1
|
Bahabry R, Jago SS, Hauser RM, Harmon J, Sheppard LD, Oyassan B, Lubin FD. Hippocampal gene expression changes associated with sequential behavioral training in a temporal lobe epilepsy rat model. Epilepsy Behav Rep 2025; 29:100735. [PMID: 39898299 PMCID: PMC11786087 DOI: 10.1016/j.ebr.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025] Open
Abstract
The transcriptional mechanisms underlying impaired hippocampal-dependent memory seen in temporal lobe epilepsy (TLE) have been extensively studied in rodent models. While cognitive testing in these models often involves multiple behavioral tasks, the impact of sequential behavioral testing (SBT) on gene transcription changes in epilepsy remains poorly understood. This study utilized the Kainic Acid (KA) TLE rodent model to examine hippocampal gene expression changes influenced by SBT. Our findings indicate reduced anxiety-related behavior, along with impaired spatial and recognition memory and fear memory in epileptic animals. Quantitative PCR (qPCR) analysis revealed an increase in BDNF, dFosB, Tet2, and Tet3 expression in the epilepsy-SBT group compared to control-SBT, while there was a reduction in Npas4 and Egr4 expression. Immunohistochemistry (IHC) showed that in epileptic animals, performing SBT reversed the loss of 5-hydroxymethylcytosine (5-hmC) in the dorsal hippocampus compared to that seen in home-caged (HC) epileptic animals, and this reversal was neuron-driven. These findings highlight the complex interplay between gene transcription and epigenetic regulation during SBT enrichment in the context of epilepsy.
Collapse
Affiliation(s)
- Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Silvienne Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca M. Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan Harmon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah Dinah Sheppard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bellafaith Oyassan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Shi J, Yang T, Li Y, Zhong L, Longo FM, Massa SM. A Small-Molecule TrkB/TrkC Ligand Promotes Neurogenesis and Behavioral Recovery Following Traumatic Brain Injury. Neurotrauma Rep 2025; 6:195-209. [PMID: 40129897 PMCID: PMC11931105 DOI: 10.1089/neur.2024.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Tropomyosin receptor-kinase B (TrkB) and TrkC neurotrophin receptors promote neuronal growth and differentiation during the development and maintenance of structural integrity and plasticity in adult animals. Here, we test the hypotheses that activation of TrkB and TrkC will mitigate neuronal damage and loss, and behavioral deficits induced by traumatic brain injury (TBI). LM22B-10 (C10), a blood-brain barrier permeant small-molecule TrkB/TrkC co-activator, significantly increased proliferation, survival, and enhanced differentiation of neuronal progenitor cells in vitro. Following controlled cortical impact injury in rats, LM22B-10 administration increased the proliferation of doublecortin-expressing (DCX) cells in the hippocampus and significantly reduced cell death in the injured cortex. Interestingly, in studies of behavior, LM22B-10 promoted anxiety-like behavior and diminished spatial memory performance in the Barnes maze in sham-TBI animals but improved both of these behaviors in injured rats, a bimodal response suggesting the possibility that excess neurotrophic activity may be detrimental in uninjured animals but compensatory after injury. Thus, TrkB/TrkC agents may constitute a new therapeutic avenue for TBI but will require further study to determine safe and effective applications.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Yibing Li
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| | - Lily Zhong
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Stephen M. Massa
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Aguilar BL, Toib J, Malkova L, Forcelli PA. An unescapable looming threat paradigm for assessing anxiety-like responses in rats. Behav Brain Res 2025; 477:115296. [PMID: 39426528 PMCID: PMC11613989 DOI: 10.1016/j.bbr.2024.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Rapidly approaching visual stimuli (i.e. looming objects) are known to evoke unconditioned defense responses across species. In rodents, this threat reactivity repertoire includes freezing and fleeing behavior. Although components of the circuitry underlying unconditioned response to a looming threat have been elucidated, both a temporal characterization and drug effects on the freezing response have not yet been reported. Here, we describe a modified version of a looming threat task in which no escape route is available. In this task, we observed unconditioned freezing prior to, during, and after exposure to a looming threat stimulus. In Long Evans (LE) and Sprague-Dawley (SD) rats, we report looming stimulus-specific freezing response. We further explored the specificity and pharmacosensitivity of this response in male and female LE rats. Administration of a GABA-A receptor negative allosteric modulator (FG-7142) did not re-establish freezing in habituated animals; however, administration of a GABA-A receptor positive allosteric modulator (diazepam) in naïve LEs significantly reduced freezing during the post-looming period in a sex-dependent manner. Presentation of an unescapable looming stimulus results in freezing that extends beyond the acute threat exposure. Because freezing responses outlast the initial threat, and display only modest sensitivity to conventional anxiolytic therapy, this may represent a platform for screening agents in treatment-refractory anxiety.
Collapse
Affiliation(s)
- Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, United States; Department of Pharmacology & Physiology, United States
| | - Jonathan Toib
- Department of Pharmacology & Physiology, United States
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, United States; Department of Pharmacology & Physiology, United States
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, United States; Department of Pharmacology & Physiology, United States; Department of Neuroscience, United States.
| |
Collapse
|
4
|
Rahimi-Tesiye M, Rajabi-Maham H, Hosseini A, Azizi V. Beneficial effects of fenoprofen on cognitive impairment induced by the kindling model of epilepsy: Interaction of oxidative stress and inflammation. Brain Res Bull 2025; 220:111151. [PMID: 39626803 DOI: 10.1016/j.brainresbull.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Hippocampal-dependent cognitive impairments are consequences of temporal lobe epilepsy. This study aimed to assess the modulatory effects of fenoprofen on Pentylenetetrazol (PTZ)-induced cognitive dysfunction in the rat model of epilepsy. Male Wistar rats were randomly divided into five groups. Except for the control group, the kindling model was induced by intraperitoneal (IP) injection of PTZ (35 mg/kg) every other day for a month. Three groups received fenoprofen (10, 20, and 40 mg/kg) before each PTZ injection. One week after kindling development, rats were challenged with PTZ (70 mg/kg). The Morris Water Maze, Shuttle Box, and Elevated Plus Maze tests were applied to assess cognitive functions. Rats' serum and brain samples were prepared for biochemical, histological, and gene expression studies. Fenoprofen pretreatment effectively reduced the mean seizure score, and treated rats had better cognitive performance than the PTZ group in passive avoidance and spatial memory and learning tests; they also showed less anxiety-like behaviors. Its administration also showed anti-oxidative properties. So the serum level of Nitric oxide was significantly reduced while Glutathione and Catalase increased significantly. It also diminished the expression of inflammatory genes (Tumor Necrosis Factor alpha (TNF-α) and Nuclear Factor Kappa B (NF-kB)) in the hippocampus, these results were confirmed by histological observation from Hematoxylin & Eosin staining. These results show the ability of fenoprofen to reduce cognitive impairments caused by epilepsy induction. These effects seem to be through the modulation of inflammatory mediators and oxidative stress.
