1
|
Schulz LN, Varghese A, Michenkova M, Wedemeyer M, Pindrik JA, Leonard JR, Garcia-Bonilla M, McAllister JP, Cassady K, Wilson RK, Mardis ER, Limbrick DD, Isaacs AM. Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus. Pediatr Res 2025; 97:1345-1357. [PMID: 39725707 DOI: 10.1038/s41390-024-03733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Post-hemorrhagic hydrocephalus (PHH) is a severe complication in premature infants following intraventricular hemorrhage (IVH). It is characterized by abnormal cerebrospinal fluid (CSF) accumulation, disrupted CSF dynamics, and elevated intracranial pressure (ICP), leading to significant neurological impairments. OBJECTIVE This review provides an overview of recent molecular insights into the pathophysiology of PHH and evaluates emerging therapeutic approaches aimed at addressing its underlying mechanisms. METHODS Recent studies were reviewed, focusing on molecular and cellular mechanisms implicated in PHH, including neuroinflammatory pathways, immune mediators, and regulatory genes. The potential of advanced technologies such as whole genome/exome sequencing, proteomics, epigenetics, and single-cell transcriptomics to identify key molecular targets was also analyzed. RESULTS PHH has been strongly linked to neuroinflammatory processes triggered by the degradation of blood byproducts. These processes involve cytokines, chemokines, the complement system, and other immune mediators, as well as regulatory genes and epigenetic mechanisms. Current treatments, primarily surgical CSF diversion, do not address the underlying molecular pathology. Emerging therapies, such as mesenchymal stem cell-based interventions, show promise in modulating immune responses and mitigating neurological damage. However, concerns about the safety of these novel approaches in neonatal populations and their potential effects on brain development remain unresolved. CONCLUSIONS Advanced molecular tools and emerging therapies have the potential to transform the treatment of PHH by targeting its underlying pathophysiology. Further research is needed to validate these approaches, enhance their safety profiles, and improve outcomes for infants with PHH. IMPACT STATEMENT 1. This review elucidates the molecular complexities of post-hemorrhagic hydrocephalus (PHH) by examining specific immune pathways and their impact on disease pathogenesis and progression. 2. It outlines the application of genomic, epigenomic, and proteomic technologies to identify critical molecular targets in PHH, setting the stage for innovative, targeted therapeutic approaches that could improve the outcomes of neonates affected by PHH. 3. It discusses the potential of gene and stem cell therapies in treating PHH, offering non-surgical alternatives and focusing on the underlying neuroinflammatory mechanisms.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Aaron Varghese
- Department of Undergraduate Studies, Miami University, Oxford, OH, USA
| | - Marie Michenkova
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan A Pindrik
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Pat McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Cassady
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - David D Limbrick
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA.
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
2
|
Bao R, Song Y, Bates SV, Weiss RJ, Foster AN, Jaimes C, Sotardi S, Zhang Y, Hirschtick RL, Grant PE, Ou Y. BOston Neonatal Brain Injury Data for Hypoxic Ischemic Encephalopathy (BONBID-HIE): I. MRI and Lesion Labeling. Sci Data 2025; 12:53. [PMID: 39799120 PMCID: PMC11724925 DOI: 10.1038/s41597-024-03986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/02/2024] [Indexed: 01/15/2025] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward identifying high-risk patients, understanding neurological symptoms, evaluating treatment effects, and predicting outcomes. We release the first public dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE. HIE-related lesions in brain MRI are often diffuse (i.e., multi-focal), and small (over half the patients in our data having lesions occupying <1% of the brain volume (including ventricles)). Segmentation for HIE MRI data is remarkably different from, and arguably more challenging than, other segmentation tasks such as brain tumors with focal and relatively large lesions. We hope that this dataset can help fuel the development of MRI lesion segmentation methods for HIE and small diffuse lesions in general.
Collapse
Affiliation(s)
- Rina Bao
- Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | - Sara V Bates
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Camilo Jaimes
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Yue Zhang
- Boston Children's Hospital, Boston, MA, USA
| | - Randy L Hirschtick
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - P Ellen Grant
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yangming Ou
- Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Auriti C, Mondì V, Piersigilli F, Timelli L, Del Pinto T, Prencipe G, Lucignani G, Longo D, Bersani I. Plasmatic profiles of cytokines/chemokines, glial fibrillary acidic protein (GFAP) and MRI brain damage in neonates with hypoxic ischemic encephalopathy (HIE). Cytokine 2024; 177:156565. [PMID: 38442443 DOI: 10.1016/j.cyto.2024.156565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Perinatal hypoxia triggers the release of cytokines and chemokines by neurons, astrocytes and microglia. In response to hypoxia-ischemia resting/ramified microglia proliferate and undergo activation, producing proinflammatory molecules. The brain damage extension seems to be related to both the severity of hypoxia and the balance between pro and anti-inflammatory response and can be explored with neuroimaging. AIMS The aim of this preliminary study was to explore possible relationships between plasma levels of inflammatory cytokines/chemokines and the severe brain damage detectable by Magnetic Resonance Imaging (MRI), performed during the hospitalization. METHODS In 10 full terms neonates with hypoxic ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH), divided into cases and controls, according to MRI results, we measured and compared the plasma levels of CCL2/MCP-1, CXCL8, GFAP, IFN y, IL-10, IL-18, IL-6, CCL3, ENOLASE2, GM-CSF, IL-1b, IL-12p70, IL-33, TNFα, collected at four different time points during TH (24, 25-48, 49-72 h of life, and 7-10 days from birth). Five of enrolled babies had pathological brain MRI (cases) and 5 had a normal MRI examination (controls). Cytokines were measured by Magnetic Luminex Assay. MRI images were classified according to Barkovich's score. RESULTS Mean levels of all cytokines and molecules at time T1 were not significantly different in the two groups. Comparing samples paired by day of collection, the greatest differences between cases and controls were found at times T2 and T3, during TH. At T4, levels tended to get closer again (except for IL-6, IL10 and IL18). Infants with worse MRI showed higher plasmatic GFAP levels than those with normal MRI, while their IL-18 was lower. The mean levels of CCL3MIP1alpha, GMCSF, IL1BETA overlapped throughout the observation period in both groups. CONCLUSION In a small number of infants with worse brain MRI, we found higher levels of GFAP and of IL-10 at T4 and a trend toward low IL-18 levels than in infants with normal MRI, considered early biomarker of brain damage and a predictor of adverse outcome, respectively. The greatest, although not significant, difference between the levels of molecules was found in cases and controls at time points T2 and T3, during TH.
Collapse
Affiliation(s)
- Cinzia Auriti
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy; Villa Margherita Private Clinic, Rome, Italy.
| | - Vito Mondì
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, Via Casilina 1049, Rome, Italy
| | - Fiammetta Piersigilli
- Section of Neonatology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Bruxelles, Belgium
| | - Laura Timelli
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Tamara Del Pinto
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Giulia Lucignani
- Department of Imaging, "Bambino Gesù" Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Daniela Longo
- Department of Imaging, "Bambino Gesù" Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
4
|
Presacco A, Chirumamilla VC, Vezina G, Li R, Du Plessis A, Massaro AN, Govindan RB. Prediction of outcome of hypoxic-ischemic encephalopathy in newborns undergoing therapeutic hypothermia using heart rate variability. J Perinatol 2024; 44:521-527. [PMID: 37604967 DOI: 10.1038/s41372-023-01754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE To assess the use of continuous heart rate variability (HRV) as a predictor of brain injury severity in newborns with moderate to severe HIE that undergo therapeutic hypothermia. STUDY DESIGN Two cohorts of newborns (n1 = 55, n2 = 41) with moderate to severe hypoxic-ischemic encephalopathy previously treated with therapeutic hypothermia. HRV was characterized by root mean square in the short time scales (RMSS) during therapeutic hypothermia and through completion of rewarming. A logistic regression and Naïve Bayes models were developed to predict the MRI outcome of the infants using RMSS. The encephalopathy grade and gender were used as control variables. RESULTS For both cohorts, the predicted outcomes were compared with the observed outcomes. Our algorithms were able to predict the outcomes with an area under the receiver operating characteristic curve of about 0.8. CONCLUSIONS HRV assessed by RMSS can predict severity of brain injury in newborns with HIE.
Collapse
Affiliation(s)
- Alessandro Presacco
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA.
| | | | - Gilbert Vezina
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Division of Neonatology, Children's National Hospital, Washington, DC, USA
| | - Ruoying Li
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Adre Du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| | - An N Massaro
- Division of Neonatology, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| | - Rathinaswamy B Govindan
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
5
|
Jenkinson A, Zaidi S, Bhat R, Greenough A, Dassios T. Carboxyhaemoglobin levels in infants with hypoxic ischaemic encephalopathy. J Perinat Med 2023; 51:1225-1228. [PMID: 37638387 DOI: 10.1515/jpm-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVES Hypoxic ischaemic encephalopathy (HIE) is associated with oxidative stress. A potential marker of oxidative damage is carboxyhaemoglobin (COHb) which is the product of the reaction between carbon monoxide and haemoglobin and is routinely assessed on blood gas analysis. Our objective was to test the hypothesis that higher COHb levels would be associated with worse outcomes in infants treated for HIE. METHODS A retrospective, observational study was performed of all infants who received whole body hypothermia for HIE at a tertiary neonatal intensive care unit between January 2018 and August 2021. For each participating infant, the highest COHb level per day was recorded for days one, three and five after birth. RESULTS During the study period, 67 infants with a median (IQR) gestational age of 40 (38-41) weeks underwent therapeutic hypothermia for HIE. The median (IQR) COHb level on day three was higher in infants without electroencephalographic seizures (1.4 [1.1-1.4] %) compared with infants with seizures (1.1 [0.9-1.3] %, p=0.024). The median (IQR) COHb on day five was higher in infants without MRI brain abnormalities (1.4 [1.2-1.7] %) compared with infants with MRI abnormalities (1.2 [1.0-1.4] %, p=0.032). The COHb level was not significantly different between the nine infants who died compared to the infants who survived. CONCLUSIONS COHb levels were higher in infants with HIE without seizures and in those with normal MRI brain examinations. We suggest that carbon monoxide has a potential protective role in HIE.
Collapse
Affiliation(s)
- Allan Jenkinson
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Ravindra Bhat
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Theodore Dassios
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Juul SE, Voldal E, Comstock BA, Massaro AN, Bammler TK, Mayock DE, Heagerty PJ, Wu YW, Numis AL. Association of High-Dose Erythropoietin With Circulating Biomarkers and Neurodevelopmental Outcomes Among Neonates With Hypoxic Ischemic Encephalopathy: A Secondary Analysis of the HEAL Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2322131. [PMID: 37418263 PMCID: PMC10329214 DOI: 10.1001/jamanetworkopen.2023.22131] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Importance The ability to predict neurodevelopmental impairment (NDI) for infants diagnosed with hypoxic ischemic encephalopathy (HIE) is important for parental guidance and clinical treatment as well as for stratification of patients for future neurotherapeutic studies. Objectives To examine the effect of erythropoietin on plasma inflammatory mediators in infants with moderate or severe HIE and to develop a panel of circulating biomarkers that improves the projection of 2-year NDI over and above the clinical data available at the time of birth. Design, Setting, and Participants This study is a preplanned secondary analysis of prospectively collected data from infants enrolled in the High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which tested the efficacy of erythropoietin as an adjunctive neuroprotective therapy to therapeutic hypothermia. The study was conducted at 17 academic sites comprising 23 neonatal intensive care units in the United States between January 25, 2017, and October 9, 2019, with follow-up through October 2022. Overall, 500 infants born at 36 weeks' gestation or later with moderate or severe HIE were included. Intervention Erythropoietin treatment 1000 U/kg/dose on days 1, 2, 3, 4 and 7. Main Outcomes and Measures Plasma erythropoietin was measured in 444 infants (89%) within 24 hours after birth. A subset of 180 infants who had plasma samples available at baseline (day 0/1), day 2, and day 4 after birth and either died or had 2-year Bayley Scales of Infant Development III assessments completed were included in the biomarker analysis. Results The 180 infants included in this substudy had a mean (SD) gestational age of 39.1 (1.5) weeks, and 83 (46%) were female. Infants who received erythropoietin had increased concentrations of erythropoietin at day 2 and day 4 compared with baseline. Erythropoietin treatment did not alter concentrations of other measured biomarkers (eg, difference in interleukin [IL] 6 between groups on day 4: -1.3 pg/mL; 95% CI, -4.8 to 2.0 pg/mL). After adjusting for multiple comparisons, we identified 6 plasma biomarkers (C5a, interleukin [IL] 6, and neuron-specific enolase at baseline; IL-8, tau, and ubiquitin carboxy-terminal hydrolase-L1 at day 4) that significantly improved estimations of death or NDI at 2 years compared with clinical data alone. However, the improvement was only modest, increasing the AUC from 0.73 (95% CI, 0.70-0.75) to 0.79 (95% CI, 0.77-0.81; P = .01), corresponding to a 16% (95% CI, 5%-44%) increase in correct classification of participant risk of death or NDI at 2 years. Conclusions and Relevance In this study, erythropoietin treatment did not reduce biomarkers of neuroinflammation or brain injury in infants with HIE. Circulating biomarkers modestly improved estimation of 2-year outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT02811263.
