1
|
Guidolin C, Aerts S, Agbeshie GK, Akuffo KO, Aydin SN, Baeza-Moyano D, Bolte J, Broszio K, Cantarero-García G, Didikoglu A, González-Lezcano RA, Joosten-Ma H, Melero-Tur S, Tengelin MN, Pérez Gutiérrez MC, Stefani O, Svensson I, Udovičić L, Zauner J, Spitschan M. Protocol for a prospective, multicentre, cross-sectional cohort study to assess personal light exposure. BMC Public Health 2024; 24:3285. [PMID: 39592960 PMCID: PMC11590290 DOI: 10.1186/s12889-024-20206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024] Open
Abstract
Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health. However, comprehensive protocols capturing environmental (e.g., geographical location, season, climate, photoperiod) and individual factors (e.g., culture, personal habits, behaviour, commute type, profession) contributing to the measured light exposure are currently lacking. Here, we present a protocol that combines smartphone-based experience sampling (experience sampling implementing Karolinska Sleepiness Scale, KSS ratings) and high-quality light exposure data collection at three body sites (near-corneal plane between the two eyes mounted on spectacle, neck-worn pendant/badge, and wrist-worn watch-like design) to capture daily factors related to individuals' light exposure. We will implement the protocol in an international multi-centre study to investigate the environmental and socio-cultural factors influencing light exposure patterns in Germany, Ghana, Netherlands, Spain, Sweden, and Turkey (minimum n = 15, target n = 30 per site, minimum n = 90, target n = 180 across all sites). With the resulting dataset, lifestyle and context-specific factors that contribute to healthy light exposure will be identified. This information is essential in designing effective public health interventions.
Collapse
Affiliation(s)
- Carolina Guidolin
- Max Planck Research Group Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM School of Medicine and Health, Department Health and Sports Sciences, Chronobiology & Health, Technical University of Munich, Munich, Germany
| | - Sam Aerts
- Research Group Smart Sensor Systems, The Hague University of Applied Sciences, The Hague, Netherlands
| | - Gabriel Kwaku Agbeshie
- Department of Optometry and Visual Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Owusu Akuffo
- Department of Optometry and Visual Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sema Nur Aydin
- Department of Neuroscience, Izmir Institute of Technology, Urla, Turkey
| | - David Baeza-Moyano
- Research Group ARIE, Department of Architecture and Design, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - John Bolte
- Research Group Smart Sensor Systems, The Hague University of Applied Sciences, The Hague, Netherlands
- National Institute for Public Health and the Environment of the Netherlands (RIVM), Bilthoven, Netherlands
| | - Kai Broszio
- Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany
| | - Guadalupe Cantarero-García
- Research Group ARIE, Department of Architecture and Design, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Urla, Turkey
| | | | - Hongli Joosten-Ma
- Research Group Smart Sensor Systems, The Hague University of Applied Sciences, The Hague, Netherlands
- Research Group Purposeful Marketing, The Hague University of Applied Sciences, The Hague, Netherlands
| | - Sofía Melero-Tur
- Research Group ARIE, Department of Architecture and Design, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Maria Nilsson Tengelin
- Department of Measurement Science and Technology, RISE Research Institutes of Sweden, Borås, Sweden
| | | | - Oliver Stefani
- Lucerne University of Applied Sciences and Arts, Luzern, Switzerland
| | - Ingemar Svensson
- Department of Measurement Science and Technology, RISE Research Institutes of Sweden, Borås, Sweden
| | - Ljiljana Udovičić
- Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany
| | - Johannes Zauner
- TUM School of Medicine and Health, Department Health and Sports Sciences, Chronobiology & Health, Technical University of Munich, Munich, Germany
| | - Manuel Spitschan
- Max Planck Research Group Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- TUM School of Medicine and Health, Department Health and Sports Sciences, Chronobiology & Health, Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Makar A, Al-Hemoud A, Khraishah H, Berry J, Alahmad B. A Review of the Links Between Work and Heart Disease in the 21st Century. Methodist Debakey Cardiovasc J 2024; 20:71-80. [PMID: 39525380 PMCID: PMC11546313 DOI: 10.14797/mdcvj.1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the multifaceted exposures in the workplace that contribute to cardiovascular diseases (CVD), including physical, ergonomics, chemical, biological, psychosocial, and emerging occupational hazards. These well-documented occupational hazards have long been linked to heart disease. Exposures arising from these hazards present significant concerns for worker health and safety. Moreover, heat stress is an emerging and increasingly pervasive threat, exacerbated by climate change, particularly in outdoor, high-exposure industries like agriculture and construction. While the epidemiological links between heat and CVD are well established, there is a critical gap in research on the physiological impacts of heat on workers' cardiovascular health. In particular, migrant workers are especially vulnerable to these occupational hazards, particularly in the absence of targeted, equitable interventions. As global temperatures rise, addressing these occupational exposures is important for protecting the cardiovascular health of the workforce and the expanding field of occupational cardiology.