Collapse
Affiliation(s)
- Maryam Rahimi-Tesiye
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Raber J, Chaudhari M, De la Torre A, Holden S, Kessler K, Glaeser B, Lenarczyk M, Leonard SW, Borg A, Kwok A, Patel C, Kronenberg A, Olsen CM, Willey JS, Morré J, Choi J, Stevens JF, Bobe G, Minnier J, Baker J. Effects of 5-ion 6-beam sequential irradiation in the presence and absence of hindlimb or control hindlimb unloading on behavioral performances and plasma metabolic pathways of Fischer 344 rats. Front Physiol 2024; 15:1486767. [PMID: 39605860 PMCID: PMC11598337 DOI: 10.3389/fphys.2024.1486767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Effects and interactions between different spaceflight stressors are expected to be experienced by crew on missions when exposed to microgravity and galactic cosmic rays (GCRs). One of the limitations of previous studies on simulated weightlessness using hindlimb unloading (HU) is that a control HU condition was not included. Methods We characterized the behavioral performance of male Fischer rats 2 months after sham or total body irradiation with a simplified 5-ion 6-mixed-beam exposure representative of GCRs in the absence or presence of HU. Six months later, the plasma, hippocampus, and cortex were processed to determine whether the behavioral effects were associated with long-term alterations in the metabolic pathways. Results In the open field without and with objects, interactions were observed for radiation × HU. In the plasma of animals that were not under the HU or control HU condition, the riboflavin metabolic pathway was affected most for sham irradiation vs. 0.75 Gy exposure. Analysis of the effects of control HU on plasma in the sham-irradiated animals showed that the alanine, aspartate, glutamate, riboflavin, and glutamine metabolisms as well as arginine biosynthesis were affected. The effects of control HU on the hippocampus in the sham-irradiated animals showed that the phenylalanine, tyrosine, and tryptophan pathway was affected the most. Analysis of effects of 0.75 Gy irradiation on the cortex of control HU animals showed that the glutamine and glutamate metabolic pathway was affected similar to the hippocampus, while the riboflavin pathway was affected in animals that were not under the control HU condition. The effects of control HU on the cortex in sham-irradiated animals showed that the riboflavin metabolic pathway was affected. Animals receiving 0.75 Gy of irradiation showed impaired glutamine and glutamate metabolic pathway, whereas animals receiving 1.5 Gy of irradiation showed impaired riboflavin metabolic pathways. A total of 21 plasma metabolites were correlated with the behavioral measures, indicating that plasma and brain biomarkers associated with behavioral performance are dependent on the environmental conditions experienced. Discussion Phenylalanine, tyrosine, and tryptophan metabolism as well as phenylalanine and tryptophan as plasma metabolites are biomarkers that can be considered for spaceflight as they were revealed in both Fischer and WAG/Rij rats exposed to simGCRsim and/or HU.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Alexis De la Torre
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marek Lenarczyk
- Radiation Biosciences laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chirayu Patel
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christopher M. Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Center, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Mass Spectrometry Center, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Mass Spectrometry Center, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - John Baker
- Radiation Biosciences laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
Kajita Y, Mushiake H. Dynamic changes in seizure state and anxiety-like behaviors during pentylenetetrazole kindling in rats. Epilepsy Behav 2024; 159:110019. [PMID: 39213933 DOI: 10.1016/j.yebeh.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Excessive anxiety is a mental disorder, and its treatment involves the use of benzodiazepines, a class of drugs that enhance the effects of the neurotransmitter gamma-aminobutyric acid (GABA) at the GABAA receptor. Anxiety disorders are frequent comorbidities in patients with epilepsy, and it has been speculated that anxiety disorders and epileptic seizures share common neurobiological mechanisms. However, conflicting results regarding anxiolytic and anxiogenic effects have been reported in animal models of epilepsy induced by pentylenetetrazole (PTZ) injections, and the causes of this discrepancy are unknown. We hypothesized that anxiety-like behaviors would change dynamically according to the changes in epilepsy susceptibility that occur during the PTZ kindling process. Therefore, we attempted to change anxiety-like behaviors bidirectionally depending on the number of PTZ injections. METHODS Adult male rats were injected with PTZ 20 times every other day, and stages of seizure onset were classified according to the Racine staging system. Anxiety-like behaviors were measured after 10 and 20 injections. The control group was injected with an equal volume of saline solution. Anxiety-like behaviors were investigated using the open-field, light/dark transition, elevated plus maze, and social interaction tests. RESULTS Bimodal changes in seizure stage were observed in response to PTZ kindling. The increase in the seizure stage was transiently suppressed after 10 injections, and this decrease in epileptic sensitivity disappeared after 20 injections. However, none of the rats reached a fully kindled state after 20 PTZ injections. After 10 PTZ injections, anxiety-like behaviors decreased compared with those of the control group in the open field, light/dark transition, and elevated plus-maze tests. The anxiolytic effects correlated with the seizure stage in individual rats. After 20 PTZ injections, anxiety-like behaviors returned to control levels. CONCLUSION PTZ kindling induced bimodal changes in the seizure stage. Anxiety-like behaviors decreased with transient decrease in epileptic sensitivity and returned to control levels with the disappearance of these states. These findings suggest a common neurobiological mechanism underlying anxiety disorders and epileptic seizures. In addition, the discrepancy in the previous studies, in which anxiety levels increase or decrease in PTZ-kindled animals, may be due to examination at different phases of the kindling process.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Bu J, Ren N, Wang Y, Wei R, Zhang R, Zhu H. Identification of abnormal closed-loop pathways in patients with MRI-negative pharmacoresistant epilepsy. Brain Imaging Behav 2024; 18:892-901. [PMID: 38592332 DOI: 10.1007/s11682-024-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Epilepsy is a disorder of brain networks, that is usually combined with cognitive and emotional impairment. However, most of the current research on closed-loop pathways in epilepsy is limited to the neuronal level or has focused only on known closed-loop pathways, and studies on abnormalities in closed-loop pathways in epilepsy at the whole-brain network level are lacking. A total of 26 patients with magnetic resonance imaging-negative pharmacoresistant epilepsy (MRIneg-PRE) and 26 healthy controls (HCs) were included in this study. Causal brain networks and temporal-lag brain networks were constructed from resting-state functional MRI data, and the Johnson algorithm was used to identify stable closed-loop pathways. Abnormal closed-loop pathways in the MRIneg-PRE cohort compared with the HC group were identified, and the associations of these pathways with indicators of cognitive and emotional impairments were examined via Pearson correlation analysis. The results revealed that the abnormal stable closed-loop pathways were distributed across the frontal, parietal, and occipital lobes and included altered functional connectivity values both within and between cerebral hemispheres. Four abnormal closed-loop pathways in the occipital lobe were associated with emotional and cognitive impairments. These abnormal pathways may serve as biomarkers for the diagnosis and guidance of individualized treatments for MRIneg-PRE patients.
Collapse
Affiliation(s)
- Jinxin Bu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Nanxiao Ren
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yonglu Wang
- Child Mental Health Research Center, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ran Wei
- Division of Child Care, Suzhou Municipal Hospital, No. 26 Daoqian Road, Suzhou, Jiangsu, 215002, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
8
|
Calanni JS, Aranda ML, Dieguez HH, Dorfman D, Schmidt TM, Rosenstein RE. An ethologically relevant paradigm to assess defensive response to looming visual contrast stimuli. Sci Rep 2024; 14:12499. [PMID: 38822033 PMCID: PMC11143276 DOI: 10.1038/s41598-024-63458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
In the animal kingdom, threat information is perceived mainly through vision. The subcortical visual pathway plays a critical role in the rapid processing of visual information-induced fear, and triggers a response. Looming-evoked behavior in rodents, mimicking response to aerial predators, allowed identify the neural circuitry underlying instinctive defensive behaviors; however, the influence of disk/background contrast on the looming-induced behavioral response has not been examined, either in rats or mice. We studied the influence of the dark disk/gray background contrast in the type of rat and mouse defensive behavior in the looming arena, and we showed that rat and mouse response as a function of disk/background contrast adjusted to a sigmoid-like relationship. Both sex and age biased the contrast-dependent response, which was dampened in rats submitted to retinal unilateral or bilateral ischemia. Moreover, using genetically manipulated mice, we showed that the three type of photoresponsive retinal cells (i.e., cones, rods, and intrinsically photoresponsive retinal ganglion cells (ipRGCs)), participate in the contrast-dependent response, following this hierarchy: cones > > rods > > > ipRGCs. The cone and rod involvement was confirmed using a mouse model of unilateral non-exudative age-related macular degeneration, which only damages canonical photoreceptors and significantly decreased the contrast sensitivity in the looming arena.
Collapse
Affiliation(s)
- Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, School of Science/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damian Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, School of Science/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Calanni JS, Aranda ML, Dieguez HH, Dorfman D, Schmidt TM, Rosenstein RE. An ethologically relevant paradigm to assess visual contrast sensitivity in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583559. [PMID: 38496475 PMCID: PMC10942302 DOI: 10.1101/2024.03.05.583559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the animal kingdom, threat information is perceived mainly through vision. The subcortical visual pathway plays a critical role in the rapid processing of visual information-induced fear, and triggers a response. Looming-evoked behavior in rodents, mimicking response to aerial predators, allowed identify the neural circuitry underlying instinctive defensive behaviors; however, the influence of disk/background contrast on the looming-induced behavioral response has not been examined, either in rats or mice. We studied the influence of the dark disk/gray background contrast in the type of rat and mouse defensive behavior in the looming arena, and we showed that rat and mouse response as a function of disk/background contrast adjusted to a sigmoid-like relationship. Both sex and age biased the contrast-dependent response, which was dampened in rats submitted to retinal unilateral or bilateral ischemia. Moreover, using genetically manipulated mice, we showed that the three type of photoresponsive retinal cells (i.e., cones, rods, and intrinsically photoresponsive retinal ganglion cells (ipRGCs)), participate in the contrast-dependent response, following this hierarchy: cones ˃> rods ˃>>ipRGCs. The cone and rod involvement was confirmed using a mouse model of unilateral non-exudative age-related macular degeneration, which only damages canonical photoreceptors and significantly decreased the contrast sensitivity in the looming arena.
