1
|
Zhang W, He J, Wang Y, Jin H, Wang R. Scientific status analysis of exercise benefits for vascular cognitive impairment: Evidence of neuroinflammation. J Neuroimmunol 2025; 402:578574. [PMID: 40086400 DOI: 10.1016/j.jneuroim.2025.578574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Vascular cognitive impairment (VCI) is a syndrome characterized by cognitive decline resulting from insufficient perfusion to the entire brain or specific brain regions. The lack of a clear understanding of the mechanisms linking cerebrovascular disease to cognitive impairment has impeded the development of targeted treatments for VCI. Increasing evidence indicates that exercise may offer significant benefits for patients with VCI. This study explores how neuroinflammatory mechanisms mediate the effects of exercise on VCI, focusing on the broader biological processes involved. Exercise plays a crucial role in mitigating vascular risk factors, reducing oxidative stress, and promoting neurogenesis. Furthermore, exercise influences neuroinflammatory mediators and central immune cells via various signaling pathways. Different types and intensities of exercise, including resistance and endurance training, have been shown to differentially modulate neuroinflammation during the progression of VCI. This paper summarizes the current mechanisms of action and proposes exercise interventions targeting neuroinflammatory pathways, along with biomarker studies, to enhance our understanding of VCI pathogenesis and inform clinical practice. A more in-depth understanding of the inflammatory mechanisms underlying VCI may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Institute of Major Brain Diseases, Beijing, China.
| |
Collapse
|
2
|
BRANTON WG, ZHANG N, COHEN EA, BREW BJ, GILL MJ, GELMAN BB, KONG L, POWER C. Brain RNA profiling highlights multiple disease pathways in persons with HIV-associated neurocognitive disorder. AIDS 2025; 39:496-507. [PMID: 39820157 PMCID: PMC11908890 DOI: 10.1097/qad.0000000000004116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To discover microRNA (miRNA)-RNA transcript interactions dysregulated in brains from persons with HIV-associated neurocognitive disorder (HAND), we investigated RNA expression using machine learning tools. DESIGN Brain-derived host RNA transcript and miRNA expression was examined from persons with or without HAND using bioinformatics platforms. METHODS By combining next generation sequencing, droplet digital (dd)PCR quantitation of HIV-1 genomes, with bioinformatics and statistical tools, we investigated differential RNA expression in frontal cortex from persons without HIV [HIV(-)], with HIV without brain disease [HIV(+)], with HAND, or HAND with encephalitis (HIVE). RESULTS Expression levels for 147 transcripts and 43 miRNAs showed a minimum four-fold difference between clinical groups with a predominance of antiviral (type I interferon) signaling-related, neural cell maintenance-related, and neurodevelopmental disorder-related genes that was validated by gene ontology and molecular pathway inferences. Scale of signal-to-noise ratio (SSNR) and biweight midcorrelation (bicor) analyses identified 14 miRNAs and 45 RNA transcripts, which were highly correlated and differentially expressed ( P ≤ 0.05). Machine learning applications compared regression models predicated on HIV-1 DNA, or RNA viral quantities that disclosed miR-4683 and miR-154-5p were dominant variables associated with differential expression of host RNAs. These miRNAs were also associated with antiviral-related, cell maintenance-related, and neurodevelopmental disorder-related genes. CONCLUSION Antiviral as well as neurodevelopmental disorder-related pathways in brain were associated with HAND, based on correlated RNA transcripts and miRNAs. Integrated molecular methods with machine learning offer insights into disease mechanisms, underpinning brain-related biotypes among persons with HIV that could direct clinical care.