Collapse
Affiliation(s)
- Andrew Makar
- Sargent College of Health & Rehabilitation, Boston University, Boston, Massachusetts, US
| | - Ali Al-Hemoud
- Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | | | - Jacob Berry
- Aerospace and Occupational Medicine, United States Air Force, Washington, DC, US
| | - Barrak Alahmad
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, US
| |
Collapse
|
3
|
Spitschan M, Hammad G, Blume C, Schmidt C, Skene DJ, Wulff K, Santhi N, Zauner J, Münch M. Metadata recommendations for light logging and dosimetry datasets. BMC DIGITAL HEALTH 2024; 2:73. [PMID: 39211574 PMCID: PMC11349852 DOI: 10.1186/s44247-024-00113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
Background Light exposure significantly impacts human health, regulating our circadian clock, sleep-wake cycle and other physiological processes. With the emergence of wearable light loggers and dosimeters, research on real-world light exposure effects is growing. There is a critical need to standardize data collection and documentation across studies. Results This article proposes a new metadata descriptor designed to capture crucial information within personalized light exposure datasets collected with wearable light loggers and dosimeters. The descriptor, developed collaboratively by international experts, has a modular structure for future expansion and customization. It covers four key domains: study design, participant characteristics, dataset details, and device specifications. Each domain includes specific metadata fields for comprehensive documentation. The user-friendly descriptor is available in JSON format. A web interface simplifies generating compliant JSON files for broad accessibility. Version control allows for future improvements. Conclusions Our metadata descriptor empowers researchers to enhance the quality and value of their light dosimetry datasets by making them FAIR (findable, accessible, interoperable and reusable). Ultimately, its adoption will advance our understanding of how light exposure affects human physiology and behaviour in real-world settings.
Collapse
Affiliation(s)
- Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | - Grégory Hammad
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Chair of Neurogenetics, Institute of Human Genetics, University Hospital, Technical University of Munich, Munich, Germany
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Katharina Wulff
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | | | - Johannes Zauner
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Delisle BP, Prabhat A, Burgess DE, Ono M, Esser KA, Schroder EA. Circadian Regulation of Cardiac Arrhythmias and Electrophysiology. Circ Res 2024; 134:659-674. [PMID: 38484028 PMCID: PMC11177776 DOI: 10.1161/circresaha.123.323513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.
Collapse
Affiliation(s)
- Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Abhilash Prabhat
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Makoto Ono
- Division of Cardiology and Rehabilitation, Tamaki Hospital, Japan
| | | | | |
Collapse
|
5
|
Wu N, Sun Y, Qiu T, Liu J, Cao Y, Zang T, Fan X, Bai J, Huang J, Liu Y. Associations of nighttime light exposure during pregnancy with maternal and neonatal gut microbiota: A cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168292. [PMID: 37924882 DOI: 10.1016/j.scitotenv.2023.168292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Nighttime light (NTL) pollution has been reported as a risk factor for human health. However, the relationship between NTL and gut microbiota has not been reported in pregnant women and neonates. This study was conducted to investigate the relationship between NTL and gut microbial diversity and composition in mothers and their neonates. METHODS This study analyzed 44 mothers and 28 newborns. The composition of gut microbiota was evaluated using 16S rRNA V3-V4 sequencing. The monthly mean NTL exposure during pregnancy was respectively calculated based on each participant's residential address (NTLpoint) and a concentric 1 km radius buffer zone around their address (NTL1000m). The relationships between NTL exposure and gut microbiota of mothers and newborns were assessed using generalized linear models. RESULTS NTL exposure during pregnancy was not associated with alpha diversity of mothers or neonates. For mothers, results revealed that after adjusting for covariates, NTLpoint was negatively correlated with Prevotella_2 (p = 0.004, FDR-adjusted p = 0.030) and norank_o__Gastranaerophilales (p = 0.018, FDR-adjusted p = 0.049) at the genus level. In addition, Lachnospira (p = 0.036, FDR-adjusted p = 0.052) and Coprococcus_3 (p = 0.025, FDR-adjusted p = 0.052) were positively correlated with NTLpoint. The association between Coprococcus_3 (p = 0.01, FDR-adjusted p = 0.046) and NTLpoint persisted even after controlling for covariates. For neonates, Thauera was positively associated with NTLpoint (p = 0.015) and NTL1000m (p = 0.028), however, after adjusting for covariates and FDR correction, Thauera was not significantly associated with NTLpoint and NTL1000m. CONCLUSIONS This study found that NTL exposure was associated with maternal gut microbiota composition. Our findings provide a foundation for the potential impact of NTL exposure on maternal gut microbiota from a microbiological perspective. More population-based validation of the effects of NTL exposure on human gut microbiota is needed in future.
Collapse
Affiliation(s)
- Ni Wu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yu Sun
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianlai Qiu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Jun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Yanan Cao
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China.
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430062, China.
| |
Collapse
|
6
|
Huang CH, Yu S, Yu HS, Tu HP, Yeh YT, Yu HS. Chronic blue light-emitting diode exposure harvests gut dysbiosis related to cholesterol dysregulation. Front Cell Infect Microbiol 2024; 13:1320713. [PMID: 38259967 PMCID: PMC10800827 DOI: 10.3389/fcimb.2023.1320713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Night shift workers have been associated with circadian dysregulation and metabolic disorders, which are tightly coevolved with gut microbiota. The chronic impacts of light-emitting diode (LED) lighting at night on gut microbiota and serum lipids were investigated. Male C57BL/6 mice were exposed to blue or white LED lighting at Zeitgeber time 13.5-14 (ZT; ZT0 is the onset of "lights on" and ZT12 is the "lights off" onset under 12-hour light, 12-hour dark schedule). After 33 weeks, only the high irradiance (7.2 J/cm2) of blue LED light reduced the alpha diversity of gut microbiota. The high irradiance of white LED light and the low irradiance (3.6 J/cm2) of both lights did not change microbial alpha diversity. However, the low irradiance, but not the high one, of both blue and white LED illuminations significantly increased serum total cholesterol (TCHO), but not triglyceride (TG). There was no significant difference of microbial abundance between two lights. The ratio of beneficial to harmful bacteria decreased at a low irradiance but increased at a high irradiance of blue light. Notably, this ratio was negatively correlated with serum TCHO but positively correlated with bile acid biosynthesis pathway. Therefore, chronic blue LED lighting at a high irradiance may harvest gut dysbiosis in association with decreased alpha diversity and the ratio of beneficial to harmful bacteria to specifically dysregulates TCHO metabolism in mice. Night shift workers are recommended to be avoid of blue LED lighting for a long and lasting time.