Collapse
|
10
|
Silva-Cardoso GK, N'Gouemo P. Influence of Inherited Seizure Susceptibility on Intermittent Voluntary Alcohol Consumption and Alcohol Withdrawal Seizures in Genetically Epilepsy-Prone Rats (GEPR-3s). Brain Sci 2024; 14:188. [PMID: 38391762 PMCID: PMC10886844 DOI: 10.3390/brainsci14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The link between epilepsy and alcohol consumption is complex, with conflicting reports. To enhance our understanding of this link, we conducted a study to determine how inherited seizure susceptibility affects voluntary alcohol consumption and influences alcohol withdrawal seizures in male and female genetically epilepsy-prone rats (GEPR-3s) compared to Sprague Dawley (SD) rats. METHODS In the first experiment, animals were given access to two bottles simultaneously, one containing water and the other 7.5%, 15%, or 30% (v/v) alcohol three times a week for each dose after acclimation to drinking water. In a second experiment, animals were tested for acoustically evoked alcohol seizures 24 h after the last session of voluntary alcohol consumption. RESULTS Analysis revealed that GEPR-3s (males and females) had lower alcohol intake and preference than SD rats, particularly at lower alcohol concentrations. However, female GEPR-3s consumed more alcohol and had a higher alcohol preference than males. Furthermore, withdrawal from voluntary alcohol consumption facilitated the onset and duration of seizures in GEPR-3s. CONCLUSIONS Our study suggests that genetic seizure susceptibility in GEPR-3s is negatively associated with alcohol consumption. However, withdrawal from low to moderate amounts of alcohol intake can promote epileptogenesis in the epileptic GEPR-3s.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
11
|
Raber J, Holden S, Kessler K, Glaeser B, McQuesten C, Chaudhari M, Stenzel F, Lenarczyk M, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen C, Willey JS, Bobe G, Minnier J, Baker JE. Effects of photon irradiation in the presence and absence of hindlimb unloading on the behavioral performance and metabolic pathways in the plasma of Fischer rats. Front Physiol 2024; 14:1316186. [PMID: 38260101 PMCID: PMC10800373 DOI: 10.3389/fphys.2023.1316186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chloe McQuesten
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Fiona Stenzel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, The Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, United States
| | - John E. Baker
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Sandouka S, Singh PK, Saadi A, Taiwo RO, Sheeni Y, Zhang T, Deeb L, Guignet M, White SH, Shekh-Ahmad T. Repurposing dimethyl fumarate as an antiepileptogenic and disease-modifying treatment for drug-resistant epilepsy. J Transl Med 2023; 21:796. [PMID: 37940957 PMCID: PMC10634153 DOI: 10.1186/s12967-023-04695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Epilepsy affects over 65 million people worldwide and significantly burdens patients, caregivers, and society. Drug-resistant epilepsy occurs in approximately 30% of patients and growing evidence indicates that oxidative stress contributes to the development of such epilepsies. Activation of the Nrf2 pathway, which is involved in cellular defense, offers a potential strategy for reducing oxidative stress and epilepsy treatment. Dimethyl fumarate (DMF), an Nrf2 activator, exhibits antioxidant and anti-inflammatory effects and is used to treat multiple sclerosis. METHODS The expression of Nrf2 and its related genes in vehicle or DMF treated rats were determined via RT-PCR and Western blot analysis. Neuronal cell death was evaluated by immunohistochemical staining. The effects of DMF in preventing the onset of epilepsy and modifying the disease were investigated in the kainic acid-induced status epilepticus model of temporal lobe epilepsy in rats. The open field, elevated plus maze and T-Maze spontaneous alteration tests were used for behavioral assessments. RESULTS We demonstrate that administration of DMF following status epilepticus increased Nrf2 activity, attenuated status epilepticus-induced neuronal cell death, and decreased seizure frequency and the total number of seizures compared to vehicle-treated animals. Moreover, DMF treatment reversed epilepsy-induced behavioral deficits in the treated rats. Moreover, DMF treatment even when initiated well after the diagnosis of epilepsy, reduced symptomatic seizures long after the drug was eliminated from the body. CONCLUSIONS Taken together, these findings suggest that DMF, through the activation of Nrf2, has the potential to serve as a therapeutic target for preventing epileptogenesis and modifying epilepsy.
Collapse
Affiliation(s)
- Sereen Sandouka
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prince Kumar Singh
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aseel Saadi
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rhoda Olowe Taiwo
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yara Sheeni
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Taige Zhang
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Larin Deeb
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michelle Guignet
- Department of Pharmacy, Center for Epilepsy Drug Discovery, University of Washington, Seattle, WA, USA
| | - Steve H White
- Department of Pharmacy, Center for Epilepsy Drug Discovery, University of Washington, Seattle, WA, USA
| | - Tawfeeq Shekh-Ahmad
- Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
13
|
Campos-Rodriguez C, Palmer D, Forcelli PA. Optogenetic stimulation of the superior colliculus suppresses genetic absence seizures. Brain 2023; 146:4320-4335. [PMID: 37192344 PMCID: PMC11004938 DOI: 10.1093/brain/awad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
While anti-seizure medications are effective for many patients, nearly one-third of individuals have seizures that are refractory to pharmacotherapy. Prior studies using evoked preclinical seizure models have shown that pharmacological activation or excitatory optogenetic stimulation of the deep and intermediate layers of the superior colliculus (DLSC) display multi-potent anti-seizure effects. Here we monitored and modulated DLSC activity to suppress spontaneous seizures in the WAG/Rij genetic model of absence epilepsy. Female and male WAG/Rij adult rats were employed as study subjects. For electrophysiology studies, we recorded single unit activity from microwire arrays placed within the DLSC. For optogenetic experiments, animals were injected with virus coding for channelrhodopsin-2 or a control vector, and we compared the efficacy of continuous neuromodulation to that of closed-loop neuromodulation paradigms. For each, we compared three stimulation frequencies on a within-subject basis (5, 20, 100 Hz). For closed-loop stimulation, we detected seizures in real time based on the EEG power within the characteristic frequency band of spike-and-wave discharges (SWDs). We quantified the number and duration of each SWD during each 2 h-observation period. Following completion of the experiment, virus expression and fibre-optic placement was confirmed. We found that single-unit activity within the DLSC decreased seconds prior to SWD onset and increased during and after seizures. Nearly 40% of neurons displayed suppression of firing in response to the start of SWDs. Continuous optogenetic stimulation of the DLSC (at each of the three frequencies) resulted in a significant reduction of SWDs in males and was without effect in females. In contrast, closed-loop neuromodulation was effective in both females and males at all three frequencies. These data demonstrate that activity within the DLSC is suppressed prior to SWD onset, increases at SWD onset, and that excitatory optogenetic stimulation of the DLSC exerts anti-seizure effects against absence seizures. The striking difference between open- and closed-loop neuromodulation approaches underscores the importance of the stimulation paradigm in determining therapeutic effects.