Collapse
|
7
|
Bao R, Song Y, Bates SV, Weiss RJ, Foster AN, Cobos CJ, Sotardi S, Zhang Y, Gollub RL, Grant PE, Ou Y. BOston Neonatal Brain Injury Dataset for Hypoxic Ischemic Encephalopathy (BONBID-HIE): Part I. MRI and Manual Lesion Annotation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.546841. [PMID: 37461570 PMCID: PMC10350009 DOI: 10.1101/2023.06.30.546841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward predicting prognosis, identifying high-risk patients, and evaluating treatment effects. It will lead to a more accurate estimation of prognosis, a better understanding of neurological symptoms, and a timely prediction of response to therapy. We release the first public dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE. HIE-related lesions in brain MRI are often diffuse (i.e., multi-focal), and small (over half the patients in our data having lesions occupying <1% of brain volume). Segmentation for HIE MRI data is remarkably different from, and arguably more challenging than, other segmentation tasks such as brain tumors with focal and relatively large lesions. We hope that this dataset can help fuel the development of MRI lesion segmentation methods for HIE and small diffuse lesions in general.
Collapse
Affiliation(s)
- Rina Bao
- Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | - Anna N. Foster
- Boston Children’s Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Yue Zhang
- Boston Children’s Hospital, Boston, MA, USA
| | - Randy L. Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yangming Ou
- Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Caramelo I, Coelho M, Rosado M, Cardoso CMP, Dinis A, Duarte CB, Grãos M, Manadas B. Biomarkers of hypoxic-ischemic encephalopathy: a systematic review. World J Pediatr 2023; 19:505-548. [PMID: 37084165 PMCID: PMC10199106 DOI: 10.1007/s12519-023-00698-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/31/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Current diagnostic criteria for hypoxic-ischemic encephalopathy in the early hours lack objective measurement tools. Therefore, this systematic review aims to identify putative molecules that can be used in diagnosis in daily clinical practice (PROSPERO ID: CRD42021272610). DATA SOURCES Searches were performed in PubMed, Web of Science, and Science Direct databases until November 2020. English original papers analyzing samples from newborns > 36 weeks that met at least two American College of Obstetricians and Gynecologists diagnostic criteria and/or imaging evidence of cerebral damage were included. Bias was assessed by the Newcastle-Ottawa Scale. The search and data extraction were verified by two authors separately. RESULTS From 373 papers, 30 met the inclusion criteria. Data from samples collected in the first 72 hours were extracted, and increased serum levels of neuron-specific enolase and S100-calcium-binding protein-B were associated with a worse prognosis in newborns that suffered an episode of perinatal asphyxia. In addition, the levels of glial fibrillary acidic protein, ubiquitin carboxyl terminal hydrolase isozyme-L1, glutamic pyruvic transaminase-2, lactate, and glucose were elevated in newborns diagnosed with hypoxic-ischemic encephalopathy. Moreover, pathway analysis revealed insulin-like growth factor signaling and alanine, aspartate and glutamate metabolism to be involved in the early molecular response to insult. CONCLUSIONS Neuron-specific enolase and S100-calcium-binding protein-B are potential biomarkers, since they are correlated with an unfavorable outcome of hypoxic-ischemic encephalopathy newborns. However, more studies are required to determine the sensitivity and specificity of this approach to be validated for clinical practice.
Collapse
Affiliation(s)
- Inês Caramelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Margarida Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | | | - Alexandra Dinis
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar E Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3001-401, Coimbra, Portugal
| | - Mário Grãos
- Biocant, Technology Transfer Association, 3060-197, Cantanhede, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789, Coimbra, Portugal.
| |
Collapse
|
9
|
Onda K, Chavez-Valdez R, Graham EM, Everett AD, Northington FJ, Oishi K. Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2023; 46:55-68. [PMID: 37231858 PMCID: PMC10712961 DOI: 10.1159/000530938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 05/27/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Graham
- Department of Gynecology & Obstetrics, Division of Maternal-Fetal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen D. Everett
- Department of Pediatrics, Division of Pediatric Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Longitudinal perturbations of plasma nuclear magnetic resonance profiles in neonatal encephalopathy. Pediatr Res 2023:10.1038/s41390-023-02464-x. [PMID: 36639516 DOI: 10.1038/s41390-023-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neonatal encephalopathy (NE) is a major cause of mortality and severe neurological disability in the neonatal period and beyond. We hypothesized that the degree of brain injury is reflected in the molecular composition of peripheral blood samples. METHODS A sub-cohort of 28 newborns included in the HYPOTOP trial was studied. Brain injury was assessed by magnetic resonance imaging (MRI) once per patient and neurodevelopment at 24 months of age was evaluated using the Bayley III Scales of Infant and Toddler Development. The nuclear magnetic resonance (NMR) profile of 60 plasma samples collected before, during, and after cooling was recorded. RESULTS In total, 249 molecular features were quantitated in plasma samples from newborns and postnatal age showed to affect detected NMR profiles. Lactate, beta-hydroxybutyrate, pyruvate, and three triglyceride biomarkers showed the ability to discern between different degrees of brain injury according to MRI scores. The prediction performance of lactate was superior as compared to other clinical and biochemical parameters. CONCLUSIONS This is the first longitudinal study of an ample compound panel recorded by NMR spectroscopy in plasma from NE infants. The serial determination of lactate confirms its solid position as reliable candidate biomarker for predicting the severity of brain injury. IMPACT The use of nuclear magnetic resonance (NMR) spectroscopy enables the simultaneous quantitation of 249 compounds in a small volume (i.e., 100 μL) of plasma. Longitudinal perturbations of plasma NMR profiles were linked to magnetic resonance imaging (MRI) outcomes of infants with neonatal encephalopathy (NE). Lactate, beta-hydroxybutyrate, pyruvate, and three triglyceride biomarkers showed the ability to discern between different degrees of brain injury according to MRI scores. Lactate is a minimally invasive candidate biomarker for early staging of MRI brain injury in NE infants that might be readily implemented in clinical guidelines for NE outcome prediction.
Collapse
|
11
|
Cakir U, Ceran B, Tayman C. Two Useful Umbilical Biomarkers for Therapeutic Hypothermia Decision in Patients with Hypoxic İschemic Encephalopathy with Perinatal Asphyxia: Netrin-1 and Neuron Specific Enolase. Fetal Pediatr Pathol 2022; 41:977-986. [PMID: 35188847 DOI: 10.1080/15513815.2022.2041778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) has a high risk of mortality in addition to serious neurological damage. In this study, we investigated the values of umbilical cord netrin-1 (NT-1) and neuron specific enolase (NSE) levels in the early diagnosis of HIE stage II/III induced by neonatal asphyxia. In the study group, infants with gestational age ≥ 36 weeks who were diagnosed with HIE II/III were included. NT-1 and NSE levels were measured from the umbilical cord immediately after birth. Results were compared between HIE II/III and the healthy control group. Cutoff values for serum NT-1 and NSE were determined with receiver-operating characteristics curves and the area under the curve (AUC) was used to determine the diagnostic value of NT-1 and NSE levels in infants diagnosed with HIE II/III. NT-1 (358.3 ± 108.3 pg/mL) and NSE (52.97 ± 17.8 ng/mL) levels in the cord blood in the HIE group were significantly higher (p = .030, p = .001, respectively) than cord blood values in the control group (NT-1 (275.1 ± 84.6 pg/mL) and NSE (28.7 ± 16.3 ng/mL)). NT-1 cutoff value for HIE was 292.3 pg/mL and 34.7 ng/mL for NSE (AUC: 990, sensitivity: 94%, specificity 100% and AUC: 1.0, sensitivity: 100% vs. specificity 100%, respectively). NT-1 and NSE represent candidate biomarkers with high reliability in the prediction in newborns with moderate-to-severe HIE.
Collapse
Affiliation(s)
- Ufuk Cakir
- Division of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity, Education, and Research Hospital, Ankara, Turkey
| | - Burak Ceran
- Division of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity, Education, and Research Hospital, Ankara, Turkey
| | - Cuneyt Tayman
- Division of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity, Education, and Research Hospital, Ankara, Turkey
| |
Collapse
|
12
|
Rasineni GK, Panigrahy N, Rath SN, Chinnaboina M, Konanki R, Chirla DK, Madduri S. Diagnostic and Therapeutic Roles of the "Omics" in Hypoxic-Ischemic Encephalopathy in Neonates. Bioengineering (Basel) 2022; 9:498. [PMID: 36290466 PMCID: PMC9598631 DOI: 10.3390/bioengineering9100498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Perinatal asphyxia and neonatal encephalopathy remain major causes of neonatal mortality, despite the improved availability of diagnostic and therapeutic tools, contributing to neurological and intellectual disabilities worldwide. An approach using a combination of clinical data, neuroimaging, and biochemical parameters is the current strategy towards the improved diagnosis and prognosis of the outcome in neonatal hypoxic-ischemic encephalopathy (HIE) using bioengineering methods. Traditional biomarkers are of little use in this multifactorial and variable phenotype-presenting clinical condition. Novel systems of biology-based "omics" approaches (genomics, transcriptome proteomics, and metabolomics) may help to identify biomarkers associated with brain and other tissue injuries, predicting the disease severity in HIE. Biomarker studies using omics technologies will likely be a key feature of future neuroprotective treatment methods and will help to assess the successful treatment and long-term efficacy of the intervention. This article reviews the roles of different omics as biomarkers of HIE and outlines the existing knowledge of our current understanding of the clinical use of different omics molecules as novel neonatal brain injury biomarkers, which may lead to improved interventions related to the diagnostic and therapeutic aspects of HIE.