Collapse
Affiliation(s)
| | - Na ZHANG
- Departments of Mathematics & Statistics, University of Alberta; Edmonton, AB, Canada
| | - Eric A. COHEN
- Institut de Recherches Cliniques de Montréal (IRCM) (IRCM) and Department of Microbiology, Infectiology & Immunology, Université de Montréal, Montreal, QC, Canada
| | - Bruce J. BREW
- Departments of Neurology and HIV St Vincent’s Hospital; and Peter Duncan Neurosciences Unit St Vincent’s Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - M. John GILL
- Department of Medicine, University of Calgary, Calgary AB Canada
| | - Benjamin B. GELMAN
- Departments of Pathology and Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Linglong KONG
- Departments of Mathematics & Statistics, University of Alberta; Edmonton, AB, Canada
| | - Christopher POWER
- Department of Medicine, University of Alberta; Edmonton, AB, Canada
- Departments of Medical Microbiology & Immunology, University of Alberta; Edmonton, AB, Canada
| |
Collapse
|
3
|
Yang Y, Deng C, Aldali F, Huang Y, Luo H, Liu Y, Huang D, Cao X, Zhou Q, Xu J, Li Y, Chen H. Therapeutic Approaches and Potential Mechanisms of Small Extracellular Vesicles in Treating Vascular Dementia. Cells 2025; 14:409. [PMID: 40136659 PMCID: PMC11941715 DOI: 10.3390/cells14060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Small extracellular vesicles (sEVs), including exosomes as a subtype, with a diameter typically less than 200 nm and originating from the endosomal system, are capable of transporting a diverse array of bioactive molecules, including proteins, nucleic acids, and lipids, thereby facilitating intercellular communication and modulating cellular functions. Vascular dementia (VaD) represents a form of cognitive impairment attributed to cerebrovascular disease, characterized by a complex and multifaceted pathophysiological mechanism. Currently, the therapeutic approach to VaD predominantly emphasizes symptom management, as no specific pharmacological treatment exists to cure the condition. Recent investigations have illuminated the significant role of sEVs in the pathogenesis of vascular dementia. This review seeks to provide a comprehensive analysis of the characteristics and functions of sEVs, with a particular focus on their involvement in vascular dementia and its underlying mechanisms. The objective is to advance the understanding of the interplays between sEVs and vascular dementia, thereby offering novel insights for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Yujie Yang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Fatima Aldali
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yunjie Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hongmei Luo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yizhou Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Danxia Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Liu C, Chen X, Yang S, Wang X, Sun P, Wang J, Zhu G. Insight into cerebral microvessel endothelial regulation of cognitive impairment: A systematic review of the causes and consequences. Exp Neurol 2025; 385:115116. [PMID: 39675515 DOI: 10.1016/j.expneurol.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Research on cognitive impairment (CI) has increasingly focused on the central nervous system, identifying numerous neuronal targets and circuits of relevance for CI pathogenesis and treatment. Brain microvascular endothelial cells (BMECs) form a barrier between the peripheral and central nervous systems, constituting the primary component of the blood-brain barrier (BBB) and playing a vital role in maintaining neural homeostasis. Stemming from the recognition of the close link between vascular dysfunction and CI, in recent years intense research has been devoted to characterize the pathological changes and molecular mechanisms underlying BMEC dysfunction both during normal aging and in disorders of cognition such as Alzheimer's disease and vascular dementia. In this review, keywords such as "dementia", "cognitive impairment", and "endothelium" were used to search PubMed and Web of Science. Based on the literature thus retrieved, we first review some common triggers of CI, i.e., amyloid beta and tau deposition, chronic cerebral hypoperfusion, hyperglycemia, viral infections, and neuroinflammation, and describe the specific mechanisms responsible for endothelial damage. Second, we review molecular aspects of endothelial damage leading to BBB disruption, neuronal injury, and myelin degeneration, which are crucial events underlying CI. Finally, we summarize the potential targets of endothelial damage in the development of cognitive dysfunction associated with Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and physiological aging. A thorough understanding of the induction mechanism and potential outcomes of microvascular endothelial damage is of great significance for the study of CI, to guide both diagnostic and therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Chang Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyu Chen
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peiyang Sun
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
5
|
Sawant H, Sun B, Mcgrady E, Bihl JC. Role of miRNAs in neurovascular injury and repair. J Cereb Blood Flow Metab 2024; 44:1693-1708. [PMID: 38726895 PMCID: PMC11494855 DOI: 10.1177/0271678x241254772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 10/18/2024]
Abstract
MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bowen Sun
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Erin Mcgrady
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Ji Chen Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
6
|
Kim JM, Kim WR, Park EG, Lee DH, Lee YJ, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs. Int J Mol Sci 2024; 25:6190. [PMID: 38892378 PMCID: PMC11172830 DOI: 10.3390/ijms25116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Wu S, Shang X, Guo M, Su L, Wang J. Exosomes in the Diagnosis of Neuropsychiatric Diseases: A Review. BIOLOGY 2024; 13:387. [PMID: 38927267 PMCID: PMC11200774 DOI: 10.3390/biology13060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Exosomes are 30-150 nm small extracellular vesicles (sEVs) which are highly stable and encapsulated by a phospholipid bilayer. Exosomes contain proteins, lipids, RNAs (mRNAs, microRNAs/miRNAs, long non-coding RNAs/lncRNAs), and DNA of their parent cell. In pathological conditions, the composition of exosomes is altered, making exosomes a potential source of biomarkers for disease diagnosis. Exosomes can cross the blood-brain barrier (BBB), which is an advantage for using exosomes in the diagnosis of central nervous system (CNS) diseases. Neuropsychiatric diseases belong to the CNS diseases, and many potential diagnostic markers have been identified for neuropsychiatric diseases. Here, we review the potential diagnostic markers of exosomes in neuropsychiatric diseases and discuss the potential application of exosomal biomarkers in the early and accurate diagnosis of these diseases. Additionally, we outline the limitations and future directions of exosomes in the diagnosis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Song Wu
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xinmiao Shang
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Meng Guo
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Lei Su
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China;
| | - Jun Wang
- Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan 430068, China; (S.W.); (X.S.); (M.G.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
8
|
Lange M, Babczyk P, Tobiasch E. Exosomes: A New Hope for Angiogenesis-Mediated Bone Regeneration. Int J Mol Sci 2024; 25:5204. [PMID: 38791243 PMCID: PMC11120942 DOI: 10.3390/ijms25105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bone-specific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.
