1
|
Kim Y, Woo D, Kim H, Baik K, Lee SU, Lee CN, Kim GJ, Kwag S, Park H, Kim JS, Park KW. The vestibulo-ocular and vestibulospinal reflexes minimally impact the freezing of gait in patients with early-to-moderate Parkinson's disease. Clin Park Relat Disord 2025; 12:100319. [PMID: 40256685 PMCID: PMC12008544 DOI: 10.1016/j.prdoa.2025.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Freezing of gait (FOG) is a disabling condition that often leads to falls and severe postural instability in patients with Parkinson's disease (PD). This study aimed to determine whether FOG is associated with the integrity of the vestibulo-ocular (VOR) and vestibulospinal reflexes (VSR). Methods We retrospectively collected 138 patients with de novo PD at a tertiary medical center between February 2022 and February 2025. Each patient was queried and assessed for FOG status during the initial assessment. All patients underwent video head-impulse tests (video-HIT), cervical vestibular-evoked myogenic potential (cVEMP), ocular vestibular-evoked myogenic potential (oVEMP), and motion analysis. Results FOG was observed in 23 patients (23/138, 17 %). The head impulse gain of the VOR did not differ between freezers and non-freezers in any semicircular canal. The new FOG questionnaire score showed no correlation with the VOR gain for any canal. The oVEMP and cVEMP parameters did not differ between freezers and non-freezers either. Multivariable logistic regression analysis revealed a positive association between FOG and MDS-UPDRS-III (p = 0.016). However, FOG was not associated with the VOR gain in any canal or abnormalities on oVEMP or cVEMP. Conclusions Our preliminary data suggest that FOG is associated with the severity of motor symptoms in patients with early-to-moderate PD. While the integrity of the VOR or VSR is not currently associated with FOG, a well-designed future study could provide more nuanced insights into the relationship with these factors.
Collapse
Affiliation(s)
- Yukang Kim
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Donghoon Woo
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Hanseob Kim
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Sun-Uk Lee
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Chan-Nyoung Lee
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Gerard J. Kim
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Seoui Kwag
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Hyunsoh Park
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kun-Woo Park
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| |
Collapse
|
2
|
Khallaf M, Jaber H, Alameri M, Magdy D, Kamal H, Hassanin M, Mousa M, Fayed E. Effect of Vestibular-Oriented Balance Training on Postural Control and Risk of Fall in Patients With Parkinson's Disease. Neurol Res Int 2025; 2025:6846267. [PMID: 40041239 PMCID: PMC11879567 DOI: 10.1155/nri/6846267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Background: Parkinson's disease is a neurodegenerative disorder that affects balance and increases the risk of falling by compromising vestibular signal processing. Objectives: This study aims to assess the impact of vestibular-oriented balance training on postural control and fall risk among people in the middle stages of PD. Methods: Forty middle-stage individuals with PD were assigned to the vestibular-oriented balance training (study group) or the traditional balance training (control group). Outcome measures including Functional Gait Assessment (FGA) and modified Clinical Test of Sensory Interaction on Balance (mCTSIB) using the Biodex Balance System were measured before, immediately after and 4 weeks after treatment. Results: There was a significant group interaction by time for all outcome measures (p < 0.001). The results showed that the difference in the FGA and mCTSIB scores from baseline was significant between the two groups at all time points (p < 0.001). The study group showed significant sustained improvements in the FGA score overtime, while the control group had a significant improvement at Week 8 but that did not last to Week 12. In mCTSIB, the study group improved significantly in all test conditions (p < 0.001), while the control group showed significant improvement only in Conditions 1 and 2, without lasting effects at Week 12 (p > 0.05). Conclusions: The findings indicate that the implementation of vestibular-oriented balance training during the middle stage of PD might have a notable and lasting impact on both postural control and the risk of falls.
Collapse
Affiliation(s)
- Mohamed Khallaf
- Department of Physical Therapy, University of St. Augustine for Health Sciences, Austin, Texas, USA
- Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Hatem Jaber
- Department of Physical Therapy, University of St. Augustine for Health Sciences, Austin, Texas, USA
| | - Mansoor Alameri
- Department of Physical Therapy, University of St. Augustine for Health Sciences, Austin, Texas, USA
| | - Dina Magdy
- Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Hend Kamal
- Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Mohamed Hassanin
- Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Mohamed Mousa
- Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Eman Fayed
- Department of Physical Therapy, University of St. Augustine for Health Sciences, Austin, Texas, USA
- Department of Physical Therapy for Cardiopulmonary Disorders and the Elderly, Faculty of Physical Therapy, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
3
|
Li X, Du X, Zhao R, Du H, Zhao L. Association between vestibular evoked myogenic potentials and different dizziness status in Parkinson's disease: A controlled study. Clin Neurol Neurosurg 2025; 249:108711. [PMID: 39729788 DOI: 10.1016/j.clineuro.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVE This study compared ocular and cervical vestibular evoked myogenic potentials (oVEMP and cVEMP) among individuals with Parkinson's disease (PD) without dizziness, with nonspecific dizziness (dizziness without orthostatic hypotension), or with dizziness combined with orthostatic hypotension. MATERIALS AND METHODS We prospectively analyzed 30 of each of the three types of individuals who were admitted to Yongchuan Hospital of Chongqing Medical University (Chongqing, China) between June 2022 and April 2023. The three groups received oVEMP and cVEMP measurements using an electromyography-evoked potential system. For oVEMP, the N10 latency, P16 latency, and amplitude were compared between the three groups and the reference values. For cVEMP, the P13 latency, N23 latency, and amplitude were compared between the three groups and the reference values. Overall characteristics of oVEMP and cVEMP were also assessed using a previously published scoring scale originally developed for individuals with multiple sclerosis between the three groups included. The correlation between VEMP parameters (the latency and amplitude) and VEMP scores were simultaneously analyzed using Pearson's bivariate correlation analysis. RESULTS When compared with reference values, the oVEMP and cVEMP parameters of all three groups were found to be slightly different from the reference values. When the three groups included were compared with each other, in terms of oVEMP, the average amplitude in the left eye was significantly higher in those with nonspecific dizziness than in the other two groups. In terms of cVEMP, the average N23 latency on both the right and left sides of the neck and average amplitude on the right side of the neck were significantly higher in those with nonspecific dizziness than in the other two groups. Scores for oVEMP and cVEMP were also significantly higher for those with nonspecific dizziness than for the other two groups. There were no significant differences in oVEMP and cVEMP parameters, and scores for oVEMP and cVEMP between patients with dizziness combined with orthostatic hypotension and those without dizziness. In terms of correlation analysis, the N23 latency of left neck (r = 0.509, p < 0.001), the N23 latency of right neck (r = 0.495, p < 0.001), and the amplitude of right neck (r = 0.304, p = 0.004) correlated positively with cVEMP score. CONCLUSIONS Patients with PD without dizziness, with dizziness attributable to orthostatic hypotension, and with nonspecific dizziness may be all associated with vestibular dysfunction. The VEMP scores were highest in patients with nonspecific dizziness, so vestibular function is more severely affected in patients with nonspecific dizziness. The VEMP especially cVEMP may be useful for early diagnosis of nonspecific dizziness in PD.
Collapse
Affiliation(s)
- Xingyue Li
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China; Chongqing Key Laboratory of Cerebrovascular Disease Research, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China; Department of Encephalopathy, Yongchuan District Hospital of Traditional Chinese Medicine, 2# Yingbin Avenue, Yongchuan, Chongqing 402160, China
| | - Xiaoyan Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China; Chongqing Key Laboratory of Cerebrovascular Disease Research, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China
| | - Rui Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China; Chongqing Key Laboratory of Cerebrovascular Disease Research, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China
| | - Hongheng Du
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China; Chongqing Key Laboratory of Cerebrovascular Disease Research, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China; Chongqing Key Laboratory of Cerebrovascular Disease Research, 439# Xuanhua Road, Yongchuan, Chongqing 402160, China.
| |
Collapse
|
4
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Pant K, Singh TG, Singh SK, Ali H. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev 2024; 102:102545. [PMID: 39423873 DOI: 10.1016/j.arr.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, has emerged as a key regulator of cellular processes linked to ageing and neurodegeneration. SIRT1 modulates various signalling pathways, including those involved in autophagy, oxidative stress, and mitochondrial function, which are critical in the pathogenesis of neurodegenerative diseases. This review explores the therapeutic potential of SIRT1 in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Preclinical studies have demonstrated that SIRT1 activators, such as resveratrol, SRT1720, and SRT2104, can alleviate disease symptoms by reducing oxidative stress, enhancing autophagic flux, and promoting neuronal survival. Ongoing clinical trials are evaluating the efficacy of these SIRT1 activators, providing hope for future therapeutic strategies targeting SIRT1 in neurodegenerative diseases. This review explores the role of SIRT1 in ageing and neurodegenerative diseases, with a particular focus on its molecular mechanisms, therapeutic potential, and clinical applications.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
5
|
Kollmansperger S, Decker J, Berkes S, Jahn K, Wuehr M. A mobile electrical stimulator for therapeutic modulation of the vestibular system - design, safety, and functionality. Front Neurol 2024; 15:1502204. [PMID: 39606706 PMCID: PMC11598921 DOI: 10.3389/fneur.2024.1502204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Low-intensity noisy galvanic vestibular stimulation (nGVS) is a promising non-invasive treatment for enhancing vestibular perceptual performance and postural control in patients with chronic vestibular hypofunction. However, this approach has so far been studied mainly under laboratory conditions. Evidence indicates that continuous application of nGVS in daily life is necessary for it to be effective. To address this need, we have developed a mobile nGVS stimulator and conducted a series of pilot studies to evaluate its safety, tolerability, functionality, and therapeutic effects. The device is a lightweight, compact, and portable AC stimulator featuring a user-friendly interface for the individualized adjustment of nGVS parameters. It includes an integrated motion sensor that automatically activates stimulation during body movement and deactivates it during inactivity, optimizing its practical use in real-world settings. The stimulator adheres to strict safety standards and, in initial long-term use, has exhibited only mild side effects (e.g., skin irritation and headaches), likely attributable to the current electrode placement, which requires further optimization. As expected, the device consistently elicits known vestibular sensorimotor reflex responses in healthy individuals. Importantly, further pilot studies in healthy participants demonstrate that the device can reliably replicate known facilitating effects on vestibular perception and postural control. Together, these findings suggest that this mobile stimulation device can facilitate the translation of nGVS into therapeutic everyday use.
Collapse
Affiliation(s)
- Sandra Kollmansperger
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julian Decker
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | | | - Klaus Jahn
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
6
|
Dos Santos TFO, Melo JEC, Santos HF, Souza JLS, Santos EDR, de Oliveira MCS, Bispo JMM, Medeiros KAAL, Lins LCRF, Menezes EC, de Gois AM, Silva RH, Ribeiro AM, Dos Santos JR. Repeated balance exercise promotes cholinergic neuroprotection of the pedunculopontine nucleus in a progressive model of Parkinson's disease. Physiol Behav 2024; 288:114722. [PMID: 39490803 DOI: 10.1016/j.physbeh.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Vestibular rehabilitation (VR) is a therapeutic approach that minimizes the impacts of balance alterations by enhancing the central vestibular compensation mechanism. The present study investigates the effect of repeated balance exercises on the central vestibular compensation mechanism in a reserpine-induced progressive model of parkinsonism in aged rats. Male Wistar rats were assigned to three cohort experiments: Exp 1: repeated balance exercises (narrow beam test) - performed every 48 h during 20 days; Exp 2: balance exercises performed on the 0th and 8th days; Exp 3: balance exercises performed only on the 0th and 20th days. For each experiment, the animals were divided into two groups (n = 7 per group): CTL (vehicle) and RES (reserpine 0.1 mg/kg). The animals received 4 (exp. 2) or 10 (exp 1 and 3) s.c. injections (0.1 mg/kg), one every 48 h. The cohorts were evaluated using catalepsy and open field tests (0th, 8th and 20th days). After completion of behavioral tests, the brains were analyzed for immunohistochemistry for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT). The RES group presented motor deficits in the catalepsy and open field tests on day 20, but not on day 8. There was no decrease in the number of TH neurons and terminals in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum (DS) for animals from Exp. 2. However, a decrease was observed in the SNpc, VTA and striatum of animals from Exp 1 and Exp 3. In the balance beam test, the animals in the RES group showed a longer crossing time from day 8 to day 14 (Exp 1), on the 8th day (Exp 2) and on the 20th day (Exp. 3). This finding was correlated with a decrease in the number of ChAT immunoreactive cells in the pedunculopontine tegmental nucleus (PPN) for the animals that performed the dynamic balance test only once (Exp. 2 and 3), but no reduction was observed in the animals that performed the test repeatedly (Epx. 1). Thus, it was possible to verify that repeated exposure of the animals to balance assessment tasks potentiated the performance of the central vestibular compensation mechanism in the animal model of parkinsonism.
