1
|
Salazar-Villacorta A, Bond LM, Kim L, Anagnostopoulou K, Scardamaglia A, Filippakopoulou E, Ververi A, Efthymiou S, Dinopoulos A, Murphy D, Karadima G, Koutsis G, Kaliakatsos M, Houlden H, Walther TC, Farese RV. Partial loss of FITM2 function causes hereditary spastic paraplegia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.23.24319660. [PMID: 39974099 PMCID: PMC11838939 DOI: 10.1101/2025.01.23.24319660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
FITM2 encodes fat-storage inducing transmembrane protein 2 (FIT2), a lipid diphosphatase in the ER that cleaves acyl-CoAs and is crucial for ER homeostasis. In humans, homozygous null mutations in FITM2 are associated with a syndrome characterized by deafness and dystonia. Here, we report two families with hereditary spastic paraplegia (HSP) in whom exome sequencing revealed compound heterozygosity for FITM2 mutations. In each family, the affected probands carry one putative null allele and one G100R missense allele. Functional analyses demonstrated that the G100R allele is hypomorphic, with FIT2 protein levels reduced to 20% of wild type, leading to proportionately decreased enzyme activity. The occurrence of similar HSP disease phenotypes and the same hypomorphic mutation in these families suggests that the G100R mutation and its associated reduced enzyme activity represent a newly recognized clinical manifestation of FITM2 mutations, expanding the spectrum of conditions associated with this gene.
Collapse
|
2
|
Tessa A, Schifino M, Salvo E, Trovato R, Cesana L, Frosini S, Pasquariello R, Sgherri G, Battini R, Bonaglia MC, Santorelli FM, Astrea G. Small Complex Rearrangement in HINT1-Related Axonal Neuropathy. Genes (Basel) 2024; 15:1483. [PMID: 39596683 PMCID: PMC11593638 DOI: 10.3390/genes15111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Autosomal recessive inherited pathogenetic variants in the histidine triad nucleotide-binding protein 1 (HINT1) gene are responsible for an axonal Charcot-Marie-Tooth neuropathy associated with neuromyotonia, a phenomenon resulting from peripheral nerve hyperexcitability that causes a spontaneous muscle activity such as persistent muscle contraction, impaired relaxation and myokymias. METHODS Herein, we describe two brothers in whom biallelic HINT1 variants were identified following a multidisciplinary approach. RESULTS The younger brother came to our attention for clinical evaluation of moderate intellectual disability, language developmental delay, and some behavioral issues. His elder brother presented mild intellectual disability, hyperactivity, tiptoe walking, and gait ataxia. At first evaluation, motor impairment with frequent falls, pes cavus, and distal hyposthenia with reduced osteotendinous reflexes were found in both. Grip myotonic phenomenon was also noted. Blood tests revealed mildly elevated creatine kinase, and neurophysiology investigations revealed predominantly axonal polyneuropathy. Muscle MRI highlighted fibro-adipose infiltration, prevalent in the lower limbs. Gene panel testing detected a heterozygous HINT1 variant (c.355C>T/p.(Arg119Trp)) on the paternal allele. A further in-depth analysis using Integrative Genomics Viewer and Optical Genome Mapping led us to identify an additional variant in HINT1 represented by a complex rearrangement located in the region 5'UTR-exon 1-intron 1, not previously described. CONCLUSIONS This complex rearrangement could have been overlooked if the clinical picture had not been evaluated as a whole (from a clinical, neurophysiological, and neuroimaging point of view). Neuropsychiatric manifestations (intellectual disability, hyperactivity, etc.) are part of the picture of HINT1-related neuromyotonia.
Collapse
Affiliation(s)
- Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (A.T.); (R.T.); (F.M.S.)
| | - Mariapaola Schifino
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (M.S.); (S.F.); (R.P.); (G.S.); (R.B.)
| | - Eliana Salvo
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (E.S.); (L.C.); (M.C.B.)
| | - Rosanna Trovato
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (A.T.); (R.T.); (F.M.S.)
| | - Luca Cesana
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (E.S.); (L.C.); (M.C.B.)
| | - Silvia Frosini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (M.S.); (S.F.); (R.P.); (G.S.); (R.B.)
| | - Rosa Pasquariello
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (M.S.); (S.F.); (R.P.); (G.S.); (R.B.)
| | - Giada Sgherri
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (M.S.); (S.F.); (R.P.); (G.S.); (R.B.)
| | - Roberta Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (M.S.); (S.F.); (R.P.); (G.S.); (R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (E.S.); (L.C.); (M.C.B.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (A.T.); (R.T.); (F.M.S.)
| | - Guja Astrea
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (M.S.); (S.F.); (R.P.); (G.S.); (R.B.)
| |
Collapse
|
3
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
4
|
Papoff FMA, Astrea G, Mero S, Chicca L, Satolli S, Pasquariello R, Battini R, Tessa A, Santorelli FM. Early Diagnosis of AP5Z1/SPG48 Spastic Paraplegia: Case Report and Review of the Literature. Neuropediatrics 2024; 55:341-346. [PMID: 39059408 DOI: 10.1055/s-0044-1788729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hereditary spastic paraplegias (HSPs) are a genetically heterogeneous group of neurodegenerative disorders clinically characterized by progressive lower limb spasticity with pyramidal weakness. Around a dozen potential molecular mechanisms are recognized. Childhood HSP is a significant diagnostic challenge in clinical practice. Mutations in AP5Z1, which are associated with spastic paraplegia type 48 (SPG48), are extremely rare and seldom described in children.We report the clinical, radiologic, and molecular studies performed in a child harboring novel biallelic mutations in AP5Z1.The child presented a neurodevelopmental disorder with slight lower limb pyramidal signs. Brain magnetic resonance imaging (MRI) showed minimal white matter changes in the frontal horns of the lateral ventricles and a normally shaped corpus callosum. Western blotting in cultured skin fibroblasts indicated reduced protein expression, which confirmed the genetic diagnosis and framed this as a case of protein reduction in a context of impaired autophagy.Our findings expand the spectrum of phenotypes associated with mutations in AP5Z1, highlighting their clinical and pathophysiologic overlap with lysosomal storage disorders. SPG48 should be considered in the differential diagnosis of neurodevelopmental disorders even when pyramidal signs are minimal and brain MRI not fully informative.
Collapse
Affiliation(s)
- Francesca M A Papoff
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Serena Mero
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Laura Chicca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Satolli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
5
|
Lobato AG, Ortiz-Vega N, Canic T, Tao X, Bucan N, Ruan K, Rebelo AP, Schule R, Zuchner S, Syed S, Zhai RG. Loss of Fic causes progressive neurodegeneration in a Drosophila model of hereditary spastic paraplegia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167348. [PMID: 38986817 PMCID: PMC11549967 DOI: 10.1016/j.bbadis.2024.167348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Hereditary Spastic Paraplegia (HSP) is a group of rare inherited disorders characterized by progressive weakness and spasticity of the legs. Recent newly discovered biallelic variants in the gene FICD were found in patients with a highly similar phenotype to early onset HSP. FICD encodes filamentation induced by cAMP domain protein. FICD is involved in the AMPylation and deAMPylation protein modifications of the endoplasmic reticulum (ER) chaperone BIP, a major constituent of the ER that regulates the unfolded protein response. Although several biochemical properties of FICD have been characterized, the neurological function of FICD and the pathological mechanism underlying HSP are unknown. We established a Drosophila model to gain mechanistic understanding of the function of FICD in HSP pathogenesis, and specifically the role of BIP in neuromuscular physiology. Our studies on Drosophila Fic null mutants uncovered that loss of Fic resulted in locomotor impairment and reduced levels of BIP in the motor neuron circuitry, as well as increased reactive oxygen species (ROS) in the ventral nerve cord of Fic null mutants. Finally, feeding Drosophila Fic null mutants with chemical chaperones PBA or TUDCA, or treatment of patient fibroblasts with PBA, reduced the ROS accumulation. The neuronal phenotypes of Fic null mutants recapitulate several clinical features of HSP patients and further reveal cellular patho-mechanisms. By modeling FICD in Drosophila, we provide potential targets for intervention for HSP, and advance fundamental biology that is important for understanding related rare and common neuromuscular diseases.
Collapse
Affiliation(s)
- Amanda G Lobato
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie Ortiz-Vega
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Tijana Canic
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Xianzun Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nika Bucan
- Undergraduate Program in Neuroscience, University of Miami, Coral Gables, FL, USA
| | - Kai Ruan
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Schule
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - R Grace Zhai
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Cioffi E, Gioiosa V, Tessa A, Petrucci A, Trovato R, Santorelli FM, Casali C. Hereditary spastic paraparesis type 18 (SPG18): new ERLIN2 variants in a series of Italian patients, shedding light upon genetic and phenotypic variability. Neurol Sci 2024; 45:3845-3852. [PMID: 38427163 PMCID: PMC11255072 DOI: 10.1007/s10072-024-07423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG18 is a rare, early-onset, complicated HSP, first reported as linked to biallelic ERLIN2 mutations. Recent cases of late-onset, pure HSP with monoallelic ERLIN2 variants prompt inquiries into the zygosity of such genetic conditions. The observed relationship between phenotype and mode of inheritance suggests a potential dominant negative effect of mutated ERLIN2 protein, potentially resulting in a milder phenotype. This speculation suggests that a wider range of HSP genes could be linked to various inheritance patterns. PURPOSE AND BACKGROUND With documented cases of HSP loci exhibiting both dominant and recessive patterns, this study emphasizes that the concept of zygosity is no longer a limiting factor in the establishment of molecular diagnoses for HSP. Recent cases have demonstrated phenoconversion in SPG18, from HSP to an amyotrophic lateral sclerosis (ALS)-like syndrome. METHODS AND RESULTS This report highlights two cases out of five exhibiting HSP-ALS phenoconversion, discussing an observed prevalence in autosomal dominant SPG18. Additionally, the study emphasizes the relatively high incidence of the c.502G>A variant in monoallelic SPG18 cases. This mutation appears to be particularly common in cases of HSPALS phenoconversion, indicating its potential role as a hotspot for a distinctive SPG18 phenotype with an ALS-like syndrome. CONCLUSIONS Clinicians need to be aware that patients with HSP may show ALS signs and symptoms. On the other hand, HSP panels must be included in genetic testing methods for instances of familial ALS.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Valeria Gioiosa
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Antonio Petrucci
- Department of Neurology and Neurophysiopathology, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense, 87, 00152, Rome, Italy
| | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
7
|
Brankovic M, Ivanovic V, Basta I, Khang R, Lee E, Stevic Z, Ralic B, Tubic R, Seo G, Markovic V, Bozovic I, Svetel M, Marjanovic A, Veselinovic N, Mesaros S, Jankovic M, Savic-Pavicevic D, Jovin Z, Novakovic I, Lee H, Peric S. Whole exome sequencing in Serbian patients with hereditary spastic paraplegia. Neurogenetics 2024; 25:165-177. [PMID: 38499745 DOI: 10.1007/s10048-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.