Collapse
Affiliation(s)
- Martin Lange
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patrick Babczyk
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| |
Collapse
|
9
|
McGurran H, Kumbol V, Krüger C, Wallach T, Lehnardt S. miR-154-5p Is a Novel Endogenous Ligand for TLR7 Inducing Microglial Activation and Neuronal Injury. Cells 2024; 13:407. [PMID: 38474371 PMCID: PMC10930870 DOI: 10.3390/cells13050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Toll-like receptors (TLRs) are a collection of pattern recognition sensors that form a first line of defence by detecting pathogen- or damage-associated molecular patterns and initiating an inflammatory response. TLR activation in microglia, the major immune cells in the brain, can trigger the release of inflammatory molecules, which may contribute to various CNS diseases including Alzheimer's disease. Recently, some microRNAs were shown to serve as signalling molecules for TLRs. Here, we present miR-154-5p as a novel TLR7 ligand. Exposing microglia to miR-154-5p results in cytokine release and alters expression of the TLR signalling pathway dependent on TLR7. Additionally, miR-154-5p causes neuronal injury in enriched cortical neuron cultures and additive toxicity in the presence of microglia. Finally, intrathecal injection of miR-154-5p into mice leads to neuronal injury and accumulation of microglia in the cerebral cortex dependent on TLR7 expression. In conclusion, this study establishes miR-154-5p as a direct activator of TLR7 that can cause neuroinflammation and neuronal injury, which may contribute to CNS disease.
Collapse
Affiliation(s)
- Hugo McGurran
- Charité—Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; (H.M.); (V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (C.K.); (T.W.)
| | - Victor Kumbol
- Charité—Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; (H.M.); (V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (C.K.); (T.W.)
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (C.K.); (T.W.)
| | - Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (C.K.); (T.W.)
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (C.K.); (T.W.)
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
10
|
Liu Z, Cheng L, Zhang L, Shen C, Wei S, Wang L, Qiu Y, Li C, Xiong Y, Zhang X. Emerging role of mesenchymal stem cells-derived extracellular vesicles in vascular dementia. Front Aging Neurosci 2024; 16:1329357. [PMID: 38389559 PMCID: PMC10881761 DOI: 10.3389/fnagi.2024.1329357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Vascular dementia (VD) is a prevalent cognitive disorder among the elderly. Its pathological mechanism encompasses neuronal damage, synaptic dysfunction, vascular abnormalities, neuroinflammation, and oxidative stress, among others. In recent years, extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered significant attention as an emerging therapeutic strategy. Current research indicates that MSC-derived extracellular vesicles (MSC-EVs) play a pivotal role in both the diagnosis and treatment of VD. Thus, this article delves into the recent advancements of MSC-EVs in VD, discussing the mechanisms by which EVs influence the pathophysiological processes of VD. These mechanisms form the theoretical foundation for their neuroprotective effect in VD treatment. Additionally, the article highlights the potential applications of EVs in VD diagnosis. In conclusion, MSC-EVs present a promising innovative treatment strategy for VD. With rigorous research and ongoing innovation, this concept can transition into practical clinical treatment, providing more effective options for VD patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Lushun Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chunxiao Shen
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Shufei Wei
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Liangliang Wang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Yuemin Qiu
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuan Li
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
11
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Liu W, Jin M, Chen Q, Li Q, Xing X, Luo Y, Sun X. Insight into extracellular vesicles in vascular diseases: intercellular communication role and clinical application potential. Cell Commun Signal 2023; 21:310. [PMID: 37907962 PMCID: PMC10617214 DOI: 10.1186/s12964-023-01304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/02/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Cells have been increasingly known to release extracellular vesicles (EVs) to the extracellular environment under physiological and pathological conditions. A plethora of studies have revealed that EVs contain cell-derived biomolecules and are found in circulation, thereby implicating them in molecular trafficking between cells. Furthermore, EVs have an effect on physiological function and disease development and serve as disease biomarkers. MAIN BODY Given the close association between EV circulation and vascular disease, this review aims to provide a brief introduction to EVs, with a specific focus on the EV cargoes participating in pathological mechanisms, diagnosis, engineering, and clinical potential, to highlight the emerging evidence suggesting promising targets in vascular diseases. Despite the expansion of research in this field, some noticeable limitations remain for clinical translational research. CONCLUSION This review makes a novel contribution to a summary of recent advances and a perspective on the future of EVs in vascular diseases. Video Abstract.