Collapse
Affiliation(s)
- Cheng-Hsieh Huang
- Ph. D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsu-Sheng Yu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Lin J, Kuang H, Jiang J, Zhou H, Peng L, Yan X, Kuang J. Circadian Rhythms in Cardiovascular Function: Implications for Cardiac Diseases and Therapeutic Opportunities. Med Sci Monit 2023; 29:e942215. [PMID: 37986555 PMCID: PMC10675984 DOI: 10.12659/msm.942215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023] Open
Abstract
Circadian rhythms are internal 24-h intrinsic oscillations that are present in essentially all mammalian cells and can influence numerous biological processes. Cardiac function is known to exhibit a circadian rhythm and is strongly affected by the day/night cycle. Many cardiovascular variables, including heart rate, heart rate variability (HRV), electrocardiogram (ECG) waveforms, endothelial cell function, and blood pressure, demonstrate robust circadian rhythms. Many experiential and clinical studies have highlighted that disruptions in circadian rhythms can ultimately lead to maladaptive cardiac function. Factors that disrupt the circadian rhythm, including shift work, global travel, and sleep disorders, may consequently enhance the risk of cardiovascular diseases. Some cardiac diseases appear to occur at particular times of the day or night; therefore, targeting the disease at particular times of day may improve the clinical outcome. The objective of this review is to unravel the relationship between circadian rhythms and cardiovascular health. By understanding this intricate interplay, we aim to reveal the potential risks of circadian disruption and discuss the emerging therapeutic strategies, specifically those targeting circadian rhythms. In this review, we explore the important role of circadian rhythms in cardiovascular physiology and highlight the role they play in cardiac dysfunction such as ventricular hypertrophy, arrhythmia, diabetes, and myocardial infarction. Finally, we review potential translational treatments aimed at circadian rhythms. These treatments offer an innovative approach to enhancing the existing approaches for managing and treating heart-related conditions, while also opening new avenues for therapeutic development.
Collapse
Affiliation(s)
- Jiayue Lin
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Haoming Kuang
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Jiahao Jiang
- Department of Chinese Medicine, The First People’s Hospital of Kunshan, Suzhou, Jiangsu, PR China
| | - Hui Zhou
- Department of Cardiovascular, Beibei Hospital of Chinese Medicine, Chongqing, PR China
| | - Li Peng
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Xu Yan
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Jianjun Kuang
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
8
|
Hua AY, Roy ARK, Kosik EL, Morris NA, Chow TE, Lukic S, Montembeault M, Borghesani V, Younes K, Kramer JH, Seeley WW, Perry DC, Miller ZA, Rosen HJ, Miller BL, Rankin KP, Gorno-Tempini ML, Sturm VE. Diminished baseline autonomic outflow in semantic dementia relates to left-lateralized insula atrophy. Neuroimage Clin 2023; 40:103522. [PMID: 37820490 PMCID: PMC10582496 DOI: 10.1016/j.nicl.2023.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/28/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
In semantic dementia (SD), asymmetric degeneration of the anterior temporal lobes is associated with loss of semantic knowledge and alterations in socioemotional behavior. There are two clinical variants of SD: semantic variant primary progressive aphasia (svPPA), which is characterized by predominant atrophy in the anterior temporal lobe and insula in the left hemisphere, and semantic behavioral variant frontotemporal dementia (sbvFTD), which is characterized by predominant atrophy in those structures in the right hemisphere. Previous studies of behavioral variant frontotemporal dementia, an associated clinical syndrome that targets the frontal lobes and anterior insula, have found impairments in baseline autonomic nervous system activity that correlate with left-lateralized frontotemporal atrophy patterns and disruptions in socioemotional functioning. Here, we evaluated whether there are similar impairments in resting autonomic nervous system activity in SD that also reflect left-lateralized atrophy and relate to diminished affiliative behavior. A total of 82 participants including 33 people with SD (20 svPPA and 13 sbvFTD) and 49 healthy older controls completed a laboratory-based assessment of respiratory sinus arrhythmia (RSA; a parasympathetic measure) and skin conductance level (SCL; a sympathetic measure) during a two-minute resting baseline period. Participants also underwent structural magnetic resonance imaging, and informants rated their current affiliative behavior on the Interpersonal Adjective Scale. Results indicated that baseline RSA and SCL were lower in SD than in healthy controls, with significant impairments present in both svPPA and sbvFTD. Voxel-based morphometry analyses revealed left-greater-than-right atrophy related to diminished parasympathetic and sympathetic outflow in SD. While left-lateralized atrophy in the mid-to-posterior insula correlated with lower RSA, left-lateralized atrophy in the ventral anterior insula correlated with lower SCL. In SD, lower baseline RSA, but not lower SCL, was associated with lower gregariousness/extraversion. Neither autonomic measure related to warmth/agreeableness, however. Through the assessment of baseline autonomic nervous system physiology, the present study contributes to expanding conceptualizations of the biological basis of socioemotional alterations in svPPA and sbvFTD.