Collapse
Affiliation(s)
- Marija Brankovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia.
| | - Vukan Ivanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Ivana Basta
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | | | | | - Zorica Stevic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | | | - Radoje Tubic
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Vladana Markovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivo Bozovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Marina Svetel
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ana Marjanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Nikola Veselinovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Sarlota Mesaros
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dusanka Savic-Pavicevic
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Zita Jovin
- Neurology Clinic, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Hane Lee
- 3Billion, Inc., Seoul, South Korea
| | - Stojan Peric
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
8
|
Liu J, He Y, Lwin C, Han M, Guan B, Naik A, Bender C, Moore N, Huryn LA, Sergeev YV, Qian H, Zeng Y, Dong L, Liu P, Lei J, Haugen CJ, Prasov L, Shi R, Dollfus H, Aristodemou P, Laich Y, Németh AH, Taylor J, Downes S, Krawczynski MR, Meunier I, Strassberg M, Tenney J, Gao J, Shear MA, Moore AT, Duncan JL, Menendez B, Hull S, Vincent AL, Siskind CE, Traboulsi EI, Blackstone C, Sisk RA, Miraldi Utz V, Webster AR, Michaelides M, Arno G, Synofzik M, Hufnagel RB. Neuropathy target esterase activity defines phenotypes among PNPLA6 disorders. Brain 2024; 147:2085-2097. [PMID: 38735647 PMCID: PMC11146429 DOI: 10.1093/brain/awae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 05/14/2024] Open
Abstract
Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism and hair anomalies. PNPLA6 encodes neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a systematic evidence-based review of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6-associated clinical diagnoses unambiguously reclassified 36 variants as pathogenic and 10 variants as likely pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship, and the generation of a preclinical animal model, pave the way for therapeutic trials, using NTE as a biomarker.
Collapse
Affiliation(s)
- James Liu
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Cara Lwin
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marina Han
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amelia Naik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chelsea Bender
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nia Moore
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zeng
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carl J Haugen
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ruifang Shi
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, China
| | - Hélène Dollfus
- Centre de référence pour les Affections Rares Ophtalmologiques CARGO, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg 67091, France
| | - Petros Aristodemou
- Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
- VRMCy Centre, Limassol 3025, Cyprus
| | - Yannik Laich
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Andrea H Németh
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, ACE Building, Nuffield Orthopaedic Centre, Oxford OX3 7HE, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - John Taylor
- Oxford Regional Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Susan Downes
- Nuffield Department of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan 60-512, Poland
| | - Isabelle Meunier
- National Referent Centre for Rare Sensory Diseases, Montpellier University Hospital, Montpellier University, Montpellier 34295, France
| | | | - Jessica Tenney
- Division of Medical Genetics, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Josephine Gao
- Division of Medical Genetics, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Matthew A Shear
- Division of Medical Genetics, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jacque L Duncan
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Beatriz Menendez
- Department of Pediatrics, University of Illinois School of Medicine, Chicago, IL 60612, USA
| | - Sarah Hull
- Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand
| | - Andrea L Vincent
- Department of Ophthalmology, University of Auckland, Auckland 1023, New Zealand
| | - Carly E Siskind
- Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Elias I Traboulsi
- The Center for Genetic Eye Diseases, The Cleveland Clinic Eye Institute, Cleveland, OH 44106, USA
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert A Sisk
- Department of Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Virginia Miraldi Utz
- Department of Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital NHS Trust, London EC1V 2PD, UK
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Genetics and Center for Integrated Healthcare Research, Kaiser Permanente Hawaii Region, Honolulu, HI 98619, USA
| |
Collapse
|
9
|
Libonati L, Cambieri C, Colavito D, Moret F, D'Andrea E, Del Giudice E, Leon A, Inghilleri M, Ceccanti M. Genetics screening in an Italian cohort of patients with Amyotrophic Lateral Sclerosis: the importance of early testing and its implication. J Neurol 2024; 271:1921-1936. [PMID: 38112783 DOI: 10.1007/s00415-023-12142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with an elusive etiology. While environmental factors have been considered, familial ALS cases have raised the possibility of genetic involvement. This genetic connection is increasingly evident, even in patients with sporadic ALS. We allowed access to the genetic test to all patients attending our clinic to identify the prevalence and the role of genetic variants in the development of the disease and to identify patients with potentially treatable forms of the disease. MATERIALS AND METHODS 194 patients with probable or definite ALS, were enrolled. A comprehensive genetic testing was performed, including sequencing all exons of the SOD1 gene and testing for hexanucleotide intronic repeat expansions (G4C2) in the C9orf72 gene using fluorescent repeat-primed PCR (RP-PCR). Whole Exome NGS Sequencing (WES) was performed, followed by an in silico multigene panel targeting neuromuscular diseases, spastic paraplegia, and motor distal neuropathies. We conducted statistical analyses to compare different patient groups. RESULTS Clinically significant pathogenetic variants were detected in 14.43% of cases. The highest prevalence of pathogenetic variants was observed in fALS patients, but a substantial proportion of sALS patients also displayed at least one variant, either pathogenetic or of uncertain significance (VUS). The most observed pathogenetic variant was the expansion of the C9orf72 gene, which was associated with a shorter survival. SOD1 variants were found in 1.6% of fALS and 2.5% of sALS patients. DISCUSSION The study reveals a significant number of ALS patients carrying pathogenic or likely pathogenic variants, with a higher prevalence in familial ALS cases. The expansion of the C9orf72 gene emerges as the most common genetic cause of ALS, affecting familial and sporadic cases. Additionally, SOD1 variants are detected at an unexpectedly higher rate, even in patients without a familial history of ALS, underscoring the crucial role of genetic testing in treatment decisions and potential participation in clinical trials. We also investigated variants in genes such as TARDBP, FUS, NEK1, TBK1, and DNAJC7, shedding light on their potential involvement in ALS. These findings underscore the complexity of interpreting variants of uncertain significance (VUS) and their ethical implications in patient communication and genetic counseling for patients' relatives. CONCLUSION This study emphasizes the diverse genetic basis of ALS and advocates for integrating comprehensive genetic testing into diagnostic protocols. The evolving landscape of genetic therapies requires identifying all eligible patients transcending traditional familial boundaries. The presence of VUS highlights the multifaceted nature of ALS genetics, prompting further exploration of complex interactions among genetic variants, environmental factors, and disease development.
Collapse
Affiliation(s)
- Laura Libonati
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy.
| | - Chiara Cambieri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Davide Colavito
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Federica Moret
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Edoardo D'Andrea
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | | | - Alberta Leon
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Marco Ceccanti
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| |
Collapse
|
10
|
Cioffi E, Coppola G, Musumeci O, Gallone S, Silvestri G, Rossi S, Piemonte F, D'Amico J, Tessa A, Santorelli FM, Casali C. Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature. Neurogenetics 2024; 25:51-67. [PMID: 38334933 PMCID: PMC11076336 DOI: 10.1007/s10048-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Olimpia Musumeci
- Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Salvatore Gallone
- Department of Neuroscience and Mental Health, Neurologia 1, A.O.U. Città Della Salute E Della Scienza, 10126, Turin, Italy
| | - Gabriella Silvestri
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Neuroscienze, Organi Di Senso E Torace, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Rossi
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Jessica D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
11
|
Kilic MA, Yildiz EP, Deniz A, Coskun O, Kurekci F, Avci R, Genc HM, Yesil G, Akbas S, Yesilyurt A, Kara B. A Retrospective Review of 18 Patients With Childhood-Onset Hereditary Spastic Paraplegia, Nine With Novel Variants. Pediatr Neurol 2024; 152:189-195. [PMID: 38301322 DOI: 10.1016/j.pediatrneurol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders. Our objective was to determine the clinical and molecular characteristics of patients with genetically confirmed childhood-onset HSPs and to expand the genetic spectrum for some rare subtypes of HSP. METHODS We reviewed the charts of subjects with genetically confirmed childhood-onset HSP. The age at the disease onset was defined as the point at which the delayed motor milestones were observed. Delayed motor milestones were defined as being unable to hold the head up by four months, sitting unassisted by nine months, and walking independently by 17 months. If there were no delayed motor milestones, age at disease onset was determined by leg stiffness, frequent falls, or unsteady gait. Genetic testing was performed based on delayed motor milestones, progressive leg spasticity, and gait difficulty. The variant classification was determined based on the American College of Medical Genetics standard guidelines for variant interpretation. Variants of uncertain significance (VUS) were considered disease-associated when clinical findings were consistent with the previously described disease phenotypes for pathogenic variants. In addition, in the absence of another pathogenic, likely pathogenic, or VUS variant that could explain the phenotype of our cases, we concluded that the disease is associated with VUS in the HSP-causing gene. Segregation analysis was also performed on the parents of some patients to demonstrate the inheritance model. RESULTS There were a total of 18 patients from 17 families. The median age of symptom onset was 18 months (2 to 84 months). The mean delay between symptom onset and genetic diagnosis was 5.8 years (5 months to 17 years). All patients had gait difficulty caused by progressive leg spasticity and weakness. Independent walking was not achieved at 17 months for 67% of patients (n = 12). In our cohort, there were two subjects each with SPG11, SPG46, and SPG 50 followed by single subject each with SPG3A, SPG4, SPG7, SPG8, SPG30, SPG35, SPG43, SPG44, SPG57, SPG62, infantile-onset ascending spastic paralysis (IAHSP), and spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Eight novel variants in nine patients were described. Two affected siblings had a novel variant in the GBA2 gene (SPG46), and one subject each had a novel variant in WASHC5 (SPG8), SPG11 (SPG11), KIF1A (SPG30), GJC2 (SPG44), ERLIN1 (SPG62), ALS2 (IAHSP), and HACE1 (SPPRS). Among the novel variants, the variant in the SPG11 was pathogenic and the variants in the KIF1A, GJC2, and HACE1 were likely pathogenic. The variants in the GBA2, ALS2, ERLIN1, and WASHC5 were classified as VUS. CONCLUSIONS There was a significant delay between symptom onset and genetic diagnosis of HSP. An early diagnosis may be possible by examining patients with delayed motor milestones, progressive spasticity, gait difficulties, and neuromuscular weakness in the context of HSP. Eight novel variants in nine patients were described, clinically similar to the previously described disease phenotype associated with pathogenic variants. This study contributes to expanding the genetic spectrum of some rare subtypes of HSP.
Collapse
Affiliation(s)
- Mehmet Akif Kilic
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye.
| | - Edibe Pembegul Yildiz
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Adnan Deniz
- Department of Pediatric Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Orhan Coskun
- Department of Pediatric Neurology, Gaziosmanpasa Training and Research Hospital, Istanbul, Turkiye
| | - Fulya Kurekci
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Ridvan Avci
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Hulya Maras Genc
- Department of Pediatric Neurology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Gozde Yesil
- Department of Medical Genetics, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Sinan Akbas
- Department of Medical Genetics, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Ahmet Yesilyurt
- Acibadem Labgen Genetic Diagnosis Centre, Acibadem Health Group, Istanbul, Turkiye
| | - Bulent Kara
- Department of Pediatric Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| |
Collapse
|
12
|
Olsen CG, Busk ØL, Holla ØL, Tveten K, Holmøy T, Tysnes OB, Høyer H. Genetic overlap between ALS and other neurodegenerative or neuromuscular disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:177-187. [PMID: 37849306 DOI: 10.1080/21678421.2023.2270705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE In Norway, 89% of patients with Amyotrophic lateral sclerosis (ALS) lacks a genetic diagnose. ALS genes and genes that cause other neuromuscular or neurodegenerative disorders extensively overlap. This population-based study examined whether patients with ALS have a family history of neurological disorders and explored the occurrence of rare genetic variants associated with other neurodegenerative or neuromuscular disorders. METHODS During a two-year period, blood samples and clinical data from patients with ALS were collected from all 17 neurological departments in Norway. Our genetic analysis involved exome sequencing and bioinformatics filtering of 510 genes associated with neurodegenerative and neuromuscular disorders. The variants were interpreted using genotype-phenotype correlations and bioinformatics tools. RESULTS A total of 279 patients from a Norwegian population-based ALS cohort participated in this study. Thirty-one percent of the patients had first- or second-degree relatives with other neurodegenerative disorders, most commonly dementia and Parkinson's disease. The genetic analysis identified 20 possible pathogenic variants, in ATL3, AFG3L2, ATP7A, BICD2, HARS1, KIF1A, LRRK2, MSTO1, NEK1, NEFH, and SORL1, in 25 patients. NEK1 risk variants were present in 2.5% of this ALS cohort. Only four of the 25 patients reported relatives with other neurodegenerative or neuromuscular disorders. CONCLUSION Gene variants known to cause other neurodegenerative or neuromuscular disorders, most frequently in NEK1, were identified in 9% of the patients with ALS. Most of these patients had no family history of other neurodegenerative or neuromuscular disorders. Our findings indicated that AFG3L2, ATP7A, BICD2, KIF1A, and MSTO1 should be further explored as potential ALS-causing genes.