Collapse
Affiliation(s)
- Thassya F O Dos Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - João E C Melo
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Heitor F Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil; Federal University of Sergipe, Neurophysiology Laboratory, Department of Physiology, São Cristóvão, SE, Brazil
| | - José L S Souza
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Edson de R Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Maria C S de Oliveira
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - José M M Bispo
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Katty A A L Medeiros
- Federal University of Sergipe, Professor Antônio Garcia Filho Center, Department of Nursing, Lagarto, SE, Brazil
| | - Lívia C R F Lins
- Federal University of Sergipe, Neurophysiology Laboratory, Department of Physiology, São Cristóvão, SE, Brazil
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Auderlan M de Gois
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - José R Dos Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil.
| |
Collapse
|
7
|
Kim KT, Baik K, Lee SU, Park E, Lee CN, Woo T, Kim Y, Kwag S, Park H, Kim JS. Ocular Vestibular-Evoked Myogenic Potential Assists in the Differentiation of Multiple System Atrophy From Parkinson's Disease. J Mov Disord 2024; 17:398-407. [PMID: 38977325 PMCID: PMC11540541 DOI: 10.14802/jmd.24120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Vestibular-evoked myogenic potentials (VEMPs) can help in assessing otolithic neural pathway in the brainstem, which may also contribute to the cardiovascular autonomic function. Parkinson's disease (PD) is associated with altered VEMP responses; however, the associations between VEMP abnormalities and multiple system atrophy (MSA) remain unknown. Therefore, we compared the extent of otolith dysfunction using ocular (oVEMP) and cervical VEMPs between patients with MSA and PD. METHODS We analyzed the clinical features, VEMP, and head-up tilt table test (HUT) findings using the Finometer in 24 patients with MSA and 52 with de novo PD who had undergone neurotologic evaluation at a referral-based university hospital in South Korea from January 2021 to March 2023. RESULTS MSA was associated with bilateral oVEMP abnormalities (odds ratio [95% confidence interval] = 9.19 [1.77-47.76], p = 0.008). The n1-p1 amplitude was negatively correlated with the Unified Multiple System Atrophy Rating Scale I-II score in patients with MSA (r = -0.571, p = 0.033), whereas it did not correlate with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale-III score in patients with PD (r = -0.051, p = 0.687). The n1 latency was negatively correlated with maximum changes in systolic blood pressure within 15 s during HUT in patients with PD (r = -0.335, p = 0.040) but not in those with MSA (r = 0.277, p = 0.299). CONCLUSION Bilaterally abnormal oVEMP responses may indicate the extent of brainstem dysfunction in MSA. oVEMP reflects the integrity of otolith-autonomic interplay, reliably assists in differentiating between MSA and PD, and helps infer clinical decline.
Collapse
Affiliation(s)
- Keun-Tae Kim
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Korea
| | - Kyoungwon Baik
- Department of Neurology, Korea University Medical Center, Seoul, Korea
| | - Sun-Uk Lee
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Korea
- Department of Neurology, Korea University Medical Center, Seoul, Korea
| | - Euyhyun Park
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| | - Chan-Nyoung Lee
- Department of Neurology, Korea University Medical Center, Seoul, Korea
| | - Tonghoon Woo
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Korea
| | - Yukang Kim
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Korea
| | - Seoui Kwag
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Korea
| | - Hyunsoh Park
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
8
|
Duncan SJ, Marques K, Fawkes J, Smith LJ, Wilkinson DT. Galvanic vestibular stimulation modulates EEG markers of voluntary movement in Parkinson's disease. Neuroscience 2024; 555:178-183. [PMID: 39074577 DOI: 10.1016/j.neuroscience.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
We recently showed that vestibular stimulation can produce a long-lasting alleviation of motor features in Parkinson's disease. Here we investigated whether components of the motor related cortical response that are commonly compromised in Parkinson's - the Bereitschaftspotential and mu-rhythm event-related desynchronization - are modulated by concurrent, low frequency galvanic vestibular stimulation (GVS) during repetitive limb movement amongst 17 individuals with idiopathic Parkinson's disease. Relative to sham, GVS was favourably associated with higher amplitudes during the late and movement phases of the Bereitschaftspotential and with a more pronounced decrease in spectral power within the mu-rhythm range during finger-tapping. These data increase understanding of how GVS interacts with the preparation and execution of voluntary movement and give added impetus to explore its therapeutic effects on Parkinsonian motor features.
Collapse
Affiliation(s)
- Shelley J Duncan
- Department of Sport and Health, Solent University, Southampton SO14 OYN, UK; School of Psychology, University of Kent, Canterbury, UK.
| | - Kamyla Marques
- School of Psychology, University of Kent, Canterbury, UK
| | - Jade Fawkes
- School of Psychology, University of Kent, Canterbury, UK
| | - Laura J Smith
- School of Psychology, University of Kent, Canterbury, UK; Wolfson Institute of Population Health, Queen Mary University of London, UK
| | | |
Collapse
|
9
|
Ray Chaudhuri K, Poplawska-Domaszewicz K, Limbachiya N, Qamar M, Batzu L, Podlewska A, Ade K. Vestibular Neurostimulation for Parkinson's Disease: A Novel Device-Aided Non-Invasive Therapeutic Option. J Pers Med 2024; 14:933. [PMID: 39338187 PMCID: PMC11432959 DOI: 10.3390/jpm14090933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Dopaminergic replacement therapy remains the mainstay of symptomatic treatment for Parkinson's disease (PD), but many unmet needs and gaps remain. Device-based treatments or device-aided non-oral therapies are typically used in the advanced stages of PD, ranging from stereotactic deep brain stimulation to levodopa or apomorphine infusion therapies. But there are concerns associated with these late-stage therapies due to a number of procedural, hardware, or long-term treatment-related side effects of these treatments, and their limited nonmotor benefit in PD. Therefore, there is an urgent unmet need for low-risk adjuvants or standalone therapies which can address the range of burdensome motor and nonmotor symptoms that occur in PD. Recent studies suggest that non-invasive neurostimulation of the vestibular system may be able to address these gaps through the stimulation of the vestibular brainstem sensory network which extensively innervates brain regions, regulating both motor and a range of nonmotor functions. Therapeutic non-invasive vestibular stimulation is a relatively modern concept that may potentially improve a broad range of motor and nonmotor symptoms of PD, even at early stages of the disease. Here, we review previous studies supporting the therapeutic potential of vestibular stimulation for the treatment of PD and discuss ongoing clinical trials and potential areas for future investigations.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Karolina Poplawska-Domaszewicz
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Naomi Limbachiya
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Mubasher Qamar
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Lucia Batzu
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Aleksandra Podlewska
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Kristen Ade
- Scion NeuroStim, Inc., Durham, NC 27707, USA
| |
Collapse
|
10
|
Woo D, Kim Y, Baik K, Lee SU, Park E, Lee CN, Kwag S, Park H, Kim JS, Park KW. Neck rigidity: a pitfall for video head-impulse tests in Parkinson's disease. J Neurol 2024; 271:5223-5232. [PMID: 38839639 DOI: 10.1007/s00415-024-12488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Video head impulse tests (video-HITs) are commonly used for vestibular evaluation; however, the results can be contaminated by various artifacts, including technical errors, recording problems, and participant factors. Although video-HITs can be used in patients with Parkinson's disease (PD), the effect of neck rigidity has not been systematically investigated. This study aimed to investigate the effect of neck rigidity on video-HIT results in patients with PD. We prospectively recruited 140 consecutive patients with PD (mean age ± standard deviation = 68 ± 10 years, 69 men) between September 2021 and April 2024 at Korea University Medical Center. The video-HIT results were compared with those of 19 age- and sex-matched healthy participants. Neck rigidity was stratified as a subdomain of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale motor part (MDS-UPDRS-III). In 59 patients, the vestibulo-ocular reflex (VOR) gain was overestimated in at least one canal plane (58/140, 41%), mostly in the anterior canal (AC, n = 44), followed by the horizontal (HC, n = 15) and posterior canals (PC, n = 7). VOR gain overestimation was also observed in patients with no (18/58, 35%), subtle (20/58, 34%), or mild (17/58, 29%) neck rigidity. Multivariable logistic regression analysis showed that VOR overestimation was positively associated with neck rigidity (odds ratio [OR] [95% confidence interval] = 1.51 [1.01-2.25], p = 0.043). The head velocities of patients decreased during head impulses for the AC (p = 0.033 for the right AC; p = 0.014 for the left AC), whereas eye velocities were similar to those of healthy participants. Our findings suggest that neck rigidity may be a confounder that can contaminate video-HIT results. Thus, the results of video-HITs, especially for the AC, should be interpreted with the context of head velocity during head impulses in patients with neck rigidity.
Collapse
Affiliation(s)
- Donghoon Woo
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Yukang Kim
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Sun-Uk Lee
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea.
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| | - Euyhyun Park
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Chan-Nyoung Lee
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seoui Kwag
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Hyunsoh Park
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Songnam, South Korea
| | - Kun-Woo Park
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
11
|
Peto D, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Wuehr M, Zwergal A. No evidence for effects of low-intensity vestibular noise stimulation on mild-to-moderate gait impairments in patients with Parkinson's disease. J Neurol 2024; 271:5489-5497. [PMID: 38884790 PMCID: PMC11319499 DOI: 10.1007/s00415-024-12504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Gait impairment is a key feature in later stages of Parkinson's disease (PD), which often responds poorly to pharmacological therapies. Neuromodulatory treatment by low-intensity noisy galvanic vestibular stimulation (nGVS) has indicated positive effects on postural instability in PD, which may possibly be conveyed to improvement of dynamic gait dysfunction. OBJECTIVE To investigate the effects of individually tuned nGVS on normal and cognitively challenged walking in PD patients with mild-to-moderate gait dysfunction. METHODS Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 32 patients with PD (ON medication state, Hoehn and Yahr: 2.3 ± 0.5), who were standing with eyes closed on a posturographic force plate. Treatment response and optimal nGVS stimulation intensity were determined on an individual patient level. In a second step, the effects of optimal nGVS vs. sham treatment on walking with preferred speed and with a cognitive dual task were investigated by assessment of spatiotemporal gait parameters on a pressure-sensitive gait carpet. RESULTS Evaluation of individual balance responses yielded that 59% of patients displayed a beneficial balance response to nGVS treatment with an average optimal improvement of 23%. However, optimal nGVS had no effects on gait parameters neither for the normal nor the cognitively challenged walking condition compared to sham stimulation irrespective of the nGVS responder status. CONCLUSIONS Low-intensity nGVS seems to have differential treatment effects on static postural imbalance and continuous gait dysfunction in PD, which could be explained by a selective modulation of midbrain-thalamic circuits of balance control.