Collapse
Affiliation(s)
- Alice Y Hua
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Ashlin R K Roy
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Eena L Kosik
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Nathaniel A Morris
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Tiffany E Chow
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Sladjana Lukic
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Maxime Montembeault
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | | | - Kyan Younes
- Department of Neurology, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| | - Joel H Kramer
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - David C Perry
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Zachary A Miller
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Katherine P Rankin
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA
| | - Virginia E Sturm
- Department of Neurology, University of California, San Francisco, Memory and Aging Center, San Francisco, CA, USA.
| |
Collapse
|
9
|
Bower IS, Clark GM, Tucker R, Hill AT, Lum JAG, Mortimer MA, Enticott PG. Built environment color modulates autonomic and EEG indices of emotional response. Psychophysiology 2022; 59:e14121. [PMID: 35723272 PMCID: PMC9786701 DOI: 10.1111/psyp.14121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Understanding built environment exposure as a component of environmental enrichment has significant implications for mental health, but little is known about the effects design characteristics have on our emotions and associated neurophysiology. Using a Cave Automatic Virtual Environment while monitoring indoor environmental quality (IEQ), 18 participants were exposed to a resting state (black), and two room scenes, control (white) and condition (blue), to understand if the color of the virtual walls affected self-report, autonomic nervous system, and central nervous system correlates of emotion. Our findings showed that exposure to the chromatic color condition (blue) compared to the achromatic control (white) and resting-state (black, no built environment) significantly increased the range in respiration and skin conductance response. We also detected a significant increase in alpha frontal midline power and frontal hemispheric lateralization relative to blue condition, and increased power spectral density across all electrodes in the blue condition for theta, alpha, and beta bandwidths. The ability for built environment design to modulate emotional response has the potential to deliver significant public health, economic, and social benefits to the entire community. The findings show that blue coloring of the built environment increases autonomic range and is associated with modulations of brain activity linked to emotional processing.
Collapse
Affiliation(s)
- Isabella S. Bower
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia,School of Architecture and Built Environment, Faculty of Science, Engineering and Built EnvironmentDeakin UniversityGeelongVictoriaAustralia
| | - Gillian M. Clark
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia
| | - Richard Tucker
- School of Architecture and Built Environment, Faculty of Science, Engineering and Built EnvironmentDeakin UniversityGeelongVictoriaAustralia
| | - Aron T. Hill
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia
| | - Jarrad A. G. Lum
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia
| | - Michael A. Mortimer
- CADET Virtual Reality Training and Simulation Research Lab, School of Engineering, Faculty of Science, Engineering and Built EnvironmentDeakin UniversityGeelongVictoriaAustralia
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
10
|
Bryk AA, Blagonravov ML, Goryachev VA, Chibisov SM, Azova MM, Syatkin SP. Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production. PATHOPHYSIOLOGY 2022; 29:118-133. [PMID: 35366294 PMCID: PMC8954103 DOI: 10.3390/pathophysiology29010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022] Open
Abstract
Artificial light is characterized by certain features of its impact on the body in terms of its spectral distribution of power, duration of exposure and intensity. Short waves, perceived as blue light, are the strongest synchronizing agent for the circadian system. In the present work, we investigated the features of the circadian rhythms of blood pressure (BP), heart rate (HR), the excretion of electrolytes and the secretion of melatonin in normotensive (Wistar–Kyoto) and hypertensive (SHR) rats under the action of monochromatic blue light in the daytime period. It was found that the exposure of Wistar–Kyoto rats to monochromatic blue light was accompanied by a significant decrease in nighttime and 24 h systolic BP. The most remarkable changes are characteristic of the HR in SHR rats under monochromatic light. A significant decrease in HR in each time period was found, but the predominance of nighttime over daytime values remained in SHR animals. There was also a significant increase in the mesor of the HR in SHR rats. Additionally, the amplitude of diastolic BP and HR, as well as the range of oscillations in HR, were significantly increased compared with the standard light pattern. In contrast to SHR rats, the regulation of the circadian rhythms in Wistar–Kyoto rats was more flexible and presented more changes, which may be aimed at the adaptation of the body to environmental conditions. For Wistar–Kyoto rats, an increase in the level of excreted electrolytes was observed under the action of monochromatic light, but no similar changes were found in SHR rats. For Wistar–Kyoto rats, a significant decrease in the urine concentration of aMT6s in the daytime and nighttime periods is characteristic, which results in the loss of the circadian rhythm. In SHR rats, there was a significant decrease in the nighttime content of aMT6s in the urine, while the daytime concentration, on the contrary, increased. The obtained data demonstrate that prolonged exposure to monochromatic blue light in the daytime period affects the circadian structure of the rhythms of the cardiovascular system, the rhythm of electrolyte excretion and the production of epiphyseal melatonin in wild-type and hypertensive animals. In SHR rats, the rhythms of BP and HR exhibit a more rigid pattern.