Collapse
Affiliation(s)
- Girish Kumar Rasineni
- LCMS Division, Tenet Medcorp Pvt. Ltd., 54 Kineta Towers Road No 3, Banjara Hills, Hyderabad 500034, India
| | | | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502284, India
| | - Madhurarekha Chinnaboina
- LCMS Division, Tenet Medcorp Pvt. Ltd., 54 Kineta Towers Road No 3, Banjara Hills, Hyderabad 500034, India
| | - Ramesh Konanki
- Department of Pediatric Neurology, Rainbow Children’s Hospital, Hyderabad 500034, India
| | - Dinesh Kumar Chirla
- Department of Neonatology, Rainbow Children’s Hospital, Hyderabad 500034, India
| | - Srinivas Madduri
- Bioengineering and Regenerative Medicine, Department of Biomedical Engineering, University of Basel, University Hospital Basel, 4001 Basel, Switzerland
- Department of Surgery, Bioengineering and Neuroregeneration, University of Geneva, University Hospital Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Pregnolato S, Sabir H, Luyt K, Rienecker KDA, Isles AR, Chakkarapani E. Regulation of glutamate transport and neuroinflammation in a term newborn rat model of hypoxic–ischaemic brain injury. Brain Neurosci Adv 2022; 6:23982128221097568. [PMID: 35615059 PMCID: PMC9125068 DOI: 10.1177/23982128221097568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
In the newborn brain, moderate-severe hypoxia–ischaemia induces glutamate excitotoxicity and inflammation, possibly via dysregulation of candidate astrocytic glutamate transporter ( Glt1) and pro-inflammatory cytokines (e.g. Tnfα, Il1β, Il6). Epigenetic mechanisms may mediate dysregulation. Hypotheses: (1) hypoxia–ischaemia dysregulates mRNA expression of these candidate genes; (2) expression changes in Glt1 are mediated by DNA methylation changes; and (3) methylation values in brain and blood are correlated. Seven-day-old rat pups ( n = 42) were assigned to nine groups based on treatment (for each timepoint: naïve ( n = 3), sham ( n = 3), hypoxia–ischaemia ( n = 8) and timepoint for tissue collection (6, 12 and 24 h post-hypoxia). Moderate hypoxic–ischemic brain injury was induced via ligation of the left common carotid artery followed by 100 min hypoxia (8% O2, 36°C). mRNA was quantified in cortex and hippocampus for the candidate genes, myelin ( Mbp), astrocytic ( Gfap) and neuronal ( Map2) markers (qPCR). DNA methylation was measured for Glt1 in cortex and blood (bisulphite pyrosequencing). Hypoxia–ischaemia induced pro-inflammatory cytokine upregulation in both brain regions at 6 h. This was accompanied by gene expression changes potentially indicating onset of astrogliosis and myelin injury. There were no significant changes in expression or promoter DNA methylation of Glt1. This pilot study supports accumulating evidence that hypoxia–ischaemia causes neuroinflammation in the newborn brain and prioritises further expression and DNA methylation analyses focusing on this pathway. Epigenetic blood biomarkers may facilitate identification of high-risk newborns at birth, maximising chances of neuroprotective interventions.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Bonn, Germany
- Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg Essen, Essen, Germany
| | - Karen Luyt
- Department of Neonatal Neurology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kira DA Rienecker
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
14
|
Huang HZ, Hu XF, Wen XH, Yang LQ. Serum neuron-specific enolase, magnetic resonance imaging, and electrophysiology for predicting neurodevelopmental outcomes of neonates with hypoxic-ischemic encephalopathy: a prospective study. BMC Pediatr 2022; 22:290. [PMID: 35581579 PMCID: PMC9112575 DOI: 10.1186/s12887-022-03329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality and morbidity. Effective indicators for the early diagnosis of brain injury after HIE and prognosis are lacking. This study aimed to examine the predictive value of serum neuron-specific enolase (NSE), amplitude-integrated electroencephalography (aEEG), and magnetic resonance imaging (MRI), alone and in combination, for the neurological outcomes in neonates with HIE. Methods Newborns with HIE born and treated at the Third Affiliated Hospital of An-Hui Medical University were consecutively included in this prospective cohort study (June 2013 to December 2020). Encephalopathy was classified as mild, moderate or severe according to Samat and Sarnat. All patients were assessed serum 1-day NSE and 3-day NSE levels after birth. The children were classified by neurological examination and Bayley Scales of Infant Development II at 18 months of age. ROC analysis was used to evaluate the predictive accuracy of the neurodevelopment outcomes. Results A total of 50 HIE neonates were enrolled (normal group: 32 (64.0%), moderate delay: 5 (10.0%), severe delay: 30(26.0%)) according to Bayley II scores. Serum 3-day NSE levels increased with worsening neurodevelopment outcomes (normal: 20.52 ± 6.42 μg/L vs. moderate: 39.82 ± 5.92 μg/L vs. severe: 44.60 ± 9.01 μg/L, P < 0.001). The MRI findings at 4–7 days after birth were significantly different among the three groups (P < 0.001). Forty-two (84.0%) children had abnormal aEEG. The combination of the three abnormalities combined together had 100% sensitivity, 97.70% specificity, 98.25% PPV, and 99.98% NPV. Conclusions MRI, aEEG, and 3-day NSE can predict the neurological prognosis of newborns with HIE without hypothermia treatment. Their combination can improve the predictive ability for long-term neurobehavioral prognosis.
Collapse
Affiliation(s)
- Hui-Zhi Huang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Neonatology, Anhui Provincial Children's Hospital/Children's Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Feng Hu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao-Hong Wen
- Department of Pediatrics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Qi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
15
|
Holste KG, Xia F, Ye F, Keep RF, Xi G. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review. Fluids Barriers CNS 2022; 19:28. [PMID: 35365172 PMCID: PMC8973639 DOI: 10.1186/s12987-022-00324-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a significant cause of morbidity and mortality in both neonatal and adult populations. IVH not only causes immediate damage to surrounding structures by way of mass effect and elevated intracranial pressure; the subsequent inflammation causes additional brain injury and edema. Of those neonates who experience severe IVH, 25-30% will go on to develop post-hemorrhagic hydrocephalus (PHH). PHH places neonates and adults at risk for white matter injury, seizures, and death. Unfortunately, the molecular determinants of PHH are not well understood. Within the past decade an emphasis has been placed on neuroinflammation in IVH and PHH. More information has come to light regarding inflammation-induced fibrosis and cerebrospinal fluid hypersecretion in response to IVH. The aim of this review is to discuss the role of neuroinflammation involving clot-derived neuroinflammatory factors including hemoglobin/iron, peroxiredoxin-2 and thrombin, as well as macrophages/microglia, cytokines and complement in the development of PHH. Understanding the mechanisms of neuroinflammation after IVH may highlight potential novel therapeutic targets for PHH.
Collapse
Affiliation(s)
- Katherine G Holste
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
- , 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
16
|
Lin W, Zhang T, Zheng J, Zhou Y, Lin Z, Fu X. Ferroptosis is involved in hypoxic-ischemic brain damage in neonatal rats. Neuroscience 2022; 487:131-142. [PMID: 35182697 DOI: 10.1016/j.neuroscience.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death, which is driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid peroxidation. Ferroptosis is implicated in various diseases involving neuronal injury. However, the role of ferroptosis in hypoxic-ischemic brain damage (HIBD) has not been elucidated. The objectives of this study were to evaluate whether ferroptosis is involved in hypoxic-ischemic brain damage and its mechanisms through the HIBD model. A 7-day-old male Sprague-Dawley neonatal rat HIBD model was established by blocking the left common carotid artery. Laser speckle contrast imaging, immunohistochemical staining, transmission electron microscopy were used to measure the effects of ferroptosis on HIBD. Brain tissue on the damaged side in the HIBD group showed atrophied, even liquefied, glial cells increased, and blood perfusion was significantly reduced. The HIBD group insult significantly increased reactive oxygen species levels, as well as the protein levels of iron metabolism-related proteins transferrin receptor (TFRC), ferritin heavy chain (FHC), and ferritin light chain (FLC), while reducing the levels of Solute Carrier Family 7 Member 11 (SLC7A11), glutathione (GSH), and GPX4. These changes resulted in diminished cellular antioxidant capacity and mitochondrial damage, causing neuronal ferroptosis in the cerebral cortex. We conclude that ferroptosis plays a role in HIBD in neonatal rats. Ferroptosis-related mechanisms such as abnormalities in iron metabolism, amino acid metabolism, and lipid peroxidation regulation play important roles in HIBD.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiyang Zhou
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Xiaoqin Fu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
17
|
Peeples ES, Sahar NE, Snyder W, Mirnics K. Temporal brain microRNA expression changes in a mouse model of neonatal hypoxic-ischemic injury. Pediatr Res 2022; 91:92-100. [PMID: 34465878 PMCID: PMC9620396 DOI: 10.1038/s41390-021-01701-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) results in significant morbidity and mortality despite current standard therapies. MicroRNAs (miRNAs) are a promising therapeutic target; however, there is a paucity of data on endogenous miRNA expression of the brain after HIBI during the primary therapeutic window (6-72 h after injury). METHODS Postnatal day 9 mouse pups underwent unilateral carotid ligation+hypoxia (HIBI), sham surgery+hypoxia, or sham surgery+normoxia (controls). miRNA sequencing was performed on the ipsilateral brain of each of the three groups plus the contralateral HIBI brain at 24 and 72 h after injury. Findings were validated in eight key miRNAs by quantitative polymerase chain reaction. RESULTS Hypoxia resulted in significant differential expression of 38 miRNAs at both time points. Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI at 24 and 72 h, with 3 of the 4 demonstrating multiphasic expression (different direction of differential expression at 24 versus 72 h). CONCLUSIONS Our global assessment of subacute changes in brain miRNA expression after hypoxia or HIBI will advance research into targeted miRNA-based interventions. It will be important to consider the multiphasic miRNA expression patterns after HIBI to identify optimal timing for individual interventions. IMPACT This study is the first to comprehensively define endogenous brain microRNA expression changes outside of the first hours after neonatal hypoxic-ischemic brain injury (HIBI). Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI and therefore deserve further investigation as possible therapeutic targets. The expression profiles described will support the design of future studies attempting to develop miRNA-based interventions for infants with HIBI. At 24 h after injury, contralateral HIBI miRNA expression patterns were more similar to ipsilateral HIBI than to controls, suggesting that the contralateral brain is not an appropriate "internal control" for miRNA studies in this model.
Collapse
Affiliation(s)
- Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Namood-E Sahar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - William Snyder
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karoly Mirnics
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
18
|
Midan DAR, Bahbah WA, Fayed DA, Tantawy I, Abdel Barry HM, Ellaithy MAEM, Elhefnawy SM. Cord blood microRNA-376c and microRNA-1268a as biomarkers for neonatal hypoxic-ischaemic encephalopathy: a diagnostic accuracy study. BMJ Paediatr Open 2021. [PMCID: PMC8718424 DOI: 10.1136/bmjpo-2021-001258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BackgroundHypoxic-ischaemic encephalopathy (HIE) is one of the most common causes of morbidity and mortality among neonates. There is a critical need for non-invasive novel biomarkers to detect HIE early, predict its outcomes and monitor its progression. We conducted this observational study to assess the relative expression of miRNA-376c and miRNA-1268a in cord blood as potential diagnostic and prognostic biomarkers for HIE.MethodsA total of 100 neonates divided into two independent groups were included. The case group included 50 neonates with HIE, while the control group included 50 matched healthy neonates. Relative expressions of miRNA-376c and miRNA-1268a were measured in whole cord blood at birth using real-time PCR.ResultsCompared with the control group, patients with HIE had a significantly lower median level of miRNA-376c (0.168, IQR=0.011–0.411 vs 1, IQR=0.80–1.20) and a higher median level of miRNA-1268a (13.46, IQR=2.7–22.8 vs 1, IQR=0.4–1.6). Comparing neonates with HIE who survived versus those who did not survive, no statistically significant difference between the groups in terms of miRNA-376c and miRNA-1268a (p=0.124 and p=0.279) was elicited. Our diagnostic analysis showed that, at 0.90 points, miRNA-376c has a sensitivity and a specificity of 88% and 68.40%, with an area under the curve of 84%. At 2.70 points, miRNA-1268a has a sensitivity and a specificity of 76% and 100%, with an area under the curve of 96%.ConclusionThe relative expression of miRNA-376c and miRNA-1268a was altered in the cord blood of neonates with HIE. In addition, they have moderate diagnostic accuracy in detecting HIE.
Collapse
Affiliation(s)
- Dina Abdel Razek Midan
- Pediatric department, Faculty of medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Wael A Bahbah
- Pediatric department, Faculty of medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Doaa Ahmed Fayed
- Biochemistry department, Faculty of Science, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Ibrahim Tantawy
- Biochemistry department, Faculty of Science, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | | | - Manal Abd El-Monem Ellaithy
- Medical Biochemistry and Molecular biology department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Sally Mohammed Elhefnawy
- Medical Biochemistry and Molecular biology department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| |
Collapse
|
19
|
Tu YF, Wu PM, Yu WH, Li CI, Wu CL, Kang L, Lin YC, Shih HI, Huang CC. Lactate Predicts Neurological Outcomes after Perinatal Asphyxia in Post-Hypothermia Era: A Prospective Cohort Study. Life (Basel) 2021; 11:life11111193. [PMID: 34833069 PMCID: PMC8618528 DOI: 10.3390/life11111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Neonatal hypoxic-ischemic encephalopathy (HIE) is the most common cause of mortality and neurological disability in infancy after perinatal asphyxia. Reliable biomarkers to predict neurological outcomes of neonates after perinatal asphyxia are still not accessible in clinical practice. Methods: A prospective cohort study enrolled neonates with perinatal asphyxia. Biochemical blood tests and cerebral Doppler ultrasound were measured within 6 h of age and at the 4th day old. Neurological outcomes were assessed at 1 year old. Results: Sixty-four neonates with perinatal asphyxia were enrolled. Fifty-eight (90%) had hypoxic-ischemic encephalopathy (HIE) including 20 (34%) Stage I, 21 (36%) Stage II, and 17 (29%) Stage III. In the asphyxiated infants without therapeutic hypothermia, HIE stage, PH, and base excess levels within 6 h of age were the predictors of adverse outcomes. In the asphyxiated infants receiving therapeutic hypothermia, HIE stage failed to predict outcomes. Instead, blood lactate levels and pulsatility index (PI) of medial cerebral arteries (MCA) either in 6 h of age or at the 4th day old independently predicted adverse outcomes. Conclusions: Blood lactate, which is a common accessible test at the hospital and MCA PI on cerebral ultrasound could predict adverse outcomes in asphyxiated infants receiving therapeutic hypothermia.