Collapse
Affiliation(s)
| | - Devin Palmer
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
- Department of Neuroscience, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
14
|
Inherited pain hypersensitivity and increased anxiety-like behaviors are associated with genetic epilepsy in Wistar Audiogenic Rats: Short- and long-term effects of acute and chronic seizures on nociception and anxiety. Epilepsy Behav 2023; 141:109160. [PMID: 36907082 DOI: 10.1016/j.yebeh.2023.109160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Anxiety and pain hypersensitivity are neurobehavioral comorbidities commonly reported by patients with epilepsies, and preclinical models are suitable to investigate the neurobiology of behavioral and neuropathological alterations associated with these epilepsy-related comorbidities. This work aimed to characterize endogenous alterations in nociceptive threshold and anxiety-like behaviors in the Wistar Audiogenic Rat (WAR) model of genetic epilepsy. We also assessed the effects of acute and chronic seizures on anxiety and nociception. WARs from acute and chronic seizure protocols were divided into two groups to assess short- and long-term changes in anxiety (1 day or 15 days after seizures, respectively). To assess anxiety-like behaviors, the laboratory animals were submitted to the open field, light-dark box, and elevated plus maze tests. The von Frey, acetone, and hot plate tests were used to measure the endogenous nociception in seizure-free WARs, and postictal antinociception was recorded at 10, 30, 60, 120, 180 min, and 24 h after seizures. Seizure-free WARs presented increased anxiety-like behaviors and pain hypersensitivity, displaying mechanical and thermal allodynia (to heat and cold stimuli) in comparison to nonepileptic Wistar rats. Potent postictal antinociception that persisted for 120 to 180 min was detected after acute and chronic seizures. Additionally, acute and chronic seizures have magnified the expression of anxiety-like behaviors when assessed at 1 day and 15 days after seizures. Behavioral analysis indicated more severe and persistent anxiogenic-like alterations in WARs submitted to acute seizures. Therefore, WARs presented pain hypersensitivity and increased anxiety-like behaviors endogenously associated with genetic epilepsy. Acute and chronic seizures induced postictal antinociception in response to mechanical and thermal stimuli and increased anxiety-like behaviors when assessed 1 day and 15 days later. These findings support the presence of neurobehavioral alterations in subjects with epilepsy and shed light on the use of genetic models to characterize neuropathological and behavioral alterations associated with epilepsy.
Collapse
|
15
|
Lazarini-Lopes W, Campos-Rodriguez C, Garcia-Cairasco N, N'Gouemo P, Forcelli PA. Cannabidiol attenuates generalized tonic-clonic and suppresses limbic seizures in the genetically epilepsy-prone rats (GEPR-3) strain. Pharmacol Rep 2023; 75:166-176. [PMID: 36195689 PMCID: PMC11889923 DOI: 10.1007/s43440-022-00416-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cannabidiol (CBD) has been of rapidly growing interest in the epilepsy research field due to its antiseizure properties in preclinical models and patients with pharmacoresistant epilepsy. However, little is known about CBD effects in genetic models of epilepsies. Here we assessed CBD dose-response effects in the Genetically Epilepsy Prone Rats (GEPR-3) strain, which exhibits two types of epileptic seizures, brainstem-dependent generalized tonic-clonic seizures and limbic seizures. METHODS GEPR-3 s were submitted to the audiogenic seizure (AGS) protocol. Acute AGS are brainstem-dependent generalized tonic-clonic, while repeated AGS (or audiogenic kindling, AK), an epileptogenic process, leads to increased AGS severity and limbic seizure expression. Therefore, two different dose-response studies were performed, one for generalized tonic-clonic seizures and the other for limbic seizures. CBD time-course effects were assessed 2, 4, and 6 h after drug injection. GEPR-3 s were submitted to within-subject tests, receiving intraperitoneal injections of CBD (1, 10, 50, 100 mg/kg/ml) and vehicle. RESULTS CBD dose-dependently attenuated generalized tonic-clonic seizures in GEPR-3 s; CBD 50 and 100 mg/kg reduced brainstem-dependent seizure severity and duration. In fully kindled GEPR-3 s, CBD 10 mg/kg reduced limbic seizure severity and suppressed limbic seizure expression in 75% of animals. CONCLUSIONS CBD was effective against brainstem and limbic seizures in the GEPR-3 s. These results support the use of CBD treatment for epilepsies by adding new information about the pharmacological efficacy of CBD in suppressing inherited seizure susceptibility in the GEPR-3 s.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Department of Pharmacology and Physiology, Georgetown University, New Research Bldg., W209B, 3970 Reservoir Road NW, Washington, DC, 20007, USA
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Carolina Campos-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, New Research Bldg., W209B, 3970 Reservoir Road NW, Washington, DC, 20007, USA
| | - Norberto Garcia-Cairasco
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University School of Medicine, Washington, DC, 20059, USA.
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, New Research Bldg., W209B, 3970 Reservoir Road NW, Washington, DC, 20007, USA.
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
16
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
17
|
Genetic models to investigate chronic epileptogenic events: An open window of possibilities and perspectives. Epilepsy Behav 2022; 135:108908. [PMID: 36095875 DOI: 10.1016/j.yebeh.2022.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022]
|
18
|
Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci Biobehav Rev 2022; 137:104675. [PMID: 35460705 DOI: 10.1016/j.neubiorev.2022.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 04/17/2022] [Indexed: 01/01/2023]
Abstract
Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.
Collapse
|
19
|
Something new and something blue: Responses to novelty in a rodent model of depression and epilepsy comorbidity. Physiol Behav 2022; 249:113778. [PMID: 35278474 DOI: 10.1016/j.physbeh.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
A bidirectional comorbidity exists between depression and epilepsy such that patients with epilepsy are at higher risk for developing depression, and vice versa. Each of these conditions individually can be complicated by behavioral effects that worsen quality of life, but less is known about these interactions within the comorbidity of depression and epilepsy. The SwLo rat has been selectively bred for depression-relevant behaviors and exhibits enhanced limbic seizure susceptibility. This study sought to characterize the effects of novelty and stress on the SwLo rodent model of this comorbidity. It was hypothesized that SwLo rats would exhibit altered responses to novelty, reflected in hyperactivity-, anxiety-, sensation seeking-, and/or compulsive behaviors, and that this would be exacerbated with stress. Compared to the SwHi rat (their depression- and epilepsy-resistant counterparts), SwLo rats showed increased entries in all areas of the Open Field Test and spent significantly more time in the light compartment of the Light-Dark Box. SwLo rats also had a significantly higher number of rearing behaviors in the inner squares of the Open Field Test, the closed arms of the Elevated Plus Maze, and both areas of the Light-Dark Box. They demonstrated increased Nestlet shredding but showed no difference in a marble burying task or in latency to consume food in a novelty suppressed feeding task. Interestingly, restraint stress showed little effect on these behaviors, despite increasing corticosterone levels. Combined, these results suggest an increase in exploratory sensation seeking and hypervigilant information-gathering behaviors in the SwLo rat that are not dependent on corticosterone levels. This shows the utility of this model for studying behavioral effects of comorbid depression and epilepsy and allows for their use in identifying underlying mechanisms or screening treatment strategies for this complex comorbidity.
Collapse
|
20
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
21
|
Ahmed H, Khan MA, Ali Zaidi SA, Muhammad S. In Silico and In Vivo: Evaluating the Therapeutic Potential of Kaempferol, Quercetin, and Catechin to Treat Chronic Epilepsy in a Rat Model. Front Bioeng Biotechnol 2021; 9:754952. [PMID: 34805114 PMCID: PMC8599161 DOI: 10.3389/fbioe.2021.754952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Recently, alternative therapies are gaining popularity in the treatment of epilepsy. The present study aimed to find out the antiepileptic potential of quercetin, catechin, and kaempferol. In vivo and in silico experiments were conducted to investigate their therapeutic potential. 25 mg/kg/day of pentylenetetrazole was administered for 4 weeks after epilepsy was induced in the rats; this was followed by the behavioral studies and histological analysis of rat brain slices. Binding affinities of kaempferol, quercetin, and catechin were assessed by performing in silico studies. Kaempferol, quercetin, and catechin were found to have the highest binding affinity with the synaptic vesicle 2A (SV2A) protein, comparable to standard levetiracetam (LEV). The mRNA levels of SV2A, as well as the expression of TNF, IL 6, IL 1 beta, NFkB, IL 1Ra, IL 4, and IL 10, were investigated using qPCR. Our results indicate for the first time that SV2A is also a transporter of understudied phytoflavonoids, due to which a significant improvement was observed in epileptic parameters. The mRNA levels of SV2A were found to be significantly elevated in the PF-treated rats when compared with those of the control rats with epilepsy. Additionally, downregulation of the pro-inflammatory cytokines and upregulation of the anti-inflammatory cytokines were also noted in the PF-treated groups. It is concluded that kaempferol, quercetin, and catechin can effectively decrease the epileptic seizures in our chronic epilepsy rat model to a level that is comparable to the antiepileptic effects induced by levetiracetam drug.
