1
|
Campagnolo M, Puthenparampil M, Emmi A, Weis L, Basili E, Mauceri V, Miscioscia A, Carecchio M, Guerra A, Misenti V, Fogliano C, Gallo P, Antonini A. Optical coherence tomography reveals retinal structural abnormalities in α-synucleinopathies: insights from the Padua-CESNE cohort. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02918-y. [PMID: 40232370 DOI: 10.1007/s00702-025-02918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
The complexity of α-synucleinopathies, namely Parkinson's disease (PD) and multiple system atrophy (MSA), calls for the adoption a multimodal approach integrating biological, morphological, and functional data. Phosphorylated α-synuclein (α-syn) detection in bodily fluids and tissues such as the skin helps provide biological characterization of the disease, but specific and accessible biomarkers are not available yet. The aim of this study was to define the role of Optical Coherence Tomography (OCT, a minimally invasive retinal imaging technique) patterns as possible biomarkers in the early stages of α-synucleinopathies, also supporting the differential diagnosis. Thirty-five (23 PD, 12 MSA), clinically, biologically and genetically characterized patients included in the PADUA-CESNE (Centro Studi per la Neurodegenerazione) cohort underwent OCT. A significant atrophy in the inferior, superior and temporal regions of the Retinal Nerve Fiber Layer (RNFL) and in the inner nuclear layer (INL) were observed in PD compared to controls, differently from MSA. Hyperreflective foci (HRF) counts were elevated across all retinal layers in all patients with PD exhibiting significantly higher numbers, suggesting microglial activation and greater retinal damage. Further research regarding OCT patterns in PD and MSA may consolidate the role of specific features, such as INL abnormalities and different HRF counts, in supporting the diagnosis and differential diagnosis in α-synucleinopathies. In light of the availability of potentially disease-modifying therapies, studies should focus on newly diagnosed patients, also undergoing thorough clinical, biological and genetic characterization.
Collapse
Affiliation(s)
- M Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Via Giustiniani 3, 35121, Padua, Italy.
- Center for Neurodegenerative Disease Research (Centro Studi per la Neurodegenerazione CESNE), University of Padova, Padua, Italy.
| | - M Puthenparampil
- Multiple Sclerosis Centre, Department of Neuroscience, University of Padova, Padua, Italy
| | - A Emmi
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Via Giustiniani 3, 35121, Padua, Italy
- Center for Neurodegenerative Disease Research (Centro Studi per la Neurodegenerazione CESNE), University of Padova, Padua, Italy
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - L Weis
- IRCCS San Camillo Hospital, Venice, Italy
| | - E Basili
- Multiple Sclerosis Centre, Department of Neuroscience, University of Padova, Padua, Italy
| | - V Mauceri
- Multiple Sclerosis Centre, Department of Neuroscience, University of Padova, Padua, Italy
| | - A Miscioscia
- Multiple Sclerosis Centre, Department of Neuroscience, University of Padova, Padua, Italy
| | - M Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Via Giustiniani 3, 35121, Padua, Italy
- Center for Neurodegenerative Disease Research (Centro Studi per la Neurodegenerazione CESNE), University of Padova, Padua, Italy
| | - A Guerra
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Via Giustiniani 3, 35121, Padua, Italy
- Center for Neurodegenerative Disease Research (Centro Studi per la Neurodegenerazione CESNE), University of Padova, Padua, Italy
| | - V Misenti
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Via Giustiniani 3, 35121, Padua, Italy
| | - C Fogliano
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Via Giustiniani 3, 35121, Padua, Italy
| | - P Gallo
- Multiple Sclerosis Centre, Department of Neuroscience, University of Padova, Padua, Italy
| | - A Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Via Giustiniani 3, 35121, Padua, Italy
- Center for Neurodegenerative Disease Research (Centro Studi per la Neurodegenerazione CESNE), University of Padova, Padua, Italy
| |
Collapse
|
2
|
Abdul‐Rahman T, Herrera‐Calderón RE, Ahluwalia A, Wireko AA, Ferreira T, Tan JK, Wolfson M, Ghosh S, Horbas V, Garg V, Perveen A, Papadakis M, Ashraf GM, Alexiou A. The potential of phosphorylated α-synuclein as a biomarker for the diagnosis and monitoring of multiple system atrophy. CNS Neurosci Ther 2024; 30:e14678. [PMID: 38572788 PMCID: PMC10993367 DOI: 10.1111/cns.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder characterized by the presence of glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-Syn). Accurate diagnosis and monitoring of MSA present significant challenges, which can lead to potential misdiagnosis and inappropriate treatment. Biomarkers play a crucial role in improving the accuracy of MSA diagnosis, and phosphorylated α-synuclein (p-syn) has emerged as a promising biomarker for aiding in diagnosis and disease monitoring. METHODS A literature search was conducted on PubMed, Scopus, and Google Scholar using specific keywords and MeSH terms without imposing a time limit. Inclusion criteria comprised various study designs including experimental studies, case-control studies, and cohort studies published only in English, while conference abstracts and unpublished sources were excluded. RESULTS Increased levels of p-syn have been observed in various samples from MSA patients, such as red blood cells, cerebrospinal fluid, oral mucosal cells, skin, and colon biopsies, highlighting their diagnostic potential. The α-Syn RT-QuIC assay has shown sensitivity in diagnosing MSA and tracking its progression. Meta-analyses and multicenter investigations have confirmed the diagnostic value of p-syn in cerebrospinal fluid, demonstrating high specificity and sensitivity in distinguishing MSA from other neurodegenerative diseases. Moreover, combining p-syn with other biomarkers has further improved the diagnostic accuracy of MSA. CONCLUSION The p-syn stands out as a promising biomarker for MSA. It is found in oligodendrocytes and shows a correlation with disease severity and progression. However, further research and validation studies are necessary to establish p-syn as a reliable biomarker for MSA. If proven, p-syn could significantly contribute to early diagnosis, disease monitoring, and assessing treatment response.