Collapse
Affiliation(s)
- Daniela Peto
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Schmidmeier
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Schön Klinik München Schwabing, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Mohammed A, Li S, Liu X. Exploring the Potentials of Wearable Technologies in Managing Vestibular Hypofunction. Bioengineering (Basel) 2024; 11:641. [PMID: 39061723 PMCID: PMC11274252 DOI: 10.3390/bioengineering11070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/28/2024] Open
Abstract
The vestibular system is dedicated to gaze stabilization, postural balance, and spatial orientation; this makes vestibular function crucial for our ability to interact effectively with our environment. Vestibular hypofunction (VH) progresses over time, and it presents differently in its early and advanced stages. In the initial stages of VH, the effects of VH are mitigated using vestibular rehabilitation therapy (VRT), which can be facilitated with the aid of technology. At more advanced stages of VH, novel techniques that use wearable technologies for sensory augmentation and sensory substitution have been applied to manage VH. Despite this, the potential of assistive technologies for VH management remains underexplored over the past decades. Hence, in this review article, we present the state-of-the-art technologies for facilitating early-stage VRT and for managing advanced-stage VH. Also, challenges and strategies on how these technologies can be improved to enable long-term ambulatory and home use are presented.
Collapse
Affiliation(s)
- Ameer Mohammed
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Shutong Li
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Xiao Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
13
|
Thorman IB, Schrack JA, Schubert MC. Epidemiology and Comorbidities of Vestibular Disorders: Preliminary Findings of the AVOCADO Study. Otol Neurotol 2024; 45:572-579. [PMID: 38728561 DOI: 10.1097/mao.0000000000004185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
INTRODUCTION Studies on incidence and prevalence of vestibular disorders tend to focus on small pockets of patients recruited from specialized clinics and often exclude measures of vestibular function. The objectives of the study were to characterize patients with common vestibular disorders, estimate the prevalence of common vestibular disorders, and ascertain whether patients with vestibular disorders experience increased risks of falls and morbidity. MATERIALS AND METHODS This retrospective cohort study includes both inpatient and outpatient routine clinical care data culled from a nationally representative, population-based sample. Patients were included if their record in the TriNetX Diamond Cohort comprised at least one vestibular function test or vestibular diagnosis. The main outcome measures were diagnosis with a vestibular disorder, a fall, or a common medical comorbidity (e.g., diabetes, cerebrovascular disease). RESULTS The cohort includes n = 4,575,724 patients, of which 55% (n = 2,497,136) had a minimum of one vestibular diagnosis. Patients with vestibular diagnoses were 61.3 ± 16.6 years old (mean ± standard deviation), 67% women, 28% White race (69% unknown race), and 30% of non-Hispanic or Latino ethnicity (66% unknown ethnicity). The prevalence of vestibular disorders was estimated at 2.98% (95% confidence interval [CI]: 2.98-2.98%). Patients with vestibular diagnoses experienced a significantly greater odds of falls (odds ratio [OR] = 1.04; 95% CI: 1.02-1.05), cerebrovascular disease (OR = 1.42; 95% CI: 1.40-1.43), ischemic heart disease (OR = 1.17; 95% CI: 1.16-1.19), and diabetes (OR = 1.14; 95% CI: 1.13-1.15), among others. DISCUSSION Vestibular disorders affect an estimated 3% of the U.S. population, after weighting. Patients with these disorders are at greater risk for many common, consequential medical conditions.
Collapse
|
14
|
Gui M, Lv L, Qin L, Wang C. Vestibular dysfunction in Parkinson's disease: a neglected topic. Front Neurol 2024; 15:1398764. [PMID: 38846039 PMCID: PMC11153727 DOI: 10.3389/fneur.2024.1398764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Dizziness and postural instability are frequently observed symptoms in patient with Parkinson's disease (PD), potentially linked to vestibular dysfunction. Despite their significant impact on quality of life, these symptoms are often overlooked and undertreated in clinical practice. This review aims to summarize symptoms associated with vestibular dysfunction in patients with PD and discusses vestibular-targeted therapies for managing non-specific dizziness and related symptoms. We conducted searches in PubMed and Web of Science using keywords related to vestibular dysfunction, Parkinson's disease, dizziness, and postural instability, alongside the reference lists of relevant articles. The available evidence suggests the prevalence of vestibular dysfunction-related symptoms in patients with PD and supports the idea that vestibular-targeted therapies may be effective in improving PD symptoms.
Collapse
Affiliation(s)
- Meilin Gui
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center on Mental Disorders, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
15
|
do Amaral CMS, de Almeida SB, de Almeida RP, do Nascimento SL, Ribeiro RM, Braga-Neto P. Effectiveness of vestibular rehabilitation on postural balance in Parkinson's disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurol 2024; 24:161. [PMID: 38745275 PMCID: PMC11092171 DOI: 10.1186/s12883-024-03649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Postural balance impairment can affect the quality of life of patients with Parkinson's disease. Previous studies have described connections of the vestibular system with postural functions, suggesting a potential participation of the basal ganglia in receiving vestibular stimuli. This systematic review aims to summarize the evidence on the effectiveness of vestibular rehabilitation on postural balance in patients with Parkinson's disease. METHODS A systematic review was conducted using the electronic databases: PubMed, Embase, Scopus and PEDro. The study selection was independently conducted by two reviewers, and disagreements were evaluated by a third reviewer. The included studies had no restrictions on publication dates or languages and the last update occurred in July 2023. RESULTS From the 485 studies found in the searches, only 3 studies were deemed eligible for the systematic review involving a total of 130 participants. The Berg Balance Scale was described as the tool for evaluation of postural balance in all studies. The meta-analysis showed statistically significant results in favor of vestibular rehabilitation (MD = 5.35; 95% CI = 2.39, 8.31; P < 0.001), regardless of the stage of Parkinson's disease. Although the effect size was suggested as a useful functional gain, the analysis was done with caution, as it only included 3 randomized controlled trials. The risk of bias using the RoB-2 was considered as being of "some concern" in all studies. Furthermore, the quality of the evidence based on the Grading of Recommendations Assessment Development and Evaluation system, produced by pooling the included studies was considered very low. CONCLUSION Compared to other interventions, vestibular rehabilitation has potential to assist the postural balance of patients with Parkinson's disease. However, the very low quality of the evidence demonstrates uncertainty about the impact of this clinical practice. More robust studies are needed to confirm the benefits of this therapy in patients with Parkinson's disease. This study was prospectively registered in PROSPERO: CRD42020210185.
Collapse
Affiliation(s)
- Carla Marineli Saraiva do Amaral
- Division of Neurology, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Rodolfo Teófilo - Fortaleza - Ceará, R.Prof. Costa Mendes Street - 4th floor, Fortaleza, 1608, Brazil
| | - Samuel Brito de Almeida
- Division of Neurology, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Rodolfo Teófilo - Fortaleza - Ceará, R.Prof. Costa Mendes Street - 4th floor, Fortaleza, 1608, Brazil
| | - Renata Parente de Almeida
- Department of Health Sciences, Faculty of Phonoaudiology, University of Fortaleza, Fortaleza, Brazil
| | | | - Rodrigo Mariano Ribeiro
- Division of Neurology, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Rodolfo Teófilo - Fortaleza - Ceará, R.Prof. Costa Mendes Street - 4th floor, Fortaleza, 1608, Brazil
| | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Rodolfo Teófilo - Fortaleza - Ceará, R.Prof. Costa Mendes Street - 4th floor, Fortaleza, 1608, Brazil.
| |
Collapse
|
16
|
Kelty-Stephen DG, Kiyono K, Stergiou N, Mangalam M. Spatial variability and directional shifts in postural control in Parkinson's disease. Clin Park Relat Disord 2024; 10:100249. [PMID: 38803658 PMCID: PMC11129103 DOI: 10.1016/j.prdoa.2024.100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Individuals with Parkinson's disease exhibit tremors, rigidity, and bradykinesia, disrupting normal movement variability and resulting in postural instability. This comprehensive study aimed to investigate the link between the temporal structure of postural sway variability and Parkinsonism by analyzing multiple datasets from young and older adults, including individuals with Parkinson's disease, across various task conditions. We used the Oriented Fractal Scaling Component Analysis (OFSCA), which identifies minimal and maximal long-range correlations within the center of pressure time series, allowing for detecting directional changes in postural sway variability. The objective was to uncover the primary directions along which individuals exerted control during the posture. The results, as anticipated, revealed that healthy adults predominantly exerted control along two orthogonal directions, closely aligned with the anteroposterior (AP) and mediolateral (ML) axes. In stark contrast, older adults and individuals with Parkinson's disease exhibited control along suborthogonal directions that notably diverged from the AP and ML axes. While older adults and those with Parkinson's disease demonstrated a similar reduction in the angle between these two control directions compared to healthy older adults, their reliance on this suborthogonal angle concerning endogenous fractal correlations exhibited significant differences from the healthy aging cohort. Importantly, individuals with Parkinson's disease did not manifest the sensitivity to destabilizing task settings observed in their healthy counterparts, affirming the distinction between Parkinson's disease and healthy aging.
Collapse
Affiliation(s)
- Damian G. Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY 12561, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Department of Physical Education & Sport Science, Aristotle University, Thessaloniki 570 01, Greece
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
17
|
Dernbach MR, Carpenter JE. Case Files of the Emory University Medical Toxicology Fellowship: A Patient Presents to the Outpatient Toxicology Clinic with Delusions of Being Poisoned. J Med Toxicol 2024; 20:233-244. [PMID: 38378951 PMCID: PMC10959915 DOI: 10.1007/s13181-024-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Matthew Robert Dernbach
- Department of Emergency Medicine, Emory University, 50 Hurt Plaza SE, Suite 600, Atlanta, GA, 30303, USA.
- Georgia Poison Center, Atlanta, GA, USA.