Collapse
Affiliation(s)
- Cathrine Goberg Olsen
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
| | | | | | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway, and
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Helle Høyer
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| |
Collapse
|
13
|
Gao SY, Liu YX, Dong Y, Fan LL, Ding Q, Liu L. Case report: A novel WASHC5 variant altering mRNA splicing causes spastic paraplegia in a patient. Front Genet 2023; 14:1205052. [PMID: 38028608 PMCID: PMC10644772 DOI: 10.3389/fgene.2023.1205052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. Mutations in the WASHC5 gene are associated with autosomal dominant HSP, spastic paraplegia 8 (SPG8). However, due to the small number of reported cases, the exact mechanism remains unclear. Method: We report a Chinese family with HSP. The proband was referred to our hospital due to restless leg syndrome and insomnia. The preliminary clinical diagnosis of the proband was spastic paraplegia. Whole-exome sequencing (WES) and RNA splicing analysis were conducted to evaluate the genetic cause of the disease in this family. Results: A novel splice-altering variant (c.712-2A>G) in the WASHC5 gene was detected and further verified by RNA splicing analysis and Sanger sequencing. Real-time qPCR analysis showed that the expression of genes involved in the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex and endosomal and lysosomal systems was altered due to this variant. Conclusion: A novel heterozygous splice-altering variant (c.712-2A>G) in the WASHC5 gene was detected in a Chinese family with HSP. Our study provided data for genetic counseling to this family and offered evidence that this splicing variant in the WASHC5 gene is significant in causing HSP.
Collapse
Affiliation(s)
- Shan-Yu Gao
- Department of Neurology, Changshu No. 2 People’s Hospital, Changshu, China
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Xing Liu
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, China
| | - Yi Dong
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Qi Ding
- Department of Neurology, Changshu No. 2 People’s Hospital, Changshu, China
| | - Lv Liu
- Department of Pulmonary and Critical Care Medicine, Research Unit of Respiratory Disease, Hunan Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Chou Y, Hsu S, Tsai Y, Lu Y, Yu K, Wu H, Liao Y, Lee Y. Biallelic DDHD2 mutations in patients with adult-onset complex hereditary spastic paraplegia. Ann Clin Transl Neurol 2023; 10:1603-1612. [PMID: 37420318 PMCID: PMC10502669 DOI: 10.1002/acn3.51850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVE Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by slowly progressive lower limb spasticity and weakness. HSP type 54 (SPG54) is autosomal recessively inherited and caused by mutations in the DDHD2 gene. This study investigated the clinical characteristics and molecular features of DDHD2 mutations in a cohort of Taiwanese patients with HSP. METHODS Mutational analysis of DDHD2 was performed for 242 unrelated Taiwanese patients with HSP. The clinical, neuroimaging, and genetic features of the patients with biallelic DDHD2 mutations were characterized. A cell-based study was performed to assess the effects of the DDHD2 mutations on protein expression. RESULTS SPG54 was diagnosed in three patients. Among them, two patients carried compound heterozygous DDHD2 mutations, p.[R112Q];[Y606*] and p.[R112Q];[p.D660H], and the other one was homozygous for the DDHD2 p.R112Q mutation. DDHD2 p.Y606* is a novel mutation, whereas DDHD2 p.D660H and p.R112Q have been reported in the literature. All three patients manifested adult onset complex HSP with additional cerebellar ataxia, polyneuropathy, or cognitive impairment. Brain proton magnetic resonance spectroscopy revealed an abnormal lipid peak in thalamus of all three patients. In vitro studies demonstrated that all the three DDHD2 mutations were associated with a considerably lower DDHD2 protein level. INTERPRETATION SPG54 was detected in approximately 1.2% (3 of 242) of the Taiwanese HSP cohort. This study expands the known mutational spectrum of DDHD2, provides molecular evidence of the pathogenicity of the DDHD2 mutations, and underlines the importance of considering SPG54 as a potential diagnosis of adult-onset HSP.
Collapse
Affiliation(s)
- Ying‐Tsen Chou
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Shao‐Lun Hsu
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologyNational Yang Ming Chiao Tung University School of MedicineTaipeiTaiwan
| | - Yu‐Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Jiun Lu
- Department of NeurosurgeryNeurological Institute, Taipei Veterans General HospitalTaipeiTaiwan
| | - Kai‐Wei Yu
- Department of RadiologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Hsiu‐Mei Wu
- Department of RadiologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Yi‐Chu Liao
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologyNational Yang Ming Chiao Tung University School of MedicineTaipeiTaiwan
- Brain Research Center, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Chung Lee
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologyNational Yang Ming Chiao Tung University School of MedicineTaipeiTaiwan
- Brain Research Center, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Biological Science and Technology, College of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDSB), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
15
|
Caputo M, Martinelli I, Fini N, Gianferrari G, Simonini C, Trovato R, Santorelli FM, Tessa A, Mandrioli J, Zucchi E. A Variant in TBCD Associated with Motoneuronopathy and Corpus Callosum Hypoplasia: A Case Report. Int J Mol Sci 2023; 24:12386. [PMID: 37569761 PMCID: PMC10418765 DOI: 10.3390/ijms241512386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the tubulin-specific chaperon D (TBCD) gene, involved in the assembly and disassembly of the α/β-tubulin heterodimers, have been reported in early-onset progressive neurodevelopment regression, with epilepsy and mental retardation. We describe a rare homozygous variant in TBCD, namely c.881G>A/p.Arg294Gln, in a young woman with a phenotype dominated by distal motorneuronopathy and mild mental retardation, with neuroimaging evidence of corpus callosum hypoplasia. The peculiar phenotype is discussed in light of the molecular interpretation, enriching the literature data on tubulinopathies generated from TBCD mutations.
Collapse
Affiliation(s)
- Maria Caputo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.C.); (G.G.); (C.S.)
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Viale Giardini, 1355, 41126 Modena, Italy; (I.M.); (N.F.); (E.Z.)
- Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Viale Giardini, 1355, 41126 Modena, Italy; (I.M.); (N.F.); (E.Z.)
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.C.); (G.G.); (C.S.)
| | - Cecilia Simonini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.C.); (G.G.); (C.S.)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.T.); (F.M.S.); (A.T.)
| | | | - Alessandra Tessa
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.T.); (F.M.S.); (A.T.)
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.C.); (G.G.); (C.S.)
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Viale Giardini, 1355, 41126 Modena, Italy; (I.M.); (N.F.); (E.Z.)
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Viale Giardini, 1355, 41126 Modena, Italy; (I.M.); (N.F.); (E.Z.)
- Neuroscience PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
16
|
Kim GH, Song T, Lee J, Jang DH. Syringomyelia: A New Phenotype of SPG11-Related Hereditary Spastic Paraplegia? BRAIN & NEUROREHABILITATION 2023; 16:e14. [PMID: 37554253 PMCID: PMC10404805 DOI: 10.12786/bn.2023.16.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 08/10/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurodegenerative disorders affecting motor neurons in the central nervous system. HSP type 11 is the most frequent subtype of autosomal recessive HSPs. Caused by pathogenic variants in SPG11, HSP type 11 has a heterogeneous clinical presentation, including various degrees of cognitive dysfunction, spasticity and weakness predominantly in the lower extremities among other features. An 8-year-old boy visited our rehabilitation clinic with a chief complaint of intellectual impairment. Motor weakness was not apparent, but he exhibited a mild limping gait with physical signs of upper motor neuron involvement. Next generation sequencing revealed biallelic pathogenic variants, c.2163dupT and c.5866+1G>A in SPG11, inherited biparentally which was confirmed by Sanger sequencing. Brain imaging study showed thinning of corpus callosum, consistent with previous reports, however whole spine imaging study revealed extensive syringomyelia in his spinal cord, a rare finding in HSP type 11. Further studies are needed to determine whether this finding is a true phenotype associated with HSP type 11.
Collapse
Affiliation(s)
- Ga Hye Kim
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Taeyoung Song
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, College of Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| |
Collapse
|
17
|
Galatolo D, Trovato R, Scarlatti A, Rossi S, Natale G, De Michele G, Barghigiani M, Cioffi E, Filla A, Bilancieri G, Casali C, Santorelli FM, Silvestri G, Tessa A. Power of NGS-based tests in HSP diagnosis: analysis of massively parallel sequencing in clinical practice. Neurogenetics 2023; 24:147-160. [PMID: 37131039 DOI: 10.1007/s10048-023-00717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of heterogeneous neurological disorders mainly characterized by corticospinal degeneration (pure forms), but sometimes associated with additional neurological and extrapyramidal features (complex HSP). The advent of next-generation sequencing (NGS) has led to huge improvements in knowledge of HSP genetics and made it possible to clarify the genetic etiology of hundreds of "cold cases," accelerating the process of reaching a molecular diagnosis. The different NGS-based strategies currently employed as first-tier approaches most commonly involve the use of targeted resequencing panels and exome sequencing, whereas genome sequencing remains a second-tier approach because of its high costs. The question of which approach is the best is still widely debated, and many factors affect the choice. Here, we aim to analyze the diagnostic power of different NGS techniques applied in HSP, by reviewing 38 selected studies in which different strategies were applied in different-sized cohorts of patients with genetically uncharacterized HSP.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Arianna Scarlatti
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Salvatore Rossi
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Gemma Natale
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Gabriella Silvestri
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | | |
Collapse
|
18
|
García-Carmona JA, Amores-Iniesta J, Soler-Usero J, Cerdán-Sánchez M, Navarro-Zaragoza J, López-López M, Soria-Torrecillas JJ, Ballesteros-Arenas A, Pérez-Vicente JA, Almela P. Upregulation of Heat-Shock Protein (hsp)-27 in a Patient with Heterozygous SPG11 c.1951C>T and SYNJ1 c.2614G>T Mutations Causing Clinical Spastic Paraplegia. Genes (Basel) 2023; 14:1320. [PMID: 37510225 PMCID: PMC10379220 DOI: 10.3390/genes14071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
We report a 49-year-old patient suffering from spastic paraplegia with a novel heterozygous mutation and analyzed the levels of heat shock proteins (hsp)-27, dopamine (DA), and its metabolites in their cerebrospinal fluid (CSF). The hsp27 protein concentration in the patient's CSF was assayed by an ELISA kit, while DA levels and its metabolites in the CSF, 3,4-dihydroxyphenylacetic acid (DOPAC), Cys-DA, and Cys-DOPA were measured by HPLC. Whole exome sequencing demonstrated SPG-11 c.1951C>T and novel SYNJ1 c.2614G>T mutations, both heterozygous recessive. The patient's DA and DOPAC levels in their CSF were significantly decreased (53.0 ± 6.92 and 473.3 ± 72.19, p < 0.05, respectively) while no differences were found in their Cys-DA. Nonetheless, Cys-DA/DOPAC ratio (0.213 ± 0.024, p < 0.05) and hsp27 levels (1073.0 ± 136.4, p < 0.05) were significantly higher. To the best of our knowledge, the c.2614G>T SYNJ1 mutation has not been previously reported. Our patient does not produce fully functional spatacsin and synaptojanin-1 proteins. In this line, our results showed decreased DA and DOPAC levels in the patient's CSF, indicating loss of DAergic neurons. Many factors have been described as being responsible for the increased cys-DA/DOPAC ratio, such as MAO inhibition and decreased antioxidant activity in DAergic neurons which would increase catecholquinones and consequently cysteinyl-catechols. In conclusion, haploinsufficiency of spatacsin and synaptojanin-1 proteins might be the underlying cause of neurodegeneration produced by protein trafficking defects, DA vesicle trafficking/recycling processes, autophagy dysfunction, and cell death leading to hsp27 upregulation as a cellular mechanism of protection and/or to balance impaired protein trafficking.