Collapse
Affiliation(s)
- Hammad Ahmed
- Faculty of Pharmacy, The University of Lahore, Defence Road Campus, Lahore, Pakistan.,Imran Idrees College of Pharmacy, Sialkot, Pakistan
| | | | | | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Neurosurgery, University of Helsinki and University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Raber J, Holden S, Sudhakar R, Hall R, Glaeser B, Lenarczyk M, Rockwell K, Nawarawong N, Sterrett J, Perez R, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen CM, Willey JS, Bobe G, Baker J. Effects of 5-Ion Beam Irradiation and Hindlimb Unloading on Metabolic Pathways in Plasma and Brain of Behaviorally Tested WAG/Rij Rats. Front Physiol 2021; 12:746509. [PMID: 34646164 PMCID: PMC8503608 DOI: 10.3389/fphys.2021.746509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023] Open
Abstract
A limitation of simulated space radiation studies is that radiation exposure is not the only environmental challenge astronauts face during missions. Therefore, we characterized behavioral and cognitive performance of male WAG/Rij rats 3 months after sham-irradiation or total body irradiation with a simplified 5-ion mixed beam exposure in the absence or presence of simulated weightlessness using hindlimb unloading (HU) alone. Six months following behavioral and cognitive testing or 9 months following sham-irradiation or total body irradiation, plasma and brain tissues (hippocampus and cortex) were processed to determine whether the behavioral and cognitive effects were associated with long-term alterations in metabolic pathways in plasma and brain. Sham HU, but not irradiated HU, rats were impaired in spatial habituation learning. Rats irradiated with 1.5 Gy showed increased depressive-like behaviors. This was seen in the absence but not presence of HU. Thus, HU has differential effects in sham-irradiated and irradiated animals and specific behavioral measures are associated with plasma levels of distinct metabolites 6 months later. The combined effects of HU and radiation on metabolic pathways in plasma and brain illustrate the complex interaction of environmental stressors and highlights the importance of assessing these interactions.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, United States.,College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Reetesh Sudhakar
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Reed Hall
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Breanna Glaeser
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kristen Rockwell
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Natalie Nawarawong
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Sterrett
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Scott William Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States.,Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher M Olsen
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - John Baker
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
23
|
Zhu X, Zhang YM, Zhang MY, Chen YJ, Liu YW. Hesperetin ameliorates diabetes-associated anxiety and depression-like behaviors in rats via activating Nrf2/ARE pathway. Metab Brain Dis 2021; 36:1969-1983. [PMID: 34273043 DOI: 10.1007/s11011-021-00785-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Diabetes-associated affective disorders are of wide concern, and oxidative stress plays a vital role in the pathological process. This study was to investigate the cerebroprotective effects of hesperetin against anxious and depressive disorders caused by diabetes, exploring the potential mechanisms related to activation of Nrf2/ARE pathway. Streptozotocin-induced diabetic rats were intragastrically administrated with hesperetin (0, 50, and 150 mg/kg) for 10 weeks. Forced swimming test, open field test, and elevated plus maze were used to evaluate the anxiety and depression-like behaviors of rats. The brain was collected for assays of Nrf2/ARE pathway. Moreover, high glucose-cultured SH-SY5Y cells were used to further examine the neuroprotective effects of hesperetin and underlying mechanisms. Hesperetin showed anxiolytic and antidepressant effects in diabetic rats according to the behavior tests, and increased p-Nrf2 in cytoplasm and Nrf2 in nucleus followed by elevations in mRNA levels and protein expression of glyoxalase 1 (Glo-1) and γ-glutamylcysteine synthetase (γ-GCS) in brain, known target genes of Nrf2/ARE signaling. Moreover, hesperetin attenuated high glucose-induced neuronal damages through activation of the classical Nrf2/ARE pathway in SH-SY5Y cells. Further study indicated that PKC inhibition or GSK-3β activation pretreatment attenuated even abolished the effect of hesperetin on the protein expression of Glo-1 and γ-GCS in high glucose-cultured SH-SY5Y cells. In summary, hesperetin ameliorated diabetes-associated anxiety and depression-like behaviors in rats, which was achieved through activation of the Nrf2/ARE pathway. Furthermore, an increase in nuclear Nrf2 phosphorylation from PKC activation and GSK-3β inhibition contributed to the activation of Nrf2/ARE pathway by hesperetin.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Meng-Ya Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ya-Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
24
|
Moraes MFD, de Castro Medeiros D, Mourao FAG, Cancado SAV, Cota VR. Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy Behav 2021; 121:106838. [PMID: 31859231 DOI: 10.1016/j.yebeh.2019.106838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023]
Abstract
The idea of the epileptic brain being highly excitable and facilitated to synchronic activity has guided pharmacological treatment since the early twentieth century. Although tackling epilepsy's seizure-prone feature, by tonically modifying overall circuit excitability and/or connectivity, the last 50 years of drug development has not seen a substantial improvement in seizure suppression of refractory epilepsies. This review presents a new conceptual framework for epilepsy in which the temporal dynamics of the disease plays a more critical role in both its understanding and therapeutic strategies. The repetitive epileptiform pattern (characteristic during ictal activity) and other well-defined electrographic signatures (i.e., present during the interictal period) are discussed in terms of the sequential activation of the circuit motifs. Lessons learned from the physiological activation of neural circuitry are used to further corroborate the argument and explore the transition from proper function to a state of instability. Furthermore, the review explores how interfering in the temporally dependent abnormal connectivity between circuits may work as a therapeutic approach. We also review the use of probing stimulation to access network connectivity and evaluate its power to determine transitional states of the dynamical system as it moves towards regions of instability, especially when conventional electrographic monitoring is proven inefficient. Unorthodox cases, with little or no scalp electrographic correlate, in which ictogenic circuitry and/or seizure spread is temporally restricted to neurovegetative, cognitive, and motivational areas are shown as possible explanations for sudden death in epilepsy (SUDEP) and other psychiatric comorbidities. In short, this review presents a paradigm shift in the way that we address the disease and is aimed to encourage debate rather than narrow the rationale epilepsy is currently engaged in. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Daniel de Castro Medeiros
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Afonso Gonçalves Mourao
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Vinicius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei, São João Del-Rei, Brazil
| |
Collapse
|
25
|
Gromer D, Kiser DP, Pauli P. Thigmotaxis in a virtual human open field test. Sci Rep 2021; 11:6670. [PMID: 33758204 PMCID: PMC7988123 DOI: 10.1038/s41598-021-85678-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Animal models are used to study neurobiological mechanisms in mental disorders. Although there has been significant progress in the understanding of neurobiological underpinnings of threat-related behaviors and anxiety, little progress was made with regard to new or improved treatments for mental disorders. A possible reason for this lack of success is the unknown predictive and cross-species translational validity of animal models used in preclinical studies. Re-translational approaches, therefore, seek to establish cross-species translational validity by identifying behavioral operations shared across species. To this end, we implemented a human open field test in virtual reality and measured behavioral indices derived from animal studies in three experiments (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=31$$\end{document}N=31, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=30$$\end{document}N=30, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=80$$\end{document}N=80). In addition, we investigated the associations between anxious traits and such behaviors. Results indicated a strong similarity in behavior across species, i.e., participants in our study—like rodents in animal studies—preferred to stay in the outer region of the open field, as indexed by multiple behavioral parameters. However, correlational analyses did not clearly indicate that these behaviors were a function of anxious traits of participants. We conclude that the realized virtual open field test is able to elicit thigmotaxis and thus demonstrates cross-species validity of this aspect of the test. Modulatory effects of anxiety on human open field behavior should be examined further by incorporating possible threats in the virtual scenario and/or by examining participants with higher anxiety levels or anxiety disorder patients.
Collapse
Affiliation(s)
- Daniel Gromer
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.
| | - Dominik P Kiser
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.,Center of Mental Health, Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Mishra P, Mittal AK, Rajput SK, Sinha JK. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113509. [PMID: 33141053 DOI: 10.1016/j.jep.2020.113509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Processed Nux vomica seed extracts and homeopathic medicinal preparations (HMPs) are widely used in traditional Indian and Chinese medicine for respiratory, digestive, neurological and behavioral disorders. Antioxidant property of Nux vomica is well known and recent investigation has highlighted the anticonvulsant potential of its homeopathic formulation. AIM OF THE STUDY To explore the anticonvulsant and antiepileptogenic potential of Nux vomica HMPs (6CH, 12CH and 30CH potency) in pentylenetetrazole (PTZ) induced acute and chronic experimental seizure models in mice and investigate their effects on cognition, memory, motor activity and oxidative stress markers in kindled animals. MATERIALS AND METHODS Acute seizures were induced in the animals through 70 mg/kg (i.p.) administration of PTZ followed by the evaluation of latency and duration of Generalized tonic-clonic seizures (GTCS). Subconvulsive PTZ doses (35 mg/kg, i.p.) induced kindling in 29 days, which was followed by assessment of cognition, memory and motor impairment through validated behavioral techniques. The status of oxidative stress was estimated through measurement of MDA, GSH and SOD. RESULTS HMPs delayed the latency and reduced the duration of GTCS in acute model signifying possible regulation of GABAergic neurotransmission. Kindling was significantly hindered by the HMPs that justified the ameliorated cognition, memory and motor activity impairment. The HMPs attenuated lipid peroxidation by reducing MDA level and strengthened the antioxidant mechanism by enhancing the GSH and SOD levels in the kindled animals. CONCLUSIONS Nux vomica HMPs showed anticonvulsant and antiepileptogenic potency in acute and chronic models of epilepsy. The test drugs attenuated behavioral impairment and reduced the oxidative stress against PTZ induced kindling owing to which they can be further explored for their cellular and molecular mechanism(s).