| | - Joseph E Carpenter
- Department of Emergency Medicine, Emory University, 50 Hurt Plaza SE, Suite 600, Atlanta, GA, 30303, USA
- Georgia Poison Center, Atlanta, GA, USA
| |
Collapse
|
18
|
Mangalam M, Kelty-Stephen DG, Seleznov I, Popov A, Likens AD, Kiyono K, Stergiou N. Older adults and individuals with Parkinson's disease control posture along suborthogonal directions that deviate from the traditional anteroposterior and mediolateral directions. Sci Rep 2024; 14:4117. [PMID: 38374371 PMCID: PMC10876602 DOI: 10.1038/s41598-024-54583-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
A rich and complex temporal structure of variability in postural sway characterizes healthy and adaptable postural control. However, neurodegenerative disorders such as Parkinson's disease, which often manifest as tremors, rigidity, and bradykinesia, disrupt this healthy variability. This study examined postural sway in young and older adults, including individuals with Parkinson's disease, under different upright standing conditions to investigate the potential connection between the temporal structure of variability in postural sway and Parkinsonism. A novel and innovative method called oriented fractal scaling component analysis was employed. This method involves decomposing the two-dimensional center of pressure (CoP) planar trajectories to pinpoint the directions associated with minimal and maximal temporal correlations in postural sway. As a result, it facilitates a comprehensive assessment of the directional characteristics within the temporal structure of sway variability. The results demonstrated that healthy young adults control posture along two orthogonal directions closely aligned with the traditional anatomical anteroposterior (AP) and mediolateral (ML) axes. In contrast, older adults and individuals with Parkinson's disease controlled posture along suborthogonal directions that significantly deviate from the AP and ML axes. These findings suggest that the altered temporal structure of sway variability is evident in individuals with Parkinson's disease and underlies postural deficits, surpassing what can be explained solely by the natural aging process.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, 12561, USA
| | - Ivan Seleznov
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Anton Popov
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, 03056, Ukraine
- Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, 79011, Ukraine
| | - Aaron D Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Department of Physical Education, and Sport Science, Aristotle University, 570 01, Thessaloniki, Greece
| |
Collapse
|
19
|
Silva-Batista C, Lira J, Coelho DB, de Lima-Pardini AC, Nucci MP, Mattos ECT, Magalhaes FH, Barbosa ER, Teixeira LA, Amaro Junior E, Ugrinowitsch C, Horak FB. Mesencephalic Locomotor Region and Presynaptic Inhibition during Anticipatory Postural Adjustments in People with Parkinson's Disease. Brain Sci 2024; 14:178. [PMID: 38391752 PMCID: PMC10887111 DOI: 10.3390/brainsci14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Individuals with Parkinson's disease (PD) and freezing of gait (FOG) have a loss of presynaptic inhibition (PSI) during anticipatory postural adjustments (APAs) for step initiation. The mesencephalic locomotor region (MLR) has connections to the reticulospinal tract that mediates inhibitory interneurons responsible for modulating PSI and APAs. Here, we hypothesized that MLR activity during step initiation would explain the loss of PSI during APAs for step initiation in FOG (freezers). Freezers (n = 34) were assessed in the ON-medication state. We assessed the beta of blood oxygenation level-dependent signal change of areas known to initiate and pace gait (e.g., MLR) during a functional magnetic resonance imaging protocol of an APA task. In addition, we assessed the PSI of the soleus muscle during APA for step initiation, and clinical (e.g., disease duration) and behavioral (e.g., FOG severity and APA amplitude for step initiation) variables. A linear multiple regression model showed that MLR activity (R2 = 0.32, p = 0.0006) and APA amplitude (R2 = 0.13, p = 0.0097) explained together 45% of the loss of PSI during step initiation in freezers. Decreased MLR activity during a simulated APA task is related to a higher loss of PSI during APA for step initiation. Deficits in central and spinal inhibitions during APA may be related to FOG pathophysiology.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo 05508-070, Brazil
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jumes Lira
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo 05508-070, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo 09210-170, Brazil
| | | | | | | | | | - Egberto Reis Barbosa
- Movement Disorders Clinic, Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil
| | - Luis Augusto Teixeira
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Edson Amaro Junior
- Department of Radiology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
20
|
Hong JP, Kwon H, Park E, Lee SU, Lee CN, Kim BJ, Kim JS, Park KW. The semicircular canal function is preserved with little impact on falls in patients with mild Parkinson's disease. Parkinsonism Relat Disord 2024; 118:105933. [PMID: 38007917 DOI: 10.1016/j.parkreldis.2023.105933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Postural instability is a cardinal symptom of Parkinson's disease (PD), which suggests the vestibular system may be affected in PD. This study aimed to determine whether vestibular dysfunction is associated with the risk of falls in PD. METHODS We prospectively recruited patients with de-novo PD at a tertiary medical center between December 2019 and March 2023. During initial assessment, each patient was queried about falls within the preceding year. All patients underwent evaluation of video head-impulse tests (video-HITs), motion analysis, mini-mental state examination (MMSE), and Montreal Cognitive Assessment (MOCA). We determined whether head impulse gain of the vestibulo-ocular reflex (VOR) was associated with clinical severity of PD or risk of falls. RESULTS Overall, 133 patients (mean age ± SD = 68 ± 10, 59 men) were recruited. The median Movement Disorder Society-Unified Parkinson's Disease Rating Scale motor part (MDS-UPDRS-III) was 23 (interquartile range = 16-31), and 81 patients (61 %) scored 2 or less on the Hoehn and Yahr scale. Fallers were older (p = 0.001), had longer disease duration (p = 0.001), slower gait velocity (p = 0.009), higher MDS-UPDRS-III (p < 0.001) and H&Y scale (p < 0.001), lower MMSE (p = 0.018) and MOCA scores (p = 0.001) than non-fallers. Multiple logistic regression showed that MDS-UPDRS-III had a positive association with falling (p = 0.004). Falling was not associated with VOR gain (p = 0.405). The VOR gain for each semicircular canal showed no correlation with the MDS-UPDRS-III or disease duration. CONCLUSIONS The semicircular canal function, as determined by video-HITs, is relatively spared and has little effect on the risk of falls in patients with mild-to-moderate PD.
Collapse
Affiliation(s)
- Jun-Pyo Hong
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Hanim Kwon
- Department of Neurology, Korea University Ansan Hospital, Ansan, South Korea
| | - Euyhyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea; Neurotology and Neuro-ophthalmology Laboratory, Korea University Anam Hospital, Seoul, South Korea
| | - Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, South Korea; Neurotology and Neuro-ophthalmology Laboratory, Korea University Anam Hospital, Seoul, South Korea.
| | - Chan-Nyoung Lee
- Department of Neurology, Korea University Medical Center, Seoul, South Korea.
| | - Byung-Jo Kim
- Department of Neurology, Korea University Medical Center, Seoul, South Korea; BK21 FOUR Program in Learning Health Systems, Korea University, Seoul, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea; Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kun-Woo Park
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| |
Collapse
|
21
|
Seyedahmadi M, Taherzadeh J, Akbari H. The Effect of 12 Weeks of Cawthorne-Cooksey Exercises on Balance and Quality of Life in Patients with Parkinson's Disease. Med J Islam Repub Iran 2023; 37:125. [PMID: 38318402 PMCID: PMC10843215 DOI: 10.47176/mjiri.37.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 02/07/2024] Open
Abstract
Background Parkinson's disease (PD) is known as the second most destructive central nervous system (CNS) disorder, which leads to movement slowness, tremors, decreased balance, instability, and CNS disorders in affected patients. This study aimed to investigate the effect of 12 weeks of Cawthorne-Cooksey exercises on the balance and the quality of life in patients with PD. Methods This was a quasi-experimental study, and the research population consisted of PD patients in Zahedan City who were present at the Zahedan Elderly Center during May, June, and July 2022. Twenty-four individuals who were 53 to 69 years old volunteered to participate in this study and were assigned to the experimental (N = 12) and control (N = 12) groups. In addition to the usual treatment, the experimental group performed Cawthorne-Cooksey exercises (CCE) exercises for 12 weeks, while the control group only received the usual treatment during this period. The CCE exercises were performed for 60-minute sessions, three days a week, for twelve weeks. The Berg Balance Scale (BBS) was used to evaluate balance, and the Parkinson's Disease Quality of Life Questionnaire (PDQL 37) was used to assess the QOL of PD. The data were analyzed using Wilcoxon and Mann-Whitney U tests. Results The Mann-Whitney U test results revealed that the experimental group exhibited significantly higher scores in all factors of QOL and balance during the post-test when compared to the control group ( P < 0.05). Moreover, the outcomes of the Wilcoxon test demonstrated significant improvements in all components of QOL and balance for the experimental group from pre-test to post-test ( P < 0.05), whereas the control group experienced a notable decline in both balance and QOL during the same period ( P < 0.05). Conclusion The study demonstrates that CCE exercises positively influence the balance and quality of life of Parkinson's disease patients, suggesting their potential as complementary therapy in the treatment of PD.
Collapse
Affiliation(s)
- Mohammad Seyedahmadi
- Department of Sport Sciences, Faculty of Humanities, Velayat University, Iranshahr, Iran
| | - Javad Taherzadeh
- Department of Sport Sciences, Naragh Branch, Islamic Azad University, Naragh, Iran
| | - Hadi Akbari
- Department of Sport Sciences, Faculty of Literature and Humanities, University of Zabol, Zabol, Iran
| |
Collapse
|
22
|
Falaki A, Cuadra C, Lewis MM, Prado-Rico JM, Huang X, Latash ML. Multi-muscle synergies in preparation for gait initiation in Parkinson's disease. Clin Neurophysiol 2023; 154:12-24. [PMID: 37524005 DOI: 10.1016/j.clinph.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE We investigated changes in indices of muscle synergies prior to gait initiation and the effects of gaze shift in patients with Parkinson's disease (PD). A long-term objective of the study is to develop a method for quantitative assessment of gait-initiation problems in PD. METHODS PD patients without clinical signs of postural instability and two control groups (age-matched and young) performed a gait initiation task in a self-paced manner, with and without a quick prior gaze shift produced by turning the head. Muscle groups with parallel scaling of activation levels (muscle modes) were identified as factors in the muscle activation space. Synergy index stabilizing center of pressure trajectory in the anterior-posterior and medio-lateral directions (indices of stability) was quantified in the muscle mode space. A drop in the synergy index in preparation to gait initiation (anticipatory synergy adjustment, ASA) was quantified. RESULTS Compared to the control groups, PD patients showed significantly smaller synergy indices and ASA for both directions of the center of pressure shift. Both PD and age-matched controls, but not younger controls, showed detrimental effects of the prior gaze shift on the ASA indices. CONCLUSIONS PD patients without clinically significant posture or gait disorders show impaired stability of the center of pressure and its diminished adjustment during gait initiation. SIGNIFICANCE The indices of stability and ASA may be useful to monitor pre-clinical gait disorders, and lower ASA may be relevant to emergence of freezing of gait in PD.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Cristian Cuadra
- Department of Physical Therapy, Emory University, Atlanta, GA, USA; Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538 Santiago, Chile
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Janina M Prado-Rico
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
23
|
Ciatto L, Pullia M, Tavilla G, Dauccio B, Messina D, De Cola MC, Quartarone A, Cellini R, Bonanno M, Calabrò RS. Do Patients with Parkinson's Disease Benefit from Dynamic Body Weight Support? A Pilot Study on the Emerging Role of Rysen. Biomedicines 2023; 11:2148. [PMID: 37626645 PMCID: PMC10452686 DOI: 10.3390/biomedicines11082148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor alterations. Typical motor symptoms include resting tremors, bradykinesia (hypokinesia or akinesia), muscular stiffness, gait alterations, and postural instability. In this context, neurorehabilitation may have a pivotal role in slowing the progression of PD, using both conventional and innovative rehabilitation approaches. Thirty patients (15 males and 15 females) affected by PD were enrolled in our study. We randomly divided the patients into two groups, an experimental group (EG) and a control group (CG). In particular, the EG performed gait and balance training using the Rysen system, which is an innovative body weight support (BWS) system, whilst the CG received conventional physiotherapy. Both groups underwent 20 sessions, five times weekly, with each session lasting about 40 min. At the end of the training sessions (T1), we found that both groups (EG and CG) achieved clinical improvements, although the EG showed better scores for post-treatment regarding global motor functioning and postural stability compared to the CG. In conclusion, our results suggest that the Rysen system, which is an innovative BWS tool, could be considered a valid device for improving postural control and global motor functions, when compared to conventional gait training, in patients affected by PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mirjam Bonanno
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Palermo, C.da Casazza, S.S 113, 98123 Messina, Italy; (L.C.); (M.P.); (G.T.); (B.D.); (D.M.); (M.C.D.C.); (A.Q.); (R.C.); (R.S.C.)
| | | |
Collapse
|
24
|
Ravishankar U, Ramesh R, Venkatasubramanian S, Shanmugam S. Bilateral vestibulopathy presaging clinically probable multisystem atrophy. BMJ Case Rep 2023; 16:e254472. [PMID: 37308247 PMCID: PMC10277085 DOI: 10.1136/bcr-2022-254472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Bilateral vestibulopathy is a clinical diagnosis backed by investigative confirmation, which can be masked by the lack of lateralising signs. It has a broad aetiological spectrum including neurodegenerative conditions, though many such cases also have unknown aetiology. We present the case of an elderly gentleman who presented with progressive bilateral vestibulopathy nearly 1.5 years prior to his eventual diagnosis of clinically probable multisystem atrophy. This case highlights the need to serially re-evaluate for parkinsonism and cerebellar signs in idiopathic bilateral vestibulopathy and raises a possibility that bilateral vestibulopathy, similar to constipation or anosmia, could be an early syndrome presaging the onset of overt extrapyramidal or cerebellar symptoms in patients with multisystem atrophy.
