvironment.
Collapse
Affiliation(s)
- Julia C Benincasa
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| | - Marianne I Madias
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lina M Delgado-Garcia
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| | - Adam J Engler
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marimelia A Porcionatto
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| |
Collapse
|
6
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa Severino FP, Bindu DS, Savage JT, Eroglu C. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Neuron 2024; 112:1657-1675.e10. [PMID: 38574730 PMCID: PMC11098688 DOI: 10.1016/j.neuron.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. Several astrocyte-secreted synaptogenic proteins controlling excitatory synapse development were identified; however, those that induce inhibitory synaptogenesis remain elusive. Here, we identify neurocan as an astrocyte-secreted inhibitory synaptogenic protein. After secretion from astrocytes, neurocan is cleaved into N- and C-terminal fragments. We found that these fragments have distinct localizations in the extracellular matrix. The neurocan C-terminal fragment localizes to synapses and controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic domain have reduced inhibitory synapse numbers and function. Through super-resolution microscopy, in vivo proximity labeling by secreted TurboID, and astrocyte-specific rescue approaches, we discovered that the synaptogenic domain of neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
Affiliation(s)
- Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Leykashree Nagendren
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Instituto Cajal, CSIC 28002 Madrid, Spain
| | | | - Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Henneicke S, Meuth SG, Schreiber S. [Cerebral Small Vessel Disease: Advances in Understanding its Pathophysiology]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:494-502. [PMID: 38081163 DOI: 10.1055/a-2190-8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Sporadic cerebral small vessel disease determines age- and vascular-risk-factor-related processes of the small brain vasculature. The underlying pathology develops in a stage-dependent manner - probably over decades - often already starting in midlife. Endothelial and pericyte activation precedes blood-brain barrier leaks, extracellular matrix remodeling and neuroinflammation, which ultimately result in bleeds, synaptic and neural dysfunction. Hemodynamic compromise of the small vessel walls promotes perivascular drainage failure and accumulation of neurotoxic waste products in the brain. Clinical diagnosis is mainly based on magnetic resonance imaging according to the Standards for Reporting Vascular Changes on Neuroimaging 2. Cerebral amyloid angiopathy is particularly stratified according to the Boston v2.0 criteria. Small vessel disease of the brain could be clinically silent, or manifested through a heterogeneous spectrum of diseases, where cognitive decline and stroke-related symptoms are the most common ones. Prevention and therapy are centered around vascular risk factor control, physically and cognitively enriched life style and, presumably, maintenance of a good sleep quality, which promotes sufficient perivascular drainage. Prevention of ischemic stroke through anticoagulation that carries at the same time an increased risk for large brain hemorrhages - particularly in the presence of disseminated cortical superficial siderosis - remains one of the main challenges. The cerebral small vessel disease field is rapidly evolving, focusing on the establishment of early disease stage imaging and biofluid biomarkers of neurovascular unit remodeling and the compromise of perivascular drainage. New prevention and therapy strategies will correspondingly center around the dedicated targeting of, e. g., cellular small vessel wall and perivascular tissue structures. Growing knowledge about brain microvasculature bridging neuroimmunological, neurovascular and neurodegenerative fields might lead to a rethink about apparently separate disease entities and the development of overarching concepts for a common line of prevention and treatment for several diseases.
Collapse
Affiliation(s)
- Solveig Henneicke
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| | | | - Stefanie Schreiber
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| |
Collapse
|
8
|
Rodd ZA, Swartzwelder HS, Waeiss RA, Soloviov SO, Lahiri DK, Engleman EA, Truitt WA, Bell RL, Hauser SR. Negative and positive allosteric modulators of the α7 nicotinic acetylcholine receptor regulates the ability of adolescent binge alcohol exposure to enhance adult alcohol consumption. Front Behav Neurosci 2023; 16:954319. [PMID: 37082421 PMCID: PMC10113115 DOI: 10.3389/fnbeh.2022.954319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 04/07/2023] Open
Abstract
Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.