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Amit Kumar Mittal
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Satyendra Kumar Rajput
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India; Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
27
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Cunha AOS, Garcia-Cairasco N. Cannabinoids in Audiogenic Seizures: From Neuronal Networks to Future Perspectives for Epilepsy Treatment. Front Behav Neurosci 2021; 15:611902. [PMID: 33643007 PMCID: PMC7904685 DOI: 10.3389/fnbeh.2021.611902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel A. Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rui M. P. da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexandra O. S. Cunha
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Lazarini-Lopes W, da Silva-Júnior RMP, Servilha-Menezes G, Do Val-da Silva RA, Garcia-Cairasco N. Cannabinoid Receptor Type 1 (CB1R) Expression in Limbic Brain Structures After Acute and Chronic Seizures in a Genetic Model of Epilepsy. Front Behav Neurosci 2020; 14:602258. [PMID: 33408620 PMCID: PMC7779524 DOI: 10.3389/fnbeh.2020.602258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) is related to several physiological processes, associated to the modulation of brain excitability, with impact in the expression of susceptibility and control of epileptic seizures. The cannabinoid receptor type 1 (CB1R) is widely expressed in the brain, especially in forebrain limbic structures. Changes in CB1R expression are associated with epileptic seizures in animal models and humans. The Wistar Audiogenic Rat (WAR) strain is a genetic model of epilepsy capable of mimicking tonic-clonic and limbic seizures in response to intense sound stimulation. The WAR strain presents several behavioral and physiological alterations associated with seizure susceptibility, but the ECS has never been explored in this strain. Therefore, the aim of the present study was to characterize CB1R expression in forebrain limbic structures important to limbic seizure expression in WARs. We used a detailed anatomical analysis to assess the effects of acute and chronic audiogenic seizures on CB1R expression in several layers and regions of hippocampus and amygdala. WARs showed increased CB1R immunostaining in the inner molecular layer of the hippocampus, when compared to control Wistar rats. Acute and chronic audiogenic seizures increased CB1R immunostaining in several regions of the dorsal hippocampus and amygdala of WARs. Also, changes in CB1R expression in the amygdala, but not in the hippocampus, were associated with limbic recruitment and limbic seizure severity in WARs. Our results suggest that endogenous alterations in CB1R immunostaining in WARs could be associated with genetic susceptibility to audiogenic seizures. We also demonstrated CB1R neuroplastic changes associated with acute and chronic seizures in the amygdala and hippocampus. Moreover, the present study brings important information regarding CB1R and seizure susceptibility in a genetic model of seizures and supports the relationship between ECS and epilepsy.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Rui M P da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Raquel A Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Christian CA, Reddy DS, Maguire J, Forcelli PA. Sex Differences in the Epilepsies and Associated Comorbidities: Implications for Use and Development of Pharmacotherapies. Pharmacol Rev 2020; 72:767-800. [PMID: 32817274 PMCID: PMC7495340 DOI: 10.1124/pr.119.017392] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epilepsies are common neurologic disorders characterized by spontaneous recurrent seizures. Boys, girls, men, and women of all ages are affected by epilepsy and, in many cases, by associated comorbidities as well. The primary courses of treatment are pharmacological, dietary, and/or surgical, depending on several factors, including the areas of the brain affected and the severity of the epilepsy. There is a growing appreciation that sex differences in underlying brain function and in the neurobiology of epilepsy are important factors that should be accounted for in the design and development of new therapies. In this review, we discuss the current knowledge on sex differences in epilepsy and associated comorbidities, with emphasis on those aspects most informative for the development of new pharmacotherapies. Particular focus is placed on sex differences in the prevalence and presentation of various focal and generalized epilepsies; psychiatric, cognitive, and physiologic comorbidities; catamenial epilepsy in women; sex differences in brain development; the neural actions of sex and stress hormones and their metabolites; and cellular mechanisms, including brain-derived neurotrophic factor signaling and neuronal-glial interactions. Further attention placed on potential sex differences in epilepsies, comorbidities, and drug effects will enhance therapeutic options and efficacy for all patients with epilepsy. SIGNIFICANCE STATEMENT: Epilepsy is a common neurological disorder that often presents together with various comorbidities. The features of epilepsy and seizure activity as well as comorbid afflictions can vary between men and women. In this review, we discuss sex differences in types of epilepsies, associated comorbidities, pathophysiological mechanisms, and antiepileptic drug efficacy in both clinical patient populations and preclinical animal models.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Doodipala Samba Reddy
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Jamie Maguire
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Patrick A Forcelli
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| |
Collapse
|
30
|
Integration of postmortem amygdala expression profiling, GWAS, and functional cell culture assays: neuroticism-associated synaptic vesicle glycoprotein 2A (SV2A) gene is regulated by miR-133a and miR-218. Transl Psychiatry 2020; 10:297. [PMID: 32839459 PMCID: PMC7445165 DOI: 10.1038/s41398-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Recent genome-wide studies have begun to identify gene variants, expression profiles, and regulators associated with neuroticism, anxiety disorders, and depression. We conducted a set of experimental cell culture studies of gene regulation by micro RNAs (miRNAs), based on genome-wide transcriptome, proteome, and miRNA expression data from twenty postmortem samples of lateral amygdala from donors with known neuroticism scores. Using Ingenuity Pathway Analysis and TargetScan, we identified a list of mRNA-protein-miRNA sets whose expression patterns were consistent with miRNA-based translational repression, as a function of trait anxiety. Here, we focused on one gene from that list, which is of particular translational significance in Psychiatry: synaptic vesicle glycoprotein 2A (SV2A) is the binding site of the anticonvulsant drug levetiracetam ((S)-α-Ethyl-2-oxo-1-pyrrolidineacetamide), which has shown promise in anxiety disorder treatments. We confirmed that SV2A is associated with neuroticism or anxiety using an original GWAS of a community cohort (N = 1,706), and cross-referencing a published GWAS of multiple cohorts (Ns ranging from 340,569 to 390,278). Postmortem amygdala expression profiling implicated three putative regulatory miRNAs to target SV2A: miR-133a, miR-138, and miR-218. Moving from association to experimental causal testing in cell culture, we used a luciferase assay to demonstrate that miR-133a and miR-218, but not miR-138, significantly decreased relative luciferase activity from the SV2A dual-luciferase construct. In human neuroblastoma cells, transfection with miR-133a and miR-218 reduced both endogenous SV2A mRNA and protein levels, confirming miRNA targeting of the SV2A gene. This study illustrates the utility of combining postmortem gene expression data with GWAS to guide experimental cell culture assays examining gene regulatory mechanisms that may contribute to complex human traits. Identifying specific molecular mechanisms of gene regulation may be useful for future clinical applications in anxiety disorders or other forms of psychopathology.
Collapse
|
31
|
Hong S, Xin Y, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, Zhen G, HongWei R, YongNan L. The P2X7 receptor in activated microglia promotes depression- and anxiety-like behaviors in lithium -pilocarpine induced epileptic rats. Neurochem Int 2020; 138:104773. [PMID: 32531197 DOI: 10.1016/j.neuint.2020.104773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Depressive and anxious behaviors are the most common psychiatric symptoms of epilepsy, and may aggravate the epileptic condition and affect the patient's quality of life. Accumulating data obtained from both experimental animal models and patients have convincingly shown a critical role of P2X7 receptor (P2X7R) during depression and anxiety. Our study showed for the first time that the P2X7R is involved in promoting depression- and anxiety-like behaviors in lithium pilocarpine-induced epileptic rats. More importantly, direct anti-depressive and anti-anxiety effects were produced by the P2X7R antagonist Brilliant Blue G (BBG) is in this study, and the effect was similar to that of the classic anti-depressant and anti-anxiety drug fluoxetine. We also found that BBG did not affect the development of spontaneous recurrent seizures (SRS) and had a neuroprotective effect via inhibition of microglial activation after status epilepticus (SE). Thus, our data provide evidence that the P2X7R in activated microglia promotes depression- and anxiety-like behaviors in lithium-pilocarpine induced epileptic rats. Since previous studies have indicated that some anti-depression and anti-anxiety drugs may exacerbate seizures, our data support that the P2X7R is a promising therapeutic target for epilepsy associated with depression and anxiety.