Collapse
Affiliation(s)
- Anna A. Bryk
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
- Correspondence:
| | - Mikhail L. Blagonravov
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| | - Vyacheslav A. Goryachev
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| | - Sergey M. Chibisov
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| | - Madina M. Azova
- Department of Biology and General Genetics, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
| | - Sergey P. Syatkin
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| |
Collapse
|
11
|
Luo X, Ru T, Chen Q, Li Y, Chen Y, Zhou G. Influence of daytime blue-enriched bright light on heart rate variability in healthy subjects. Chronobiol Int 2022; 39:826-835. [PMID: 35209793 DOI: 10.1080/07420528.2022.2040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heart rate variability (HRV), the indicator of the autonomic nervous system-induced modulation of heart rate, is a focal topic in psychophysiological research. The effect of indoor light on HRV may be related to various psychophysiological functions. The current study (N = 20) examined the response of the autonomic nervous system (ANS) to bright vs. dim blue-enriched light (1200 lx or 200 lx at eye level, 6500 K) exposure for five hours in the afternoon among healthy young adults. The results revealed a significant main effect of light condition on the time-domain indicators, with the significantly higher HRV (SDNN and RMSSD) under 200 lx versus 1200 lx condition, and the same case was revealed for the standard deviations of the Poincaré plot in non-linear effects. Conversely, no significant effects were revealed for the frequency- domain indicators of HRV measured with the subjects' eyes open. These findings suggested that the autonomic nervous system modulation of HRV was stronger under bright light conditions.
Collapse
Affiliation(s)
- Xue Luo
- School of Psychology, South China Normal University, Guangzhou, China
| | - Taotao Ru
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Qingwei Chen
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Yun Li
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yuping Chen
- School of Psychology, South China Normal University, Guangzhou, China.,Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China
| | - Guofu Zhou
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Mason BJ, Tubbs AS, Fernandez FX, Grandner MA. Spectrophotometric properties of commercially available blue blockers across multiple lighting conditions. Chronobiol Int 2022; 39:653-664. [PMID: 34983271 PMCID: PMC9106867 DOI: 10.1080/07420528.2021.2021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lenses that filter short-wavelength ("blue") light are commercially marketed to improve sleep and circadian health. Despite their widespread use, minimal data are available regarding their comparative efficacy in curtailing blue light exposure while maintaining visibility. Fifty commercial lenses were evaluated using five light sources: a blue LED array, a computer tablet display, an incandescent lamp, a fluorescent overhead luminaire, and sunlight. Absolute irradiance was measured at baseline and for each lens across the visual spectrum (380-780 nm), which allowed calculation of percent transmission. Transmission specificity was also calculated to determine whether light transmission was predominantly circadian-proficient (455-560 nm) or non-proficient (380-454 nm and 561-780 nm). Lenses were grouped by tint and metrics were compared between groups. Red-tinted lenses exhibited the lowest transmission of circadian-proficient light, while reflective blue lenses had the highest transmission. Orange-tinted lenses transmitted similar circadian-proficient light as red-tinted lenses but transmitted more non-circadian-proficient light, resulting in higher transmission specificity. Orange-tinted lenses had the highest transmission specificity while limiting biologically active light exposure in ordinary lighting conditions. Glasses incorporating these lenses currently have the greatest potential to support circadian sleep-wake rhythms.
Collapse
Affiliation(s)
- Brooke J Mason
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Andrew S Tubbs
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Fabian-Xosé Fernandez
- Light Algorithms Laboratory, Department of Psychology, University of Arizona College of Science, Tucson, Arizona, USA
| | - Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| |
Collapse
|
13
|
Delisle BP, George AL, Nerbonne JM, Bass JT, Ripplinger CM, Jain MK, Hermanstyne TO, Young ME, Kannankeril PJ, Duffy JF, Goldhaber JI, Hall MH, Somers VK, Smolensky MH, Garnett CE, Anafi RC, Scheer FA, Shivkumar K, Shea SA, Balijepalli RC. Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 1: Basic and Translational Aspects. Circ Arrhythm Electrophysiol 2021; 14:e010181. [PMID: 34719240 PMCID: PMC8815462 DOI: 10.1161/circep.121.010181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sudden cardiac death (SCD), the unexpected death due to acquired or genetic cardiovascular disease, follows distinct 24-hour patterns in occurrence. These 24-hour patterns likely reflect daily changes in arrhythmogenic triggers and the myocardial substrate caused by day/night rhythms in behavior, the environment, and endogenous circadian mechanisms. To better address fundamental questions regarding the circadian mechanisms, the National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death. We present a 2-part report of findings from this workshop. Part 1 summarizes the workshop and serves to identify research gaps and opportunities in the areas of basic and translational research. Among the gaps was the lack of standardization in animal studies for reporting environmental conditions (eg, timing of experiments relative to the light dark cycle or animal housing temperatures) that can impair rigor and reproducibility. Workshop participants also pointed to uncertainty regarding the importance of maintaining normal circadian rhythmic synchrony and the potential pathological impact of desynchrony on SCD risk. One related question raised was whether circadian mechanisms can be targeted to reduce SCD risk. Finally, the experts underscored the need for studies aimed at determining the physiological importance of circadian clocks in the many different cell types important to normal heart function and SCD. Addressing these gaps could lead to new therapeutic approaches/molecular targets that can mitigate the risk of SCD not only at certain times but over the entire 24-hour period.