Collapse
Affiliation(s)
- Zachary A. Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - R. Aaron Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Serhii O. Soloviov
- Department of Pharmacy, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Department of Industrial Biotechnology and Biopharmacy, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric A. Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William A. Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L. Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa-Severino FP, Bindu DS, Eroglu C. Astrocyte-Secreted Neurocan Controls Inhibitory Synapse Formation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535448. [PMID: 37066164 PMCID: PMC10104008 DOI: 10.1101/2023.04.03.535448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. To date, several astrocyte-secreted synaptogenic proteins controlling different stages of excitatory synapse development have been identified. However, the identities of astrocytic signals that induce inhibitory synapse formation remain elusive. Here, through a combination of in vitro and in vivo experiments, we identified Neurocan as an astrocyte-secreted inhibitory synaptogenic protein. Neurocan is a chondroitin sulfate proteoglycan that is best known as a protein localized to the perineuronal nets. However, Neurocan is cleaved into two after secretion from astrocytes. We found that the resulting N- and C-terminal fragments have distinct localizations in the extracellular matrix. While the N-terminal fragment remains associated with perineuronal nets, the Neurocan C-terminal fragment localizes to synapses and specifically controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic region have reduced inhibitory synapse numbers and function. Through super-resolution microscopy and in vivo proximity labeling by secreted TurboID, we discovered that the synaptogenic domain of Neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
|
10
|
Greco GA, Rock M, Amontree M, Lanfranco MF, Korthas H, Hong SH, Turner RS, Rebeck GW, Conant K. CCR5 deficiency normalizes TIMP levels, working memory, and gamma oscillation power in APOE4 targeted replacement mice. Neurobiol Dis 2023; 179:106057. [PMID: 36878326 PMCID: PMC10291850 DOI: 10.1016/j.nbd.2023.106057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
The APOE4 allele increases the risk for Alzheimer's disease (AD) in a dose-dependent manner and is also associated with cognitive decline in non-demented elderly controls. In mice with targeted gene replacement (TR) of murine APOE with human APOE3 or APOE4, the latter show reduced neuronal dendritic complexity and impaired learning. APOE4 TR mice also show reduced gamma oscillation power, a neuronal population activity which is important to learning and memory. Published work has shown that brain extracellular matrix (ECM) can reduce neuroplasticity as well as gamma power, while attenuation of ECM can instead enhance this endpoint. In the present study we examine human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 individuals and brain lysates from APOE3 and APOE4 TR mice for levels of ECM effectors that can increase matrix deposition and restrict neuroplasticity. We find that CCL5, a molecule linked to ECM deposition in liver and kidney, is increased in CSF samples from APOE4 individuals. Levels of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the activity of ECM-degrading enzymes, are also increased in APOE4 CSF as well as astrocyte supernatants brain lysates from APOE4 TR mice. Importantly, as compared to APOE4/wild-type heterozygotes, APOE4/CCR5 knockout heterozygotes show reduced TIMP levels and enhanced EEG gamma power. The latter also show improved learning and memory, suggesting that the CCR5/CCL5 axis could represent a therapeutic target for APOE4 individuals.
Collapse
Affiliation(s)
- Griffin A Greco
- Georgetown University School of Medicine (GUMC), Department of Pharmacology, United States of America
| | | | - Matthew Amontree
- GUMC, United States of America; Interdisciplinary Program in Neuroscience, United States of America
| | | | - Holly Korthas
- Interdisciplinary Program in Neuroscience, United States of America
| | - Sung Hyeok Hong
- GUMC, Department of Biochemistry and Molecular & Cellular Biology, United States of America
| | | | - G William Rebeck
- Interdisciplinary Program in Neuroscience, United States of America; GUMC, Department of Neuroscience, United States of America
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, United States of America; GUMC, Department of Neuroscience, United States of America.
| |
Collapse
|
11
|
Höhn L, Hußler W, Richter A, Smalla KH, Birkl-Toeglhofer AM, Birkl C, Vielhaber S, Leber SL, Gundelfinger ED, Haybaeck J, Schreiber S, Seidenbecher CI. Extracellular Matrix Changes in Subcellular Brain Fractions and Cerebrospinal Fluid of Alzheimer’s Disease Patients. Int J Mol Sci 2023; 24:ijms24065532. [PMID: 36982604 PMCID: PMC10058969 DOI: 10.3390/ijms24065532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The brain’s extracellular matrix (ECM) is assumed to undergo rearrangements in Alzheimer’s disease (AD). Here, we investigated changes of key components of the hyaluronan-based ECM in independent samples of post-mortem brains (N = 19), cerebrospinal fluids (CSF; N = 70), and RNAseq data (N = 107; from The Aging, Dementia and TBI Study) of AD patients and non-demented controls. Group comparisons and correlation analyses of major ECM components in soluble and synaptosomal fractions from frontal, temporal cortex, and hippocampus of control, low-grade, and high-grade AD brains revealed a reduction in brevican in temporal cortex soluble and frontal cortex synaptosomal fractions in AD. In contrast, neurocan, aggrecan and the link protein HAPLN1 were up-regulated in soluble cortical fractions. In comparison, RNAseq data showed no correlation between aggrecan and brevican expression levels and Braak or CERAD stages, but for hippocampal expression of HAPLN1, neurocan and the brevican-interaction partner tenascin-R negative correlations with Braak stages were detected. CSF levels of brevican and neurocan in patients positively correlated with age, total tau, p-Tau, neurofilament-L and Aβ1-40. Negative correlations were detected with the Aβ ratio and the IgG index. Altogether, our study reveals spatially segregated molecular rearrangements of the ECM in AD brains at RNA or protein levels, which may contribute to the pathogenic process.
Collapse
Affiliation(s)
- Lukas Höhn
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Wilhelm Hußler
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Anna-Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
| | - Stefan L. Leber
- Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, 8036 Graz, Austria
| | - Eckart D. Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- German Center for Neurodegenerative Disorders (DZNE), 39120 Magdeburg, Germany
| | - Constanze I. Seidenbecher
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
12
|
Proteomic and Bioinformatic Tools to Identify Potential Hub Proteins in the Audiogenic Seizure-Prone Hamster GASH/Sal. Diagnostics (Basel) 2023; 13:diagnostics13061048. [PMID: 36980356 PMCID: PMC10047193 DOI: 10.3390/diagnostics13061048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures.
Collapse
|
13
|
Mead TJ, Bhutada S, Martin DR, Apte SS. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 2022; 323:C651-C665. [PMID: 35785985 PMCID: PMC9448339 DOI: 10.1152/ajpcell.00215.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|