Collapse
Affiliation(s)
- Juan Antonio García-Carmona
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
| | - Joaquín Amores-Iniesta
- Department of Animal Health, University of Murcia, 30100 Murcia, Spain
- Group of Mycoplasmosis, Epidemiology and Pathogen-Host Interaction, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
| | - José Soler-Usero
- Department of Biology and Biochemistry, University of Castilla-León, 09001 Burgos, Spain
| | - María Cerdán-Sánchez
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
| | - Javier Navarro-Zaragoza
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
- Department of Pharmacology, University of Murcia, 30100 Murcia, Spain
| | - María López-López
- Department of Neurology, Santa Lucia University Hospital, 30202 Cartagena, Spain
| | | | | | | | - Pilar Almela
- Group of Clinical & Experimental Pharmacology, Institute for Biomedical Research of Murcia (IMIB), 30120 Murcia, Spain
- Department of Pharmacology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
19
|
Liu J, He Y, Lwin C, Han M, Guan B, Naik A, Bender C, Moore N, Huryn LA, Sergeev Y, Qian H, Zeng Y, Dong L, Liu P, Lei J, Haugen CJ, Prasov L, Shi R, Dollfus H, Aristodemou P, Laich Y, Németh AH, Taylor J, Downes S, Krawczynski M, Meunier I, Strassberg M, Tenney J, Gao J, Shear MA, Moore AT, Duncan JL, Menendez B, Hull S, Vincent A, Siskind CE, Traboulsi EI, Blackstone C, Sisk R, Utz V, Webster AR, Michaelides M, Arno G, Synofzik M, Hufnagel RB. Neuropathy target esterase activity predicts retinopathy among PNPLA6 disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544373. [PMID: 37333224 PMCID: PMC10274907 DOI: 10.1101/2023.06.09.544373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Biallelic pathogenic variants in the PNPLA6 gene cause a broad spectrum of disorders leading to gait disturbance, visual impairment, anterior hypopituitarism, and hair anomalies. PNPLA6 encodes Neuropathy target esterase (NTE), yet the role of NTE dysfunction on affected tissues in the large spectrum of associated disease remains unclear. We present a clinical meta-analysis of a novel cohort of 23 new patients along with 95 reported individuals with PNPLA6 variants that implicate missense variants as a driver of disease pathogenesis. Measuring esterase activity of 46 disease-associated and 20 common variants observed across PNPLA6 -associated clinical diagnoses unambiguously reclassified 10 variants as likely pathogenic and 36 variants as pathogenic, establishing a robust functional assay for classifying PNPLA6 variants of unknown significance. Estimating the overall NTE activity of affected individuals revealed a striking inverse relationship between NTE activity and the presence of retinopathy and endocrinopathy. This phenomenon was recaptured in vivo in an allelic mouse series, where a similar NTE threshold for retinopathy exists. Thus, PNPLA6 disorders, previously considered allelic, are a continuous spectrum of pleiotropic phenotypes defined by an NTE genotype:activity:phenotype relationship. This relationship and the generation of a preclinical animal model pave the way for therapeutic trials, using NTE as a biomarker.
Collapse
|
20
|
Ikeda A, Kumaki T, Tsuyusaki Y, Tsuji M, Enomoto Y, Fujita A, Saitsu H, Matsumoto N, Kurosawa K, Goto T. Genetic and clinical features of pediatric-onset hereditary spastic paraplegia: a single-center study in Japan. Front Neurol 2023; 14:1085228. [PMID: 37251230 PMCID: PMC10213624 DOI: 10.3389/fneur.2023.1085228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Hereditary spastic paraplegias (HSPs) are a set of heterogeneous neurodegenerative disorders characterized by bilateral lower limb spasticity. They may present from infancy onwards at any time. Although next-generation sequencing has allowed the identification of many causative genes, little is known about which genes are specifically associated with pediatric-onset variants. Methods This study retrospectively evaluated the genetic analyses, family history clinical courses, magnetic resonance imaging (MRI) findings, and electrophysiologic findings of patients diagnosed with HSP in childhood at a tertiary pediatric hospital in Japan. Genetic analyses were performed using direct sequencing, disease-associated panels, and whole-exome sequencing. Results Of the 37 patients included, 14 had a family history of HSP and 23 had a sporadic form of the disease. In 20 patients, HSP was the pure type, whereas the remaining 17 patients had complex types of HSP. Genetic data were available for 11 of the pure-type patients and 16 of those with complex types. Of these, genetic diagnoses were possible in 5 (45%) of the pure-type and 13 (81%) of the complex-type patients. SPAST variants were found in five children, KIF1A variants in four, ALS2 variants in three, SACS and L1CAM variants in two each, and an ATL1 variant in one. One child had a 10p15.3p13 duplication. Four patients with pure-type HSPs had SPAST variants and one had an ALT1 variant. The KIF1A, ALS2, SACS, and L1CAM variants and the 10p15.3p13 duplication were seen in children with complex-type HSPs, with just one complex-type patient having a SPAST variant. The identification of brain abnormalities on MRI was significantly more common among children with complex-type (11 [69%] of 16) than pure-type HSPs (one [5%] of 19) (p < 0.001). Scores on the modified Rankin Scale for Neurologic Disability were also significantly higher among children with complex-type compared with pure-type HSPs (3.5 ± 1.0 vs. 2.1 ± 0.9, p < 0.001). Conclusion Pediatric-onset HSP was found to be sporadic and genetic in a substantial proportion of patients. The causative gene patterns differed between children with pure-type and complex-type HSPs. The causative roles of SPAST and KIF1A variants in pure-type and complex-type HSPs, respectively, should be explored further.
Collapse
Affiliation(s)
- Azusa Ikeda
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Megumi Tsuji
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| |
Collapse
|
21
|
Jin P, Wang Y, Nian N, Wang GQ, Fu XM. Hereditary spastic paraplegia (SPG 48) with deafness and azoospermia: A case report. Front Neurol 2023; 14:1156100. [PMID: 37077568 PMCID: PMC10106626 DOI: 10.3389/fneur.2023.1156100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Hereditary spastic paraplegias (HSP) are inherited neurodegenerative disorders characterized by progressive paraplegia and spasticity in the lower limbs. SPG48 represents a rare genotype characterized by mutations in AP5Z1, a gene playing a role in intracellular membrane trafficking. This study describes a case of a 53-year-old male patient with SPG48 presenting spastic paraplegia, infertility, hearing impairment, cognitive abnormalities and peripheral neuropathy. The Sanger sequencing revealed a homozygous deletion in the chr 7:4785904-4786677 region causing a premature stop codon in exon 10. The patient's brother was heterozygous for the mutation. The brain magnetic resonance imaging found a mild brain atrophy and white matter lesions. In the analysis of the auditory thresholds, we found a significant hearing decrease in both ears.
Collapse
Affiliation(s)
- Ping Jin
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Yu Wang
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Na Nian
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Gong-Qiang Wang
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-Ming Fu
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
- Institute of Neurology, Anhui University of Chinese, Hefei, China
- *Correspondence: Xiao-Ming Fu
| |
Collapse
|
22
|
Wang J, Fang F, Ding C, Li J, Wu Y, Zhang W, Bao X, Lv J, Wang X, Ren X, Wang H. Clinical and genetic spectrum of hereditary spastic paraplegia in Chinese children. Dev Med Child Neurol 2023; 65:416-423. [PMID: 36109173 DOI: 10.1111/dmcn.15385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
Abstract
AIM To explore the clinical and genetic spectrum of hereditary spastic paraplegia (HSP) in Chinese children. METHOD This retrospective study was conducted between January 2014 and October 2021 in children clinically diagnosed with either pure HSP (pHSP) or complex HSP (cHSP). RESULTS We investigated 45 children (32 males, 13 females; mean age [SD] at symptom onset 4 years [7 months]). clinically diagnosed with HSP and identified genetic causes in 35 patients. Most patients with autosomal dominant HSP had pHSP (16/18), whereas most patients with autosomal recessive HSP tended to have cHSP (14/16). SPG11 was the most common autosomal recessive subtype, followed by FA2H/SPG35, whereas SPAST/SPG4 was the most frequent cause of autosomal dominant HSP. Two patients with CPT1C mutations presented with a complex phenotype. Meanwhile, 10 patients were found to have likely pathogenic variants/variants of uncertain clinical significance in six genes related to HSP. INTERPRETATION SPG11 and SPG4 were the most frequent subtypes in Chinese children with autosomal recessive HSP and autosomal dominant HSP. However, the prevalence of SPG4 was much lower than that in adults, which might be explained by the late onset of the disease. On the other hand, FA2H/SPG35 was common in our cohort, while it contributed to only a small proportion of adult cases, which might be explained by its rapid progression and early death in some patients. We also expanded the genetic and clinical spectra of SPG73.
Collapse
Affiliation(s)
- Jiaping Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weihua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xinhua Bao
- Department of Paediatric Neurology, Peking University First Hospital, Beijing, China
| | - Junlan Lv
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
23
|
|
24
|
Dosi C, Rubegni A, Baldacci J, Galatolo D, Doccini S, Astrea G, Berardinelli A, Bruno C, Bruno G, Comi GP, Donati MA, Dotti MT, Filosto M, Fiorillo C, Giannini F, Gigli GL, Grandis M, Lopergolo D, Magri F, Maioli MA, Malandrini A, Massa R, Matà S, Melani F, Messina S, Mignarri A, Moggio M, Pennisi EM, Pegoraro E, Ricci G, Sacchini M, Schenone A, Sampaolo S, Sciacco M, Siciliano G, Tasca G, Tonin P, Tupler R, Valente M, Volpi N, Cassandrini D, Santorelli FM. Using Cluster Analysis to Overcome the Limits of Traditional Phenotype-Genotype Correlations: The Example of RYR1-Related Myopathies. Genes (Basel) 2023; 14:298. [PMID: 36833224 PMCID: PMC9956305 DOI: 10.3390/genes14020298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Thanks to advances in gene sequencing, RYR1-related myopathy (RYR1-RM) is now known to manifest itself in vastly heterogeneous forms, whose clinical interpretation is, therefore, highly challenging. We set out to develop a novel unsupervised cluster analysis method in a large patient population. The objective was to analyze the main RYR1-related characteristics to identify distinctive features of RYR1-RM and, thus, offer more precise genotype-phenotype correlations in a group of potentially life-threatening disorders. We studied 600 patients presenting with a suspicion of inherited myopathy, who were investigated using next-generation sequencing. Among them, 73 index cases harbored variants in RYR1. In an attempt to group genetic variants and fully exploit information derived from genetic, morphological, and clinical datasets, we performed unsupervised cluster analysis in 64 probands carrying monoallelic variants. Most of the 73 patients with positive molecular diagnoses were clinically asymptomatic or pauci-symptomatic. Multimodal integration of clinical and histological data, performed using a non-metric multi-dimensional scaling analysis with k-means clustering, grouped the 64 patients into 4 clusters with distinctive patterns of clinical and morphological findings. In addressing the need for more specific genotype-phenotype correlations, we found clustering to overcome the limits of the "single-dimension" paradigm traditionally used to describe genotype-phenotype relationships.
