1
|
Shams Z, Dai J, Gosselink M, Hoogduin H, van der Kemp W, Visser F, Klomp D, Wijnen J, Wiegers E. Interleaved Whole Brain 23Na-MRI and 31P-MRSI Acquisitions at 7 Tesla. NMR IN BIOMEDICINE 2025; 38:e70012. [PMID: 39956139 PMCID: PMC11830465 DOI: 10.1002/nbm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/18/2025]
Abstract
Non-1H nuclei magnetic resonance spectroscopy (MRS) offers insights into metabolism, which may aid for example early stages of disease diagnosis, tissue characterization or therapy response evaluation. Sodium MRI can provide valuable information about tissue health and cellular function. When combined with 31P MR spectroscopic imaging (MRSI), complementary metabolic information on energy metabolism and cell proliferation can be obtained. However, sensitivity challenges stemming from low natural abundances and low gyromagnetic ratios of different nuclei have hindered progress. Besides, due to hardware constraints, different nuclei are often studied separately, and the need for dedicated hardware for x-nuclei imaging hampers clinical efficiency and patient-friendly assessments. This work introduces an interleaved acquisition scheme for 3D 31P-MRSI and 3D radial 23Na-MR imaging (23Na-MRI) at 7 Tesla (7T) and demonstrates the feasibility of interleaving these two nuclei acquisitions. The interleaved protocol effectively merged 31P-MRSI with 23Na-MRI, while remaining within specific absorption rate (SAR) limits. Results revealed comparable signal-to-noise ratios (SNRs) and spectral quality between interleaved and non-interleaved scans, highlighting the approach's efficiency without compromising data quality.
Collapse
Affiliation(s)
- Zahra Shams
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jiying Dai
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
- Tesla Dynamic Coils B.VZaltbommelThe Netherlands
| | - Mark W. J. Gosselink
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hans J. M. Hoogduin
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Fredy Visser
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
- Philips HealthcareBestThe Netherlands
| | - Dennis W. J. Klomp
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jannie P. Wijnen
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Evita C. Wiegers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
Harrison DM, Sati P, Klawiter EC, Narayanan S, Bagnato F, Beck ES, Barker P, Calvi A, Cagol A, Donadieu M, Duyn J, Granziera C, Henry RG, Huang SY, Hoff MN, Mainero C, Ontaneda D, Reich DS, Rudko DA, Smith SA, Trattnig S, Zurawski J, Bakshi R, Gauthier S, Laule C. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6:fcae359. [PMID: 39445084 PMCID: PMC11497623 DOI: 10.1093/braincomms/fcae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The use of ultra-high-field 7-Tesla (7T) MRI in multiple sclerosis (MS) research has grown significantly over the past two decades. With recent regulatory approvals of 7T scanners for clinical use in 2017 and 2020, the use of this technology for routine care is poised to continue to increase in the coming years. In this context, the North American Imaging in MS Cooperative (NAIMS) convened a workshop in February 2023 to review the previous and current use of 7T technology for MS research and potential future research and clinical applications. In this workshop, experts were tasked with reviewing the current literature and proposing a series of consensus statements, which were reviewed and approved by the NAIMS. In this review and consensus paper, we provide background on the use of 7T MRI in MS research, highlighting this technology's promise for identification and quantification of aspects of MS pathology that are more difficult to visualize with lower-field MRI, such as grey matter lesions, paramagnetic rim lesions, leptomeningeal enhancement and the central vein sign. We also review the promise of 7T MRI to study metabolic and functional changes to the brain in MS. The NAIMS provides a series of consensus statements regarding what is currently known about the use of 7T MRI in MS, and additional statements intended to provide guidance as to what work is necessary going forward to accelerate 7T MRI research in MS and translate this technology for use in clinical practice and clinical trials. This includes guidance on technical development, proposals for a universal acquisition protocol and suggestions for research geared towards assessing the utility of 7T MRI to improve MS diagnostics, prognostics and therapeutic efficacy monitoring. The NAIMS expects that this article will provide a roadmap for future use of 7T MRI in MS.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN 37212, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Duyn