Collapse
Affiliation(s)
| | | | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | | | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' AnusandhanBhubaneswarIndia
| | | | - Vandana Garg
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakHaryanaIndia
| | - Asma Perveen
- Glocal School of Life SciencesGlocal UniversitySaharanpurUttar PradeshIndia
- Princess Dr. Najla Bint Saud Al‐Saud Center for Excellence Research in BiotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Ghulam Md Ashraf
- Department of Medical Laboratory SciencesUniversity of Sharjah, College of Health Sciences, and Research Institute for Medical and Health SciencesSharjahUAE
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
| |
Collapse
|
3
|
Hopf S, Tüscher O, Schuster AK. [Retinal OCT biomarkers and neurodegenerative diseases of the central nervous system beyond Alzheimer's disease]. DIE OPHTHALMOLOGIE 2024; 121:93-104. [PMID: 38263475 DOI: 10.1007/s00347-023-01974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Optical coherence tomography (OCT) biomarkers are increasingly used by neurologists, psychiatrists, and ophthalmologists for the diagnosis, prognosis, and follow-up of neurodegenerative diseases. Long-term data on OCT biomarkers of selected primary and secondary neurodegenerative diseases of the central nervous system (CNS), such as multiple sclerosis (MS) or Parkinson's disease, are already available in part. In addition, there are rare neurodegenerative diseases with early disease onset that may show OCT abnormalities. METHODS A literature review on the association of OCT biomarkers with neurodegenerative diseases of the CNS beyond Alzheimer's disease is presented. Parkinson's disease, MS, Friedreich's ataxia, Huntington's disease, spinocerebellar ataxia, and lysosomal storage diseases are addressed. RESULTS Relevant OCT biomarkers of neurodegenerative diseases are the macular ganglion cell inner plexiform layer (GCIPL) and the peripapillary retinal nerve fiber layer (pRNFL) thickness. Different sectors may be affected depending on the disease entity in addition to global pRFNL reduction. OCT‑angiography (OCT-A) is also increasingly used as a biomarker in neurodegenerative diseases. CONCLUSION Optical coherence tomography biomarkers are used in an interdisciplinary context. Retinal pathologies should be excluded by an ophthalmologist. While OCT biomarkers are increasingly used clinically in MS, the benefit in other neurodegenerative diseases, especially the rare ones, is less well documented. Further longitudinal studies are required.
Collapse
Affiliation(s)
- Susanne Hopf
- Augenklinik und Poliklinik der Universitätsmedizin Mainz, Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| | - Oliver Tüscher
- Zentrum für seltene Erkrankungen des Nervensystems (ZSEN) Mainz und Klinik für Psychiatrie und Psychotherapie der Universitätsmedizin Mainz, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Alexander K Schuster
- Augenklinik und Poliklinik der Universitätsmedizin Mainz, Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| |
Collapse
|
4
|
Lee YW, Lim MN, Lee JY, Yoo YJ. Central retina thickness measured with spectral-domain optical coherence tomography in Parkinson disease: A meta-analysis. Medicine (Baltimore) 2023; 102:e35354. [PMID: 37800768 PMCID: PMC10553016 DOI: 10.1097/md.0000000000035354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Optical coherence tomography (OCT) can detect visual alterations associated with Parkinson disease, such as damage to the retinal nerve fiber layer or changes in retinal vasculature. Macula thinning in association with Parkinson disease (PD) remains controversial. Therefore, we conducted a meta-analysis to investigate the central retina thickness in PD measured using spectral-domain OCT (SD-OCT). METHODS We searched PubMed and the Excerpta Medica database to identify studies that compared macular thickness between patients with PD and healthy controls published before July 31, 2021. A random-effects model was used to examine PD-associated changes in macular thickness. Meta-regression analysis was performed by assessing heterogeneity, publication bias, and study quality. RESULTS Thirty-two studies with a cross-sectional design were selected, including 2118 patients with PD and 2338 controls. We identified significant differences in the thickness of the ganglion cell-inner plexiform layer (standardized mean difference [SMD], -0.41; 95% confidence interval [CI], -0.66 to -0.16; I2 = 80%), ganglion cell complex (SMD, -0.33; 95% CI, -0.50 to -0.17; I2 = 0%), and of all inner and outer sectors of the macula (SMD range, -0.21 to -0.56; all P < .05) between patients with PD and controls. DISCUSSION These results corroborate the increased prevalence of changes in OCT measures in individuals with PD, highlighting the efficacy of SD-OCT-determined macular thickness as a biomarker for PD. Our findings may provide helpful guidelines for clinicians in rapidly evolving areas of PD diagnosis.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Ophthalmology, Kangwon National University School of Medicine, Chuncheon, Korea
- Department of Ophthalmology, Kangwon National University Hospital, Chuncheon, Korea
| | - Myung-Nam Lim
- Biomedical Research Institute, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jae Yeon Lee
- Department of Ophthalmology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yung-Ju Yoo
- Department of Ophthalmology, Kangwon National University School of Medicine, Chuncheon, Korea
- Department of Ophthalmology, Kangwon National University Hospital, Chuncheon, Korea
| |
Collapse
|
5
|
Prasannakumar A, Kumar V, Mailankody P, Appaji A, Battu R, Berendschot TTJM, Rao NP. A systematic review and meta-analysis of optical coherence tomography studies in schizophrenia, bipolar disorder and major depressive disorder. World J Biol Psychiatry 2023; 24:707-720. [PMID: 37070475 DOI: 10.1080/15622975.2023.2203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES Due to the common neurodevelopmental origin and easy accessibility, the retina serves as a surrogate marker for changes in the brain. Hence, Optical Coherence Tomography (OCT), a tool to examine the neuronal layers of retina has gained importance in investigating psychiatric disorders. Several studies in the last decade have reported retinal structural alterations in schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). However, the findings are inconsistent. Hence, we conducted a meta-analysis to investigate alterations in OCT parameters in patients with SCZ, BD and MDD. METHODS We searched electronic databases for studies that examined OCT parameters in patients with SCZ, BD and MDD published up to January 2023. The primary outcome measures were thickness and volumes of the retinal Nerve Fibre Layer (RNFL). We conducted meta-analysis using a random effects model. RESULTS The searches yielded 2638 publications of which 43 studies were included in the final analysis across all disorders. Compared to controls, the RNFL was thinner in SCZ patients (SMD = -0.37, p = <0.001) and BD patients (SMD = -0.67, p = < 0.001), but not in MDD patients (SMD = -0.08, p = 0.54). On quadrant wise analysis, temporal quadrant RNFL was thinner in SCZ but not in BD, while all other quadrants were thinner in both SCZ and BD. CONCLUSION We found significant reductions in RNFL thickness in SCZ and BD, but not in MDD. The differential involvement in various quadrants and parameters across the disorders has potential implications for using retinal parameters as a diagnostic biomarker.