Collapse
Affiliation(s)
| | - Alfred L. George
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Jeanne M. Nerbonne
- Departments of Medicine, Cardiovascular Division, and Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Joseph T. Bass
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | | | - Mukesh K. Jain
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Tracey O. Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Martin E. Young
- Department of Medicine, University of Alabama, Birmingham, AL
| | | | | | | | - Martica H. Hall
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Ron C. Anafi
- Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Kalyanam Shivkumar
- Departement of Medicine, David Greffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven A. Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| | | |
Collapse
|
14
|
Alaasam VJ, Liu X, Niu Y, Habibian JS, Pieraut S, Ferguson BS, Zhang Y, Ouyang JQ. Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117036. [PMID: 33838441 PMCID: PMC8184626 DOI: 10.1016/j.envpol.2021.117036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/28/2021] [Indexed: 05/17/2023]
Abstract
Artificial light is transforming the nighttime environment and quickly becoming one of the most pervasive pollutants on earth. Across taxa, light entrains endogenous circadian clocks that function to synchronize behavioral and physiological rhythms with natural photoperiod. Artificial light at night (ALAN) disrupts these photoperiodic cues and has consequences for humans and wildlife including sleep disruption, physiological stress and increased risk of cardiovascular disease. However, the mechanisms underlying organismal responses to dim ALAN, resembling light pollution, remain elusive. Light pollution exists in the environment at lower levels (<5 lux) than tested in many laboratory studies that link ALAN to circadian rhythm disruption. Few studies have linked dim ALAN to both the upstream regulators of circadian rhythms and downstream behavioral and physiological consequences. We exposed zebra finches (Taeniopygia gutatta) to dim ALAN (1.5 lux) and measured circadian expression of five pacemaker genes in central and peripheral tissues, plasma melatonin, locomotor activity, and biomarkers of cardiovascular health. ALAN caused an increase in nighttime activity and, for males, cardiac hypertrophy. Moreover, downstream effects were detectable after just short duration exposure (10 days) and at dim levels that mimic the intensity of environmental light pollution. However, ALAN did not affect circulating melatonin nor oscillations of circadian gene expression in the central clock (brain) or liver. These findings suggest that dim ALAN can alter behavior and physiology without strong shifts in the rhythmic expression of molecular circadian pacemakers. Approaches that focus on ecologically-relevant ALAN and link complex biological pathways are necessary to understand the mechanisms underlying vertebrate responses to light pollution.
Collapse
Affiliation(s)
- Valentina J Alaasam
- Department of Biology, University of Nevada, Reno, Reno, NV, USA; Program of Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Xu Liu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Ye Niu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Justine S Habibian
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Program of Cellular and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Brad S Ferguson
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Center for Biomedical Research Excellence in Molecular and Cellular Signal Transduction in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
15
|
Gabel V, Miglis M, Zeitzer JM. Effect of artificial dawn light on cardiovascular function, alertness, and balance in middle-aged and older adults. Sleep 2021; 43:5822621. [PMID: 32307533 DOI: 10.1093/sleep/zsaa082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/10/2020] [Indexed: 11/15/2022] Open
Abstract
STUDY OBJECTIVES When arising in the morning, many older people experience dizziness and difficulty maintaining proper balance, as the cardiovascular system is not able to compensate to the postural shift (standing) and maintain sufficient blood flow to the brain. Such changes in cardiovascular function are observed in young individuals exposed to a dawn simulation light. In this study, we examined whether exposure to a dawn simulation light could impact cardiovascular function and consequent changes in balance in middle-aged and older adults. METHODS Twenty-three participants (67.3 ± 8.8 y), 12 of whom reported a history of dizziness in the morning, underwent two overnight stays in our laboratory. During both nights, they slept in complete darkness, except for the last 30 minutes of one of the nights during which a dawn simulation light was used. Continuous blood pressure (BP) and heart rate (HR) were monitored. Subjective and objective alertness, salivary cortisol, and mobile and standing balance were examined upon arising. RESULTS Dawn simulation light decreased (33%) the amount of sleep before morning awakening, lowered BP (6.24 mmHg), and increased HR (0.93 bpm). Despite these changes in physiology, there was no significant impact of dawn simulation on subjective or objective alertness, measures of standing or ambulatory balance, morning cortisol awakening response, or cardiovascular function after awakening. CONCLUSION While the dawn simulation did cause an increase in wake and a change in cardiovascular function prior to morning arousal in older adults, we could find no evidence of a functional change in either cardiovascular function or balance upon standing. CLINICAL TRIAL Registered on Clinicaltrials.gov, #NCT02632318, https://clinicaltrials.gov/ct2/show/NCT02632318.