Collapse
Affiliation(s)
- Sun Hong
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Yu Xin
- Department of Neurology, People's Liberation Army 401 Hospital, Qingdao, Shandong, 266071, China
| | - Wu JiaWen
- Department of Dermatology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhan ShuQin
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhang GuiLian
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Wu HaiQin
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Gao Zhen
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Reng HongWei
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Li YongNan
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
32
|
Liu Y, Duan Y, Du D, Chen F. Rescuing Kv10.2 protein changes cognitive and emotional function in kainic acid-induced status epilepticus rats. Epilepsy Behav 2020; 106:106894. [PMID: 32222671 DOI: 10.1016/j.yebeh.2019.106894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 10/24/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death processes of neurons. The current study used a kainic acid (KA)-induced temporal lobe epilepsy model to examine the role of the Kv10.2 gene in status epilepticus (SE). Lentiviral plasmids containing the coding sequence region of the KCNH5 gene (LV-KCNH5) were injected into the CA3 subarea of the right dorsal hippocampus within 24 h in post-SE rats to rescue Kv10.2 protein expression. Open-field and elevated plus maze test results indicated that anxiety-like behavior was ameliorated in the KA + LV-KCNH5 group rats compared with the SE group rats, and working memory was improved in the Y-maze test. However, the spatial reference memory of the LV-KCNH5 group rats did not improve in the Morris water maze test, and no difference was found in the light-dark transition box test. The results of this study indicate that Kv10.2 protein may play an important role in epilepsy, providing new potential therapeutic directions and drug targets for epilepsy treatment.
Collapse
Affiliation(s)
- Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
33
|
Cunha AOS, Moradi M, de Deus JL, Ceballos CC, Benites NM, de Barcellos Filho PCG, de Oliveira JAC, Garcia-Cairasco N, Leão R. Alterations in brainstem auditory processing, the acoustic startle response and sensorimotor gating of startle in Wistar audiogenic rats (WAR), an animal model of reflex epilepsies. Brain Res 2020; 1727:146570. [PMID: 31811837 DOI: 10.1016/j.brainres.2019.146570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/30/2022]
Abstract
While acute audiogenic seizures in response to acoustic stimulus appear as an alteration in sensory-motor processing in the brainstem, the repetition of the stimulus leads to the spread of epileptic activity to limbic structures. Here, we investigated whether animals of the Wistar Audiogenic Rat (WAR) strain, genetically selected by inbreeding for seizure susceptibility, would have alterations in their auditory response, assessed by the auditory brainstem responses (ABR) and sensory-motor gating, measured as pre-pulse inhibition (PPI), which could be related to their audiogenic seizures susceptibility or severity. We did not find differences between the amplitudes and latencies of ABR waves in response to clicks for WARs when compared to Wistars. Auditory gain and symmetry between ears were also similar. However, hearing thresholds in response to some tones were lower and amplitudes of wave II were larger in WARs. WARs had smaller acoustic startle reflex amplitudes and the percentages of startle inhibited by an acoustic prepulse were higher for WARs than for Wistars. However, no correlation was found between these alterations and brainstem-dependent seizure severity or limbic seizure frequency during audiogenic kindling. Our data show that while WARs present moderate alterations in primary auditory processing, the sensory motor gating measured in startle/PPI tests appears to be more drastically altered. The observed changes might be correlated with audiogenic seizure susceptibility but not seizures severity.
Collapse
Affiliation(s)
| | - Marzieh Moradi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Junia Lara de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cesar Celis Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nikollas Moreira Benites
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
34
|
Blockade of the cholecystokinin CCK-2 receptor prevents the normalization of anxiety levels in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109761. [PMID: 31526831 PMCID: PMC6935156 DOI: 10.1016/j.pnpbp.2019.109761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023]
Abstract
Cholecystokinin (CCK), through the CCK-2 receptor, exerts complex effects on anxiety. While CCK agonists are panicogenic, CCK-2 antagonists fail to alleviate human anxiety. Preclinical studies with CCK-2 antagonists are also inconsistent because their anxiolytic effects largely depend on the behavioral paradigm and antecedent stress. The controversy might be accounted by the neuromodulatory role for CCK in anxiety which is ill-defined. If this is its actual role, blocking CCK-2 will have carry-over effects on the anxiety baseline over time. To test this hypothesis, the consequences of acute administration of the CCK-2 antagonist Ly225.910 (0.1 mg Kg-1) was evaluated in the temporal expression of aversion toward exploration-conflicting tasks. Ly225.910 effects were evaluated in rats exposed to the elevated plus-maze (EPM) twice, an approach-avoidance anxiety-like test. While LY225.910-treated rats had less anxiety than vehicle-treated rats, the difference was reversed during the EPM retest 24 h later without drug. Moreover, Ly225.910 effects in stress-induced cognitive impairment was measured giving the novel-object discrimination (NOD) test to rats not habituated to the exploration apparatus to elicit neophobia. After a first encounter with objects ("old"), Ly225.910-treated rats did not recognize the "novel" object introduced 6 h later. Ly225.910-exposed rats did not discriminate the new location of the "novel object" when it was repositioned in the arena 24 h later. Ly225.910-treated rats also failed to explore objects. In line with its neuromodulatory role, aversive carry-over effects of Ly225.910 suggest that CCK-2 activation by endogenous CCK, rather than triggering anxiety, may return the anxiety state to its normal level.
Collapse
|
35
|
Abstract
Psychiatric illnesses, including depression and anxiety, are highly comorbid with epilepsy (for review see Josephson and Jetté (Int Rev Psychiatry 29:409-424, 2017), Salpekar and Mula (Epilepsy Behav 98:293-297, 2019)). Psychiatric comorbidities negatively impact the quality of life of patients (Johnson et al., Epilepsia 45:544-550, 2004; Cramer et al., Epilepsy Behav 4:515-521, 2003) and present a significant challenge to treating patients with epilepsy (Hitiris et al., Epilepsy Res 75:192-196, 2007; Petrovski et al., Neurology 75:1015-1021, 2010; Fazel et al., Lancet 382:1646-1654, 2013) (for review see Kanner (Seizure 49:79-82, 2017)). It has long been acknowledged that there is an association between psychiatric illnesses and epilepsy. Hippocrates, in the fourth-fifth century B.C., considered epilepsy and melancholia to be closely related in which he writes that "melancholics ordinarily become epileptics, and epileptics, melancholics" (Lewis, J Ment Sci 80:1-42, 1934). The Babylonians also recognized the frequency of psychosis in patients with epilepsy (Reynolds and Kinnier Wilson, Epilepsia 49:1488-1490, 2008). Despite the fact that the relationship between psychiatric comorbidities and epilepsy has been recognized for thousands of years, psychiatric illnesses in people with epilepsy still commonly go undiagnosed and untreated (Hermann et al., Epilepsia 41(Suppl 2):S31-S41, 2000) and systematic research in this area is still lacking (Devinsky, Epilepsy Behav 4(Suppl 4):S2-S10, 2003). Thus, although it is clear that these are not new issues, there is a need for improvements in the screening and management of patients with psychiatric comorbidities in epilepsy (Lopez et al., Epilepsy Behav 98:302-305, 2019) and progress is needed to understand the underlying neurobiology contributing to these comorbid conditions. To that end, this chapter will raise awareness regarding the scope of the problem as it relates to comorbid psychiatric illnesses and epilepsy and review our current understanding of the potential mechanisms contributing to these comorbidities, focusing on both basic science and clinical research findings.