Collapse
Affiliation(s)
- Claudia Dosi
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Anna Rubegni
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | | | | | - Guja Astrea
- IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health—DINOGMI, University of Genova, 16147 Genova, Italy
| | - Giorgia Bruno
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Maria Alice Donati
- Metabolic Disease Unit, AOU Meyer Children Hospital, 50139 Florence, Italy
| | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Diseases, Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy
| | - Chiara Fiorillo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health—DINOGMI, University of Genova, 16147 Genova, Italy
| | - Fabio Giannini
- Unit of Neurology and Neurometabolic Diseases, Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Gian Luigi Gigli
- Neurology Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health—DINOGMI, University of Genova, 16147 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Diego Lopergolo
- Unit of Neurology and Neurometabolic Diseases, Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Francesca Magri
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | | | - Alessandro Malandrini
- Unit of Neurology and Neurometabolic Diseases, Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Roberto Massa
- Neuromuscular Diseases Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Sabrina Matà
- Careggi University Hospital, Neurology Unit, 50134 Florence, Italy
| | - Federico Melani
- Pediatric Neurology, AOU Meyer Children Hospital, 50139 Florence, Italy
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Andrea Mignarri
- Unit of Neurology and Neurometabolic Diseases, Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Maurizio Moggio
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, 20122 Milan, Italy
| | - Elena Maria Pennisi
- Neuromuscular Diseases Center, Neurology Unit, San Filippo Neri Hospital, 00135 Rome, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michele Sacchini
- Metabolic Disease Unit, AOU Meyer Children Hospital, 50139 Florence, Italy
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health—DINOGMI, University of Genova, 16147 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy
| | - Monica Sciacco
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, 20122 Milan, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giorgio Tasca
- Unit of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne NE1 3BZ, UK
| | - Paola Tonin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mariarosaria Valente
- Neurology Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Nila Volpi
- Unit of Neurology and Neurometabolic Diseases, Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | | | | |
Collapse
|
25
|
Yu W, He J, Liu X, Wu J, Cai X, Zhang Y, Liu X, Fan D. Clinical features and genetic spectrum of Chinese patients with hereditary spastic paraplegia: A 14-year study. Front Genet 2023; 14:1085442. [PMID: 36923789 PMCID: PMC10008886 DOI: 10.3389/fgene.2023.1085442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Background: Hereditary spastic paraplegia (HSP) constitutes a group of clinically and genetically rare neurodegenerative diseases characterized by progressive corticospinal tract degeneration. The phenotypes and genotypes of HSP are still expanding. In this study, we aimed to analyse the differential diagnosis, clinical features, and genetic distributions of a Chinese HSP patients in a 14-year cohort and to improve our understanding of the disease. Methods: The clinical data of patients with a primary diagnosis of HSP at the initial visit to the Department of the Neurology, Peking University Third Hospital, from 2008 to 2022 were retrospectively collected. Next-generation sequencing gene panels (NGS) combined with a multiplex ligation-amplification assay (MLPA) were conducted. Epidemiological and clinical features and candidate variants in HSP-related genes were analyzed and summarized. Results: 54 cases (probands from 25 different pedigrees and 29 sporadic cases) from 95 patients with a primary diagnosis of HSP were finally confirmed to have a clinical diagnosis of HSP based on clinical criteria, including their clinical findings, family history and long-term follow-up. Earlier disease onset was associated with longer diagnostic delay and longer disease duration and was associated with a lower risk of loss of ability to walk independently. In addition, 20 candidate variants in reported HSP-related genes were identified in these clinically diagnosed HSP patients, including variants in SPAST, ALT1, WASHC5, SPG11, B4GALNT1, and REEP1. The genetic diagnostic rate in these 54 patients was 35.18%. Conclusion: Hereditary spastic paraplegia has high clinical and genetic heterogeneity and is prone to misdiagnosis. Long-term follow-up and genetic testing can partially assist in diagnosing HSP. Our study summarized the clinical features of Chinese HSP patients in a 14-year cohort, expanded the genotype spectrum, and improved our understanding of the disease.
Collapse
Affiliation(s)
- Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing, China
| | - Jieying Wu
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing, China
| | - Xiying Cai
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission, Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
26
|
Ng KWP, Chin HL, Chin AXY, Goh DLM. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol 2022; 13:997551. [PMID: 36313509 PMCID: PMC9602396 DOI: 10.3389/fneur.2022.997551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023] Open
Abstract
The diagnosis of inherited neuromuscular disorders is challenging due to their genetic and phenotypic variability. Traditionally, neurophysiology and histopathology were primarily used in the initial diagnostic approach to these conditions. Sanger sequencing for molecular diagnosis was less frequently utilized as its application was a time-consuming and cost-intensive process. The advent and accessibility of next-generation sequencing (NGS) has revolutionized the evaluation process of genetically heterogenous neuromuscular disorders. Current NGS diagnostic testing approaches include gene panels, whole exome sequencing (WES), and whole genome sequencing (WGS). Gene panels are often the most widely used, being more accessible due to availability and affordability. In this mini-review, we describe the benefits and risks of clinical genetic testing. We also discuss the utility, benefits, challenges, and limitations of using gene panels in the evaluation of neuromuscular disorders.
Collapse
Affiliation(s)
- Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Denise Li-Meng Goh
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
28
|
Hsu SL, Liao YC, Lin KP, Lin PY, Yu KW, Tsai YS, Guo YC, Lee YC. Investigating KIF1A mutations in a Taiwanese cohort with hereditary spastic paraplegia. Parkinsonism Relat Disord 2022; 103:144-149. [PMID: 36155026 DOI: 10.1016/j.parkreldis.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disorders characterized by slowly progressive lower limbs spasticity and weakness. HSP type 30 (SPG30) is a HSP subtype caused by mutations in the kinesin family member 1A gene (KIF1A) and could be either autosomal dominantly or recessively inherited. The aim of this study was to investigate the clinical and genetic features of KIF1A mutations in a Taiwanese HSP cohort. METHODS Mutational analysis of KIF1A was performed in 242 unrelated Taiwanese patients of Han Chinese ethnicity with clinically suspected HSP using targeted resequencing panel covering the entire coding regions of KIF1A. Clinical, electrophysiological and neuroimaging features of the HSP patients carrying a KIF1A mutation were characterized. RESULTS Three different KIF1A mutations were identified in three patients with autosomal dominantly inherited HSP. Among them, KIF1A p.E19K was a novel mutation. The patient harboring KIF1A p.G321D presented with pure HSP, while the individuals carrying KIF1A p.E19K or p.R316Q manifested complex HSP with additional axonal sensorimotor polyneuropathy. The patients carrying KIF1A p.R316Q also had thoracic cord atrophy, thin corpus callosum and white matter hyperintensity. CONCLUSION SPG30 accounts for 1.2% (3/242) of patients in the Taiwanese HSP cohort, suggesting that it is an uncommon HSP subtype in Taiwan. This study delineates the clinical and genetic features of SPG30 in Taiwan and provides useful information for the diagnosis and management of SPG30, especially in patients of Han Chinese descent.
Collapse
Affiliation(s)
- Shao-Lun Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kon-Ping Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Po-Yu Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Wei Yu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Cherng Guo
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
29
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
30
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
Iron-sensitive MR imaging of the primary motor cortex to differentiate hereditary spastic paraplegia from other motor neuron diseases. Eur Radiol 2022; 32:8058-8064. [PMID: 35593959 DOI: 10.1007/s00330-022-08865-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative diseases characterised by upper motor neuron (UMN) impairment of the lower limbs. The differential diagnosis with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) can be challenging. As microglial iron accumulation was reported in the primary motor cortex (PMC) of ALS cases, here we assessed the radiological appearance of the PMC in a cohort of HSP patients using iron-sensitive MR imaging and compared the PMC findings among HSP, PLS, and ALS patients. METHODS We included 3-T MRI scans of 23 HSP patients, 7 PLS patients with lower limb onset, 8 ALS patients with lower limb and prevalent UMN onset (UMN-ALS), and 84 ALS patients with any other clinical picture. The PMC was visually rated on 3D T2*-weighted images as having normal signal intensity, mild hypointensity, or marked hypointensity, and differences in the frequency distribution of signal intensity among the diseases were investigated. RESULTS The marked hypointensity in the PMC was visible in 3/22 HSP patients (14%), 7/7 PLS patients (100%), 6/8 UMN-ALS patients (75%), and 35/84 ALS patients (42%). The frequency distribution of normal signal intensity, mild hypointensity, and marked hypointensity in HSP patients was different than that in PLS, UMN-ALS, and ALS patients (p < 0.01 in all cases). CONCLUSIONS Iron-sensitive imaging of the PMC could provide useful information in the diagnostic work - up of adult patients with a lower limb onset UMN syndrome, as the cortical hypointensity often seen in PLS and ALS cases is apparently rare in HSP patients. KEY POINTS • The T2* signal intensity of the primary motor cortex was investigated in patients with HSP, PLS with lower limb onset, and ALS with lower limb and prevalent UMN onset (UMN-ALS) using a clinical 3-T MRI sequence. • Most HSP patients had normal signal intensity in the primary motor cortex (86%); on the contrary, all the PLS and the majority of UMN-ALS patients (75%) had marked cortical hypointensity. • The T2*-weighted imaging of the primary motor cortex could provide useful information in the differential diagnosis of sporadic adult-onset UMN syndromes.
Collapse
|
32
|
Narendiran S, Debnath M, Shivaram S, Kannan R, Sharma S, Christopher R, Seshagiri DV, Jain S, Purushottam M, Mangalore S, Bharath RD, Bindu PS, Sinha S, Taly AB, Nagappa M. Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet 2022; 36:21-31. [DOI: 10.1080/01677063.2022.2064463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sundarapandian Narendiran
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumanth Shivaram
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ramakrishnan Kannan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shivani Sharma
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Doniparthi V. Seshagiri
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandhya Mangalore
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Sanjib Sinha
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B. Taly
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
33
|
Fu J, Ma M, Li G, Zhang J. Clinical and Genetic Features of Chinese Patients With NIPA1-Related Hereditary Spastic Paraplegia Type 6. Front Genet 2022; 13:859688. [PMID: 35464835 PMCID: PMC9024055 DOI: 10.3389/fgene.2022.859688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Mutations in the NIPA1 gene cause hereditary spastic paraplegia (HSP) type 6 (SPG6), which is a rare type of HSP with a frequency of less than 1% in Europe. To date, less than 30 SPG6 families and limited NIPA1 mutations have been reported in different ethnic regions. The clinical features are variable. Methods: We screened for NIPA1 mutations by whole exome sequencing or next generation sequencing in 35 unrelated Chinese families with HSP. The clinical manifestations were evaluated. Results: Two variants of NIPA1 were identified in three index patients (3/35, 8.6%), two of whom carried a previously reported common variant c.316G > A (p.G106R), and the third patient harbored a novel likely pathogenic variant c.126C > G (p.N42K). Both variants were de novo in the three index patients. The phenotype was pure HSP in two patients and complicated HSP with epilepsy in the third one. Conclusion:NIPA1-related HSP is more common in China than it in Europe. Both pure and complicated form of HSP can be found. The variant c.316G > A is a hotspot mutation, and the novel variant c.126C > G expands the mutational spectrum. The phenomenon of de novo mutations in NIPA1 emphasizes the need to consider autosomal dominant HSP-related genes in sporadic patients.