Collapse
Affiliation(s)
- Uma Ravishankar
- Neurology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Rithvik Ramesh
- Neurology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | | | - Sundar Shanmugam
- Neurology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
25
|
Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy. Int J Mol Sci 2022; 23:ijms232315262. [PMID: 36499588 PMCID: PMC9738578 DOI: 10.3390/ijms232315262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Unilateral inner ear injury is followed by behavioral recovery due to central vestibular compensation. The therapeutic effect of oxytocin (OT) on vestibular compensation was investigated by behavioral testing in a rat model of unilateral vestibular neurectomy (UVN). Animals in the oxytocin group (UVN-OT) exhibited delayed vestibular compensation on the qualitative scale of vestibular deficits and aggravated static postural deficits (bearing surface) compared to animals in the NaCl group (UVN-NaCl). Surprisingly, oxytocin-treated animals adopt a different postural strategy than untreated animals. Instead of shifting their weight to the ipsilesional paws (left front and hind paws), they shift their weight to the front paws (right and left) without modification along the lateral axis. Furthermore, some locomotor strategies of the animals to compensate for the vestibular loss are also altered by oxytocin treatment. UVN-OT animals do not induce an increase in the distance traveled, their mean velocity is lower than that in the control group, and the ipsilesional body rotations do not increase from 7 to 30 days after UVN. This study reveals that oxytocin treatment hinders the restoration of some postural and locomotor deficits while improving others following vestibular lesions. The mechanisms of the action of oxytocin that support these behavioral changes remain to be elucidated.
Collapse
|
26
|
Petel A, Jacob D, Aubonnet R, Frismand S, Petersen H, Gargiulo P, Perrin P. Motion sickness susceptibility and visually induced motion sickness as diagnostic signs in Parkinson's disease. Eur J Transl Myol 2022; 32:10884. [PMID: 36458415 PMCID: PMC9830408 DOI: 10.4081/ejtm.2022.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022] Open
Abstract
Postural instability and loss of vestibular and somatosensory acuity can be part of the signs encountered in Parkinson's Disease (PD). Visual dependency is described in PD. These modifications of sensory input hierarchy are predictors of motion sickness (MS). The aim of this study was to assess MS susceptibility and effects of real induced MS in posture. 63 PD patients, whose medication levels (levodopa) reflected the pathology were evaluated, and 27 healthy controls, filled a MS questionnaire; 9 PD patients and 43 healthy controls were assessed by posturography using virtual reality. Drug amount predicted visual MS (p=0.01), but not real induced MS susceptibility. PD patients did not experience postural instability in virtual reality, contrary to healthy controls. Since PD patients do not seem to feel vestibular stimulated MS, they may not rely on vestibular and somatosensory inputs during the stimulation. However, they feel visually induced MS more with increased levodopa drug effect. Levodopa amount can increase visual dependency. The strongest MS predictors must be studied in PD to better understand the effect of visual stimulation and its absence in vestibular stimulation.
Collapse
Affiliation(s)
- Arthur Petel
- EA 3450 DevAH - Development, Adaptation and Handicap, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France,*These authors contributed equally
| | - Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland,*These authors contributed equally
| | - Romain Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Solène Frismand
- Neurology Department, University Hospital of Nancy, Nancy, France
| | - Hannes Petersen
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Akureyri Hospital, Akureyri, Iceland, Department of Science, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland, Department of Science, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Philippe Perrin
- EA 3450 DevAH - Development, Adaptation and Handicap, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France, Laboratory for the Analysis of Posture, Equilibrium and Motor Function (LAPEM), University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
27
|
Initial Vestibular Function May Be Associated with Future Postural Instability in Parkinson’s Disease. J Clin Med 2022; 11:jcm11195608. [PMID: 36233475 PMCID: PMC9570519 DOI: 10.3390/jcm11195608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Backgrounds: We aimed to understand the association between initial vestibular function examination and postural instability (PI) development in Parkinson’s disease (PD). Methods: After screening 51 PD patients, we divided 31 patients into 2 groups based on the presence of PI at the follow-up visit and compared the clinical features and vestibular-evoked myogenic potential (VEMP) variables. Results: The mean values of Hoehn and Yahr stage, Unified Parkinson’s Disease Rating Scale (UPDRS) part III, and item 30 (postural stability) of UPDRS were larger in patients with PI at a follow-up visit (p = 0.000, 0.006, 0.048, respectively). In VEMP analyses, the onset latencies of left and right cervical VEMPs were significantly reduced in patients with PI (p = 0.013, 0.040, respectively). Conclusion: We found that the initial VEMP test may be associated with later postural imbalance in PD, suggesting the baseline evaluation may help predict future PI occurrence. A more significant number of patients and more long-term follow-ups are likely to be required for confirmation.
Collapse
|
28
|
Bohnen NI, Roytman S, Griggs A, David SM, Beaulieu ML, Müller MLTM. Decreased vestibular efficacy contributes to abnormal balance in Parkinson's disease. J Neurol Sci 2022; 440:120357. [PMID: 35932698 PMCID: PMC9444904 DOI: 10.1016/j.jns.2022.120357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND AND PURPOSE Abnormal balance is poorly responsive to dopaminergic therapy in Parkinson's disease (PD). Decreased vestibular efficacy may contribute to imbalance in PD. The purpose of this study was to investigate the relationship between vestibular measures of dynamic posturography and imbalance in PD while accounting for confounder variables. METHODS 106 patients with PD underwent dynamic posturography for the 6 conditions of the sensory integration test (SOT) using the Neurocom Equitest device. All SOT measures, nigrostriatal dopaminergic denervation ((+)-[11C]DTBZ PET), brain acetylcholinesterase ([11C]PMP PET), age, duration of disease, cognitive and parkinsonian motor scores, and ankle vibration sensitivity were used as regressors in a stepwise logistic regression model comparing PD patients with versus without imbalance defined as Hoehn and Yahr (HY) stage 2.5 or higher. RESULTS The presence of imbalance was significantly associated with vestibular ratio COP RMS (P = 0.002) independently from visual ratio COP velocity (P = 0.012), thalamic acetylcholinesterase activity (P = 0.0032), cognition (P = 0.006), motor severity (P = 0.0039), age (P = 0.001), ankle vibration sensitivity (P = 0.0008), and borderline findings for somatosensory ratio COP velocity (P = 0.074) and visual ratio COP RMS (P = 0.078). Nigrostriatal dopaminergic denervation did not achieve significance. CONCLUSIONS The inability to efficaciously utilize vestibular information to retain upright stance is a determinant of imbalance in PD independent from visual and somatosensory processing changes and nigrostriatal dopaminergic losses. Thalamic, but not cortical, cholinergic denervation incrementally predicted balance abnormality. Further research is needed to investigate an intrinsic role of the cholinergic thalamus in multi-sensory, in particular vestibular, processing functions of postural control in PD.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA.
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Alexis Griggs
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Simon M David
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mélanie L Beaulieu
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA; Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Smith PF. Recent developments in the understanding of the interactions between the vestibular system, memory, the hippocampus, and the striatum. Front Neurol 2022; 13:986302. [PMID: 36119673 PMCID: PMC9479733 DOI: 10.3389/fneur.2022.986302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022] Open
Abstract
Over the last two decades, evidence has accumulated to demonstrate that the vestibular system has extensive connections with areas of the brain related to spatial memory, such as the hippocampus, and also that it has significant interactions with areas associated with voluntary motor control, such as the striatum in the basal ganglia. In fact, these functions are far from separate and it is believed that interactions between the striatum and hippocampus are important for memory processing. The data relating to vestibular-hippocampal-striatal interactions have considerable implications for the understanding and treatment of Alzheimer's Disease and Parkinson's Disease, in addition to other neurological disorders. However, evidence is accumulating rapidly, and it is difficult to keep up with the latest developments in these and related areas. The aim of this review is to summarize and critically evaluate the relevant evidence that has been published over the last 2 years (i.e., since 2021), in order to identify emerging themes in this research area.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
- *Correspondence: Paul F. Smith
| |
Collapse
|
30
|
Bohnen NI, Kanel P, van Emde Boas M, Roytman S, Kerber KA. Vestibular Sensory Conflict During Postural Control, Freezing of Gait, and Falls in Parkinson's Disease. Mov Disord 2022; 37:2257-2262. [PMID: 36373942 PMCID: PMC9673158 DOI: 10.1002/mds.29189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The vestibular system has been implicated in the pathophysiology of episodic motor impairments in Parkinson's disease (PD), but specific evidence remains lacking. OBJECTIVE We investigated the relationship between the presence of freezing of gait and falls and postural failure during the performance on Romberg test condition 4 in patients with PD. METHODS Modified Romberg sensory conflict test, fall, and freezing-of-gait assessments were performed in 92 patients with PD (70 males/22 females; mean age, 67.6 ± 7.4 years; Hoehn and Yahr stage, 2.4 ± 0.6; mean Montreal Cognitive Assessment, 26.4 ± 2.8). RESULTS Failure during Romberg condition 4 was present in 33 patients (35.9%). Patients who failed the Romberg condition 4 were older and had more severe motor and cognitive impairments than those without. About 84.6% of all patients with freezing of gait had failure during Romberg condition 4, whereas 13.4% of patients with freezing of gait had normal performance (χ2 = 15.6; P < 0.0001). Multiple logistic regression analysis showed that the regressor effect of Romberg condition 4 test failure for the presence of freezing of gait (Wald χ2 = 5.0; P = 0.026) remained significant after accounting for the degree of severity of parkinsonian motor ratings (Wald χ2 = 6.2; P = 0.013), age (Wald χ2 = 0.3; P = 0.59), and cognition (Wald χ2 = 0.3; P = 0.75; total model: Wald χ2 = 16.1; P < 0.0001). Patients with PD who failed the Romberg condition 4 (45.5%) did not have a statistically significant difference in frequency of patients with falls compared with patients with PD without abnormal performance (30.5%; χ2 = 2.1; P = 0.15). CONCLUSIONS The presence of deficient vestibular processing may have specific pathophysiological relevance for freezing of gait, but not falls, in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicolaas I. Bohnen
- Department of Radiology University of Michigan Ann Arbor Michigan USA
- Department of Neurology University of Michigan Ann Arbor Michigan USA
- Neurology Service and GRECC VA Ann Arbor Healthcare System Ann Arbor Michigan USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research University of Michigan Ann Arbor Michigan USA
- Parkinson's Foundation Research Center of Excellence University of Michigan Ann Arbor Michigan USA
| | - Prabesh Kanel
- Department of Radiology University of Michigan Ann Arbor Michigan USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research University of Michigan Ann Arbor Michigan USA
- Parkinson's Foundation Research Center of Excellence University of Michigan Ann Arbor Michigan USA
| | - Miriam van Emde Boas
- Department of Radiology University of Michigan Ann Arbor Michigan USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research University of Michigan Ann Arbor Michigan USA
- Parkinson's Foundation Research Center of Excellence University of Michigan Ann Arbor Michigan USA
| | - Stiven Roytman
- Department of Radiology University of Michigan Ann Arbor Michigan USA
| | - Kevin A. Kerber
- Department of Neurology University of Michigan Ann Arbor Michigan USA
- Neurology Service and GRECC VA Ann Arbor Healthcare System Ann Arbor Michigan USA
- Parkinson's Foundation Research Center of Excellence University of Michigan Ann Arbor Michigan USA
- Department of Neurology Ohio State University Columbus Ohio USA
| |
Collapse
|
31
|
Kashif M, Ahmad A, Bandpei MAM, Farooq M, Iram H, e Fatima R. Systematic review of the application of virtual reality to improve balance, gait and motor function in patients with Parkinson's disease. Medicine (Baltimore) 2022; 101:e29212. [PMID: 35945738 PMCID: PMC9351924 DOI: 10.1097/md.0000000000029212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Virtual reality (VR) is an advanced technique used in physical rehabilitation of neurological disorders, however the effects of VR on balance, gait, and motor function in people with Parkinson's (PD) are still debated. Therefore, the systematic review aimed to determine the role of VR on motor function, balance and gait in PD patients. METHODS A comprehensive search to identify similar randomised controlled trials was conducted targeting 5 databases including Web of Science, PubMed, CINHAL, Cochrane Library, and Physiotherapy Evidence Database. A total of 25 studies were found eligible for this systematic review, and the methodological assessment of the quality rating of the studies was accomplished using the physiotherapy evidence database scale by 2 authors. RESULTS Out of the 25 included studies, 14 studies reported on balance as the primary outcome, 9 studies were conducted to assess motor function, and 12 assessed gait as the primary outcome. Most studies used the Unified Parkinson disease rating scale UPDRS (part-III) for evaluating motor function and the Berg Balance Scale as primary outcome measure for assessing balance. A total of 24 trials were conducted in clinical settings, and only 1 study was home-based VR trainings. Out of 9 studies on motor function, 6 reported equal improvement of motor function as compared to other groups. In addition, VR groups also revealed superior results in improving static balance among patient with PD. CONCLUSION This systemic review found that the use of VR resulted in substantial improvements in balance, gait, and motor skills in patients with PD when compared to traditional physical therapy exercises or in combination with treatments other than physical therapy. Moreover, VR can be used as a supportive method for physical rehabilitation in patients of PD. However, the majority of published studies were of fair and good quality, suggesting a demand for high quality research in this area.