Collapse
Affiliation(s)
- Akash Prasannakumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vijay Kumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Pooja Mailankody
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Abhishek Appaji
- Department of Medical Electronics, BMS College of Engineering, Bangalore, Karnataka, India
- Department of Opthalmology, University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rajani Battu
- Department of Opthalmology, Centre for Eye Genetics and Research, Bangalore, Karnataka, India
| | - Tos T J M Berendschot
- Department of Opthalmology, University Eye Clinic Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Naren P Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Hart de Ruyter FJ, Morrema THJ, den Haan J, Gase G, Twisk JWR, de Boer JF, Scheltens P, Bouwman FH, Verbraak FD, Rozemuller AJM, Hoozemans JJM. α-Synuclein pathology in post-mortem retina and optic nerve is specific for α-synucleinopathies. NPJ Parkinsons Dis 2023; 9:124. [PMID: 37640753 PMCID: PMC10462645 DOI: 10.1038/s41531-023-00570-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
There is increasing interest in studying retinal biomarkers for various neurodegenerative diseases. Specific protein aggregates associated with neurodegenerative diseases are present in the retina and could be visualised in a non-invasive way. This study aims to assess the specificity and sensitivity of retinal α-synuclein aggregates in neuropathologically characterised α-synucleinopathies, other neurodegenerative diseases and non-neurological controls. Post-mortem eyes (N = 99) were collected prospectively through the Netherlands Brain Bank from donors with Parkinson's disease (and dementia), dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, other neurodegenerative diseases and non-neurological controls. Multiple retinal and optic nerve cross-sections were immunostained with anti-α-synuclein antibodies (LB509, KM51, and anti-pSer129) and assessed for aggregates and inclusions. α-Synuclein was observed as Lewy neurites in the retina and oligodendroglial cytoplasmic inclusions in the optic nerve and was highly associated with Lewy body disease (P < 0.001) and multiple system atrophy (P = 0.001). In all multiple system atrophy cases, the optic nerve showed oligodendroglial cytoplasmic inclusions, while retinal Lewy neurites were absent, despite coincidental brain Lewy pathology. With high specificity (97%) and sensitivity (82%), retinal/optic nerve α-synuclein differentiates primary α-synucleinopathies from other cases and controls. α-Synuclein pathology occurs specifically in the retina and optic nerve of primary α-synucleinopathies as opposed to other neurodegenerative diseases-with and without α-synuclein co-pathology-and controls. The absence of retinal Lewy neurites in multiple system atrophy could contribute to the development of an in vivo retinal biomarker that discriminates between Lewy body disease and multiple system atrophy.
Collapse
Affiliation(s)
- Frederique J Hart de Ruyter
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Neurology and Alzheimer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Tjado H J Morrema
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jurre den Haan
- Department of Neurology and Alzheimer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Gina Gase
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Department of Neurology and Alzheimer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Frank D Verbraak
- Department of Ophthalmology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Thomas-Black G, Altmann DR, Crook H, Solanky N, Carrasco FP, Battiston M, Grussu F, Yiannakas MC, Kanber B, Jolly JK, Brett J, Downes SM, Moran M, Chan PK, Adewunmi E, Gandini Wheeler-Kingshott CAM, Németh AH, Festenstein R, Bremner F, Giunti P. Multimodal Analysis of the Visual Pathways in Friedreich's Ataxia Reveals Novel Biomarkers. Mov Disord 2023; 38:959-969. [PMID: 36433650 DOI: 10.1002/mds.29277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Optic neuropathy is a near ubiquitous feature of Friedreich's ataxia (FRDA). Previous studies have examined varying aspects of the anterior and posterior visual pathways but none so far have comprehensively evaluated the heterogeneity of degeneration across different areas of the retina, changes to the macula layers and combined these with volumetric MRI studies of the visual cortex and frataxin level. METHODS We investigated 62 genetically confirmed FRDA patients using an integrated approach as part of an observational cohort study. We included measurement of frataxin protein levels, clinical evaluation of visual and neurological function, optical coherence tomography to determine retinal nerve fibre layer thickness and macular layer volume and volumetric brain MRI. RESULTS We demonstrate that frataxin level correlates with peripapillary retinal nerve fibre layer thickness and that retinal sectors differ in their degree of degeneration. We also shown that retinal nerve fibre layer is thinner in FRDA patients than controls and that this thinning is influenced by the AAO and GAA1. Furthermore we show that the ganglion cell and inner plexiform layers are affected in FRDA. Our MRI data indicate that there are borderline correlations between retinal layers and areas of the cortex involved in visual processing. CONCLUSION Our study demonstrates the uneven distribution of the axonopathy in the retinal nerve fibre layer and highlight the relative sparing of the papillomacular bundle and temporal sectors. We show that thinning of the retinal nerve fibre layer is associated with frataxin levels, supporting the use the two biomarkers in future clinical trials design. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gilbert Thomas-Black
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, UK
| | - Daniel R Altmann
- Medical Statistics Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Harry Crook
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nita Solanky
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ferran Prados Carrasco
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, UCL, London, UK
- e-Health Centre, Open University of Catalonia, Barcelona, Spain
| | - Marco Battiston
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Francesco Grussu
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marios C Yiannakas
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Baris Kanber
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, UCL, London, UK
| | - Jasleen K Jolly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| | - Jon Brett
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marni Moran
- NIHR Clinical Research Network, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ping K Chan
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Emmanuel Adewunmi
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
- Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Andrea H Németh
- NIHR Clinical Research Network, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Fion Bremner
- National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, UK
| | - Paola Giunti
- The Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, UK
| |
Collapse
|
8
|
Retinal Structure Abnormalities in Parkinson's Disease and Atypical Parkinsonism. Biomolecules 2023; 13:biom13020218. [PMID: 36830588 PMCID: PMC9952897 DOI: 10.3390/biom13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
We investigated retinal structure changes in patients with Parkinson's disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and controls, and explored the value of this method in differential diagnosis. Spectral domain optical coherence tomography (SD-OCT) was used to measure peripapillary retinal nerve fiber layer (pRNFL) thickness, and macular thickness and volume. PSP patients showed higher temporal pRNFL thickness than PD and MSA patients. Peripapillary RNFL thickness could be used for discriminating PSP from MSA and PD. PD and MSA patients showed retinal thinning in the foveal center circle and nasal inner sectors compared to controls. Macular thickness and volume could be used for discriminating MSA from PD. There were negative correlations between disease duration and OCT parameters in PD, MSA, and PSP, independent of age, sex ratio, and the side of the eye. PD and atypical parkinsonism correlate with specific patterns of retina alterations. OCT could be a biomarker for differential diagnosis and progression evaluation of parkinsonian syndrome.