Collapse
Affiliation(s)
- Jun Fu
- Department of Neurological Diseases, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingming Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Gang Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurological Diseases, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Center of Neurological Rare Diseases of Henan Province, Zhengzhou, China
| |
Collapse
|
34
|
Méreaux JL, Banneau G, Papin M, Coarelli G, Valter R, Raymond L, Kol B, Ariste O, Parodi L, Tissier L, Mairey M, Ait Said S, Gautier C, Guillaud-Bataille M, Forlani S, de la Grange P, Brice A, Vazza G, Durr A, Leguern E, Stevanin G. Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain 2022; 145:1029-1037. [PMID: 34983064 DOI: 10.1093/brain/awab386] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hereditary spastic paraplegia refers to rare genetic neurodevelopmental and/or neurodegenerative disorders in which spasticity due to length-dependent damage to the upper motor neuron is a core sign. Their high clinical and genetic heterogeneity makes their diagnosis challenging. Multigene panels allow a high-throughput targeted analysis of the increasing number of genes involved using next-generation sequencing. We report here the clinical and genetic results of 1550 index cases tested for variants in a panel of hereditary spastic paraplegia related genes analyzed in routine diagnosis. A causative variant was found in 475 patients (30.7%) in 35/65 screened genes. SPAST and SPG7 were the most frequently mutated genes, representing 142 (9.2%) and 75 (4.8%) index cases of the whole series, respectively. KIF1A, ATL1, SPG11, KIF5A and REEP1 represented more than 1% (> 17 cases) each. There were 661 causative variants (382 different ones) and 30 of them were structural variants. This large cohort allowed us obtaining an overview of the clinical and genetic spectrum of hereditary spastic paraplegia in clinical practice. Because of the wide phenotypic variability, there was no very specific sign that could predict the causative gene but there were some constellations of symptoms that were found often related to specific subtypes. Finally, we confirmed the diagnostic effectiveness of a targeted sequencing panel as a first-line genetic test in hereditary spastic paraplegia. This is a pertinent strategy because of the relative frequency of several known genes (i.e.: SPAST, KIF1A) and it allows identifying variants in the rarest involved genes and to detect structural rearrangements via coverage analysis, which is less efficient in exome data sets. It is crucial because these structural variants represent a significant proportion of the pathogenic hereditary spastic paraplegia variants (∼6% of patients), notably for SPAST and REEP1. In a subset of 42 index cases negative for the targeted multigene panel, subsequent whole exome sequencing allowed to reach a theoretical diagnosis yield of ∼50%. We then propose a two-step strategy combining the use of a panel of genes followed by whole exome sequencing in negative cases.
Collapse
Affiliation(s)
- Jean-Loup Méreaux
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France.,Rouen University Hospital, 76000 Rouen, France
| | - Guillaume Banneau
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France.,Département de Génétique Médicale, Institut Fédératif de Biologie, Hôpital Purpan, 31000 Toulouse, France
| | - Mélanie Papin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Rémi Valter
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Laure Raymond
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Bophara Kol
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Olivier Ariste
- GenoDiag-GenoSplice, Paris Biotech Santé, 75014 Paris, France
| | - Livia Parodi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France.,Department of Biology, University of Padua, 35100 Padua, Italy
| | - Laurène Tissier
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Mathilde Mairey
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | - Samia Ait Said
- APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Celia Gautier
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France
| | | | | | - Sylvie Forlani
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | | | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Giovanni Vazza
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.,3Paris Sciences Lettres University, EPHE, 75000 Paris, France.,APHP, Sorbonne Université, Department of Medical Genetics, 75013 Paris, France
| |
Collapse
|
35
|
Vecchia SD, Tessa A, Dosi C, Baldacci J, Pasquariello R, Antenora A, Astrea G, Bassi MT, Battini R, Casali C, Cioffi E, Conti G, De Michele G, Ferrari AR, Filla A, Fiorillo C, Fusco C, Gallone S, Germiniasi C, Guerrini R, Haggiag S, Lopergolo D, Martinuzzi A, Melani F, Mignarri A, Panzeri E, Pini A, Pinto AM, Pochiero F, Primiano G, Procopio E, Renieri A, Romaniello R, Sancricca C, Servidei S, Spagnoli C, Ticci C, Rubegni A, Santorelli FM. Monoallelic KIF1A-related disorders: a multicenter cross sectional study and systematic literature review. J Neurol 2022; 269:437-450. [PMID: 34487232 DOI: 10.1007/s00415-021-10792-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Monoallelic variants in the KIF1A gene are associated with a large set of clinical phenotypes including neurodevelopmental and neurodegenerative disorders, underpinned by a broad spectrum of central and peripheral nervous system involvement. METHODS In a multicenter study conducted in patients presenting spastic gait or complex neurodevelopmental disorders, we analyzed the clinical, genetic and neuroradiological features of 28 index cases harboring heterozygous variants in KIF1A. We conducted a literature systematic review with the aim to comparing our findings with previously reported KIF1A-related phenotypes. RESULTS Among 28 patients, we identified nine novel monoallelic variants, and one a copy number variation encompassing KIF1A. Mutations arose de novo in most patients and were prevalently located in the motor domain. Most patients presented features of a continuum ataxia-spasticity spectrum with only five cases showing a prevalently pure spastic phenotype and six presenting congenital ataxias. Seventeen mutations occurred in the motor domain of the Kinesin-1A protein, but location of mutation did not correlate with neurological and imaging presentations. When tested in 15 patients, muscle biopsy showed oxidative metabolism alterations (6 cases), impaired respiratory chain complexes II + III activity (3/6) and low CoQ10 levels (6/9). Ubiquinol supplementation (1gr/die) was used in 6 patients with subjective benefit. CONCLUSIONS This study broadened our clinical, genetic, and neuroimaging knowledge of KIF1A-related disorders. Although highly heterogeneous, it seems that manifestations of ataxia-spasticity spectrum disorders seem to occur in most patients. Some patients also present secondary impairment of oxidative metabolism; in this subset, ubiquinol supplementation therapy might be appropriate.
Collapse
Affiliation(s)
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.
| | - Claudia Dosi
- Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Jacopo Baldacci
- Kode Solutions, Lungarno Galileo Galilei 1, 56125, Pisa, Italy
| | - Rosa Pasquariello
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Antonella Antenora
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, 56125, Pisa, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Greta Conti
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Anna Rita Ferrari
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Chiara Fiorillo
- Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Carlo Fusco
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Salvatore Gallone
- Clinical Neurogenetics, Department Neurosciences, Az. Osp. Città della Salute e della Scienza di Torino, 1026, Torino, Italy
| | - Chiara Germiniasi
- Neuromuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Shalom Haggiag
- Department of Neurology, Azienda Ospedaliera San Camillo Forlanini, 00152, Rome, Italy
| | - Diego Lopergolo
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Andrea Martinuzzi
- Scientific Institute IRCCS E. Medea, Unità Operativa Conegliano, 31015, Treviso, Italy
| | - Federico Melani
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Andrea Mignarri
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Elena Panzeri
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, IRRCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Anna Maria Pinto
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Francesca Pochiero
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Guido Primiano
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Elena Procopio
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Cristina Sancricca
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Serenella Servidei
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.,Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | | |
Collapse
|
36
|
Xu X, Lu F, Du S, Zhao X, Li H, Zhang L, Tang J. Case report: Novel compound heterozygous missense mutations in the DDHD2 gene in a Chinese patient associated with spastic paraplegia type 54. Front Pediatr 2022; 10:997274. [PMID: 36090575 PMCID: PMC9458848 DOI: 10.3389/fped.2022.997274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Spastic paraplegia type 54 (SPG54) is a rare inherited autosomal recessive disorder, and a complex hereditary spastic paraplegia (HSP) caused by mutations in the phospholipase DDHD2 gene. SPG54 is characterized by early onset of spastic paraplegia, intellectual disability and dysplasia of corpus callosum. CASE PRESENTATION We report a 9 years and 5 months old Chinese girl with progressive spasm of the lower limbs, muscle weakness and intellectual disability. Brain magnetic resonance imaging (MRI) showed periventricular leukomalacia and thinning of the corpus callosum. According to the Wechsler Intelligence Scale, her IQ is 42. By whole exome sequencing, novel compound heterozygous missense mutations in the DDHD2 gene [c.168G>C, p.(Trp56Cys) and c.1505T>C, p.(Phe502Ser)] were identified in the proband. Comparative amino acid sequence alignment across different species revealed that Trp56 and Phe502 in the DDHD2 protein were highly conserved during evolution. And multiple in silico prediction tools suggested that both mutations were deleterious. CONCLUSIONS Our study reports a very rare case of complicated HSP caused by two novel compound heterozygous mutations in the DDHD2 gene. Our findings expand the genetic spectrum of SPG54.
Collapse
Affiliation(s)
- Xin Xu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fen Lu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Senjie Du
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongying Li
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Tang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Gómez-González C, Pizarro-Sánchez C, Rodríguez-Antolín C, Pascual-Pascual I, Garcia-Romero M, Rodriguez-Jiménez C, de Sancho-Martín R, Del Pozo-Mate Á, Solís-López M, Prior-de Castro C, Torres RJ. Hereditary spastic paraplegia associated with a novel homozygous intronic noncanonical splice site variant in the AP4B1 gene. Ann Hum Genet 2021; 86:109-118. [PMID: 34927723 DOI: 10.1111/ahg.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
Pathogenic variants in the AP4B1 gene lead to a rare form of hereditary spastic paraplegia (HSP) known as SPG47. We report on a patient with a clinical suspicion of complicated HSP of the lower limbs with intellectual disability, as well as a novel homozygous noncanonical splice site variant in the AP4B1 gene, in which the effect on splicing was validated by RNA analysis. We sequenced 152 genes associated with HSP using Next-Generation Sequencing (NGS). We isolated total RNA from peripheral blood and generated cDNA using reverse transcription-polymerase chain reaction (RT-PCR). A region of AP4B1 mRNA was amplified by PCR and the fragments obtained were purified from the agarose gel and sequenced. We found a homozygous variant of uncertain significance in the AP4B1 gene NM_006594.4: c.1511-6C>G in the proband. Two different AP4B1 mRNA fragments were obtained in the patient and his carrier parents. The shorter fragment was the predominant fragment in the patient and revealed a deletion with skipping of the AP4B1 exon 10. The patient's longer fragment corresponded to an insertion of the last five nucleotides of AP4B1 intron 9. We confirmed that this variant affects the normal splicing of RNA, sustaining the molecular diagnosis of SPG47 in the patient.
Collapse
Affiliation(s)
- Clara Gómez-González
- Department of Molecular Genetics, INGEMM, La Paz University Hospital, Madrid, Spain
| | | | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain.,Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | | | - Mar Garcia-Romero
- Department of Paediatric Neurology, La Paz University Hospital, Madrid, Spain
| | | | | | | | - Mario Solís-López
- Department of Bioinformatics, INGEMM, La Paz University Hospital, Madrid, Spain
| | | | - Rosa J Torres
- Biochemistry Laboratory, La Paz University Hospital Health Research Institute (FIBHULP), IdiPAZ, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Spain
| |
Collapse
|
38
|
Verriello L, Lonigro IR, Pessa ME, Betto E, Pauletto G, Fogolari F, Gigli GL, Curcio F. Amplifying the spectrum of SPAST gene mutations. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021220. [PMID: 35132972 PMCID: PMC10523053 DOI: 10.23750/abm.v92is1.11608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/14/2023]
Abstract
Hereditary spastic paraplegias (HSPs) include a group of neurodegenerative disorders characterized by slowly progressive spasticity and weakness of the lower extremities, caused by axon degeneration of corticospinal tracts. Spastic paraplegia type 4 (SPG4) is the most common autosomal dominant form of HSP and is caused by mutations in the SPAST gene. SPAST gene encodes for the protein spastin, a member of the ATPases Associated with a variety of cellular Activity (AAA) family.We describe a newly variant in SPAST gene, within an Italian family affected by pure HSP. In particular, we found a heterozygous intragenic microdeletion of 3T in exon 13 of SPG4 gene. The 3T deletion results in a mutated protein with a unique leucine residues deletion at the protein position 508, in the AAA ATPase domain. This variant is not registered in any public database either as rare normal variant nor as mutation in SPAST gene and the importance of this aminoacid is confirmed by the absolute conservation in multiple alignments with diverse species. We conclude that the novel SPAST gene variant identified is probably pathogenic and destabilizes the precise arrangement of the nucleotide binding domain, with a consequent loss-of-function of the mutated spastin protein.
Collapse
Affiliation(s)
- Lorenzo Verriello
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.
| | - Incoronata Renata Lonigro
- Institute of Clinical Pathology, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.
| | - Maria Elena Pessa
- a:1:{s:5:"en_US";s:49:"Azienda ospedaliero universitaria Friuli centrale";}.
| | - Elena Betto
- Institute of Clinical Pathology, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.
| | - Federico Fogolari
- Department of Mathematics, Informatics and Physics (DMIF), University of Udine, Italy.