Collapse
Affiliation(s)
- Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Dementia is a syndrome with several possible pathologies. To date, definitive methods for diagnosis and treatment of sub-types of dementia have not been established. Emerging evidence suggests that exosomes can provide important information for the diagnosis and treatment of several subtypes of dementia. This article reviews recent studies on the application of exosomes in dementia. RECENT FINDINGS Exosomes are involved in the pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD) through transporting toxic proteins such as amyloid beta (Aβ), tau, and α-synuclein. Exosomal microRNAs (miR) and proteins reflect the disease state, and therefore, exosomes can be used as diagnostic markers for diseases such as AD, PD, Huntington's disease (HD), vascular dementia (VaD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). Mesenchymal stem cell (MSC)-derived exosomes have been shown to ameliorate disease pathology, and improve cognitive function in AD, PD, and VAD. SUMMARY Recent studies have shown that exosomes could be novel diagnostic agents for dementia because they contain molecules that could be potential biomarker candidates indicative of the type and stage of dementia. Therapeutic application of exosomes in dementia has revealed that exosomes only, or exosomes loaded with an active pharmaceutical ingredient (API), ameliorate disease phenotype of dementia. Further work is needed to exploit this potential.
Collapse
Affiliation(s)
- Hyeon Su Joo
- School of Life Science, Handong Global University, Pohang
| | - Ha Yeong Jeon
- School of Life Science, Handong Global University, Pohang
| | - Eun Be Hong
- INEXOPLAT, Inc. M2704, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Ha Young Kim
- School of Life Science, Handong Global University, Pohang
| | - Jung Min Lee
- School of Life Science, Handong Global University, Pohang
- INEXOPLAT, Inc. M2704, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
14
|
Yang Y, Zhang H, Liu Z, Ma N, Li C, Wang Y, Li Z. Use of exosome transcriptome-based analysis to identify novel biomarkers in patients with locally advanced esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:182. [PMID: 36923096 PMCID: PMC10009568 DOI: 10.21037/atm-23-452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Background The prognosis of esophageal squamous cell carcinoma (ESCC) is improved by neoadjuvant chemoradiotherapy (nCRT), especially for patients with pathologic complete response (pCR). Despite the efforts to predict treatment response using multimodality, no molecule has proven to be a strong biomarker. This study aimed to profile the expression of exosome transcriptome that could predict pCR in ESCC before and after nCRT. Methods We collected paired blood samples of 15 patients with ESCC who received nCRT and radical surgery. They were divided into 3 groups: (A) residual tumor in the first clinical response evaluation (CRE-1), (B) no residual tumor in CRE-1 but with residual tumor in CRE-2 which was performed after 5-6 weeks, and (C) no residual tumor in CRE-1 or CRE-2. For each patient, the blood sample was collected before nCRT (time point 0); and then 6 weeks after nCRT, the clinical response was evaluated, and another blood sample was collected (time point 1). Results Using the intersection of different sets, we found 23 progression-associated messenger RNAs (mRNAs) and 67 remission-associated mRNAs. Between remission-associated mRNAs and the targets of progression-associated (carcinogenic) microRNAs (miRNAs), the intersection was acquired, and 2 miRNA-mRNA networks (IFIT2-miR-3615-IFIT2-miR-484 and BTN3A3-miR-6803-3p) were identified. Among the intersection of progression-associated (carcinogenic) mRNAs and the targets of remission-associated miRNAs, there is a network with miR-132-3p (remission-associated miRNA) located at the core, matched with DICER1, KLHL8, ANKRD12, ASH1L, and IMP4. Conclusions Our findings identified altered plasma exosome RNAs among the different groups and between different time points of nCRT, as well as the corresponding enrichments and regulatory networks, which may serve as potentially predictors of treatment response for patients with ESCC after nCRT.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Ma
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunguang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|