Collapse
Affiliation(s)
- Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan; (P.-M.W.); (W.-H.Y.); (Y.-C.L.)
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Correspondence: (Y.-F.T.); (C.-C.H.); Tel.: +886-6-235-3535 (ext. 5273) (Y.-F.T.)
| | - Po-Ming Wu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan; (P.-M.W.); (W.-H.Y.); (Y.-C.L.)
| | - Wen-Hao Yu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan; (P.-M.W.); (W.-H.Y.); (Y.-C.L.)
| | - Chung-I Li
- Department of Statistics, College of Management, National Cheng Kung University, Tainan City 70101, Taiwan;
| | - Cheng-Lin Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan;
| | - Yung-Chieh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan; (P.-M.W.); (W.-H.Y.); (Y.-C.L.)
| | - Hsin-I Shih
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan;
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan; (P.-M.W.); (W.-H.Y.); (Y.-C.L.)
- Correspondence: (Y.-F.T.); (C.-C.H.); Tel.: +886-6-235-3535 (ext. 5273) (Y.-F.T.)
| |
Collapse
|
20
|
Goracke-Postle CJ, Burkitt CC, Panoskaltsis-Mortari A, Ehrhardt M, Wilcox GL, Graupman P, Partington M, Symons FJ. Expression of and correlational patterns among neuroinflammatory, neuropeptide, and neuroendocrine molecules from cerebrospinal fluid in cerebral palsy. BMC Neurol 2021; 21:384. [PMID: 34607558 PMCID: PMC8489087 DOI: 10.1186/s12883-021-02333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2021] [Indexed: 11/14/2022] Open
Abstract
Background The underlying pathogenesis of cerebral palsy (CP) remains poorly understood. The possibility of an early inflammatory response after acute insult is of increasing interest. Patterns of inflammatory and related biomarkers are emerging as potential early diagnostic markers for understanding the etiologic diversity of CP. Their presence has been investigated in plasma and umbilical cord blood but not in cerebrospinal fluid (CSF). Methods A clinical CP sample was recruited using a single-time point cross-sectional design to collect CSF at point-of-care during a standard-of-care surgical procedure (intrathecal pump implant). Patient demographic and clinical characteristics were sourced from medical chart audit. Results Significant (p ≤ 0.001) associations were found among neuroinflammatory, neuroendocrine, and nociceptive analytes with association patterns varying by birth status (term, preterm, extremely preterm). When between birth-group correlations were compared directly, there was a significant difference between preterm and extremely preterm birth subgroups for the correlation between tumour necrosis factor alpha (TNFα) and substance P. Conclusion This investigation shows that CSF can be used to study proteins in CP patients. Differences in inter-correlational patterns among analytes varying by birth status underscores the importance of considering birth status in relation to possible mechanistic differences as indicated by biomarker signatures. Future work should be oriented toward prognostic and predictive validity to continue to parse the heterogeneity of CP’s presentation, pathophysiology, and response to treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02333-2.
Collapse
Affiliation(s)
| | - Chantel C Burkitt
- Gillette Children's Specialty Healthcare, Saint Paul, MN, 55101, USA
| | | | - Michael Ehrhardt
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - George L Wilcox
- Departments of Neuroscience, Pharmacology, Dermatology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Patrick Graupman
- Gillette Children's Specialty Healthcare, Saint Paul, MN, 55101, USA
| | | | - Frank J Symons
- Department of Educational Psychology, College of Education and Human Development, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Chalak L, Hellstrom-Westas L, Bonifacio S, Tsuchida T, Chock V, El-Dib M, Massaro AN, Garcia-Alix A, Newborn Brain Society Guidelines and Publications. Bedside and laboratory neuromonitoring in neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101273. [PMID: 34393094 PMCID: PMC8627431 DOI: 10.1016/j.siny.2021.101273] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several bedside and laboratory neuromonitoring tools are currently used in neonatal encephalopathy (NE) to assess 1) brain function [amplitude-integrated electroencephalogram (aEEG) and EEG], 2) cerebral oxygenation delivery and consumption [near-infrared spectroscopy (NIRS)] and 3) blood and cerebrospinal fluid biomarkers. The aim of the review is to provide the role of neuromonitoring in understanding the development of brain injury in these newborns and better predict their long-term outcome. Simultaneous use of these monitoring modalities may improve our ability to provide meaningful prognostic information regarding ongoing treatments. Evidence will be summarized in this review for each of these modalities, by describing (1) the methods, (2) the clinical evidence in context of NE both before and with hypothermia, and (3) the research and future directions.
Collapse
Affiliation(s)
- L Chalak
- University of Texas Southwestern Medical Center, Dallas, USA.
| | - L Hellstrom-Westas
- Department of Women's and Children's Health, Uppsala University, Division of Neonatology, Uppsala University Hospital, Sweden.
| | - S Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine; 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA.
| | - T Tsuchida
- Department of Neurology and Pediatrics, George Washington University School of Medicine and Health Sciences, Children's National Hospital Division of Neurophysiology, Epilepsy and Critical Care, 111 Michigan Ave NW, West Wing, 4th Floor, Washington DC, 20010-2970, USA.
| | - V Chock
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine; 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA.
| | - M El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, CWN#418, Boston, MA, 02115, USA.
| | - AN Massaro
- Department of Pediatrics, The George Washington University School of Medicine and Division of Neonatology, Children’s National Hospital, Washington, USA
| | - A Garcia-Alix
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain; University of Barcelona, Barcelona, Spain; NeNe Foundation, Madrid, Spain; Passeig de Sant Joan de Déu, 2, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
22
|
Mooney C, O'Boyle D, Finder M, Hallberg B, Walsh BH, Henshall DC, Boylan GB, Murray DM. Predictive modelling of hypoxic ischaemic encephalopathy risk following perinatal asphyxia. Heliyon 2021; 7:e07411. [PMID: 34278022 PMCID: PMC8261660 DOI: 10.1016/j.heliyon.2021.e07411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/29/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Hypoxic Ischemic Encephalopathy (HIE) remains a major cause of neurological disability. Early intervention with therapeutic hypothermia improves outcome, but prediction of HIE is difficult and no single clinical marker is reliable. Machine learning algorithms may allow identification of patterns in clinical data to improve prognostic power. Here we examine the use of a Random Forest machine learning algorithm and five-fold cross-validation to predict the occurrence of HIE in a prospective cohort of infants with perinatal asphyxia. Infants with perinatal asphyxia were recruited at birth and neonatal course was followed for the development of HIE. Clinical variables were recorded for each infant including maternal demographics, delivery details and infant's condition at birth. We found that the strongest predictors of HIE were the infant's condition at birth (as expressed by Apgar score), need for resuscitation, and the first postnatal measures of pH, lactate, and base deficit. Random Forest models combining features including Apgar score, most intensive resuscitation, maternal age and infant birth weight both with and without biochemical markers of pH, lactate, and base deficit resulted in a sensitivity of 56-100% and a specificity of 78-99%. This study presents a dynamic method of rapid classification that has the potential to be easily adapted and implemented in a clinical setting, with and without the availability of blood gas analysis. Our results demonstrate that applying machine learning algorithms to readily available clinical data may support clinicians in the early and accurate identification of infants who will develop HIE. We anticipate our models to be a starting point for the development of a more sophisticated clinical decision support system to help identify which infants will benefit from early therapeutic hypothermia.
Collapse
Affiliation(s)
- Catherine Mooney
- School of Computer Science, University College Dublin, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,INFANT Research Centre, University College Cork, Cork, Ireland
| | - Daragh O'Boyle
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mikael Finder
- Neonatal Department, Karolinska University Hospital, Stockholm, Sweden.,Division of Paediatrics, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Boubou Hallberg
- Neonatal Department, Karolinska University Hospital, Stockholm, Sweden.,Division of Paediatrics, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Brian H Walsh
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - David C Henshall
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Li M, Ye M, Zhang G. Aberrant expression of miR-199a in newborns with hypoxic-ischemic encephalopathy and its diagnostic and prognostic significance when combined with S100B and NSE. Acta Neurol Belg 2021; 121:707-714. [PMID: 32533551 DOI: 10.1007/s13760-020-01408-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a disorder mainly due to asphyxia during the perinatal period, and late diagnosis leads to high mortality. In this study, the expression of microRNA-199a (miR-199a) in HIE newborns was investigated, as well as its clinical significance in HIE diagnosis and prognosis. Circulating levels of S100B and NSE in HIE newborns were measured using enzyme-linked immunosorbent assay, and the expression of miR-199a was analyzed using quantitative real-time PCR. The diagnostic value of miR-199a, S100B and NSE was evaluated using the receiver operating characteristic (ROC) analysis, and their prognostic value was assessed by the evaluation of Gesell intellectual development of the HIE newborns. HIE newborns possessed significantly increased levels of S100B and NSE and decreased miR-199a (all P < 0.01). The Neonatal Behavioral Neurological Assessment (NBNA) score of HIE newborns was negatively correlated with S100B and NSE, while was positively correlated miR-199a. The ROC analysis results showed the diagnostic value of serum miR-199a, and the combined detection of miR-199a, S100B and NSE could obtained the highest diagnostic accuracy in HIE newborns. miR-199a expression was lowest in newborns with severe HIE, and it had diagnostic potential to distinguish HIE cases with different severity. Regarding the prognosis of neonatal HIE, the correlation of miR-199a, S100B, NSE with Gesell intellectual development was found in HIE newborns. The decreased miR-199a in HIE newborns serves as a potential diagnostic biomarker and may help to improve the diagnostic and prognostic value of S100B and NSE in neonatal HIE.
Collapse
Affiliation(s)
- Min Li
- Department of Neonatology, Women and Children's Health Care Hospital of Linyi, Linyi, 276001, Shandong, China
| | - Mei Ye
- Department of Neonatology, Women and Children's Health Care Hospital of Linyi, Linyi, 276001, Shandong, China
| | - Guangyun Zhang
- Department of Pediatrics, Women and Children's Health Care Hospital of Linyi, No.1, Qinghe South Road, Linyi, 276001, Shandong, China.
| |
Collapse
|
24
|
Zhang S, Peng C, Yang Y, Wang D, Hou X, Li D. Resting-state brain networks in neonatal hypoxic-ischemic brain damage: a functional near-infrared spectroscopy study. NEUROPHOTONICS 2021; 8:025007. [PMID: 33997105 PMCID: PMC8119736 DOI: 10.1117/1.nph.8.2.025007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Significance: There is an emerging need for convenient and continuous bedside monitoring of full-term newborns with hypoxic-ischemic brain damage (HIBD) to determine whether early intervention is required. Functional near-infrared spectroscopy (fNIRS)-based resting-state brain network analysis, which could provide an effective evaluation method, remains to be extensively studied. Aim: Our study aims to verify the feasibility of fNIRS-based resting-state brain networks for evaluating brain function in infants with HIBD to provide a new and effective means for clinical research in neonatal HIBD. Approach: Thirteen neonates with HIBD were scanned using fNIRS in the resting state. The brain network properties were explored to attempt to extract effective features as recognition indicators. Results: Compared with healthy controls, newborns with HIBD showed decreased brain functional connectivity. Specifically, there were severe losses of long-range functional connectivity of the contralateral parietal-temporal lobe, contralateral parietal-frontal lobe, and contralateral parietal lobe. The node degree showed a widespread decrease in the left frontal middle gyrus, left superior frontal gyrus dorsal, and right central posterior gyrus. However, newborns with HIBD showed a significantly higher local network efficiency (* p < 0.05 ). Subsequently, network indicators based on small-worldness, local efficiency, modularity, and normalized clustering coefficient were extracted for HIBD identification with the accuracy observed as 79.17%. Conclusions: Our findings indicate that fNIRS-based resting-state brain network analysis could support early HIBD diagnosis.