Collapse
Affiliation(s)
- Virginie Gabel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Mitchell Miglis
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA.,Mental Illness Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
16
|
Wang Y, Jiang W, Chen H, Zhou H, Liu Z, Liu Z, Liu Z, Zhou Y, Zhou X, Yu L, Jiang H. Sympathetic Nervous System Mediates Cardiac Remodeling After Myocardial Infarction in a Circadian Disruption Model. Front Cardiovasc Med 2021; 8:668387. [PMID: 33842566 PMCID: PMC8032890 DOI: 10.3389/fcvm.2021.668387] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Circadian rhythms have a considerable impact on the daily physiology of the heart, and their disruption causes pathology. Several studies have revealed that circadian disruption impaired cardiac remodeling after myocardial infarction (MI); however, the underlying brain-heart mechanisms remain unknown. We aim to discuss whether circadian disruption facilitates cardiac remodeling after MI by activating sympathetic nervous system. Methods: Rats were randomly divided into three groups: Sham group (Sham), MI group (MI), and MI+ circadian disruption group (MI+Dis); rats were treated with pseudorabies virus (PRV) injections for trans-synaptic retrograde tracing; rats were randomly divided into two groups: MI+ circadian disruption + Empty Vector+ clozapine N-oxide (CNO) (Empty Vector), and MI+ circadian disruption + hM4D(Gi)+ CNO [hM4D(Gi)]. Results: Circadian disruption significantly facilitated cardiac remodeling after MI with lower systolic function, larger left ventricular volume, and aggravated cardiac fibrosis. Cardiac sympathetic remodeling makers and serum norepinephrine levels were also significantly increased by circadian disruption. PRV virus-labeled neurons were identified in the superior cervical ganglion (SCG), paraventricular nucleus (PVN), and suprachiasmatic nucleus (SCN) regions. Ganglionic blockade via designer receptors exclusively activated by designer drugs (DREADD) technique suppressed the activity of sympathetic nervous system and significantly alleviated the disruption-related cardiac dysfunction. Conclusion: Circadian disruption adversely affected cardiac remodeling after MI possibly by activating sympathetic nervous system, and suppressing sympathetic activity can attenuate this disruption-related cardiac dysfunction.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huixin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous Research Center, Wuhan University, Wuhan, China.,Department of Cardiology Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
17
|
Gubin D, Weinert D, Solovieva SV, Durov AM, Litvinova NS, Danilova LA, Prokopiev NY, Trushnikov DY, Kartashova EA. Melatonin attenuates light-at-night effects on systolic blood pressure and body temperature but does not affect diastolic blood pressure and heart rate circadian rhythms. BIOL RHYTHM RES 2020; 51:780-793. [DOI: 10.1080/09291016.2018.1564586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - D. Weinert
- Institute of Biology/Zoology, Martin Luther University, Halle-Wittenberg, Germany
| | - S. V. Solovieva
- Department of Biology, Tyumen Medical University, Tyumen, Russia
| | - A. M. Durov
- Department of Biology, Tyumen Medical University, Tyumen, Russia
- Department of Sport Medicine, Tyumen State University, Tyumen, Russia
| | - N. S. Litvinova
- Department of Biology, Tyumen Medical University, Tyumen, Russia
| | - L. A. Danilova
- Department of Biology, Tyumen Medical University, Tyumen, Russia
| | - N. Y. Prokopiev
- Institute of Biology/Zoology, Martin Luther University, Halle-Wittenberg, Germany
| | - D. Y. Trushnikov
- Department of Biology, Tyumen Medical University, Tyumen, Russia
| | - E. A. Kartashova
- Department of Biology, Tyumen Medical University, Tyumen, Russia
| |
Collapse
|
18
|
Dibner C. The importance of being rhythmic: Living in harmony with your body clocks. Acta Physiol (Oxf) 2020; 228:e13281. [PMID: 30980501 DOI: 10.1111/apha.13281] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Circadian rhythms have developed in all light-sensitive organisms, including humans, as a fundamental anticipatory mechanism that enables proactive adaptation to environmental changes. The circadian system is organized in a highly hierarchical manner, with clocks operative in most cells of the body ensuring the temporal coordination of physiological processes. Circadian misalignment, stemming from modern life style, draws increasing attention due to its tight association with the development of metabolic, cardiovascular, inflammatory and mental diseases as well as cancer. This review highlights recent findings emphasizing the role of the circadian system in the temporal orchestration of physiology, with a particular focus on implications of circadian misalignment in human pathologies.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center, Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) Geneva Switzerland
| |
Collapse
|
19
|
Blagonravov ML, Bryk AA, Medvedeva EV, Goryachev VA, Chibisov SM, Kurlaeva AO, Agafonov ED. Structure of Rhythms of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Secretion of Melatonin in Normotensive and Spontaneously Hypertensive Rats Maintained under Conditions of Prolonged Daylight Duration. Bull Exp Biol Med 2019; 168:18-23. [PMID: 31741240 DOI: 10.1007/s10517-019-04636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/24/2022]
Abstract
We studied the structure of rhythms of BP, HR (by telemetric monitoring), electrolyte excretion (by capillary electrophoresis), and products of epiphyseal melatonin (by the urinary concentration of 6-sulfatoxymelatonin measured by ELISA) in normotensive Wistar-Kyoto rats and spontaneously hypertensive SHR rats maintained at 16/8 h and 20/4 h light-dark regimes. In Wister-Kyoto rats exposed to prolonged daylight, we observed changes in the amplitude, rhythm power (% of rhythm), and range of oscillations of systolic BP; HR mezor decreased. In SHR rats, mezor of HR also decreased, but other parameters of rhythms remained unchanged. Changes in electrolyte excretion were opposite in normo- and hypertensive rats. Under conditions of 20/4 h light-dark regime, daytime melatonin production tended to increase in normotensive rats and significantly increased in SHR rats. At the same time, nighttime melatonin production did not change in both normotensive and hypertensive animals. As the secretion of melatonin has similar features in animals of both lines, we can say that the epiphyseal component of the "biological clock" is not the only component of the functional system that determines the response of the studied rhythms to an increase in the duration of light exposure.