Collapse
|
36
|
Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res 2019; 157:106193. [PMID: 31520894 PMCID: PMC6823160 DOI: 10.1016/j.eplepsyres.2019.106193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and a significant genetic contributor to Autism spectrum disorder. In addition to autistic-like phenotypes, individuals with FXS are subject to developing numerous comorbidities, one of the most prevalent being seizures. In the present study, we investigated how a single early-life seizure superimposed on a genetic condition impacts the autistic-like behavioral phenotype of the mouse. We induced status epilepticus (SE) on postnatal day (PD) 10 in Fmr1 wild type (WT) and knockout (KO) mice. We then tested the mice in a battery of behavioral tests during adulthood (PD90) to examine the long-term impact of an early-life seizure. Our findings replicated prior work that reported a single instance of SE results in behavioral deficits, including increases in repetitive behavior, enhanced hippocampal-dependent learning, and reduced sociability and prepulse inhibition (p < 0.05). We also observed genotypic differences characteristic of the FXS phenotype in Fmr1 KO mice, such as enhanced prepulse inhibition and repetitive behavior, hyperactivity, and reduced startle responses (p < 0.05). Superimposing a seizure on deletion of Fmr1 significantly impacted repetitive behavior in a nosepoke task. Specifically, a single early-life seizure increased consecutive nose poking behavior in the task in WT mice (p < 0.05), yet seizures did not exacerbate the elevated stereotypy observed in Fmr1 KO mice (p > 0.05). Overall, these findings help to elucidate how seizures in a critical period of development can impact long-term behavioral manifestations caused by underlying gene mutations in Fmr1. Utilizing double-hit models, such as superimposing seizures on the Fmr1 mutation, can help to enhance our understanding of comorbidities in disease models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth TX, 76107, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - James T Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
37
|
Campos GV, de Souza AMA, Ji H, West CA, Wu X, Lee DL, Aguilar BL, Forcelli PA, de Menezes RC, Sandberg K. The Angiotensin Type 1 Receptor Antagonist Losartan Prevents Ovariectomy-Induced Cognitive Dysfunction and Anxiety-Like Behavior in Long Evans Rats. Cell Mol Neurobiol 2019; 40:407-420. [PMID: 31637567 PMCID: PMC7056686 DOI: 10.1007/s10571-019-00744-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/06/2019] [Indexed: 12/23/2022]
Abstract
Women who have bilateral oophorectomies prior to the age of natural menopause are at increased risk of developing mild cognitive decline, dementia, anxiety, and depressive type disorders. Clinical and animal studies indicate angiotensin type 1 receptor (AT1R) blockers (ARBs) have blood pressure (BP)-independent neuroprotective effects. To investigate the potential use of ARBs in normotensive women at increased risk of developing neurocognitive problems, we studied a rat model of bilateral oophorectomy. Long Evans rats were sham-operated (Sham) or ovariectomized (Ovx) at 3 months of age and immediately treated continuously with vehicle (Veh) or the ARB losartan (Los) for the duration of the experiment. In contrast to many hypertensive rat models, ovariectomy did not increase mean arterial pressure (MAP) in these normotensive rats. Ovariectomized rats spent less time in the open arms of the elevated plus maze (EPM) [(% total time): Veh, 34.1 ± 5.1 vs. Ovx, 18.7 ± 4.4; p < 0.05] and in the center of the open field (OF) [(s): Veh, 11.1 ± 1.7 vs. Ovx, 6.64 ± 1.1; p < 0.05]. They also had worse performance in the novel object recognition (NOR) test as evidenced by a reduction in the recognition index [Veh, 0.62 ± 0.04 vs. Ovx, 0.45 ± 0.03; p < 0.05]. These adverse effects of ovariectomy were prevented by Los. Losartan also reduced plasma corticosterone in Ovx rats compared to Veh treatment [(ng/mL): Ovx–Veh, 238 ± 20 vs. Ovx–Los, 119 ± 42; p < 0.05]. Ovariectomy increased AT1R mRNA expression in the CA3 region of the hippocampus (Hc) [(copies x 106/µg RNA): Sham–Veh, 7.15 ± 0.87 vs. Ovx–Veh, 9.86 ± 1.7; p < 0.05]. These findings suggest the neuroprotective effects of this ARB in normotensive Ovx rats involve reduction of plasma corticosterone and blockade of increased AT1R activity in the hippocampus. These data suggest ARBs have therapeutic potential for normotensive women at increased risk of developing cognitive and behavioral dysfunction due to bilateral oophorectomy prior to the natural age of menopause.
Collapse
Affiliation(s)
- Glenda V Campos
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA.,Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Aline M A de Souza
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Hong Ji
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Crystal A West
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Xie Wu
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Dexter L Lee
- Department of Physiology, Howard University, Washington, DC, USA
| | - Brittany L Aguilar
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Rodrigo C de Menezes
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Suite 232 Building D, 4000 Reservoir Road, NW, Washington, DC, 20057, USA.
| |
Collapse
|
38
|
Suleymanova EM, Borisova MA, Vinogradova LV. Early endocannabinoid system activation attenuates behavioral impairments induced by initial impact but does not prevent epileptogenesis in lithium-pilocarpine status epilepticus model. Epilepsy Behav 2019; 92:71-78. [PMID: 30634156 DOI: 10.1016/j.yebeh.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022]
Abstract
Mood and anxiety disorders, as well as memory impairments, are important factors affecting quality of life in patients with epilepsy and can influence the antiepileptic therapy. Clinical studies of psychiatric comorbidities are quite complicated to design and interpret, so animal studies of behavioral impairments associated with seizures can be of use. We investigated the effect of early administration of endocannabinoid receptor agonist WIN-55,212-2 on the development of spontaneous seizures, long-term behavioral and memory impairments, and neurodegeneration in the hippocampus on the lithium-pilocarpine model of status epilepticus (SE). We also studied the role of spontaneous seizures in the development of pathologic consequences of the SE. Our results showed that behavioral impairments found in the elevated plus maze test depended mostly on the consequences of SE itself and not on the development of spontaneous seizures while hyperactivity in the open-field test and light-dark chamber was more prominent in rats with spontaneous seizures. Administration of WIN-55,212-2 decreased emotional behavior in the elevated plus maze but did not affect hyperactive behavior in the open-field test. Spatial memory impairment developed both in the presence or absence of spontaneous seizures and was not affected by administration of WIN-55,212-2. Both administration of endocannabinoid receptor agonist WIN-55,212-2 and the presence of spontaneous seizures affected SE-induced neuronal loss in the hippocampus.
Collapse
Affiliation(s)
- Elena M Suleymanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Butlerova 5A, Moscow, Russia.
| | - Maria A Borisova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Butlerova 5A, Moscow, Russia
| | - Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Butlerova 5A, Moscow, Russia
| |
Collapse
|
39
|
Chen F, He X, Luan G, Li T. Role of DNA Methylation and Adenosine in Ketogenic Diet for Pharmacoresistant Epilepsy: Focus on Epileptogenesis and Associated Comorbidities. Front Neurol 2019; 10:119. [PMID: 30863356 PMCID: PMC6399128 DOI: 10.3389/fneur.2019.00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by a long term propensity to produce unprovoked seizures and by the associated comorbidities including neurological, cognitive, psychiatric, and impairment the quality of life. Despite the clinic availability of several novel antiepileptic drugs (AEDs) with different mechanisms of action, more than one-third of patients with epilepsy suffer with pharmacoresistant epilepsy. Until now, no AEDs have been proven to confer the efficacy in alteration of disease progression or inhibition of the development of epilepsy. The ketogenic diet, the high-fat, low-carbohydrate composition is an alternative metabolic therapy for epilepsy, especially for children with drug-resistant epilepsy. Recently clinical and experimental results demonstrate its efficacy in ameliorating both seizures and comorbidities associated with epilepsy, such as cognitive/psychiatric concerns for the patients with refractory epilepsy. Of importance, ketogenic diet demonstrates to be a promising disease-modifying or partial antiepileptogenesis therapy for epilepsy. The mechanisms of action of ketogenic diet in epilepsy have been revealed recently, such as epigenetic mechanism for increase the adenosine level in the brain and inhibition of DNA methylation. In the present review, we will focus on the mechanisms of ketogenic diet therapies underlying adenosine system in the prevention of epileptogenesis and disease modification. In addition, we will review the role of ketogenic diet therapy in comorbidities associated epilepsy and the underlying mechanisms of adenosine.
Collapse
Affiliation(s)
- Fan Chen
- Beijing Key Laboratory of Epilepsy Research, Department of Neurology, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xinghui He
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy Research, Department of Neurology, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|