Collapse
Affiliation(s)
- Muhammad Kashif
- University Institute of Physical Therapy, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
- Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan
| | - Ashfaq Ahmad
- University Institute of Physical Therapy, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Muhammad Ali Mohseni Bandpei
- University Institute of Physical Therapy, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Farooq
- Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan
| | - Humaira Iram
- Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan
| | - Rida e Fatima
- Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan
| |
Collapse
|
32
|
Wuehr M, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Zwergal A. Effects of Low-Intensity Vestibular Noise Stimulation on Postural Instability in Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1611-1618. [PMID: 35491798 DOI: 10.3233/jpd-213127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Postural instability is a major disabling factor in patients with advanced Parkinson's disease (PD) and often resistant to treatment. Previous studies indicated that imbalance in PD may be reduced by low-intensity noisy galvanic vestibular stimulation (nGVS). OBJECTIVE To investigate the potential mode of action of this therapeutic effect. In particular, we examined whether nGVS-induced reductions of body sway in PD are compatible with stochastic resonance (SR), a mechanism by which weak sensory noise stimulation can paradoxically enhance sensory information transfer. METHODS Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 15 patients with PD standing with eye closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal reductions of sway at intermediate nGVS intensities to be indicative of SR. An established SR-curve model was fitted on individual patient outcomes and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR. RESULTS nGVS-induced reductions of body sway compatible with SR were found in 10 patients (67%) with optimal improvements of 23±13%. In 7 patients (47%), nGVS-induced sway reductions exceeded the minimally important clinical difference (optimal improvement: 30±10%), indicative of strong SR. This beneficial effect was more likely in patients with advanced PD (R = 0.45; p = 0.045). CONCLUSIONS At least half of the assessed patients showed robust improvements in postural balance compatible with SR when treated with low-intensity nGVS. In particular, patients with more advanced disease stages and imbalance may benefit from the non-invasive and well-tolerated treatment with nGVS.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Florian Schmidmeier
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology and Clinical Neurophysiology, Schön Klinik München Schwabing, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
33
|
Kataoka H, Okada Y, Kiriyama T, Kita Y, Nakamura J, Shomoto K, Sugie K. Effect of galvanic vestibular stimulation on axial symptoms in Parkinson’s disease. J Cent Nerv Syst Dis 2022; 14:11795735221081599. [PMID: 35237093 PMCID: PMC8883401 DOI: 10.1177/11795735221081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/28/2022] [Indexed: 11/15/2022] Open
Abstract
Postural imbalance, abnormal axial posture, and axial rigidity are the characteristic features of Parkinson’s disease (PD), and they are referred to as axial symptoms. The symptoms are difficult to manage since they are often resistant to both L-DOPA and deep brain stimulation. Hence, other treatments that can improve Parkinsonian axial symptoms without adverse effects are required. Vestibular dysfunction occurs in PD since neuropathological changes and reflex abnormalities are involved in the vestibular nucleus complex. Galvanic vestibular stimulation (GVS), which activates the vestibular system, is a noninvasive method. This review aimed to assess the clinical effect of GVS on axial symptoms in PD. To date, studies on the effects of GVS on postural instability, anterior bending posture, lateral bending posture, and trunk rigidity and akinesia in PD had yielded interesting data, and none of the patients presented with severe adverse events, and the others had mild reactions. GVS indicated a possible novel therapy. However, most included a small number of patients, and the sample sizes were not similar in some studies that included controls. In addition, there was only one randomized controlled clinical trial, and it did not perform an objective evaluation of axial symptoms. In this type of research, vestibular contributions to balance should be distinguished from others such as proprioceptive inputs or nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- The Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Yohei Okada
- Graduate School of Health Science, Kio University, Kashiba, Nara, Japan
| | - Takao Kiriyama
- The Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Yorihiro Kita
- Department of Rehabilitation, Nishiyamato Rehabilitation Hospital, Nara, Japan
| | - Junji Nakamura
- Department of Rehabilitation, Nishiyamato Rehabilitation Hospital, Nara, Japan
| | - Koji Shomoto
- Graduate School of Health Science, Kio University, Kashiba, Nara, Japan
| | - Kazuma Sugie
- The Department of Neurology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
34
|
SK Channels Modulation Accelerates Equilibrium Recovery in Unilateral Vestibular Neurectomized Rats. Pharmaceuticals (Basel) 2021; 14:ph14121226. [PMID: 34959626 PMCID: PMC8707273 DOI: 10.3390/ph14121226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
We have previously reported in a feline model of acute peripheral vestibulopathy (APV) that the sudden, unilateral, and irreversible loss of vestibular inputs induces selective overexpression of small conductance calcium-activated potassium (SK) channels in the brain stem vestibular nuclei. Pharmacological blockade of these ion channels by the selective antagonist apamin significantly alleviated the evoked vestibular syndrome and accelerated vestibular compensation. In this follow-up study, we aimed at testing, using a behavioral approach, whether the antivertigo (AV) effect resulting from the antagonization of SK channels was species-dependent or whether it could be reproduced in a rodent APV model, whether other SK channel antagonists reproduced similar functional effects on the vestibular syndrome expression, and whether administration of SK agonist could also alter the vestibular syndrome. We also compared the AV effects of apamin and acetyl-DL-leucine, a reference AV compound used in human clinic. We demonstrate that the AV effect of apamin is also found in a rodent model of APV. Other SK antagonists also produce a trend of AV effect when administrated during the acute phase of the vertigo syndrome. Conversely, the vertigo syndrome is worsened upon administration of SK channel agonist. It is noteworthy that the AV effect of apamin is superior to that of acetyl-DL-leucine. Taken together, these data reinforce SK channels as a pharmacological target for modulating the manifestation of the vertigo syndrome during APV.
Collapse
|
35
|
Klunk D, Woost TB, Fricke C, Classen J, Weise D. Differentiating neurodegenerative parkinsonian syndromes using vestibular evoked myogenic potentials and balance assessment. Clin Neurophysiol 2021; 132:2808-2819. [PMID: 34628341 DOI: 10.1016/j.clinph.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Vestibular evoked myogenic potentials (VEMP) were investigated to differentiate between parkinsonian syndromes. We correlated balance and VEMP parameters to investigate the VEMP brainstem circuits as possible origin for postural instability. METHODS We assessed clinical status, ocular and cervical VEMP (oVEMP, cVEMP) and conducted a balance assessment (posturography, Activities-specific Balance Confidence Scale, Berg Balance Scale, modified Barthel Index) in 76 subjects: 30 with Parkinson's disease (PD), 16 with atypical parkinsonism (AP) and 30 healthy controls. VEMP were elicited by using a mini-shaker on the forehead. RESULTS Patients with PD had a prolonged oVEMP n10 in comparison to controls and prolonged p15 compared to controls and AP. Patients with AP showed reduced oVEMP amplitudes compared to PD and controls. CVEMP did not differ between groups. Postural impairment was higher in AP compared to controls and PD, particularly in the rating scales. No correlations between VEMP and posturography were found. A support vector machine classifier was able to automatically classify controls and patient subgroups with moderate to good accuracy based on oVEMP latencies and balance questionnaires. CONCLUSIONS Both oVEMP and posturography, but not cVEMP, may be differentially affected in PD and AP. We did not find evidence that impairment of the cVEMP or oVEMP pathways is directly related to postural impairment. SIGNIFICANCE OVEMP and balance assessment could be implemented in the differential diagnostic work-up of parkinsonian syndromes.
Collapse
Affiliation(s)
- Dietrich Klunk
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Department of Neurology, Altenburger Land Hospital, Am Waldessaum 10, 04600 Altenburg, Germany
| | - Timo B Woost
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Christopher Fricke
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - David Weise
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Department of Neurology, Asklepios Fachklinikum Stadtroda, Bahnhofstraße 1A, 07646 Stadtroda, Germany.
| |
Collapse
|
36
|
Hawkins KE, Paul SS, Chiarovano E, Curthoys IS. Using virtual reality to assess vestibulo-visual interaction in people with Parkinson's disease compared to healthy controls. Exp Brain Res 2021; 239:3553-3564. [PMID: 34562106 DOI: 10.1007/s00221-021-06219-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023]
Abstract
People with Parkinson's disease (PD) have increased visual dependency for balance and suspected vestibular dysfunction. Immersive virtual reality (VR) allows graded manipulation of visual sensory inputs during balance tasks, and hence VR coupled with portable force platforms have emerged as feasible, affordable, and validated tools for assessing sensory-motor integration of balance. This study aims to determine (i) how people with PD perform on a VR-based visual perturbation standing balance task compared to healthy controls (HC), and (ii) whether balance performance is influenced by vestibular function, when other known factors are controlled for. This prospective observational study compared the balance performance under varying sensory conditions in 40 people with mild to moderate PD with 40 age-matched HC. Vestibular function was assessed via Head Impulse Test (HIMP), cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs) and subjective visual vertical (SVV). Regression analyses were used to determine associations between VR balance performance on firm and foam surfaces with age, group, vestibular function, and lower limb proprioception. PD failed at significantly lower levels of visual perturbation than HC on both surfaces. In PD, greater disease severity was significantly associated with lower fall thresholds on both surfaces. Multiple PD participants failed prior to visual perturbation on foam. On firm, PD had a greater visual dependency. Increasing age, impaired proprioception, impaired SVV, abnormal HIMP and cVEMP scores were associated with worse balance performance. The multivariate model containing these factors explained 29% of the variability in balance performance on both surfaces. Quantitative VR-based balance assessment is safe and feasible in PD. Balance performance on both surfaces was associated with age, HIMP abnormality and proprioception.
Collapse
Affiliation(s)
- Kim E Hawkins
- Vestibular Research Laboratory, School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia.
| | - Serene S Paul
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Elodie Chiarovano
- Sydney Human Factors Research, School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Beylergil SB, Gupta P, ElKasaby M, Kilbane C, Shaikh AG. Does visuospatial motion perception correlate with coexisting movement disorders in Parkinson's disease? J Neurol 2021; 269:2179-2192. [PMID: 34554323 DOI: 10.1007/s00415-021-10804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Postural instability and balance impairment are common in Parkinson's disease (PD). Multiple factors, such as increased tone, bradykinesia, freezing of gait, posture, axial stiffness, and involuntary appendicular movements, can affect balance. The recent studies found that PD patients have abnormal perception of self-motion in vestibular domain. We asked whether measures of balance function, such as perception of one's motion, correlate with specific movement disorders seen in PD. Moving retinal image or self-motion in space triggers the perception of self-motion. We measured one's linear motion (heading) perception when subjects were moved en bloc using a moving platform (vestibular heading). Similar motion perception was generated in the visual domain (visual heading) by having the subjects view a 3D optical flow with immersive virtual reality goggles. During both tasks, the subjects reported the motion direction in the two-alternative-forced-choice paradigm. The accuracy of perceived motion direction was calculated from the responses fitted to the psychometric function curves to estimate how accurately and precisely the subjects can perceive rightward versus leftward motion (i.e., threshold and slope). Response accuracies and psychometric parameters were correlated with the disease duration, disease severity (total Unified Parkinson's Disease Rating Scale-III, UPDRS-III), and tremor, rigidity, axial, gait/posture components of UPRDS-III. We also correlated heading perception with the number of falls and subjective assessment of balance confidence using the Activities-Specific Balance Component (ABC) Scale. Accuracy, threshold, and sensitivity of vestibular heading perception significantly correlated with the disease duration and severity, particularly the tremor. Correlations were stronger for leftward heading perception in the vestibular domain. The visual heading perception was correlated with ABC Scale, especially with its items concerning optic-flow processing. There was asymmetry in leftward versus rightward vestibular heading perception. The level of asymmetry correlated with the axial component of UPDRS-III. Differences in the clinical parameters that correlate with visual versus vestibular heading perception suggest that two heading perception processes have different mechanistic underpinnings. The correlation of discordance between vestibular and visual heading perception with disease severity and duration suggests that visual function can be utilized for balance rehab in PD patients.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Palak Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Mohamed ElKasaby
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Camilla Kilbane
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA. .,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA.