Collapse
Affiliation(s)
- M L Blagonravov
- V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia.
| | - A A Bryk
- V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - E V Medvedeva
- V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - V A Goryachev
- V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - S M Chibisov
- V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - A O Kurlaeva
- V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - E D Agafonov
- V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
20
|
Effects of Different Light Sources on Neural Activity of the Paraventricular Nucleus in the Hypothalamus. ACTA ACUST UNITED AC 2019; 55:medicina55110732. [PMID: 31717519 PMCID: PMC6915334 DOI: 10.3390/medicina55110732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/03/2022]
Abstract
Background and Objectives: Physical function is influenced by light irradiation, and interest in the influence of light irradiation on health is high. Light signals are transmitted from the retina to the suprachiasmatic nucleus (SCN) via the retinal hypothalamic tract as non-image vision. Additionally, the SCN projects a nerve to the paraventricular nucleus (PVN) which acts as a stress center. This study examined the influences of three different light sources on neural activity in the PVN region using two different color temperatures. Materials and Methods: Experiments were conducted using twenty-eight Institute of Cancer Research (ICR) mice (10 week old males). Three light sources were used: (1) organic light-emitting diode (OLED) lighting, (2) LED lighting, and (3) fluorescent lighting. We examined the effects of light irradiation from the three light sources using two different color temperatures (2800 K and 4000 K). Perfusion was done 60 min after light irradiation, and then the brain was removed from the mouse for an immunohistochemistry analysis. c-Fos was immunohistochemically visualized as a marker of neural activity in the PVN region. Results: The number of c-Fos-positive cells was found to be significantly lower under OLED lighting and LED lighting conditions than under fluorescent lighting at a color temperature of 2800 K, and significantly lower under OLED lighting than LED lighting conditions at a color temperature of 4000 K. Conclusions: This study reveals that different light sources and color temperatures alter the neural activity of the PVN region. These results suggest that differences in the light source or color temperature may affect the stress response.
Collapse
|
21
|
Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol Metab 2019; 30:767-779. [PMID: 31427142 PMCID: PMC6779516 DOI: 10.1016/j.tem.2019.07.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
The circadian system, that is ubiquitous across species, generates ∼24 h rhythms in virtually all biological processes, and allows them to anticipate and adapt to the 24 h day/night cycle, thus ensuring optimal physiological function. Epidemiological studies show time-of-day variations in adverse cardiovascular (CV) events, and controlled laboratory studies demonstrate a circadian influence on key markers of CV function and risk. Furthermore, circadian misalignment, that is typically experienced by shift workers as well as by individuals who experience late eating, (social) jet lag, or circadian rhythm sleep-wake disturbances, increases CV risk factors. Therefore, understanding the mechanisms by which the circadian system regulates CV function, and which of these are affected by circadian disruption, may help to develop intervention strategies to mitigate CV risk.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Vujovic
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Abstract
Light, through its non-imaging forming effects, plays a dominant role on a myriad of physiological functions, including the human sleep–wake cycle. The non-image forming effects of light heavily rely on specific properties such as intensity, duration, timing, pattern, and wavelengths. Here, we address how specific properties of light influence sleep and wakefulness in humans through acute effects, e.g., on alertness, and/or effects on the circadian timing system. Of critical relevance, we discuss how different characteristics of light exposure across the 24-h day can lead to changes in sleep–wake timing, sleep propensity, sleep architecture, and sleep and wake electroencephalogram (EEG) power spectra. Ultimately, knowledge on how light affects sleep and wakefulness can improve light settings at home and at the workplace to improve health and well-being and optimize treatments of chronobiological disorders.
Collapse
|
23
|
Mork R, Falkenberg HK, Fostervold KI, Thorud HMS. Visual and psychological stress during computer work in healthy, young females-physiological responses. Int Arch Occup Environ Health 2018; 91:811-830. [PMID: 29850947 PMCID: PMC6132651 DOI: 10.1007/s00420-018-1324-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
Abstract
Purpose Among computer workers, visual complaints, and neck pain are highly prevalent. This study explores how occupational simulated stressors during computer work, like glare and psychosocial stress, affect physiological responses in young females with normal vision. Methods The study was a within-subject laboratory experiment with a counterbalanced, repeated design. Forty-three females performed four 10-min computer-work sessions with different stress exposures: (1) minimal stress; (2) visual stress (direct glare); (3) psychological stress; and (4) combined visual and psychological stress. Muscle activity and muscle blood flow in trapezius, muscle blood flow in orbicularis oculi, heart rate, blood pressure, blink rate and postural angles were continuously recorded. Immediately after each computer-work session, fixation disparity was measured and a questionnaire regarding perceived workstation lighting and stress was completed. Results Exposure to direct glare resulted in increased trapezius muscle blood flow, increased blink rate, and forward bending of the head. Psychological stress induced a transient increase in trapezius muscle activity and a more forward-bent posture. Bending forward towards the computer screen was correlated with higher productivity (reading speed), indicating a concentration or stress response. Forward bent posture was also associated with changes in fixation disparity. Furthermore, during computer work per se, trapezius muscle activity and blood flow, orbicularis oculi muscle blood flow, and heart rate were increased compared to rest. Conclusions Exposure to glare and psychological stress during computer work were shown to influence the trapezius muscle, posture, and blink rate in young, healthy females with normal binocular vision, but in different ways. Accordingly, both visual and psychological factors must be taken into account when optimizing computer workstations to reduce physiological responses that may cause excessive eyestrain and musculoskeletal load.
Collapse
Affiliation(s)
- Randi Mork
- Department of Public Health Science, Norwegian University of Life Sciences, Ås, Norway.
- Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, National Centre for Optics, Vision and Eye Care, P.O. Box 235, 3603, Kongsberg, Norway.
| | - Helle K Falkenberg
- Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, National Centre for Optics, Vision and Eye Care, P.O. Box 235, 3603, Kongsberg, Norway
| | | | - Hanne Mari S Thorud
- Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, National Centre for Optics, Vision and Eye Care, P.O. Box 235, 3603, Kongsberg, Norway
| |
Collapse
|