Collapse
|
9
|
Patil AD, Biousse V, Newman NJ. Artificial intelligence in ophthalmology: an insight into neurodegenerative disease. Curr Opin Ophthalmol 2022; 33:432-439. [PMID: 35819902 DOI: 10.1097/icu.0000000000000877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aging world population accounts for the increasing prevalence of neurodegenerative diseases such as Alzheimer's and Parkinson's which carry a significant health and economic burden. There is therefore a need for sensitive and specific noninvasive biomarkers for early diagnosis and monitoring. Advances in retinal and optic nerve multimodal imaging as well as the development of artificial intelligence deep learning systems (AI-DLS) have heralded a number of promising advances of which ophthalmologists are at the forefront. RECENT FINDINGS The association among retinal vascular, nerve fiber layer, and macular findings in neurodegenerative disease is well established. In order to optimize the use of these ophthalmic parameters as biomarkers, validated AI-DLS are required to ensure clinical efficacy and reliability. Varied image acquisition methods and protocols as well as variability in neurogenerative disease diagnosis compromise the robustness of ground truths that are paramount to developing high-quality training datasets. SUMMARY In order to produce effective AI-DLS for the diagnosis and monitoring of neurodegenerative disease, multicenter international collaboration is required to prospectively produce large inclusive datasets, acquired through standardized methods and protocols. With a uniform approach, the efficacy of resultant clinical applications will be maximized.
Collapse
Affiliation(s)
| | | | - Nancy J Newman
- Department of Ophthalmology
- Department of Neurology
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Komatsu H, Onoguchi G, Jerotic S, Kanahara N, Kakuto Y, Ono T, Funakoshi S, Yabana T, Nakazawa T, Tomita H. Retinal layers and associated clinical factors in schizophrenia spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3592-3616. [PMID: 35501407 DOI: 10.1038/s41380-022-01591-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The retina shares structural and functional similarities with the brain. Furthermore, structural changes in the retina have been observed in patients with schizophrenia spectrum disorders (SSDs). This systematic review and meta-analysis investigated retinal abnormalities and their association with clinical factors for SSD. METHODS Studies related to retinal layers in SSD patients were retrieved from PubMed, Scopus, Web of Science, Cochrane Controlled Register of Trials, International Clinical Trials Registry Platform, and PSYNDEX databases from inception to March 31, 2021. We screened and assessed the eligibility of the identified studies. EZR ver.1.54 and the metafor package in R were used for the meta-analysis and a random-effects or fixed-effects model was used to report standardized mean differences (SMDs). RESULTS Twenty-three studies (2079 eyes of patients and 1571 eyes of controls) were included in the systematic review and meta-analysis. The average peripapillary retinal nerve fiber layer (pRNFL) thickness, average macular thickness (MT), and macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness were significantly lower in patients than in controls (n = 14, 6, and 3, respectively; SMD = -0.33, -0.49, and -0.43, respectively). Patients also had significantly reduced macular volume (MV) compared to controls (n = 7; SMD = -0.53). The optic cup volume (OCV) was significantly larger in patients than in controls (n = 3; SMD = 0.28). The meta-regression analysis indicated an association between several clinical factors, such as duration of illness and the effect size of the pRNFL, macular GCL-IPL, MT, and MV. CONCLUSION Thinning of the pRNFL, macular GCL-IPL, MT, and MV and enlargement of the OCV in SSD were observed. Retinal abnormalities may be applicable as state/trait markers in SSDs. The accumulated evidence was mainly cross-sectional and requires verification by longitudinal studies to characterize the relationship between OCT findings and clinical factors.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan. .,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan. .,Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shunichi Funakoshi
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Zhang Y, Yang L, Gao Y, Zhang D, Tao Y, Xu H, Chen Y, Xu Y, Zhang M. Choroid and choriocapillaris changes in early-stage Parkinson’s disease: a swept-source optical coherence tomography angiography-based cross-sectional study. Alzheimers Res Ther 2022; 14:116. [PMID: 36008844 PMCID: PMC9404633 DOI: 10.1186/s13195-022-01054-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Background Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the aging population. Previous literature has reported thinning of the retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, and photoreceptor layer in PD patients. However, very few studies have used swept-source optical coherence tomography (SS-OCT) to study the choroid and choriocapillaris vascular changes in PD and their correlations with altered contrast sensitivity. Methods PD patients and controls were enrolled in the current study. We used a CSV-1000E instrument to assess contrast sensitivity and performed SS-OCT and SS-OCTA to measure outer retinal thickness, choroidal thickness, choriocapillaris flow density, choroidal vascular volume (CVV), and choroidal vascular index (CVI). Results One hundred eyes of 52 PD patients and 200 eyes of 100 healthy controls were recruited in the present study. Our study found remarkably impaired contrast sensitivity in PD patients (all P < 0.05). Significant thinning of the outer retinal layer and the choroid was appreciated in the PD group compared with the healthy controls (all P < 0.05). Choriocapillaris flow density, CVI, and CVV were significantly decreased in PD patients compared with healthy controls (all P < 0.05). Contrast sensitivity was weakly associated with outer retina thickness in the 3 mm circular area, with 3 cycles per degree being the most relevant (r = 0.535, P < 0.001). Conclusion Our study indicates that there is a significant decrease in contrast sensitivity, outer retina thickness, choriocapillaris flow density, CVI, and CVV in PD patients. This research has also identified a positive correlation between outer retina thickness and contrast sensitivity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01054-z.