| |
Collapse
|
38
|
Dizziness in Parkinson's disease patients is associated with vestibular function. Sci Rep 2021; 11:18976. [PMID: 34556776 PMCID: PMC8460810 DOI: 10.1038/s41598-021-98540-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
Dizziness is common in Parkinson’s disease (PD) patients. It is known that orthostatic hypotension (OH) is the main cause of such dizziness, but even without OH, quite a few PD patients complain of dizziness in the clinic. It can be regarded as non-specific because most of these patients have no neurological abnormalities. We hypothesized that this type of dizziness would be associated with vestibular function, although included patients did not have clinically confirmed vestibulopathy. We studied 84 patients without OH among 121 PD patients. Their clinical features and function were compared between patients with and without dizziness. Hoehn and Yahr stage (H&Y stage), the Unified Parkinson's Disease Rating Scale (UPDRS) part III, the Korean version of the Mini-Mental State Examination (K-MMSE), education years, disease duration, total levodopa equivalent daily dose (LEDD), the presence of dizziness, the dizziness severity, and orthostatic hypotension were tested. Vestibular evoked myogenic potentials (VEMPs) were used to characterize vestibular function. Ocular (oVEMPs) and cervical (cVEMPs) were recorded. oVEMPs in the right side showed significantly reduced potentials (p = 0.016) in PD patients with dizziness, but cVEMPs did not (all ps > 0.2). Bilateral absent oVEMP responses were more common in PD patients with dizziness (p = 0.022), but the frequencies of bilateral absent cVEMP responses were not different between the dizzy and non-dizzy groups (p = 0.898). Dizziness in PD patients without orthostatic hypotension may be associated with vestibular hypofunction. Our results provide evidence that can aid clinicians when making a treatment plan for patients with dizziness. i.e., strategies to enhance reduced vestibular function may be helpful, but this suggestion remains to be evaluated.
Collapse
|
39
|
Paplou V, Schubert NMA, Pyott SJ. Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci 2021; 15:680856. [PMID: 34539328 PMCID: PMC8446668 DOI: 10.3389/fnins.2021.680856] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Both age-related hearing loss (ARHL) and age-related loss in vestibular function (ARVL) are prevalent conditions with deleterious consequences on the health and quality of life. Age-related changes in the inner ear are key contributors to both conditions. The auditory and vestibular systems rely on a shared sensory organ - the inner ear - and, like other sensory organs, the inner ear is susceptible to the effects of aging. Despite involvement of the same sensory structure, ARHL and ARVL are often considered separately. Insight essential for the development of improved diagnostics and treatments for both ARHL and ARVL can be gained by careful examination of their shared and unique pathophysiology in the auditory and vestibular end organs of the inner ear. To this end, this review begins by comparing the prevalence patterns of ARHL and ARVL. Next, the normal and age-related changes in the structure and function of the auditory and vestibular end organs are compared. Then, the contributions of various molecular mechanisms, notably inflammaging, oxidative stress, and genetic factors, are evaluated as possible common culprits that interrelate pathophysiology in the cochlea and vestibular end organs as part of ARHL and ARVL. A careful comparison of these changes reveals that the patterns of pathophysiology show similarities but also differences both between the cochlea and vestibular end organs and among the vestibular end organs. Future progress will depend on the development and application of new research strategies and the integrated investigation of ARHL and ARVL using both clinical and animal models.
Collapse
Affiliation(s)
- Vasiliki Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nick M A Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Zampogna A, Mileti I, Martelli F, Paoloni M, Del Prete Z, Palermo E, Suppa A. Early balance impairment in Parkinson's Disease: Evidence from Robot-assisted axial rotations. Clin Neurophysiol 2021; 132:2422-2430. [PMID: 34454269 DOI: 10.1016/j.clinph.2021.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Early postural instability (PI) is a red flag for the diagnosis of Parkinson's disease (PD). Several patients, however, fall within the first three years of disease, particularly when turning. We investigated whether PD patients, without clinically overt PI, manifest abnormal reactive postural responses to ecological perturbations resembling turning. METHODS Fifteen healthy subjects and 20 patients without clinically overt PI, under and not under L-Dopa, underwent dynamic posturography during axial rotations around the longitudinal axis, provided by a robotic mechatronic platform. We measured reactive postural responses, including body displacement and reciprocal movements of the head, trunk, and pelvis, by using a network of three wearable inertial sensors. RESULTS Patients showed higher body displacement of the head, trunk and pelvis, and lower joint movements at the lumbo-sacral junction than controls. Conversely, movements at the cranio-cervical junction were normal in PD. L-Dopa left reactive postural responses unchanged. CONCLUSIONS Patients with PD without clinically overt PI manifest abnormal reactive postural responses to axial rotations, unresponsive to L-Dopa. The biomechanical model resulting from our experimental approach supports novel pathophysiological hypotheses of abnormal axial rotations in PD. SIGNIFICANCE PD patients without clinically overt PI present subclinical balance impairment during axial rotations, unresponsive to L-Dopa.
Collapse
Affiliation(s)
- Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Mileti
- Mechanical Measurements and Microelectronics (M3Lab) Lab, Engineering Department, University Niccolò Cusano, 00166 Rome, Italy
| | - Francesca Martelli
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Marco Paoloni
- Department of Physical Medicine and Rehabilitation, Sapienza University of Rome, 00161 Rome, Italy
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; IRCCS Neuromed, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
41
|
Psychometric Properties of Cognitive-Motor Dual-Task Studies With the Aim of Developing a Test Protocol for Persons With Vestibular Disorders: A Systematic Review. Ear Hear 2021; 41:3-16. [PMID: 31283530 DOI: 10.1097/aud.0000000000000748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Patients suffering from vestibular disorders (VD) often present with impairments in cognitive domains such as visuospatial ability, memory, executive function, attention, and processing speed. These symptoms can be attributed to extensive vestibular projections throughout the cerebral cortex and subcortex on the one hand, and to increased cognitive-motor interference (CMI) on the other hand. CMI can be assessed by performing cognitive-motor dual-tasks (DTs). The existing literature on this topic is scarce and varies greatly when it comes to test protocol, type and degree of vestibular impairment, and outcome. To develop a reliable and sensitive test protocol for VD patients, an overview of the existing reliability and validity studies on DT paradigms will be given in a variety of populations, such as dementia, multiple sclerosis, Parkinson's disease, stroke, and elderly. DESIGN The systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An extensive literature search on psychometric properties of cognitive-motor DTs was run on MEDLINE, Embase, and Cochrane Databases. The studies were assessed for eligibility by two independent researchers, and their methodological quality was subsequently evaluated using the Consensus-based Standards for the selection of health Measurement Instruments (COSMIN). RESULTS AND CONCLUSIONS Thirty-three studies were included in the current review. Based on the reliability and validity calculations, including a static as well as dynamic motor task seems valuable in a DT protocol for VD patients. To evoke CMI maximally in this population, both motor tasks should be performed while challenging the vestibular cognitive domains. Out of the large amount of cognitive tasks employed in DT studies, a clear selection for each of these domains, except for visuospatial abilities, could be made based on this review. The use of the suggested DTs will give a more accurate and daily life representation of cognitive and motor deficiencies and their interaction in the VD population.
Collapse
|
42
|
Montardy Q, Wei M, Liu X, Yi T, Zhou Z, Lai J, Zhao B, Besnard S, Tighilet B, Chabbert C, Wang L. Selective optogenetic stimulation of glutamatergic, but not GABAergic, vestibular nuclei neurons induces immediate and reversible postural imbalance in mice. Prog Neurobiol 2021; 204:102085. [PMID: 34171443 DOI: 10.1016/j.pneurobio.2021.102085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Glutamatergic and GABAergic neurons represent the neural components of the medial vestibular nuclei. We assessed the functional role of glutamatergic and GABAergic neuronal pathways arising from the vestibular nuclei (VN) in the maintenance of gait and balance by optogenetically stimulating the VN in VGluT2-cre and GAD2-cre mice. We demonstrate that glutamatergic, but not GABAergic VN neuronal subpopulation is responsible for immediate and strong posturo-locomotor deficits, comparable to unilateral vestibular deafferentation models. During optogenetic stimulation, the support surface dramatically increased in VNVGluT2+ mice, and rapidly fell back to baseline after stimulation, whilst it remained unchanged during similar stimulation of VNGAD2+ mice. This effect persisted when vestibular tactilo kinesthesic plantar inputs were removed. Posturo-locomotor alterations evoked in VNVGluT2+ animals were still present immediately after stimulation, while they disappeared 1 h later. Overall, these results indicate a fundamental role for VNVGluT2+ neurons in balance and posturo-locomotor functions, but not for VNGAD2+ neurons, in this specific context. This new optogenetic approach will be useful to characterize the role of the different VN neuronal populations involved in vestibular physiology and pathophysiology.
Collapse
Affiliation(s)
- Q Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - M Wei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - X Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - T Yi
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Z Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Lai
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - B Zhao
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - S Besnard
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; Université de Caen Normandie, CHU de Caen, Caen, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - B Tighilet
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - C Chabbert
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - L Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
43
|
Hawkins KE, Chiarovano E, Paul SS, Burgess AM, MacDougall HG, Curthoys IS. Vestibular semicircular canal function as detected by video Head Impulse Test (vHIT) is essentially unchanged in people with Parkinson's disease compared to healthy controls. J Vestib Res 2021; 32:261-269. [PMID: 34151877 DOI: 10.3233/ves-201626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common multi-system neurodegenerative disorder with possible vestibular system dysfunction, but prior vestibular function test findings are equivocal. OBJECTIVE To report and compare vestibulo-ocular reflex (VOR) gain as measured by the video head impulse test (vHIT) in participants with PD, including tremor dominant and postural instability/gait dysfunction phenotypes, with healthy controls (HC). METHODS Forty participants with PD and 40 age- and gender-matched HC had their vestibular function assessed. Lateral and vertical semicircular canal VOR gains were measured with vHIT. VOR canal gains between PD participants and HC were compared with independent samples t-tests. Two distinct PD phenotypes were compared to HC using Tukey's ANOVA. The relationship of VOR gain with PD duration, phenotype, severity and age were investigated using logistic regression. RESULTS There were no significant differences between groups in vHIT VOR gain for lateral or vertical canals. There was no evidence of an effect of PD severity, phenotype or age on VOR gains in the PD group. CONCLUSION The impulsive angular VOR pathways are not significantly affected by the pathophysiological changes associated with mild to moderate PD.
Collapse
Affiliation(s)
- Kim E Hawkins
- School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| | - Elodie Chiarovano
- School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| | - Serene S Paul
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Ann M Burgess
- School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| | - Hamish G MacDougall
- School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| | - Ian S Curthoys
- School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
44
|
Wilkinson D. Caloric and galvanic vestibular stimulation for the treatment of Parkinson's disease: rationale and prospects. Expert Rev Med Devices 2021; 18:649-655. [PMID: 34047226 DOI: 10.1080/17434440.2021.1935874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Deeply embedded within the inner ear, the sensory organs of the vestibular system are exquisitely sensitive to the orientation and movement of the head. This information constrains aspects of autonomic reflex control as well as higher-level processes involved in cognition and affect. The anatomical pathways that underline these functional interactions project to many cortical and sub-cortical brain areas, and the question arises as to whether they can be therapeutically harnessed.Areas covered: The body of work reviewed here indicates that the controlled application of galvanic or thermal current to the vestibular end-organs can modulate activity throughout the ascending vestibular network and, under appropriate conditions, reduce motor and non-motor symptoms associated with Parkinson's disease, a disease of growing prevalence and continued unmet clinical need.Expert opinion: The appeal of vestibular stimulation in Parkinson's disease is underpinned by its noninvasive nature, favorable safety profile, and capacity for home-based administration. Clinical adoption now rests on the demonstration of cost-effectiveness and on the commercial availability of suitable devices, many of which are only permitted for research use or lack functionality. Dose optimization and mechanisms-of-action studies are also needed, along with a broader awareness amongst physicians of its therapeutic potential.