Collapse
Affiliation(s)
- Shen Zhang
- Beihang University, School of Biological Science and Medical Engineering, Beijing, China
| | - Cheng Peng
- Peking University First Hospital, Department of Neonatal Ward, Beijing, China
| | - Yang Yang
- Beihang University, School of Biological Science and Medical Engineering, Beijing, China
| | - Daifa Wang
- Beihang University, School of Biological Science and Medical Engineering, Beijing, China
- Beihang University, Advanced Innovation Center for Biomedical Engineering, Beijing, China
| | - Xinlin Hou
- Peking University First Hospital, Department of Neonatal Ward, Beijing, China
| | - Deyu Li
- Beihang University, School of Biological Science and Medical Engineering, Beijing, China
- Beihang University, Advanced Innovation Center for Biomedical Engineering, Beijing, China
- Beihang University, State Key Laboratory of Software Development Environment, Beijing, China
- Beihang University, State Key Laboratory of Virtual Reality Technology and System, Beijing, China
| |
Collapse
|
25
|
Vesoulis ZA, Whitehead HV, Liao SM, Mathur AM. The hidden consequence of intraventricular hemorrhage: persistent cerebral desaturation after IVH in preterm infants. Pediatr Res 2021; 89:869-877. [PMID: 33038871 PMCID: PMC8035346 DOI: 10.1038/s41390-020-01189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies describe a short-term decrease in cerebral oxygen saturation (StO2) after intraventricular hemorrhage (IVH) in premature infants; little is known about long-term implications. METHODS Infants born <30 weeks gestational age (GA) were included. Clinical characteristics, hemoglobin measurements, the highest grade of IVH, and white matter injury (WMI) were noted. NIRS monitoring occurred daily or every other day for 4 weeks; weekly through 36 weeks GA. Recordings were error-corrected before calculation of mean StO2 and fractional tissue oxygen extraction (FTOE). Mean StO2 and FTOE were plotted by postnatal age and injury group (IVH/no IVH; WMI/no WMI). Non-linear regression by locally estimated scatterplot smoothing was used to generate the best-fit line and CI. RESULTS A total of 1237 recordings from 185 infants were included; mean length = 6.5 h; mean GA = 26.3 w; mean BW = 951 g; overall/severe IVH incidence was 29/8%, WMI incidence was 16%. IVH was independently associated with an acute drop in StO2, which remained lower for 68 d. Severe IVH was associated with lower StO2 values than mild IVH. WMI was associated with early and persistent elevation of FTOE. CONCLUSION IVH of any grade is associated with a prolonged cerebral desaturation and WMI is associated with prolonged elevation of FTOE. This finding is exacerbated for infants with severe IVH. IMPACT The longitudinal impact of IVH on cerebral oxygenation has not been previously studied. IVH is associated with persistent cerebral desaturation, months in length, and is independent of anemia. More severe IVH is associated with worsened cerebral hypoxia. Infants later diagnosed with white matter injury have an early and persistent elevation of cerebral oxygen extraction (cFTOE). This cerebral desaturation, below previously identified normative ranges, may provide insight into the mechanistic link between IVH and white matter injury.
Collapse
Affiliation(s)
- Zachary A Vesoulis
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Halana V Whitehead
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Steve M Liao
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit M Mathur
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
26
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
27
|
Improvement in the Prediction of Neonatal Hypoxic-Ischemic Encephalopathy with the Integration of Umbilical Cord Metabolites and Current Clinical Makers. J Pediatr 2021; 229:175-181.e1. [PMID: 33039387 DOI: 10.1016/j.jpeds.2020.09.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To validate our previously identified candidate metabolites, and to assess the ability of these metabolites to predict hypoxic-ischemic encephalopathy (HIE) both individually and combined with clinical data. STUDY DESIGN Term neonates with signs of perinatal asphyxia, with and without HIE, and matched controls were recruited prospectively at birth from 2 large maternity units. Umbilical cord blood was collected for later batch metabolomic analysis by mass spectroscopy along with clinical details. The optimum selection of clinical and metabolites features with the ability to predict the development of HIE was determined using logistic regression modelling and machine learning techniques. Outcome of HIE was determined by clinical Sarnat grading and confirmed by electroencephalogram grade at 24 hours. RESULTS Fifteen of 27 candidate metabolites showed significant alteration in infants with perinatal asphyxia or HIE when compared with matched controls. Metabolomic data predicted the development of HIE with an area under the curve of 0.67 (95% CI, 0.62-0.71). Lactic acid and alanine were the primary metabolite predictors for the development of HIE, and when combined with clinical data, gave an area under the curve of 0.96 (95% CI, 0.92-0.95). CONCLUSIONS By combining clinical and metabolic data, accurate identification of infants who will develop HIE is possible shortly after birth, allowing early initiation of therapeutic hypothermia.
Collapse
|
28
|
CARD8 and IL1B Polymorphisms Influence MRI Brain Patterns in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia. Antioxidants (Basel) 2021; 10:antiox10010096. [PMID: 33445495 PMCID: PMC7826682 DOI: 10.3390/antiox10010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation and oxidative stress are recognized as important contributors of brain injury in newborns due to a perinatal hypoxic-ischemic (HI) insult. Genetic variability in these pathways could influence the response to HI and the outcome of brain injury. The aim of our study was to evaluate the impact of common single-nucleotide polymorphisms in the genes involved in inflammation and response to oxidative stress on brain injury in newborns after perinatal HI insult based on the severity and pattern of magnetic resonance imaging (MRI) findings. The DNA of 44 subjects was isolated from buccal swabs. Genotyping was performed for NLRP3 rs35829419, CARD8 rs2043211, IL1B rs16944, IL1B rs1143623, IL1B rs1071676, TNF rs1800629, CAT rs1001179, SOD2 rs4880, and GPX1 rs1050450. Polymorphism in CARD8 was found to be protective against HI brain injury detected by MRI overall findings. Polymorphisms in IL1B were associated with posterior limb of internal capsule, basal ganglia, and white matter brain patterns determined by MRI. Our results suggest a possible association between genetic variability in inflammation- and antioxidant-related pathways and the severity of brain injury after HI insult in newborns.
Collapse
|
29
|
O'Sullivan MP, Casey S, Finder M, Ahearne C, Clarke G, Hallberg B, Boylan GB, Murray DM. Up-Regulation of Nfat5 mRNA and Fzd4 mRNA as a Marker of Poor Outcome in Neonatal Hypoxic-Ischemic Encephalopathy. J Pediatr 2021; 228:74-81.e2. [PMID: 32828883 DOI: 10.1016/j.jpeds.2020.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate umbilical cord messenger RNA (mRNA) expression as biomarkers for the grade of hypoxic-ischemic encephalopathy (HIE) and long-term neurodevelopment outcome. STUDY DESIGN Infants were recruited from the BiHiVE1 study, Ireland (2009-2011), and the BiHiVE2 study, Ireland, and Sweden (2013-2015). Infants with HIE were assigned modified Sarnat scores at 24 hours and followed at 18-36 months. mRNA expression from cord blood was measured using quantitative real-time polymerase chain reaction. RESULTS We studied 124 infants (controls, n = 37; perinatal asphyxia, n = 43; and HIE, n = 44). Fzd4 mRNA increased in severe HIE (median relative quantification, 2.98; IQR, 2.23-3.68) vs mild HIE (0.88; IQR, 0.46-1.37; P = .004), and in severe HIE vs moderate HIE (1.06; IQR, 0.81-1.20; P = .003). Fzd4 mRNA also increased in infants eligible for therapeutic hypothermia (1.20; IQR, 0.92-2.37) vs those who were ineligible for therapeutic hypothermia group (0.81; IQR, 0.46-1.53; P = .017). Neurodevelopmental outcome was analyzed for 56 infants. Nfat5 mRNA increased in infants with severely abnormal (1.26; IQR, 1.17-1.39) vs normal outcomes (0.97; IQR, 0.83-1.24; P = .036), and also in infants with severely abnormal vs mildly abnormal outcomes (0.96; IQR, 0.80-1.06; P = .013). Fzd4 mRNA increased in infants with severely abnormal (2.51; IQR, 1.60-3.56) vs normal outcomes (0.74; IQR, 0.48-1.49; P = .004) and in infants with severely abnormal vs mildly abnormal outcomes (0.97; IQR, 0.75-1.34; P = .026). CONCLUSIONS Increased Fzd4 mRNA expression was observed in cord blood of infants with severe HIE; Nfat5 mRNA and Fzd4 mRNA expression were increased in infants with severely abnormal long-term outcomes. These mRNA may augment current measures as early objective markers of HIE severity at delivery.
Collapse
Affiliation(s)
- Marc Paul O'Sullivan
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland.
| | - Sophie Casey
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mikael Finder
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden; Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ahearne
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Gerard Clarke
- INFANT Research Centre, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; APC Microbiome, Ireland, University College Cork, Cork, Ireland
| | - Boubou Hallberg
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden; Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - Geraldine B Boylan
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
30
|
Peng C, Hou X. Applications of functional near-infrared spectroscopy (fNIRS) in neonates. Neurosci Res 2020; 170:18-23. [PMID: 33347910 DOI: 10.1016/j.neures.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a method of monitoring brain oxygenation. This technique investigates hemodynamic changes in the cerebral cortex. fNIRS is widely used in clinical and scientific research. In this review, we focus on the applications of fNIRS on neonates. Here, applications form two distinct categories: task associated studies, and hemoglobin phase change studies. fNIRS is non-invasive, easily performed, and repeatable. However, it has limited monitoring depth and spatial resolution when used in newborns. Moreover, with recent technological advances, it is now possible to explore neuronal activity patterns using fNIRS in both healthy and pathological conditions. For more than 20 years, fNIRS has enabled clinicians to gain insight into cerebral development and mechanisms of injury in neonates. fNIRS is a useful supplement to existing technologies due to its ability to interrogate the neonatal brain function.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Neonatal Ward, Peking University First Hospital, Beijing, 100034, China
| | - Xinlin Hou
- Department of Neonatal Ward, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
31
|
Misser SK, Barkovich AJ, Lotz JW, Archary M. A pictorial review of the pathophysiology and classification of the magnetic resonance imaging patterns of perinatal term hypoxic ischemic brain injury - What the radiologist needs to know…. SA J Radiol 2020; 24:1915. [PMID: 33240541 PMCID: PMC7670012 DOI: 10.4102/sajr.v24i1.1915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/16/2020] [Indexed: 11/01/2022] Open
Abstract
This article provides a correlation of the pathophysiology and magnetic resonance imaging (MRI) patterns identified on imaging of children with hypoxic ischemic brain injury (HIBI). The purpose of this pictorial review is to empower the reading radiologist with a simplified classification of the patterns of cerebral injury matched to images of patients demonstrating each subtype. A background narrative literature review was undertaken of the regional, continental and international databases looking at specific patterns of cerebral injury related to perinatal HIBI. In addition, a database of MRI studies accumulated over a decade (including a total of 314 studies) was analysed and subclassified into the various patterns of cerebral injury. Selected cases were annotated to highlight the areas involved and for ease of identification of the affected substrate in daily practice. KEYWORDS Hypoxic ischemic encephalopathy; Magnetic resonance imaging; Acute profound; Partial prolonged; Hypoxic ischemic brain injury; Ulegyria; Multicystic; Encephalopathy.
Collapse
Affiliation(s)
- Shalendra K Misser
- Department of Radiology, Faculty of Health Sciences Medicine, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Department of Radiology, Faculty of Radiology, Lake, Smit and Partners Inc, Durban, South Africa
| | - Anthony J Barkovich
- Department of Radiology, Faculty of Medicine, Neurology and Neurosurgery, Division of Neuroradiology, University of California, San Francisco, United States of America
| | - Jan W Lotz
- Department of Radiology, Faculty of Medicine, University of Stellenbosch, Stellenbosch, South Africa
| | - Moherndran Archary
- Department of Paediatrics, Faculty of Health Sciences Medicine, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
32
|
Menéndez-Valladares P, Sola-Idígora N, Fuerte-Hortigón A, Alonso-Pérez I, Duque-Sánchez C, Domínguez-Mayoral AM, Ybot-González P, Montaner J. Lessons learned from proteome analysis of perinatal neurovascular pathologies. Expert Rev Proteomics 2020; 17:469-481. [PMID: 32877618 DOI: 10.1080/14789450.2020.1807335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Perinatal and pediatric diseases related to neurovascular disorders cause significant problems during life, affecting a population with a long life expectancy. Early diagnosis and assessment of the severity of these diseases are crucial to establish an appropriate neuroprotective treatment. Currently, physical examination, neuroimaging and clinical judgment are the main tools for diagnosis, although these tests have certain limitations. There is growing interest in the potential value of noninvasive biomarkers that can be used to monitor child patients at risk of brain damage, allowing accurate, and reproducible measurements. AREAS COVERED This review describes potential biomarkers for the diagnosis of perinatal neurovascular diseases and discusses the possibilities they open for the classification and treatment of neonatal neurovascular diseases. EXPERT OPINION Although high rates of ischemic and hemorrhagic stroke exist in pediatric populations, most studies have focused on biomarkers of hypoxic-ischemic encephalopathy. Inflammatory and neuronal biomarkers such as S-100B and GFAP, in combination with others yet to be discovered, could be considered as part of multiplex panels to diagnose these diseases and potentially for monitoring response to treatments. Ideally, noninvasive biofluids would be the best source for evaluating these biomarkers in proteomic assays in perinatal patients.