Collapse
|
12
|
Batum M, Ak AK, Arı MS, Mayali H, Kurt E, Selçuki D. Evaluation of the visual system with visual evoked potential and optical coherence tomography in patients with idiopathic Parkinson's disease and with multiple system atrophy. Doc Ophthalmol 2022; 145:99-112. [PMID: 35881261 DOI: 10.1007/s10633-022-09887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND In addition to motor findings, non-motor findings including alterations in visual acuity, decrease in blink reflex, and pupil reactivity cause the impaired quality of life in idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). Our study aimed to examine possible latency and amplitude changes in pattern visual evoked potentials (pVEP) along with retinal and macular changes in optical coherence tomography (OCT) in PD and MSA groups. We also intended to investigate whether any OCT parameters could be a biomarker for Parkinson's or MSA. METHODS Our study included 50 patients with PD, 15 with MSA, and 50 healthy control subjects. All patients in the study underwent neurological and ophthalmological examination and investigations of OCT to measure the retinal and macular thickness and pVEP to assess visual pathways. RESULTS When PD, MSA, and control groups were compared, a significant difference was found in all retinal thickness values in average, nasal, and superior retinal nerve fiber thickness (pRNFL), and in all macular thickness values except nasal outer and inferior outer quadrants and in ganglion cell complex (GCC) thicknesses (p < 0.05). Moreover, a significant difference was found in N75, P100, and N145 latencies and N75-P100 amplitude (p < 0.05). The thickness of both pRNFL, inner and outer macular quadrants, was thinner in the MSA group than in PD but GCC thickness was thinner in PD group. CONCLUSIONS The present study compared pVEP and OCT parameters in PD and MSA groups. It was concluded that pVEP and OCT examinations were of importance in that they were easily accessible, affordable, noninvasive biomarkers that might be used in early periods and progression of the disease and in follow-up.
Collapse
Affiliation(s)
- Melike Batum
- Department of Neurology, Celal Bayar University Medical School Hafsa Sultan Hospital, Manisa, Turkey.
| | - Ayşın Kısabay Ak
- Department of Neurology, Celal Bayar University Medical School Hafsa Sultan Hospital, Manisa, Turkey
| | - Mehmet Semih Arı
- Department of Neurology, Celal Bayar University Medical School Hafsa Sultan Hospital, Manisa, Turkey
| | - Hüseyin Mayali
- Department of Eye Diseases, Celal Bayar University Medical School Hafsa Sultan Hospital, Manisa, Turkey
| | - Emin Kurt
- Department of Eye Diseases, Celal Bayar University Medical School Hafsa Sultan Hospital, Manisa, Turkey
| | - Deniz Selçuki
- Department of Neurology, Celal Bayar University Medical School Hafsa Sultan Hospital, Manisa, Turkey
| |
Collapse
|
13
|
Palma JA, Martinez J, Millar Vernetti P, Ma T, Perez MA, Zhong J, Qian Y, Dutta S, Maina KN, Siddique I, Bitan G, Ades-Aron B, Shepherd TM, Kang UJ, Kaufmann H. mTOR Inhibition with Sirolimus in Multiple System Atrophy: A Randomized, Double-Blind, Placebo-Controlled Futility Trial and 1-Year Biomarker Longitudinal Analysis. Mov Disord 2022; 37:778-789. [PMID: 35040506 PMCID: PMC9018525 DOI: 10.1002/mds.28923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a fatal neurodegenerative disease characterized by the aggregation of α-synuclein in glia and neurons. Sirolimus (rapamycin) is an mTOR inhibitor that promotes α-synuclein autophagy and reduces its associated neurotoxicity in preclinical models. OBJECTIVE To investigate the efficacy and safety of sirolimus in patients with MSA using a futility design. We also analyzed 1-year biomarker trajectories in the trial participants. METHODS Randomized, double-blind, parallel group, placebo-controlled clinical trial at the New York University of patients with probable MSA randomly assigned (3:1) to sirolimus (2-6 mg daily) for 48 weeks or placebo. Primary endpoint was change in the Unified MSA Rating Scale (UMSARS) total score from baseline to 48 weeks. (ClinicalTrials.gov NCT03589976). RESULTS The trial was stopped after a pre-planned interim analysis met futility criteria. Between August 15, 2018 and November 15, 2020, 54 participants were screened, and 47 enrolled and randomly assigned (35 sirolimus, 12 placebo). Of those randomized, 34 were included in the intention-to-treat analysis. There was no difference in change from baseline to week 48 between the sirolimus and placebo in UMSARS total score (mean difference, 2.66; 95% CI, -7.35-6.91; P = 0.648). There was no difference in UMSARS-1 and UMSARS-2 scores either. UMSARS scores changes were similar to those reported in natural history studies. Neuroimaging and blood biomarker results were similar in the sirolimus and placebo groups. Adverse events were more frequent with sirolimus. Analysis of 1-year biomarker trajectories in all participants showed that increases in blood neurofilament light chain (NfL) and reductions in whole brain volume correlated best with UMSARS progression. CONCLUSIONS Sirolimus for 48 weeks was futile to slow the progression of MSA and had no effect on biomarkers compared to placebo. One-year change in blood NfL and whole brain atrophy are promising biomarkers of disease progression for future clinical trials. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jose Martinez
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Thong Ma
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Miguel A. Perez
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Judy Zhong
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yingzhi Qian
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine, New York, NY, USA
| | - Suman Dutta
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine N. Maina
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Brain Research Institute, University of California, Los Angeles, CA, USA,Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Benjamin Ades-Aron
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Timothy M. Shepherd
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Un Jung Kang
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
LncRNAS—modulators of neurovascular units in diabetic retinopathy. Eur J Pharmacol 2022; 925:174937. [DOI: 10.1016/j.ejphar.2022.174937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
|
15
|
López-Dorado A, Pérez J, Rodrigo M, Miguel-Jiménez J, Ortiz M, de Santiago L, López-Guillén E, Blanco R, Cavalliere C, Morla EMS, Boquete L, Garcia-Martin E. Diagnosis of multiple sclerosis using multifocal ERG data feature fusion. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2021; 76:157-167. [PMID: 34867127 PMCID: PMC8475498 DOI: 10.1016/j.inffus.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/15/2020] [Accepted: 05/17/2021] [Indexed: 05/16/2023]
Abstract
The purpose of this paper is to implement a computer-aided diagnosis (CAD) system for multiple sclerosis (MS) based on analysing the outer retina as assessed by multifocal electroretinograms (mfERGs). MfERG recordings taken with the RETI-port/scan 21 (Roland Consult) device from 15 eyes of patients diagnosed with incipient relapsing-remitting MS and without prior optic neuritis, and from 6 eyes of control subjects, are selected. The mfERG recordings are grouped (whole macular visual field, five rings, and four quadrants). For each group, the correlation with a normative database of adaptively filtered signals, based on empirical model decomposition (EMD) and three features from the continuous wavelet transform (CWT) domain, are obtained. Of the initial 40 features, the 4 most relevant are selected in two stages: a) using a filter method and b) using a wrapper-feature selection method. The Support Vector Machine (SVM) is used as a classifier. With the optimal CAD configuration, a Matthews correlation coefficient value of 0.89 (accuracy = 0.95, specificity = 1.0 and sensitivity = 0.93) is obtained. This study identified an outer retina dysfunction in patients with recent MS by analysing the outer retina responses in the mfERG and employing an SVM as a classifier. In conclusion, a promising new electrophysiological-biomarker method based on feature fusion for MS diagnosis was identified.