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.
| | - Francesco Curcio
- Institute of Clinical Pathology, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.
| |
Collapse
|
39
|
Yang JO, Yoon JY, Sung DH, Yun S, Lee JJ, Jun SY, Halder D, Jeon SJ, Woo EJ, Seok JM, Cho JW, Jang JH, Choi JK, Kim BJ, Kim NS. The emerging genetic diversity of hereditary spastic paraplegia in Korean patients. Genomics 2021; 113:4136-4148. [PMID: 34715294 DOI: 10.1016/j.ygeno.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/09/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023]
Abstract
Hereditary Spastic Paraplegias (HSP) are a group of rare inherited neurological disorders characterized by progressive loss of corticospinal motor-tract function. Numerous patients with HSP remain undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel genetic variations related to HSP is needed. In this study, we identified 88 genetic variants in 54 genes from whole-exome data of 82 clinically well-defined Korean HSP families. Fifty-six percent were known HSP genes, and 44% were composed of putative candidate HSP genes involved in the HSPome and originally reported neuron-related genes, not previously diagnosed in HSP patients. Their inheritance modes were 39, de novo; 33, autosomal dominant; and 10, autosomal recessive. Notably, ALDH18A1 showed the second highest frequency. Fourteen known HSP genes were firstly reported in Koreans, with some of their variants being predictive of HSP-causing protein malfunction. SPAST and REEP1 mutants with unknown function induced neurite abnormality. Further, 54 HSP-related genes were closely linked to the HSP progression-related network. Additionally, the genetic spectrum and variation of known HSP genes differed across ethnic groups. These results expand the genetic spectrum for HSP and may contribute to the accurate diagnosis and treatment for rare HSP.
Collapse
Affiliation(s)
- Jin Ok Yang
- Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Yong Yoon
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Duk Hyun Sung
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sohyun Yun
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jeong-Ju Lee
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo Young Jun
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Debasish Halder
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Su-Jin Jeon
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Analytical Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, Republic of Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Nam-Soon Kim
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
40
|
Bartoletti-Stella A, Vacchiano V, De Pasqua S, Mengozzi G, De Biase D, Bartolomei I, Avoni P, Rizzo G, Parchi P, Donadio V, Chiò A, Pession A, Oppi F, Salvi F, Liguori R, Capellari S. Targeted sequencing panels in Italian ALS patients support different etiologies in the ALS/FTD continuum. J Neurol 2021; 268:3766-3776. [PMID: 33770234 PMCID: PMC8463338 DOI: 10.1007/s00415-021-10521-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND 5-10% of amyotrophic lateral sclerosis (ALS) patients presented a positive family history (fALS). More than 30 genes have been identified in association with ALS/frontotemporal dementia (FTD) spectrum, with four major genes accounting for 60-70% of fALS. In this paper, we aimed to assess the contribution to the pathogenesis of major and rare ALS/FTD genes in ALS patients. METHODS We analyzed ALS and ALS/FTD associated genes by direct sequencing or next-generation sequencing multigene panels in ALS patients. RESULTS Genetic abnormalities in ALS major genes included repeated expansions of hexanucleotide in C9orf72 gene (7.3%), mutations in SOD1 (4.9%), FUS (2.1%), and TARDBP (2.4%), whereas variants in rare ALS/FTD genes affected 15.5% of subjects overall, most frequently involving SQSTM1 (3.4%), and CHMP2B (1.9%). We found clustering of variants in ALS major genes in patients with a family history for "pure" ALS, while ALS/FTD related genes mainly occurred in patients with a family history for other neurodegenerative diseases (dementia and/or parkinsonism). CONCLUSIONS Our data support the presence of two different genetic components underlying ALS pathogenesis, related to the presence of a family history for ALS or other neurodegenerative diseases. Thus, family history may help in optimizing the genetic screening protocol to be applied.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Silvia De Pasqua
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, viale Ercolani 4/2, 40138, Bologna, Italy
| | - Ilaria Bartolomei
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Patrizia Avoni
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Citta Della Salute E Della Scienza Di Torino, Turin, Italy
- Neuroscience Institute of Turin, Turin, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, viale Ercolani 4/2, 40138, Bologna, Italy
| | - Federico Oppi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bellaria Hospital, 40139, Bologna, Italy.
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università Di Bologna, 40123, Bologna, Italy.
| |
Collapse
|
41
|
Riso V, Galatolo D, Barghigiani M, Galosi S, Tessa A, Ricca I, Rossi S, Caputi C, Cioffi E, Leuzzi V, Casali C, Santorelli FM, Silvestri G. A next generation sequencing-based analysis of a large cohort of ataxic patients refines the clinical spectrum associated with spinocerebellar ataxia 21. Eur J Neurol 2021; 28:2784-2788. [PMID: 33851480 PMCID: PMC8361921 DOI: 10.1111/ene.14868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022]
Abstract
Background and purpose Spinocerebellar ataxia 21 (SCA21) is a rare autosomal dominant neurodegenerative disorder caused by TMEM240 gene mutations. To date, SCA21 has been reported only in a limited number of families worldwide. Here, we describe clinical and molecular findings in five additional SCA21 patients from four unrelated families, diagnosed through a multicentre next generation sequencing‐based molecular screening project on a large cohort of patients with degenerative and congenital ataxias. Methods A cohort of 393 patients with ataxia of unknown aetiology was selected. Following the identification of heterozygous pathogenic TMEM240 variants using a target resequencing panel, we carried out an in‐depth phenotyping of the novel SCA21 patients. Results Five patients from four unrelated families, three of Italian and one of Libyan origin, were identified. These patients were carriers of previously reported TMEM240 mutations. Clinically, our SCA21 cohort includes both adult onset, slowly progressive cerebellar ataxias associated with cognitive impairment resembling cerebellar cognitive affective syndrome and early onset forms associated with cognitive delay, neuropsychiatric features, or evidence of hypomyelination on brain magnetic resonance imaging. None of our patients exhibited signs of extrapyramidal involvement. The so‐called “recurrent” c.509C>T (p.Pro170Leu) mutation was detected in two of four families, corroborating its role as a hot spot. Conclusions Our results confirm that SCA21 is present also in Italy, suggesting that it might not be as rare as previously thought. The phenotype of these novel SCA21 patients indicates that slowly progressive cerebellar ataxia, and cognitive and psychiatric symptoms are the most typical clinical features associated with mutations in the TMEM240 gene.
Collapse
Affiliation(s)
- Vittorio Riso
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Facoltà di medicina e Chirurgia, Rome, Italy.,UOC Neurologia, Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | | | | | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Salvatore Rossi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Facoltà di medicina e Chirurgia, Rome, Italy.,UOC Neurologia, Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Caterina Caputi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Ettore Cioffi
- UOC Neurorehabilitation, Dep. SBMC, Sapienza University of Rome, Polo Pontino, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Carlo Casali
- UOC Neurorehabilitation, Dep. SBMC, Sapienza University of Rome, Polo Pontino, Rome, Italy
| | | | - Gabriella Silvestri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Facoltà di medicina e Chirurgia, Rome, Italy.,UOC Neurologia, Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| |
Collapse
|
42
|
Milone R, Scalise R, Pasquariello R, Berloffa S, Ricca I, Battini R. De Novo 1q21.3q22 Duplication Revaluation in a "Cold" Complex Neuropsychiatric Case with Syndromic Intellectual Disability. Genes (Basel) 2021; 12:genes12040511. [PMID: 33807234 PMCID: PMC8066010 DOI: 10.3390/genes12040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022] Open
Abstract
Syndromic intellectual disability often obtains a genetic diagnosis due to the combination of first and next generation sequencing techniques, although their interpretation may require revaluation over the years. Here we report on a composite neuropsychiatric case whose phenotype includes moderate intellectual disability, spastic paraparesis, movement disorder, and bipolar disorder, harboring a 1.802 Mb de novo 1q21.3q22 duplication. The role of this duplication has been reconsidered in the light of negativity of many other genetic exams, and of the possible pathogenic role of many genes included in this duplication, potentially configuring a contiguous gene-duplication syndrome.
Collapse
Affiliation(s)
- Roberta Milone
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
| | - Roberta Scalise
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
- Tuscan PhD Program of Neuroscience, University of Florence, Pisa and Siena, 50139 Florence, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
| | - Stefano Berloffa
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
| | - Ivana Ricca
- Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy; (R.M.); (R.S.); (R.P.); (S.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56125 Pisa, Italy
- Correspondence: ; Tel.: +39-050886229; Fax: +39-050886247
| |
Collapse
|
43
|
Pashaei M, Davarzani A, Hajati R, Zamani B, Nafissi S, Larti F, Nilipour Y, Rohani M, Alavi A. Description of clinical features and genetic analysis of one ultra-rare (SPG64) and two common forms (SPG5A and SPG15) of hereditary spastic paraplegia families. J Neurogenet 2021; 35:84-94. [PMID: 33771085 DOI: 10.1080/01677063.2021.1895146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous neurodegenerative disorder, characterized by lower-limb spasticity and weakness. To date, more than 82 loci/genes (SPG1-SPG82) have been identified that contribute to the cause of HSP. Despite the use of next-generation sequencing-based methods, genetic-analysis has failed in the finding of causative genes in more than 50% of HSP patients, indicating a more significant heterogeneity and absence of a given phenotype-genotype correlation. Here, we performed whole-exome sequencing (WES) to identify HSP-causing genes in three unrelated-Iranian probands. Candidate variants were detected and confirmed in the probands and co-segregated in the family members. The phenotypic data gathered and compared with earlier cases with the same sub-types of disease. Three novel homozygous variants, c.978delT; p.Q327Kfs*39, c.A1208G; p.D403G and c.3811delT; p.S1271Lfs*44, in known HSP-causing genes including ENTPD1, CYP7B1, and ZFYVE26 were identified, respectively. Intra and interfamilial clinical variability were observed among affected individuals. Mutations in CYP7B1 and ZFYVE26 are relatively common causes of HSP and associated with SPG5A and SPG15, respectively. However, mutations in ENTPD1 are related to SPG64 which is an ultra-rare form of HSP. The research affirmed more complexities of phenotypic manifestations and allelic heterogeneity in HSP. Due to these complexities, it is not feasible to show a clear phenotype-genotype correlation in HSP cases. Identification of more families with mutations in HSP-causing genes may help the establishment of this correlation, further understanding of the molecular basis of the disease, and would provide an opportunity for genetic-counseling in these families.
Collapse
Affiliation(s)
- Mahdieh Pashaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Atefeh Davarzani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Hajati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Babak Zamani
- Neurology Department, Firoozgar hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital., Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
44
|
Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience. Brain Sci 2021; 11:brainsci11020246. [PMID: 33669240 PMCID: PMC7919782 DOI: 10.3390/brainsci11020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients’ selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era.