Collapse
Affiliation(s)
| | - Noelia Sola-Idígora
- Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | | | - Irene Alonso-Pérez
- Neuropediatric Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain
| | | | | | - Patricia Ybot-González
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | - Joan Montaner
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,The Neurovascular Research Lab, IBIS/HUVR/CSIC/US , Sevilla, Spain
| |
Collapse
|
33
|
Zhang Z, Chen X, Liu S. Role of Sirtuin-1 in Neonatal Hypoxic-Ischemic Encephalopathy and Its Underlying Mechanism. Med Sci Monit 2020; 26:e924544. [PMID: 32826847 PMCID: PMC7461657 DOI: 10.12659/msm.924544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is a dreaded disease and one of the leading causes of severe neurological dysfunction in neonates. The present study explored the functions of Sirtuin-1 (SIRT1) in neonatal HIE. MATERIAL AND METHODS A HIE neonatal rat model was generated to determine SIRT1 levels in brain tissues. Cell apoptosis and cell viability were analyzed by flow cytometry and MTT assay. qRT-PCR and Western blot analysis were used to assess gene mRNA and protein levels. Subsequently, the effect of SIRT1 on HIE was investigated in vitro by constructing an oxygen-glucose deprivation (OGD) cell model. RESULTS The effective construction of the HIE rat model was confirmed by the enhanced brain cell apoptosis and the increased expression of HIE-related molecular markers, including S100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE). SIRT1 expression was downregulated in HIE rat brain tissues. These findings indicated that SIRT1 was downregulated in neuronal cells subjected to OGD. In addition, enhanced cell viability and reduced cell apoptosis were observed, suggesting that SIRT1 overexpression relieved OGD-induced neuronal cell injury. Transfection with SIRT1-siRNA further increased OGD-induced neuronal cell injury, evidenced by decreased cell viability and enhanced cell apoptosis. Finally, SIRT1 overexpression significantly downregulated p-p65 protein expression. CONCLUSIONS Our findings revealed that SIRT1 may be a novel and promising therapy target for HIE treatment.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R, China
| | - Xin Chen
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R, China
| | - Sichen Liu
- Department of Neonatology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, P.R. China
| |
Collapse
|
34
|
Zhu Y, Yun Y, Jin M, Li G, Li H, Miao P, Ding X, Feng X, Xu L, Sun B. Identification of novel biomarkers for neonatal hypoxic-ischemic encephalopathy using iTRAQ. Ital J Pediatr 2020; 46:67. [PMID: 32448169 PMCID: PMC7245890 DOI: 10.1186/s13052-020-00822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background A prompt diagnosis of HIE remains a challenge clinically. This study aimed to identify potential biomarkers of neonatal hypoxic-ischemic encephalopathy (HIE) via a novel proteomic approach, the isobaric tags for absolute and relative quantification (iTRAQ) method. Methods Blood samples were collected from neonates with mild (n = 4), moderate (n = 4), or severe (n = 4) HIE who were admitted to the neonatal intensive care unit of Children’s Hospital of Soochow University between Oct 2015 and Oct 2017. iTRAQ was performed in HIE patients and healthy controls (n = 4). Bioinformatics analyses including Gene Ontology and KEGG pathway enrichment analysis were performed to evaluate the potential features and capabilities of the identified differentially expressed proteins. Results A total of 51 commonly differentially expressed proteins were identified among the comparisons between mild, moderate, and severe HIE as well as healthy controls. Haptoglobin (HP) and S100A8 were most significantly up-regulated in patients with HIE and further validated via real-time PCR and western blotting. The differentially expressed proteins represented multiple biological processes, cellular components and molecular functions and were markedly enriched in complement and coagulation cascades. Conclusions HP and S100A8 may serve as a potential biomarker for neonatal HIE and reflects the severity of HIE. The complement and coagulation cascades play crucial roles in the development of neonatal HIE.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Yajing Yun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Meifang Jin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Po Miao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
35
|
Bersani I, Pluchinotta F, Dotta A, Savarese I, Campi F, Auriti C, Chuklantseva N, Piersigilli F, Gazzolo F, Varrica A, Satriano A, Gazzolo D. Early predictors of perinatal brain damage: the role of neurobiomarkers. Clin Chem Lab Med 2020; 58:471-486. [PMID: 31851609 DOI: 10.1515/cclm-2019-0725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 09/17/2023]
Abstract
The early detection of perinatal brain damage in preterm and term newborns (i.e. intraventricular hemorrhage, periventricular leukomalacia and perinatal asphyxia) still constitute an unsolved issue. To date, despite technological improvement in standard perinatal monitoring procedures, decreasing the incidence of perinatal mortality, the perinatal morbidity pattern has a flat trend. Against this background, the measurement of brain constituents could be particularly useful in the early detection of cases at risk for short-/long-term brain injury. On this scenario, the main European and US international health-care institutions promoted perinatal clinical and experimental neuroprotection research projects aimed at validating and including a panel of biomarkers in the clinical guidelines. Although this is a promising attempt, there are several limitations that do not allow biomarkers to be included in standard monitoring procedures. The main limitations are: (i) the heterogeneity of neurological complications in the perinatal period, (ii) the small cohort sizes, (iii) the lack of multicenter investigations, (iv) the different techniques for neurobiomarkers assessment, (iv) the lack of consensus for the validation of assays in biological fluids such as urine and saliva, and (v), the lack of reference curves according to measurement technique and biological fluid. In the present review we offer an up-to-date overview of the most promising developments in the use of biomarkers in the perinatal period such as calcium binding proteins (S100B protein), vasoactive agents (adrenomedullin), brain biomarkers (activin A, neuron specific enolase, glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase-L1) and oxidative stress markers.
Collapse
Affiliation(s)
- Iliana Bersani
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Pluchinotta
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Natalia Chuklantseva
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiammetta Piersigilli
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessandro Varrica
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Angela Satriano
- Laboratory Research Department of Pediatric Cardiovascular Surgery, SanDonato Milanese Univerity Hospital, San Donato Milanese, Milan, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
- Neonatal Intesive Care Unit, AO S.S. Antonio, Biagio, C. Arrigo Hospital, Spalto Marengo 46, 15100 Alessandria, Italy
| |
Collapse
|
36
|
Bornavard M, Fanaei H, Mirshekar MA, Farajian Mashhadi F, Atashpanjeh A. Morphine consumption during pregnancy exacerbates neonatal hypoxia-ischemia injury in rats. Int J Dev Neurosci 2020; 80:96-105. [PMID: 31981237 DOI: 10.1002/jdn.10008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Hypoxia-Ischemia (HI) is the most common cause of death and disability in human infants. The use of opiate in pregnant women affects their children. The aim of this study was to evaluate the effect of morphine consumption during pregnancy and lactation on vulnerability to neonatal HI in rats. MATERIALS AND METHODS Female Wistar rats were randomly assigned into two groups: Group 1-Rats that did not receive any treatment during pregnancy and lactation and Group 2-Rats that received morphine during pregnancy and lactation. After delivery, male offspring were divided into four groups including: (a) SHAM, (b) SHAM/Morphine (SHAM/MO), (c) HI, (d) HI/Morphine (HI/MO). Seven days after HI induction, neurobehavioral tests were performed, and then, brain tissue was taken from the skull to measure cerebral edema, infarct volume, inflammatory factors, oxidative stress, and brain-derived neurotrophic factor (BDNF). RESULTS Total antioxidant capacity (TAC) and BDNF levels in the HI/MO group were significantly lower than HI and SHAM groups. TNF-α, C-reactive protein and total oxidant capacity levels in the HI/MO group were significantly higher than HI and SHAM groups. Cerebral edema and infarct volume in the HI/MO group were significantly higher than the HI group. CONCLUSION Based on the results, morphine consumption during pregnancy and lactation enhanced the deleterious effects of HI injury in pups.
Collapse
Affiliation(s)
- Morad Bornavard
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzaneh Farajian Mashhadi
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Atashpanjeh
- Department of English Language, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
37
|
Shchelchkova NA, Kokaya AA, Bezhenar' VF, Rozhdestvenskaya OV, Mamedova MA, Mishchenko TA, Mitroshina EV, Vedunova MV. The Role of Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor in Chronic Fetal Oxygen Deprivation. Sovrem Tekhnologii Med 2020; 12:25-31. [PMID: 34513034 PMCID: PMC8353703 DOI: 10.17691/stm2020.12.1.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 11/14/2022] Open
Abstract
The aim of the study was to define the role of brain-derived and glial cell line-derived neurotrophic factors (BDNF and GDNF) in realization of compensative and adaptive mechanisms of a neonatal organism to hypoxia.
Collapse
Affiliation(s)
- N A Shchelchkova
- Associate Professor, Department of Neurotechnologies, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia, Head of Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A A Kokaya
- Obstetrician-Gynecologist, Pavlov University, 6-8 L'va Tolstogo St., Saint Petersburg, 197022, Russia
| | - V F Bezhenar'
- Professor, Head of the Department of Obstetrics, Gynecology and Reproductology, Pavlov University, 6-8 L'va Tolstogo St., Saint Petersburg, 197022, Russia
| | - O V Rozhdestvenskaya
- Senior Laboratory Assistant, Department of Obstetrics, Gynecology and Reproductology, Pavlov University, 6-8 L'va Tolstogo St., Saint Petersburg, 197022, Russia
| | - M A Mamedova
- Assistant, Department of Obstetrics, Gynecology and Reproductology, Pavlov University, 6-8 L'va Tolstogo St., Saint Petersburg, 197022, Russia
| | - T A Mishchenko
- Senior Researcher, Laboratory for Neuroprotection Methods Development, Center for Translational Technologies, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia, Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E V Mitroshina
- Associate Professor, Department of Neurotechnologies, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia, Senior Researcher, Laboratory for Neuroprotection Methods Development, Center for Translational Technologies, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia, Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M V Vedunova
- Leading Researcher, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia, Director of Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
38
|
Weiss RJ, Bates SV, Song Y, Zhang Y, Herzberg EM, Chen YC, Gong M, Chien I, Zhang L, Murphy SN, Gollub RL, Grant PE, Ou Y. Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy. J Transl Med 2019; 17:385. [PMID: 31752923 PMCID: PMC6873573 DOI: 10.1186/s12967-019-2119-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE definition of a clinical trial that requires registration.
Collapse
Affiliation(s)
- Rebecca J Weiss
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sara V Bates
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ya'nan Song
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Landmark Center 7022, Boston, MA, 02115, USA
| | - Yue Zhang
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Landmark Center 7022, Boston, MA, 02115, USA
| | - Emily M Herzberg
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yih-Chieh Chen
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Maryann Gong
- Computer Science & Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isabel Chien
- Computer Science & Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lily Zhang
- Computer Science & Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shawn N Murphy
- Laboratory of Computer Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Randy L Gollub
- Department of Psychiatry and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Landmark Center 7022, Boston, MA, 02115, USA.
- Neuroradiology Division, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yangming Ou
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Landmark Center 7022, Boston, MA, 02115, USA.
- Neuroradiology Division, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Kletkiewicz H, Rogalska J. Decreased body temperature during anoxia affects the endogenous BDNF level in tertiary phase of injury. Neurosci Lett 2019; 711:134413. [PMID: 31394123 DOI: 10.1016/j.neulet.2019.134413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/14/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022]
Abstract
Asphyxia before, during, or after birth is an important cause of perinatal mortality and morbidity. The mechanism underlying neurological damage resulting from anoxia episode is complex and is not limited to the anoxia episode. Although the benefits of therapeutic hypothermia in secondary failure of oxidative metabolism have long been known, the principle of this therapy in tertiary phase of repair and reorganization have not yet to be fully elucidated. Currently brain-derived neurotrophic factor (BDNF) is also considered to be beneficial to neuronal survival. Therefore, our experiments aimed at determining the effects of low body temperature during simulated perinatal anoxia on the level of the neurotrophic brain-derived factor (BDNF) and on the correlation between the level of BDNF (proBDNF and mBDNF) and the level of active caspase-3 (marker of apoptosis) in developing brain in tertiary phase after exposure. The results demonstrated that the ability of BDNF to inhibit caspase-3 activation and subsequent apoptosis likely accounts in large part for its protection against neuronal damage only in rats maintaining the low body temperature.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland.