Collapse
Affiliation(s)
- A. López-Dorado
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - J. Pérez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
| | - M.J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - J.M. Miguel-Jiménez
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - M. Ortiz
- School of Physics, University of Melbourne, VIC 3010, Australia
| | - L. de Santiago
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - E. López-Guillén
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - R. Blanco
- Department of Surgery, Medical and Social Sciences, University of Alcalá, Alcalá de Henares, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - C. Cavalliere
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - E. Mª Sánchez Morla
- Department of Psychiatry, Hospital 12 de Octubre Research Institute (i+12), 28041 Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERSAM: Biomedical Research Networking Centre in Mental Health, 28029 Madrid, Spain
| | - L. Boquete
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - E. Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| |
Collapse
|
16
|
Wilson D, Hallett M, Anderson T. An Eye on Movement Disorders. Mov Disord Clin Pract 2021; 8:1168-1180. [PMID: 34765682 DOI: 10.1002/mdc3.13317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Eye disorders spanning a range of ocular tissue are common in patients with movement disorders. Highlighting these ocular manifestations will benefit patients and may even aid in diagnosis. In this educational review we outline the anatomy and function of the ocular tissues with a focus on the tissues most affected in movement disorders. We review the movement disorders associated with ocular pathology and where possible explore the underlying cellular basis thought to be driving the pathology and provide a brief overview of ophthalmic investigations available to the neurologist. This review does not cover intracranial primary visual pathways, higher visual function, or the ocular motor system.
Collapse
Affiliation(s)
- Duncan Wilson
- Department of Neurology Christchurch Hospital Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH Bethesda Maryland USA
| | - Tim Anderson
- Department of Neurology Christchurch Hospital Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand.,Department of Medicine Otago University Dunedin New Zealand
| |
Collapse
|
17
|
Turski CA, Turski GN, Faber J, Teipel SJ, Holz FG, Klockgether T, Finger RP. Microvascular Breakdown Due to Retinal Neurodegeneration in Ataxias. Mov Disord 2021; 37:162-170. [PMID: 34533237 DOI: 10.1002/mds.28791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Neurodegenerative ataxias are devastating disorders of the cerebellum and spinal cord, accompanied by death of retinal ganglion cells, leading to relentlessly progressive decline of motor coordination and permanent disability. Retinal microvascular affection has not yet been determined. OBJECTIVES The aim of this study is to assess whether retinal microvascular alterations occur and, if so, whether they are concurrent with or follow cell death in the retina in neurodegenerative diseases. METHODS This study involves the cross-sectional observational study of 43 patients with ataxia and 43 controls enrolled from August 1, 2018, to September 30, 2020. The extent of ataxia was determined by the Scale for the Assessment and Rating of Ataxia. Changes in retinal vasculature were examined by optical coherence tomography angiography (OCT-A) and retinal cell and fiber density by OCT in ataxias concurrently. RESULTS When comparing the ataxia cohort with healthy subjects, ataxia patients exhibited reduced vessel density in the radial peripapillary capillary (RPC) network (P = 0.005), capillary density inside the optic nerve head (cdONH) (P < 0.001), nasal superficial vascular plexus (P = 0.03) as well as reduced ganglion cell layer (GCL) volume (P = 0.04), and temporal peripapillary retinal nerve fiber layer thickness (P = 0.04). Mixed effect analysis modeling laterality confirmed these findings. CONCLUSIONS These findings demonstrate a distinct pattern of concurrent changes in vessel density of the retinal superficial vascular complex, encompassing the superficial vascular plexus, RPC network and cdONH, and retinal GCL volume, providing new insights into the ongoing degeneration in ataxias. Our findings may have relevance for design of novel therapeutic approaches for ataxias and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Christopher A Turski
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gabrielle N Turski
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Lal V, Mehta S, Takkar A, Ray S. Ophthalmological findings in movement disorders. ANNALS OF MOVEMENT DISORDERS 2021. [DOI: 10.4103/aomd.aomd_35_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Fifel K, De Boer T. The circadian system in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:301-313. [PMID: 34225971 DOI: 10.1016/b978-0-12-819975-6.00019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circadian organization of physiology and behavior is an important biologic process that allows organisms to anticipate and prepare for predictable changes in the environment. Circadian disruptions are associated with a wide range of health issues. In patients with neurodegenerative diseases, alterations of circadian rhythms are among the most common and debilitating symptoms. Although a growing awareness of these symptoms has occurred during the last decade, their underlying neuropathophysiologic circuitry remains poorly understood and, consequently, no effective therapeutic strategies are available to alleviate these health issues. Recent studies have examined the neuropathologic status of the different neural components of the circuitry governing the generation of circadian rhythms in neurodegenerative diseases. In this review, we will dissect the potential contribution of dysfunctions in the different nodes of this circuitry to circadian alterations in patients with parkinsonism-linked neurodegenerative diseases (namely, Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy). A deeper understanding of these mechanisms will provide not only a better understanding of disease neuropathophysiology but also holds promise for the development of more effective and mechanisms-based therapies.