Collapse
|
45
|
de Carvalho KS, Coelho DB, de Souza CR, Silva-Batista C, Shida TKF, Teixeira LA, de Lima-Pardini AC. Preserved flexibility of dynamic postural control in individuals with Parkinson's disease. Gait Posture 2021; 86:240-244. [PMID: 33774585 DOI: 10.1016/j.gaitpost.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Continuous oscillation of the support base requires anticipatory and reactive postural adjustments to maintain a stable balance. In this context, postural control flexibility or the ability to adjust balance mechanisms following the requirements of the environment is needed to counterbalance the predictable, continuous perturbation of body balance. Considering the inflexibility of postural responses in individuals with Parkinson's disease (PD), maintaining stability in the support base's continuous oscillations may be challenging. Varying the frequency of platform oscillation is an exciting approach to assess the interactions between reactive and anticipatory adjustments. RESEARCH QUESTION This study aimed to analyze postural responses of individuals with PD on an oscillatory support base across different frequencies. METHODS Thirty participants with moderate PD diagnosis (M = 64.47 years, SD = 8.59; Hoehn and Yahr scale 3) and fifteen healthy age-matched controls (M = 65.8 years, SD = 4.2) were tested. Subjects maintained a dynamic balance on a platform oscillating in sinusoidal translations. Four oscillation frequencies were evaluated in different trials that ranged from 0.2 to 0.8 Hz in steps of 0.2 Hz. RESULTS Analysis showed similar performance between PD and healthy participants, with modulation of amplitudes of head displacement, center of pressure, center of mass and feet-head coordination to platform oscillation frequency. DISCUSSION Our findings suggest a preserved ability of individuals with PD to dynamically control body balance on a support base with predictable oscillatory translations.
Collapse
Affiliation(s)
- Kárin Santana de Carvalho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Daniel Boari Coelho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil.
| | - Caroline Ribeiro de Souza
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Carla Silva-Batista
- Exercise Neuroscience Research Group, School of Arts, Sciences, and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
46
|
Zhang Y, Soper J, Lohse CM, Eggers SDZ, Kaufman KR, McCaslin DL. Agreement between the Skull Vibration-Induced Nystagmus Test and Semicircular Canal and Otolith Asymmetry. J Am Acad Audiol 2021; 32:283-289. [PMID: 33873220 DOI: 10.1055/s-0041-1723039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND How significant asymmetries in otolith organ function in the presence of symmetrical and asymmetrical semicircular canal function influence skull vibration-induced nystagmus testing (SVINT) has not been well described. PURPOSE The aim of the study is to examine the agreement between SVINT and caloric testing, ocular vestibular-evoked myogenic potentials (oVEMP), and cervical vestibular-evoked myogenic potentials (cVEMP) for detecting asymmetric vestibular function. RESEARCH DESIGN This is a retrospective study of patients presenting with the chief complaint of vertigo, dizziness, or imbalance. STUDY SAMPLE A total of 812 patients were studied with a median age at testing of 59 years (interquartile range 46-70; range 18-93) and included 475 (59%) women. INTERVENTION Either the monothermal warm caloric test or alternate binaural bithermal caloric test, oVEMP, and cVEMP tests were administered to all patients. All patients underwent the SVINT prior to vestibular laboratory testing. DATA COLLECTION AND ANALYSIS Agreement between tests categorized as normal versus abnormal was summarized using percent concordance (PC). Sensitivity and specificity values were calculated for SVINT compared with other tests of vestibular function. RESULTS There was higher agreement between ipsilateral and contralateral SVINT with the caloric test (PC = 80% and 81%, respectively) compared with oVEMP (PC = 63% and 64%, respectively) and cVEMP (PC = 76% and 78%, respectively). Ipsilateral and contralateral SVINT showed higher sensitivity for the caloric test (sensitivity = 47% and 36%, respectively) compared with oVEMP (sensitivity = 26% and 21%, respectively), or cVEMP (sensitivity = 33% vs. 27%, respectively). Specificity of SVINT was high (>80%) for all assessments of vestibular function. CONCLUSION The presence of SVIN is a useful indicator of the asymmetry of vestibular function between the two ears when making judgments about semicircular canal asymmetry but is less sensitive to asymmetries in otolith organ function.
Collapse
Affiliation(s)
- Yue Zhang
- Vestibular and Balance Program, Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota.,Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Jamie Soper
- MercyOne Waterloo Medical Center, ENT/Allergy Care, Waterloo, Iowa
| | - Christine M Lohse
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Scott D Z Eggers
- Vestibular and Balance Program, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Devin L McCaslin
- Vestibular and Balance Program, Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
47
|
Hawkins KE, Rey-Martinez J, Chiarovano E, Paul SS, Valldeperes A, MacDougall HG, Curthoys IS. Suppression head impulse test paradigm (SHIMP) characteristics in people with Parkinson's disease compared to healthy controls. Exp Brain Res 2021; 239:1853-1862. [PMID: 33846841 DOI: 10.1007/s00221-021-06107-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/02/2021] [Indexed: 11/24/2022]
Abstract
The suppression head impulse test paradigm (SHIMP) is a newly described indicator of vestibular function which yields two measures: vestibulo-ocular reflex (VOR) gain and a saccadic response. It is an alternative and complementary test to the head impulse test paradigm (HIMP). Parkinson's disease (PD) has known saccadic and central vestibular pathway dysfunction. This paper is the first description of SHIMP VOR gain and saccade characteristic in this population. This prospective observational study measured the SHIMP VOR gain and saccade characteristics in 39 participants with idiopathic PD and compared this to 40 healthy controls (HC). The effect of group, demographic variables and SHIMP characteristics were evaluated. SHIMP VOR gains were not significantly different between groups (p = 0.10). Compared to HC, the PD group mean SHIMP peak saccade velocity was significantly reduced by an average of 77.07°/sec (p < 0.001), and SHIMP saccade response latency was longer, with an average delay of 23.5 ms (p = 0.003). SHIMP saccade peak velocity was also associated with both head impulse velocity (p = 0.002) and SHIMP VOR gain (p = 0.004) variables, but there was no significant influence of these variables when SHIMP saccade peak velocity was considered as a predictor of PD (p = 0.52-0.91). VOR gains were unaffected by PD. PD-specific saccadic dysfunction, namely reduced peak saccade velocities and prolonged response latencies, were observed in the SHIMP-induced saccade responses. VOR gain using slow phase eye velocity is preferred as the indicator of vestibular function in the SHIMPs paradigm as non-vestibular factors affected saccade peak velocity.
Collapse
Affiliation(s)
- Kim E Hawkins
- Vestibular Research Laboratory, School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia.
| | - Jorge Rey-Martinez
- Neurotology Unit, ENT department, Hospital Universitario Donostia, Donostia-San Sebastián, Spain
| | - Elodie Chiarovano
- Sydney Human Factors Research, School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| | - Serene S Paul
- Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Ariadna Valldeperes
- Neurotology Unit, ENT department, Hospital Universitario Donostia, Donostia-San Sebastián, Spain
| | - Hamish G MacDougall
- Sydney Human Factors Research, School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Lee S, Liu A, McKeown MJ. Current perspectives on galvanic vestibular stimulation in the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:405-418. [PMID: 33621149 DOI: 10.1080/14737175.2021.1894928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Galvanic vestibular stimulation (GVS) is a noninvasive technique that activates vestibular afferents, influencing activity and oscillations in a broad network of brain regions. Several studies have suggested beneficial effects of GVS on motor symptoms in Parkinson's Disease (PD).Areas covered: A comprehensive overview of the stimulation techniques, potential mechanisms of action, challenges, and future research directions.Expert opinion: This emerging technology is not currently a viable therapy. However, a complementary therapy that is inexpensive, easily disseminated, customizable, and portable is sufficiently enticing that continued research and development is warranted. Future work utilizing biomedical engineering approaches, including concomitant functional neuroimaging, have the potential to significantly increase efficacy. GVS could be explored for other PD symptoms including orthostatic hypotension, dyskinesia, and sleep disorders.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford UK
| | - Aiping Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada.,Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
Gao Y, Nicolson T. Temporal Vestibular Deficits in synaptojanin 1 ( synj1) Mutants. Front Mol Neurosci 2021; 13:604189. [PMID: 33584199 PMCID: PMC7874208 DOI: 10.3389/fnmol.2020.604189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
The lipid phosphatase synaptojanin 1 (synj1) is required for the disassembly of clathrin coats on endocytic compartments. In neurons such activity is necessary for the recycling of endocytosed membrane into synaptic vesicles. Mutations in zebrafish synj1 have been shown to disrupt the activity of ribbon synapses in sensory hair cells. After prolonged mechanical stimulation of hair cells, both phase locking of afferent nerve activity and the recovery of spontaneous release of synaptic vesicles are diminished in synj1 mutants. Presumably as a behavioral consequence of these synaptic deficits, synj1 mutants are unable to maintain an upright posture. To probe vestibular function with respect to postural control in synj1 mutants, we developed a method for assessing the vestibulospinal reflex (VSR) in larvae. We elicited the VSR by rotating the head and recorded tail movements. As expected, the VSR is completely absent in pcdh15a and lhfpl5a mutants that lack inner ear function. Conversely, lhfpl5b mutants, which have a selective loss of function of the lateral line organ, have normal VSRs, suggesting that the hair cells of this organ do not contribute to this reflex. In contrast to mechanotransduction mutants, the synj1 mutant produces normal tail movements during the initial cycles of rotation of the head. Both the amplitude and temporal aspects of the response are unchanged. However, after several rotations, the VSR in synj1 mutants was strongly diminished or absent. Mutant synj1 larvae are able to recover, but the time required for the reappearance of the VSR after prolonged stimulation is dramatically increased in synj1 mutants. Collectively, the data demonstrate a behavioral correlate of the synaptic defects caused by the loss of synj1 function. Our results suggest that defects in synaptic vesicle recycling give rise to fatigue of ribbons synapses and possibly other synapses of the VS circuit, leading to the loss of postural control.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| |
Collapse
|
50
|
Lajoie K, Marigold DS, Valdés BA, Menon C. The potential of noisy galvanic vestibular stimulation for optimizing and assisting human performance. Neuropsychologia 2021; 152:107751. [PMID: 33434573 DOI: 10.1016/j.neuropsychologia.2021.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Noisy galvanic vestibular stimulation (nGVS) is an emerging non-invasive brain stimulation technique. It involves applying alternating currents of different frequencies and amplitudes presented in a random, or noisy, manner through electrodes on the mastoid bones behind the ears. Because it directly activates vestibular hair cells and afferents and has an indirect effect on a variety of brain regions, it has the potential to impact many different functions. The objective of this review is twofold: (1) to review how nGVS affects motor, sensory, and cognitive performance in healthy adults; and (2) to discuss potential clinical applications of nGVS. First, we introduce the technique. We then describe the regions receiving and processing vestibular information. Next, we discuss the effects of nGVS on motor, sensory, and cognitive function in healthy adults. Subsequently, we outline its potential clinical applications. Finally, we highlight other electrical stimulation technologies and discuss why nGVS offers an alternative or complementary approach. Overall, nGVS appears promising for optimizing human performance and as an assistive technology, though further research is required.
Collapse
Affiliation(s)
- Kim Lajoie
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Daniel S Marigold
- Sensorimotor Neuroscience Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Bulmaro A Valdés
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.
| |
Collapse
|