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland.
| |
Collapse
|
40
|
Serum Phosphorylated Neurofilament Heavy Subunit-H, a Potential Predictive Biomarker for Postoperative Cognitive Dysfunction in Elderly Subjects Undergoing Hip Joint Arthroplasty. J Arthroplasty 2019; 34:1602-1605. [PMID: 31029495 DOI: 10.1016/j.arth.2019.03.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD), which refers to a cognitive impairment subsequent to surgical procedures, is a common complication in the elderly subjects. This study aimed to investigate potential risk factors for POCD in elderly subjects undergoing hip joint arthroplasty. METHODS Consecutive elderly osteoarthritis patients who were scheduled to undergo hip arthroplasty under epidural anesthesia were enrolled into this single-center, prospective observational study. Serum phosphorylated neurofilament heavy subunit-H (pNF-H) was measured by the enzyme-linked immunosorbent assay method. A level of >70.5 pg/mL was accepted as pNF-H positivity. Neuropsychological assessment at baseline (1 day before the surgery) and postoperative day 7 was conducted. POCD was defined according to the calculated Z scores. Risk factors for POCD were evaluated by univariate and multivariate logistic regression analyses. RESULTS In final, 287 patients were enrolled, and 55 had suffered POCD within postoperative 7 days with an incidence of 19.2%. The final multiple logistic regression analysis revealed a higher pNF-H positivity was the only independent risk factor for POCD (odds ratio: 2.03, 95% confidence interval: 1.21-3.29, P = .012). CONCLUSIONS Our results revealed an increased preoperative serum pNF-H expression was an independent risk factor for POCD development in elderly subjects undergoing hip joint arthroplasty, suggesting the close association between anatomical damage in central nervous system and POCD.
Collapse
|
41
|
Kletkiewicz H, Maliszewska J, Jaworski K, Jermacz Ł, Smoliński DJ, Rogalska J. Thermal conditions during neonatal anoxia affect the endogenous level of brain-derived neurotrophic factor. J Neurosci Res 2019; 97:1266-1277. [PMID: 31257630 DOI: 10.1002/jnr.24486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Anoxia during delivery is a complication that can disturb infant brain development leading to various types of neurological disorders. Our studies have shown that increased body temperature of newborn rats of both sexes intensifies the postanoxic oxidative stress and prevents triggering the endogenous adaptive response such as HIF-1α activation. Currently, brain-derived neurotrophic factor-BDNF is considered to be a modulator of neuronal plasticity. In the developing brain, mature BDNF and its precursor exhibit prosurvival action through the TrkB receptor and proapoptotic functions binding to p75NTR , respectively. The aim of our experiments was to check the effects of body temperature on the postanoxic level of BDNF and on the expression of its receptors as well as on the marker of apoptosis-caspase-3 in the rat brain. Two-day-old Wistar Han rats (male/female ratio, 1:1) were exposed to anoxia in 100% nitrogen atmosphere for 10 min in different thermal conditions, which allowed them to regulate their rectal temperature at the following levels: normothermic-33°C; hyperthermic-37°C; and extremely hyperthermic-39°C. Thermal conditions during neonatal anoxia affected the level of proBDNF, BDNF as well as their receptors and caspase-3 in the forebrain. The increased BDNF protein level followed by decreased caspase-3 protein level was probably dependent on body temperature under anoxic conditions and was observed only in rats maintaining decreased body temperature. The positive effect of BDNF was not observed under hyperthermic conditions. Moreover, BDNF level changes correlated with body temperature probably affected the learning and spatial memory in juvenile rats.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Łukasz Jermacz
- Department of Hydrobiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz J Smoliński
- Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
42
|
Benavente-Fernandez I, Ramos-Rodriguez JJ, Infante-Garcia C, Jimenez-Gomez G, Lechuga-Sancho A, Lubian-Lopez S, Garcia-Alloza M. Altered plasma-type gelsolin and amyloid-β in neonates with hypoxic-ischaemic encephalopathy under therapeutic hypothermia. J Cereb Blood Flow Metab 2019; 39:1349-1354. [PMID: 29466895 PMCID: PMC6668521 DOI: 10.1177/0271678x18757419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/06/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a severe neonatal complication responsible for ∼23% of all neonatal deaths. Also, 30-70% of these patients will suffer lifetime disabilities, including learning impairment, epilepsy or cerebral palsy. However, biomarkers for HIE screening, or monitoring disease progression are limited. Herein, we sought to evaluate the clinical usefulness of plasma-type gelsolin (pGSN) and amyloid-beta (Aβ) 40 and 42 as prognostic biomarkers for HIE. pGSN has been previously suggested as a feasible marker in other brain injuries and amyloid-beta 40 and 42 are classically assessed in neurodegenerative diseases. However, to our knowledge, they have not been previously assessed in HIE patients. We have analyzed plasma pGSN and Aβ 40 and 42 levels in 55 newborns (16 controls, 16 mild and 23 moderate-severe HIE) at birth, during 72 h of therapeutic hypothermia, a gold-standard treatment for HIE, and 24 h after hypothermia. Aβ levels were lower in HIE patients, and pGSN levels were progressively reduced in mild and moderate-severe HIE patients. The fact that pGSN reductions could predict the severity of HIE and significantly correlated with the time to undergo hypothermia supports the prognostic value of plasmatic pGSN. Further studies are warranted to investigate the role of pGSN in neonatal HIE.
Collapse
Affiliation(s)
| | - Juan J Ramos-Rodriguez
- Division of Physiology, School of Medicine, Instituto de Investigación Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
- Salus Infirmorum, Universidad de Cadiz, Cádiz, Spain
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Instituto de Investigación Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | | | - Alfonso Lechuga-Sancho
- Department of Pediatrics, Neonatology Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Department of Mother and Child Health and Radiology, Universidad de Cadiz, Cadiz, Spain
| | - Simon Lubian-Lopez
- Department of Pediatrics, Neonatology Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigación Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| |
Collapse
|
43
|
Ma Q, Dasgupta C, Li Y, Huang L, Zhang L. MicroRNA-210 Downregulates ISCU and Induces Mitochondrial Dysfunction and Neuronal Death in Neonatal Hypoxic-Ischemic Brain Injury. Mol Neurobiol 2019; 56:5608-5625. [PMID: 30656514 DOI: 10.1007/s12035-019-1491-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/10/2019] [Indexed: 02/01/2023]
Abstract
Neonatal hypoxic-ischemic (HI) brain injury causes significant mortality and long-term neurologic sequelae. We previously demonstrated that HI significantly increased microRNA-210 (miR-210) in the neonatal rat brain and inhibition of brain endogenous miR-210 was neuroprotective in HI brain injury. However, the molecular mechanisms underpinning this neuroprotection remain unclear. Using both in vivo and in vitro models, herein we uncover a novel mechanism mediating oxidative brain injury after neonatal HI, in which miR-210 induces mitochondrial dysfunction via downregulation of iron-sulfur cluster assembly protein (ISCU). Inhibition of miR-210 significantly ameliorates mitochondrial dysfunction, oxidative stress, and neuronal loss in the neonatal brain subjected to HI, as well as in primary cortical neurons exposed to oxygen-glucose deprivation (OGD). These effects are mediated through ISCU, in that miR-210 mimic decreases ISCU abundance in the brains of rat pups and primary cortical neurons, and inhibition of miR-210 protects ISCU against HI in vivo or OGD in vitro. Deletion of miR-210 binding sequences at the 3'UTR of ISCU transcript ablates miR-210-induced downregulation of ISCU protein abundance in PC12 cells. In primary cortical neurons, miR-210 mimic or silencing ISCU results in mitochondrial dysfunction, reactive oxygen species production, and activation of caspase-dependent death pathways. Of importance, knockdown of ISCU increases HI-induced injury in the neonatal rat brain and counteracts the neuroprotection of miR-210 inhibition. Therefore, miR-210 by downregulating ISCU and inducing mitochondrial dysfunction in neurons is a potent contributor of oxidative brain injury after neonatal HI.
Collapse
Affiliation(s)
- Qingyi Ma
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Chiranjib Dasgupta
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Yong Li
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Lei Huang
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Lubo Zhang
- The Lawrence D. Longo Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
44
|
Patil UP, Mally PV, Wachtel EV. Serum biomarkers of neuronal injury in newborns evaluated for selective head cooling: a comparative pilot study. J Perinat Med 2018; 46:942-947. [PMID: 30070096 DOI: 10.1515/jpm-2017-0354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022]
Abstract
Background Evaluation of newborns for hypoxic ischemic encephalopathy (HIE) includes laboratory and clinical parameters, as well as amplitude integrated electroencephalogram (aEEG). Based on qualifying criteria, selective head cooling (SHC) is initiated for infants with evidence of moderate to severe HIE. However, some newborns may not qualify for hypothermia therapy based on normal aEEG. Objective To compare levels of serum glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-1 (UCHL-1) protein and phosphorylated axonal neurofilament heavy chain (pNF-H), in newborns who met initial screening criteria for HIE but did not qualify for head cooling, to the levels in healthy newborns. Study design Newborns ≥36 weeks of gestational age at risk for HIE, who were evaluated but did not qualify for SHC from July 2013 through June 2014 at NYU Langone Medical Center and Bellevue Hospital center were enrolled. A control group included healthy newborns from the newborn nursery (NBN). Serum samples were collected between 24 and 48 h of life from both groups. Results There was no significant difference in the serum levels of GFAP, UCHL-1 protein and pNF-H between the two groups of infants. Conclusion Newborns at risk for HIE who met the initial criteria for head cooling but who were excluded based on normal aEEG did not show significant elevation of biomarkers of brain injury compared to healthy newborns. These findings may help to validate using aEEG as an additional evaluation criteria in cooling.
Collapse
Affiliation(s)
- Uday P Patil
- Department of Pediatrics, Division of Neonatology, Icahn School of Medicine at Mount Sinai and Elmhurst Hospital Center, 79-01 Broadway, A7-34, Elmhurst, NY 11373, USA, Tel.: +718-334-5788, Fax: +718-334-1253
| | - Pradeep V Mally
- Department of Pediatrics, Division of Neonatology, New York University School of Medicine, New York, NY, USA
| | - Elena V Wachtel
- Department of Pediatrics, Division of Neonatology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
45
|
Looney AM, O'Sullivan MP, Ahearne CE, Finder M, Felderhoff-Mueser U, Boylan GB, Hallberg B, Murray DM. Altered Expression of Umbilical Cord Blood Levels of miR-181b and Its Downstream Target mUCH-L1 in Infants with Moderate and Severe Neonatal Hypoxic-Ischaemic Encephalopathy. Mol Neurobiol 2018; 56:3657-3663. [PMID: 30178296 DOI: 10.1007/s12035-018-1321-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
Abstract
Hypoxic-ischaemic encephalopathy (HIE) remains one of the leading causes of neurological disability worldwide. No blood biomarker capable of early detection and classification of injury severity in HIE has been identified. This study aimed to investigate the potential of miRNA-181b (miR-181b) and its downstream target, ubiquitin C-terminal hydrolase-L1 (UCH-L1), to predict the severity of HIE. Full-term infants with perinatal asphyxia were recruited at birth and observed for the development of HIE, along with healthy controls. Levels of miR-181b and messenger UCH-L1 (mUCH-L1) in umbilical cord blood were determined using qRT-PCR. In total, 131 infants; 40 control, 50 perinatal asphyxia without HIE (PA) and 41 HIE, recruited across two separate cohorts (discovery and validation) were included in this study. Significant and consistent downregulation of miR-181b was observed in infants with moderate/severe HIE compared to all other groups in both cohorts: discovery 0.25 (0.16-0.32) vs 0.61 (0.26-1.39), p = 0.027 and validation 0.33 (0.15-1.78) vs 1.2 (0.071-2.09), p = 0.035. mUCH-L1 showed increased expression in infants with HIE in both cohorts. The expression ratio of miR-181b to mUCH-L1 was reduced in those infants with moderate/severe HIE in both cohorts: discovery cohort 0.23 (0.06-0.44) vs 1.59 (0.46-2.54), p = 0.01 and validation cohort 0.41 (0.10-0.81) vs 1.38 (0.59-2.56) in all other infants, p = 0.009. We have validated consistent patterns of altered expression in miR-181b/mUCH-L1 in moderate/severe neonatal HIE which may have the potential to guide therapeutic intervention in HIE.