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Tom De Boer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Zhou WC, Tao JX, Li J. Optical coherence tomography measurements as potential imaging biomarkers for Parkinson's disease: A systematic review and meta-analysis. Eur J Neurol 2020; 28:763-774. [PMID: 33107159 DOI: 10.1111/ene.14613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Retinal pathological changes may precede or accompany the deterioration of brain tissue in Parkinson's disease (PD). The purpose of this meta-analysis was to assess the usefulness of optical coherence tomography (OCT) measurements as potential imaging biomarkers for PD. METHODS PubMed, Embase, Web of Science and Cochrane Library databases were systematically searched for observational studies (published prior to 30 May 2020) comparing the OCT measurements between PD patients and healthy controls (HCs). Our main end-points were peripapillary retinal nerve fiber layer (pRNFL) thickness, macular ganglion cell complex thickness, macular thickness and macular volume. Pooled data were assessed by use of a random-effects model. RESULTS A total of 36 observational studies were identified that included 1712 patients with PD (2548 eyes) and 1778 HCs (2646 eyes). Compared with the HC group, the PD group showed a significant reduction in mean pRNFL thickness (weighted mean difference [WMD] -3.51 μm, 95% confidence interval [CI] -4.84, -2.18; p = 0.000), all quadrants at the pRNFL (WMD range -7.65 to -2.44 μm, all p < 0.05), macular fovea thickness (WMD -5.62 μm, 95% CI -7.37, -3.87; p = 0.000), all outer sector thicknesses at the macula (WMD range -4.68 to -4.10 μm, all p < 0.05), macular volume (WMD -0.21 mm3 , 95% CI -0.36, -0.06; p < 0.05) and macular ganglion cell complex thickness (WMD -4.18 μm, 95% CI -6.07, -2.29; p < 0.05). CONCLUSIONS Our pooled data confirmed robust associations between retinal OCT measurements and PD, highlighting the usefulness of OCT measurements as potential imaging biomarkers for PD.
Collapse
Affiliation(s)
- Wen-Chuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jin-Xin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Huang L, Wang C, Wang W, Wang Y, Zhang R. The specific pattern of retinal nerve fiber layer thinning in Parkinson’s disease: a systematic review and meta-analysis. J Neurol 2020; 268:4023-4032. [DOI: 10.1007/s00415-020-10094-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
|
22
|
Tsokolas G, Tsaousis KT, Diakonis VF, Matsou A, Tyradellis S. Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review. Eye Brain 2020; 12:73-87. [PMID: 32765149 PMCID: PMC7368556 DOI: 10.2147/eb.s193026] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Optical coherence tomography angiography (OCT-A) has emerged as a novel, fast, safe and non-invasive imaging technique of analyzing the retinal and choroidal microvasculature in vivo. OCT-A captures multiple sequential B-scans performed repeatedly over a specific retinal area at high speed, thus enabling the composition of a vascular map with areas of contrast change (high flow zones) and areas of steady contrast (slow or no flow zones). It therefore provides unique insight into the exact retinal or choroidal layer and location at which abnormal blood flow develops. OCTA has evolved into a useful tool for understanding a number of retinal pathologies such as diabetic retinopathy, age-related macular degeneration, central serous chorioretinopathy, vascular occlusions, macular telangiectasia and choroidal neovascular membranes of other causes. OCT-A technology is also increasingly being used in the evaluation of optic disc perfusion and has been suggested as a valuable tool in the early detection of glaucomatous damage and monitoring progression. Objective To review the existing literature on the applications of optical coherence tomography angiography in neurodegenerative diseases. Summary A meticulous literature was performed until the present day. Google Scholar, PubMed, Mendeley search engines were used for this purpose. We used 123 published manuscripts as our references. OCT-A has been utilized so far to describe abnormalities in multiple sclerosis (MS), Alzheimer’s disease, arteritic and non-arteritic optic neuropathy (AION and NAION), Leber’s hereditary optic neuropathy (LHON) papilloedema, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis (ALS), Wolfram syndrome, migraines, lesions of the visual pathway and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). It appears that OCT-A findings correlate quite well with the severity of the aforementioned diseases. However, OCT-A has its own limitations, namely its lack of wide-field view of the peripheral retina and the inaccurate interpretation due to motion artifacts in uncooperative groups of patients (e.g. children). Larger prospective longitudinal studies will need to be conducted in order to eliminate the aforementioned limitations.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | - Konstantinos T Tsaousis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | | | - Artemis Matsou
- Ophthalmology Department, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Straton Tyradellis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| |
Collapse
|
23
|
Kaehler K, Seitter H, Sandbichler AM, Tschugg B, Obermair GJ, Stefanova N, Koschak A. Assessment of the Retina of Plp-α-Syn Mice as a Model for Studying Synuclein-Dependent Diseases. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32503050 PMCID: PMC7415298 DOI: 10.1167/iovs.61.6.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease are associated with a variety of visual symptoms. Functional and morphological retinal aberrations are therefore supposed to be valuable biomarkers for these neurodegenerative diseases. This study examined the retinal morphology and functionality resulting from human α-synuclein (α-Syn) overexpression in the transgenic Plp-α-Syn mouse model. Methods Immunohistochemistry on retinal sections and whole-mounts was performed on 8- to 11-week-old and 12-month-old Plp-α-Syn mice and C57BL/6N controls. Quantitative RT-PCR experiments were performed to study the expression of endogenous and human α-Syn and tyrosine hydroxylase (TH). We confirmed the presence of human α-Syn in the retina in western blot analyses. Multi-electrode array (MEA) analyses from light-stimulated whole-mounted retinas were used to investigate their functionality. Results Biochemical and immunohistochemical analyses showed human α-Syn in the retina of Plp-α-Syn mice. We found distinct staining in different retinal cell layers, most abundantly in rod bipolar cells of the peripheral retina. In the periphery, we also observed a trend toward a decline in the number of retinal ganglion cells. The number of TH+ neurons was unaffected in this human α-Syn overexpression model. MEA recordings showed that Plp-α-Syn retinas were functional but exhibited mild alterations in dim light conditions. Conclusions Together, these findings implicate an impairment of retinal neurons in the Plp-α-Syn mouse. The phenotype partly relates to retinal deficits reported in MSA patients. We further propose the suitability of the Plp-α-Syn retina as a biological model to study synuclein-mediated mechanisms.