Collapse
|
45
|
Genetic and Epidemiological Study of Adult Ataxia and Spastic Paraplegia in Eastern Quebec. Can J Neurol Sci 2021; 48:655-665. [PMID: 33397523 DOI: 10.1017/cjn.2020.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To estimate the minimum prevalence of adult hereditary ataxias (HA) and spastic paraplegias (HSP) in Eastern Quebec and to evaluate the proportion of associated mutations in identified genes. METHODS We conducted a descriptive cross-sectional study of patients who met clinical criteria for the diagnosis of HA (n = 241) and HSP (n = 115) in the East of the Quebec province between January 2007 and July 2019. The primary outcome was the prevalence per 100,000 persons with a 95% confidence interval (CI). The secondary outcome was the frequency of mutations identified by targeted next-generation sequencing (NGS) approach. Minimum carrier frequency for identified variants was calculated based on allele frequency values and the Hardy-Weinberg (HW) equation. RESULTS The minimum prevalence of HA in Eastern Quebec was estimated at 6.47/100 000 [95% CI; 6.44-6.51]; divided into 3.73/100 000 for autosomal recessive (AR) ataxias and 2.67/100 000 for autosomal dominant (AD) ataxias. The minimum prevalence of HSP was 4.17/100 000 [95% CI; 4.14-4.2]; with 2.05/100 000 for AD-HSP and 2.12/100 000 for AR-HSP. In total, 52.4% of patients had a confirmed genetic diagnosis. AR cerebellar ataxia type 1 (2.67/100 000) and AD spastic paraplegia SPG4 (1.18/100 000) were the most prevalent disorders identified. Mutations were identified in 23 genes and molecular alterations in 7 trinucleotides repeats expansion; the most common mutations were c.15705-12 A > G in SYNE1 and c.1529C > T (p.A510V) in SPG7. CONCLUSIONS We described the minimum prevalence of genetically defined adult HA and HSP in Eastern Quebec. This study provides a framework for international comparisons and service planning.
Collapse
|
46
|
Wu S, Sun Z, Zhu T, Weleber RG, Yang P, Wei X, Pennesi ME, Sui R. Novel variants in PNPLA6 causing syndromic retinal dystrophy. Exp Eye Res 2020; 202:108327. [PMID: 33141049 DOI: 10.1016/j.exer.2020.108327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
PNPLA6-related disorders include several phenotypes, such as Boucher-Neuhäuser syndrome, Gordon Holmes syndrome, spastic paraplegia, photoreceptor degeneration, Oliver-McFarlane syndrome and Laurence-Moon syndrome. In this study, detailed clinical evaluations and genetic testing were performed in five (4 Chinese and 1 Caucasian/Chinese) syndromic retinal dystrophy patients. Genotype-phenotype correlations were analyzed based on review of the literatures of previously published PNPLA6-related cases. The mean age of patients and at first visit were 20.8 years (11, 12, 25, 28, 28) and 14.2 years (4, 7, 11, 24, 25), respectively. They all presented with severe chorioretinal dystrophy and profoundly decreased vision. The best corrected visual acuity (BCVA) ranged from 20/200 to 20/2000. Systemic manifestations included cerebellar ataxia, hypogonadotropic hypogonadism and hair anomalies. Six novel and three reported pathogenic variants in PNPLA6 (NM_001166111) were identified. The genotypes of the five cases are: c.3134C > T (p.Ser1045Leu) and c.3846+1G > A, c.3547C > T (p.Arg1183Trp) and c.1841+3A > G, c.3436G > A (p.Ala1146Thr) and c.2212-10A > G, c.3436G > A (p.Ala1146Thr) and c.2266C > T (p.Gln756*), c.1238_1239insC (p.Leu414Serfs*28) and c.3130A > G (p.Thr1044Ala). RT-PCR confirmed that the splicing variants indeed led to abnormal splicing. Missense variants p.Thr1044Ala, p.Ser1045Leu, p.Ala1146Thr, p.Arg1183Trp and c.3846+1G > A are located in Patatin-like phospholipase (Pat) domain. In conclusion, we report the phenotypes in five patients with PNPLA6 associated syndromic retinal dystrophy with variable systemic involvement and typical choroideremia-like fundus changes. Ocular manifestations may be the first and the only findings for years. All of our patients carried one severe deleterious variant (stop-gain or splicing variant) and one milder variant (missense variant). Retinal involvement was significantly correlated with severe deleterious variants and variants in Pat domain.
Collapse
Affiliation(s)
- Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
47
|
Rattay TW, Rautenberg M, Söhn AS, Hengel H, Traschütz A, Röben B, Hayer SN, Schüle R, Wiethoff S, Zeltner L, Haack TB, Cegan A, Schöls L, Schleicher E, Peter A. Defining diagnostic cutoffs in neurological patients for serum very long chain fatty acids (VLCFA) in genetically confirmed X-Adrenoleukodystrophy. Sci Rep 2020; 10:15093. [PMID: 32934269 PMCID: PMC7494896 DOI: 10.1038/s41598-020-71248-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female) presenting with progressive spastic paraparesis with bladder disturbance, sensory ataxia with impaired vibration sense, and leg pain. 80% of male X-ALD patients have an adrenal failure, while adrenal dysfunction is rare in women with X-ALD. The objective of this study was to define optimal serum VLCFA cutoff values in patients with X-ALD-like phenotypes for the differentiation of genetically confirmed X-ALD and Non-X-ALD individuals. Three groups were included into this study: a) X-ALD cases with confirmed ABCD1 mutations (n = 34) and two Non-X-ALD cohorts: b) Patients with abnormal serum VCLFA levels despite negative testing for ABCD1 mutations (n = 15) resulting from a total of 1,953 VLCFA tests c) Phenotypically matching patients as Non-X-ALD controls (n = 104). Receiver operating curve analysis was used to optimize VLCFA cutoff values, which differentiate patients with genetically confirmed X-ALD and Non-X-ALD individuals. The serum concentration of C26:0 was superior to C24:0 for the detection of X-ALD. The best differentiation of Non-X-ALD and X-ALD individuals was obtained with a cutoff value of < 1.0 for the C24:0/C22:0 ratio resulting in a sensitivity of 97%, a specificity of 94.1% and a positive predictive value (PPV) of 83.8% for true X-ALD. Our findings further suggested a cutoff of < 0.02 for the ratio C26:0/C22:0 leading to a sensitivity of 90.9%, a specificity of 95.0%, and a PPV of 80.6%. Pearson correlation indicated a significant positive association between total blood cholesterol and VLCFA values. Usage of serum VLCFA are economical and established biomarkers suitable for the guidance of genetic testing matching the X-ALD phenotype. We suggest using our new optimized cutoff values, especially the two ratios (C24:0/C22:0 and C26:0/C22:0), in combination with standard lipid profiles.
Collapse
Affiliation(s)
- Tim W Rattay
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Maren Rautenberg
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Anne S Söhn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holger Hengel
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Andreas Traschütz
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Benjamin Röben
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Stefanie N Hayer
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sarah Wiethoff
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Lena Zeltner
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center of Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center of Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center of Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | - Erwin Schleicher
- Institute for Clinical Chemistry and Pathobiochemistry/Central Laboratory, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry/Central Laboratory, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Schiavoni S, Spagnoli C, Rizzi S, Salerno GG, Frattini D, Pisani F, Fusco C. Paediatric-onset hereditary spastic paraplegias: a retrospective cohort study. Dev Med Child Neurol 2020; 62:1068-1074. [PMID: 32277485 DOI: 10.1111/dmcn.14547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
AIM To describe the clinical and neurogenetic spectrum of paediatric-onset hereditary spastic paraplegias (HSPs) diagnosed in our unit. METHOD We report on 47 patients (30 males, 17 females; mean [SD] age 12y 7mo [6y 2mo], range 4-34y) clinically diagnosed with an HSP at the Child Neurology Unit, IRCCS-ASMN (Reggio Emilia, Italy) between 1990 and 2018, who were genetically investigated by means of single-gene direct sequencing and/or next-generation sequencing technologies (targeted panels, whole-exome sequencing [WES]). RESULTS Complex forms prevailed slightly (n=26), autosomal dominant being the main inheritance pattern (n=11), followed by recessive (n=5) and X-linked (n=1). A definite genetic diagnosis was achieved in 17 patients. Spastic paraplegia 3A (n=4) was the most frequent cause of autosomal dominant HSP in our cohort, while no genetic variant prevailed in autosomal recessive forms and pathogenic/likely pathogenic variants were disclosed in a wide range of different genes. INTERPRETATION We found wide phenotypic and genetic heterogeneity. With increasing accessibility to WES, a higher number of patients receive a diagnosis, allowing detection of variants in ultra-rare disease-causing genes and refining genotype-phenotype correlations. WHAT THIS PAPER ADDS A genetic diagnosis of paediatric-onset hereditary spastic paraplegia was achieved in one-third of patients. Pathogenic/likely pathogenic variants in rare genes were found. Genotypic and phenotypic heterogeneity favours targeted panel/whole-exome sequencing for diagnosis.
Collapse
Affiliation(s)
- Silvia Schiavoni
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Susanna Rizzi
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Grazia G Salerno
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Neuroscience Division, Medicine & Surgery Department, University of Parma, Parma, Italy
| | - Carlo Fusco
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Paediatric Neurophysiology Laboratory, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
49
|
X-linked myotubular myopathy mimics hereditary spastic paraplegia in two female manifesting carriers of pathogenic MTM1 variant. Eur J Med Genet 2020; 63:104040. [PMID: 32805447 DOI: 10.1016/j.ejmg.2020.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy caused by pathogenic variants in the myotubularin 1 (MTM1) gene. XLMTM leads to severe weakness in male infants and majority of them die in the early postnatal period due to respiratory failure. Disease manifestations in female carriers vary from asymptomatic to severe, generalized congenital weakness. The symptomatic female carriers typically have limb-girdle weakness, asymmetric muscle weakness and skeletal size, urinary incontinence, facial weakness, ptosis and ophthalmoplegia. Here we describe a Finnish family with two females with lower limb spasticity and hyperreflexia resembling spastic paraplegia, gait difficulties and asymmetric muscle weakness in the limbs. A whole exome sequencing identified a heterozygous pathogenic missense variant MTM1 c.1262G > A, p.(Arg421Gln) segregating in the family. The variant has previously been detected in male and female patients with XLMTM. Muscle biopsy of one of the females showed variation in the myofiber diameter, atrophic myofibers, central nuclei and necklace fibers consistent with a diagnosis of XLMTM. This report suggests association between spastic paraplegia and pathogenic MTM1 variants expanding the phenotypic spectrum potentially associated with XLMTM, but the possible association needs to be confirmed by additional cases.
Collapse
|
50
|
Maruta K, Ando M, Otomo T, Takashima H. [A case of spastic paraplegia 48 with a novel mutation in the AP5Z1 gene]. Rinsho Shinkeigaku 2020; 60:543-548. [PMID: 32641631 DOI: 10.5692/clinicalneurol.60.cn-001419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We describe an additional patient with spastic paraplegia 48 (SPG48). A 52-year-old woman with gradually increasing gait disturbance was admitted to our hospital. When she was 47 years old, acquaintances noted a shuffling gait. Gait worsening was evident at 48 years. Spastic gait was apparent at 50, and she required a walking stick at 54. Her elder brother had similar gait disturbance. No consanguinity was known. Neurologic examination at 52 disclosed spasticity and moderate weakness in the lower limbs. Spasticity and brisk reflexes in all limbs. Laboratory studies including HTLV-1 titer detected no abnormalities. MRI demonstrated mild corpus callosum narrowing and prominent anterior periventricular hyperintensities in fluid attenuation inversion recovery images. In limb muscles, electromyography (EMG) showed a chronic neurogenic pattern including reduced interference. Gene analysis identified compound homozygosity in exon 7 of adaptor-related protein complex 5 subunit zeta 1 (AP5Z1), including a novel frameshift mutation, c.1662_1672del;p.Glu554Hfs*15 in the patient, and a heterozygous missense mutation in asymptomatic family members, including her mother, two siblings, and a daughter. The frameshift mutation is considered a pathogenic variant according to American College of Medical Genetics and Genomics standards and guidelines. Based on clinical features, imaging findings and genetic abnormalities, we diagnosed this patient with SPG48. Mutations in AP5Z1, which encodes the ζ subunit of AP-5, underlie SPG48. The AP-5 adaptor protein complex, which is mutated in SPG48, binds to both spastizin and spatacsin. While hereditary spastic paraplegias generally are clinically and genetically heterogenous, SPG48, SPG11, and SPG15 are clinically similar.
Collapse
Affiliation(s)
- Kyoko Maruta
- Department of Neurology, National Hospital Organization Minamikyushu National Hospital
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| |
Collapse
|