Collapse
Affiliation(s)
- A M Looney
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - M P O'Sullivan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - C E Ahearne
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - M Finder
- Pediatric Department, CLINTEC, Karolinska Institutet and Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - U Felderhoff-Mueser
- Department of Pediatrics/Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - G B Boylan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Centre, University College Cork, Cork, Ireland
| | - B Hallberg
- Pediatric Department, CLINTEC, Karolinska Institutet and Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - Deirdre M Murray
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. .,INFANT Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
46
|
Sukhanova IA, Sebentsova EA, Khukhareva DD, Manchenko DM, Glazova NY, Vishnyakova PA, Inozemtseva LS, Dolotov OV, Vysokikh MY, Levitskaya NG. Gender-dependent changes in physical development, BDNF content and GSH redox system in a model of acute neonatal hypoxia in rats. Behav Brain Res 2018; 350:87-98. [PMID: 29753727 DOI: 10.1016/j.bbr.2018.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
Perinatal hypoxia-ischaemia is one of the leading factors that negatively influence the development of the central nervous system. Our aim was to investigate the effects of sex on the outcomes of acute neonatal hypoxia (ANH) in rat pups. Male and female Wistar rats were exposed to a hypoxic condition (8% oxygen for 120 min) at postnatal day 2 (P2). Immediately after ANH an increase in HIF1-α gene expression was observed in the rat brains, independently of sex. Brain-derived neurotrophic factor (BDNF) and glutathione peroxidase-4 gene expression was increased in female animals only. Hypoxic pups of both sexes showed a decreased reduced/oxidised glutathione (GSH/GSSG) ratio in the blood and only males had an increased GSH content in the whole brain immediately after hypoxia. Furthermore, an increased BDNF content in the brain was found in both male and female rat pups at 0 h and in serum 4 h after hypoxia, but at 4 h after hypoxia only males had an increased BDNF level in the brain. Only hypoxic males displayed retarded performance in the righting reflex, but in a negative geotaxis test hypoxic pups of both sexes had an increased turnaround time. Moreover, hypoxic female but not male pups demonstrated less weight gain than control littermates for the entire observation period (until P18). These results demonstrate that ANH at P2 leads to both molecular and physiological impairments in a sex-specific manner and the described model could be used to represent mild hypoxic brain damage in very preterm infants.
Collapse
Affiliation(s)
- Iu A Sukhanova
- Lomonosov Moscow State University, Biology Faculty, Moscow, Russia; Federal State Budget Institution 'Research Centre for Obstetrics Gynaecology and Perinatology' Ministry of Healthcare and Social Development of the Russian Federation, Moscow, Russia.
| | - E A Sebentsova
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - D D Khukhareva
- Lomonosov Moscow State University, Biology Faculty, Moscow, Russia
| | - D M Manchenko
- Lomonosov Moscow State University, Biology Faculty, Moscow, Russia
| | - N Yu Glazova
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - P A Vishnyakova
- Federal State Budget Institution 'Research Centre for Obstetrics Gynaecology and Perinatology' Ministry of Healthcare and Social Development of the Russian Federation, Moscow, Russia
| | - L S Inozemtseva
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - O V Dolotov
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - M Y Vysokikh
- Federal State Budget Institution 'Research Centre for Obstetrics Gynaecology and Perinatology' Ministry of Healthcare and Social Development of the Russian Federation, Moscow, Russia
| | - N G Levitskaya
- Lomonosov Moscow State University, Biology Faculty, Moscow, Russia; Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
47
|
Wang Q, Wang G, Lu X, Guo X, Du Q, Lin F, Fan Q, Zhang G, Wang D. A correction formula for neuron-specific enolase measurement in hemolyzed neonatal serum samples. Biomed Rep 2018; 8:491-496. [PMID: 29725527 DOI: 10.3892/br.2018.1081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/07/2018] [Indexed: 11/05/2022] Open
Abstract
As a specific biomarker in neonatal hypoxic-ischemic encephalopathy (HIE), the measurement of neuron-specific enolase (NSE) has been advocated as a predictor of outcome in neurological injury. However, the measured levels of NSE may be influenced by hemolysis. In the current study, the change in the concentration of NSE in serum was measured by chemiluminescence prior to and following the addition of individual frozen and thawed red blood cells from 86 neonates that were collected within 24 h of birth. The changes in the concentration of NSE were compared with the changes in the concentration of hemoglobin (Hb), measured by the hemoglobin cyanide (HiCN) method, to establish a correction formula. The performance of the correction formula was evaluated by comparing the corrected concentration of NSE using the individual constants and the correction formula. The average individual constant of NSE from the 86 hemolyzed neonatal serum samples was 25.15±3.94 mg/g Hb. The concentration variation between NSE and Hb in neonatal sera could be described by the equation ΔNSEserum=1.8594+24.0670 xΔHbHiCN (r2=0.8045, P<0.001). There was no statistically significant difference in the NSE corrected results between the individual constant group and the correction formula group (Z=-1.645, P=0.100). The linear regression formula of Hb measured with the instrumental method compared with the HiCN method was Hbinstr=0.9816×HbHiCN+0.5596 (r2=0.9924, P<0.001). Based on these regression analyses, the correction formula for NSE in hemolyzed neonatal serum was determined as NSEcorr=NSEmeas-24.0670×HbHiCN-1.8594 or NSEcorr=NSEmeas-24.5181×Hbinstr+11.8609. In conclusion, hemolysis has a substantial influence on the accurate measurement of NSE in neonatal serum samples. For hemolyzed neonatal serum samples, correcting the NSE results using a correction formula is essential to evaluate the severity of neonatal hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Qiang Wang
- Faculty of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Center for Translational Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guangrong Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Lu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Faculty of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qin Du
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Fang Lin
- Faculty of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Quming Fan
- Faculty of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guoyuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dongsheng Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
48
|
Shah DK, Ponnusamy V, Evanson J, Kapellou O, Ekitzidou G, Gupta N, Clarke P, Michael-Titus AT, Yip PK. Raised Plasma Neurofilament Light Protein Levels Are Associated with Abnormal MRI Outcomes in Newborns Undergoing Therapeutic Hypothermia. Front Neurol 2018; 9:86. [PMID: 29556208 PMCID: PMC5844939 DOI: 10.3389/fneur.2018.00086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS AND HYPOTHESIS Hypoxic-ischemic encephalopathy (HIE) remains an important cause of death and disability in newborns. Mild therapeutic hypothermia (TH) is safe and effective; however, there are no tissue biomarkers available at the bedside to select babies for treatment. The aim of this study was to show that it is feasible to study plasma neurofilament light (NfL) levels from newborns and to evaluate their temporal course. Hypothesis: Raised plasma NFL protein levels from newborns who undergo TH after HIE are associated with abnormal MRI outcomes. METHODS Between February 2014 and January 2016, term newborns with HIE treated with TH for 72 h had plasma samples taken at three time points: (i) after the infant had reached target temperature, (ii) prior to commencing rewarming, and (iii) after completing rewarming. Infants with mild HIE who did not receive TH had a single specimen taken. NfL protein was analyzed using an enzyme-linked immunosorbent assay. RESULTS Twenty-six newborns with moderate-severe HIE treated with TH were studied. Half of these had cerebral MRI predictive of an unfavorable outcome. Plasma NfL levels were significantly higher in the TH group with unfavorable outcome (median age 18 h) compared to levels from both the mild HIE group and TH group with favorable outcome (F = 25.83, p < 0.0001). Newborns who had MRIs predictive of unfavorable outcome had significantly higher NfL levels compared to those with favorable outcomes, at all three time points (mixed models, F = 27.63, p < 0.001). A cutoff NfL level >29 pg/mL at 24 h is predictive of an unfavorable outcome [sensitivity 77%, specificity 69%, positive predictive value (PPV) 67%, negative predictive value (NPV) 72%] with increasing predictive value until after rewarming (sensitivity 92%, specificity 92%, PPV 92%, NPV 86%). INTERPRETATION OF RESEARCH Plasma NfL protein levels may be a useful biomarker of unfavorable MRI outcomes in newborns with moderate-severe HIE and may assist in selecting newborns for adjunctive neuroprotective interventions. Larger studies with NfL testing at earlier time points are required.
Collapse
Affiliation(s)
- Divyen K. Shah
- The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
- The Centre for Neuroscience and Trauma, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Vennila Ponnusamy
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Ashford and St. Peter’s Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Jane Evanson
- The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Olga Kapellou
- Homerton University Hospital NHS Foundation Trust, London, United Kingdom
| | - Georgia Ekitzidou
- Homerton University Hospital NHS Foundation Trust, London, United Kingdom
| | - Neelam Gupta
- University Hospital Southampton, Southampton, United Kingdom
| | - Paul Clarke
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | | | - Ping K. Yip
- The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
49
|
Wang Z, Liu Y, Shao M, Wang D, Zhang Y. Combined prediction of miR-210 and miR-374a for severity and prognosis of hypoxic-ischemic encephalopathy. Brain Behav 2018; 8:e00835. [PMID: 29568675 PMCID: PMC5853646 DOI: 10.1002/brb3.835] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIM Hypoxic-ischemic encephalopathy (HIE) is a disorder featured by hypoxic and ischemic damages during the perinatal period and its high mortality (i.e., 15%-20%) could be partly attributed to late diagnosis. Therefore, miR-210 and miR-374a were investigated to find if they could improve the diagnostic values of S100B protein and neuron-specific enolase (NSE) for HIE. METHODS Altogether 167 HIE newborns and 82 healthy newborns were recruited, and their blood were sampled for determining the levels of biomarkers. Specifically, S100B protein and NSE levels were detected based on the enzyme-linked immunosorbent assay (ELISA) kit, while the expressions of miR-210 and miR-374a were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Moreover, the receiver operating characteristic (ROC) curves were established to assess the diagnostic values of the above biomarkers for HIE. Finally, the correlation analysis between miR-210/miR-374 and Neonatal Behavioral Neurological Assessment (NBNA) scoring or Gesell intellectual development were also conducted. RESULTS The levels of miR-210, miR-374a, S100B protein, and NSE were significantly distinct between HIE patients and healthy newborns (p < .05). Besides, miR-210 (rs = .573), miR-374a (rs = .651), NSE level (rs = -.622), and S100B level (rs = -.55) were all, respectively, correlated with NBNA scoring with statistical significance (p < .05). Furthermore, it was revealed that the combined diagnosis of miR-210, miR-374a, S100B protein, and NSE could obtain the highest accuracy regarding pairs of mild HIE versus moderate HIE (AUC = 0.898), moderate HIE versus severe HIE (AUC = 0.922), mild HIE versus severe HIE (AUC = 0.996), and HIE versus control (AUC = 0.960). More than that, the four molecules were also remarkably associated with Gesell intellectual development (p < .05). CONCLUSION MiR-210 and miR-374a could help to elevate the diagnostic value and prognostic prediction of S100B protein and NSE for HIE.
Collapse
Affiliation(s)
- Zhansheng Wang
- Department of Neonatal Intensive Care Unit The First People's Hospital of Shangqiu Shangqiu Henan China
| | - Yulu Liu
- Department of Neonatal Intensive Care Unit The First People's Hospital of Shangqiu Shangqiu Henan China
| | - Minkun Shao
- Department of Neonatal Intensive Care Unit The First People's Hospital of Shangqiu Shangqiu Henan China
| | - Dong Wang
- Department of Neonatal Intensive Care Unit The First People's Hospital of Shangqiu Shangqiu Henan China
| | - Ying Zhang
- Department of Neonatal Intensive Care Unit The First People's Hospital of Shangqiu Shangqiu Henan China
| |
Collapse
|
50
|
Lu H, Huang W, Chen X, Wang Q, Zhang Q, Chang M. Relationship between premature brain injury and multiple biomarkers in cord blood and amniotic fluid. J Matern Fetal Neonatal Med 2017; 31:2898-2904. [PMID: 28738706 DOI: 10.1080/14767058.2017.1359532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hongyan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Weiling Huang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Pediatrics, The First Affiliated Hospital of Hubei Science and Technology College, Xianning Central Hospital, Xianning, China
| | - Xiaoqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuxia Wang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiang Zhang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ming Chang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|