Collapse
Affiliation(s)
- Kathrin Kaehler
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Hartwig Seitter
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | | | - Bettina Tschugg
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
- Physiology Division, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Park KW, Choi N, Ryu HS, Kim MS, Lee EJ, Chung SJ. Pupillary dysfunction of multiple system atrophy: Dynamic pupillometric findings and clinical correlations. Parkinsonism Relat Disord 2019; 65:234-237. [PMID: 31076267 DOI: 10.1016/j.parkreldis.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Although autonomic dysfunction is the prominent clinical feature in multiple system atrophy (MSA), little is known about the pupillary autonomic aspect of MSA. We aimed to evaluate pupillary autonomic function in MSA patients using dynamic pupillometry, which can quantify the pupillary light reflex. METHODS Dynamic pupillometry parameters were compared in 21 MSA patients and 21 healthy controls. Pupillometric parameters were correlated with total Unified Multiple System Atrophy Rating Scale (UMSARS) scores and autonomic symptom severity. RESULTS Average constriction (p = 0.034) and dilation (p = 0.003) velocities were significantly slowed in MSA patients compared with controls. Total UMSARS correlated with the average constriction (r = -0.527, p = 0.017) and maximum constriction (r = -0.658, p = 0.003) velocities. Autonomic symptom severity correlated with average constriction (r = -0.544, p = 0.013), maximum constriction (r = -0.607, p = 0.005) and average dilation (r = -0.499, p = 0.025) velocities. CONCLUSION Dynamic pupillometry may provide useful information about pupillary autonomic dysfunction, which correlated with the clinical severity, in patients with MSA.
Collapse
Affiliation(s)
- Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Nari Choi
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Ho-Sung Ryu
- Department of Neurology, Kyungpook National University School of Medicine, Daegu, 41404, South Korea.
| | - Mi Sun Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
25
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
26
|
Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson's disease: Possible value as biomarkers. Mov Disord 2018; 33:1390-1406. [DOI: 10.1002/mds.27454] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Li Guo
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Eduardo M. Normando
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| | - Parth Arvind Shah
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Lies De Groef
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Neural Circuit Development and Regeneration Research Group, Department of Biology; University of Leuven; Leuven Belgium
| | - M. Francesca Cordeiro
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| |
Collapse
|
27
|
Palma JA, Norcliffe-Kaufmann L, Kaufmann H. Diagnosis of multiple system atrophy. Auton Neurosci 2018; 211:15-25. [PMID: 29111419 PMCID: PMC5869112 DOI: 10.1016/j.autneu.2017.10.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Multiple system atrophy (MSA) may be difficult to distinguish clinically from other disorders, particularly in the early stages of the disease. An autonomic-only presentation can be indistinguishable from pure autonomic failure. Patients presenting with parkinsonism may be misdiagnosed as having Parkinson disease. Patients presenting with the cerebellar phenotype of MSA can mimic other adult-onset ataxias due to alcohol, chemotherapeutic agents, lead, lithium, and toluene, or vitamin E deficiency, as well as paraneoplastic, autoimmune, or genetic ataxias. A careful medical history and meticulous neurological examination remain the cornerstone for the accurate diagnosis of MSA. Ancillary investigations are helpful to support the diagnosis, rule out potential mimics, and define therapeutic strategies. This review summarizes diagnostic investigations useful in the differential diagnosis of patients with suspected MSA. Currently used techniques include structural and functional brain imaging, cardiac sympathetic imaging, cardiovascular autonomic testing, olfactory testing, sleep study, urological evaluation, and dysphagia and cognitive assessments. Despite advances in the diagnostic tools for MSA in recent years and the availability of consensus criteria for clinical diagnosis, the diagnostic accuracy of MSA remains sub-optimal. As other diagnostic tools emerge, including skin biopsy, retinal biomarkers, blood and cerebrospinal fluid biomarkers, and advanced genetic testing, a more accurate and earlier recognition of MSA should be possible, even in the prodromal stages. This has important implications as misdiagnosis can result in inappropriate treatment, patient and family distress, and erroneous eligibility for clinical trials of disease-modifying drugs.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, NY, USA
| | - Lucy Norcliffe-Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, NY, USA.
| |
Collapse
|
28
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
29
|
La Morgia C, Di Vito L, Carelli V, Carbonelli M. Patterns of Retinal Ganglion Cell Damage in Neurodegenerative Disorders: Parvocellular vs Magnocellular Degeneration in Optical Coherence Tomography Studies. Front Neurol 2017; 8:710. [PMID: 29312131 PMCID: PMC5744067 DOI: 10.3389/fneur.2017.00710] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/08/2017] [Indexed: 12/02/2022] Open
Abstract
Many neurodegenerative disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), are characterized by loss of retinal ganglion cells (RGCs) as part of the neurodegenerative process. Optical coherence tomography (OCT) studies demonstrated variable degree of optic atrophy in these diseases. However, the pattern of degenerative changes affecting the optic nerve (ON) can be different. In particular, neurodegeneration is more evident for magnocellular RGCs in AD and multiple system atrophy with a pattern resembling glaucoma. Conversely, in PD and Huntington’s disease, the parvocellular RGCs are more vulnerable. This latter pattern closely resembles that of mitochondrial optic neuropathies, possibly pointing to similar pathogenic mechanisms. In this review, the currently available evidences on OCT findings in these neurodegenerative disorders are summarized with particular emphasis on the different pattern of RGC loss. The ON degeneration could become a validated biomarker of the disease, which may turn useful to follow natural history and possibly assess therapeutic efficacy.
Collapse
Affiliation(s)
- Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lidia Di Vito
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| |
Collapse
|