- Advanced MRI Section, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Neurology, University Hospital Basel, 4001 Basel, Switzerland
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cornelia Laule
- Radiology, Pathology and Laboratory Medicine, Physics and Astronomy, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
| |
Collapse
|
3
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Licht C, Reichert S, Guye M, Schad LR, Rapacchi S. Multidimensional compressed sensing to advance 23 Na multi-quantum coherences MRI. Magn Reson Med 2024; 91:926-941. [PMID: 37881829 DOI: 10.1002/mrm.29902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE Sodium (23 Na) multi-quantum coherences (MQC) MRI was accelerated using three-dimensional (3D) and a dedicated five-dimensional (5D) compressed sensing (CS) framework for simultaneous Cartesian single (SQ) and triple quantum (TQ) sodium imaging of in vivo human brain at 3.0 and 7.0 T. THEORY AND METHODS 3D 23 Na MQC MRI requires multi-echo paired with phase-cycling and exhibits thus a multidimensional space. A joint reconstruction framework to exploit the sparsity in all imaging dimensions by extending the conventional 3D CS framework to 5D was developed. 3D MQC images of simulated brain, phantom and healthy brain volunteers obtained from 3.0 T and 7.0 T were retrospectively and prospectively undersampled. Performance of the CS models were analyzed by means of structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR) and signal quantification of tissue sodium concentration and TQ/SQ ratio. RESULTS It was shown that an acceleration of three-fold, leading to less than2 × 10 $$ 2\times 10 $$ min of scan time with a resolution of8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ at 3.0 T, are possible. 5D CS improved SSIM by 3%, 5%, 1% and reduced RMSE by 50%, 30%, 8% for in vivo SQ, TQ, and TQ/SQ ratio maps, respectively. Furthermore, for the first time prospective undersampling enabled unprecedented high resolution from8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ to6 × 6 × 10 mm 3 $$ 6\times 6\times 10\;{\mathrm{mm}}^3 $$ MQC images of in vivo human brain at 7.0 T without extending acquisition time. CONCLUSION 5D CS proved to allow up to three-fold acceleration retrospectively on 3.0 T data. 2-fold acceleration was demonstrated prospectively at 7.0 T to reach higher spatial resolution of 23 Na MQC MRI.
Collapse
Affiliation(s)
- Christian Licht
- Computer Assisted Clinical Medicine, Medical Faculty Mannhein, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent System in Medicine, Medical Faculty Mannheim, Mannheim, Germany
| | - Simon Reichert
- Computer Assisted Clinical Medicine, Medical Faculty Mannhein, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent System in Medicine, Medical Faculty Mannheim, Mannheim, Germany
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannhein, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent System in Medicine, Medical Faculty Mannheim, Mannheim, Germany
| | - Stanislas Rapacchi
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
5
|
Shahbodaghy F, Shafaghi L, Rostampour M, Rostampour A, Kolivand P, Gharaylou Z. Symmetry differences of structural connectivity in multiple sclerosis and healthy state. Brain Res Bull 2023; 205:110816. [PMID: 37972899 DOI: 10.1016/j.brainresbull.2023.110816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Focal and diffuse cerebral damages occur in Multiple Sclerosis (MS) that promotes profound shifts in local and global structural connectivity parameters, mainly derived from diffusion tensor imaging. Most of the reconstruction analyses have applied conventional tracking algorithms largely based on the controversial streamline count. For a more credible explanation of the diffusion MRI signal, we used convex optimization modeling for the microstructure-informed tractography2 (COMMIT2) framework. All multi-shell diffusion data from 40 healthy controls (HCs) and 40 relapsing-remitting MS (RRMS) patients were transformed into COMMIT2-weighted matrices based on the Schefer-200 parcels atlas (7 networks) and 14 bilateral subcortical regions. The success of the classification process between MS and healthy state was efficiently predicted by the left DMN-related structures and visual network-associated pathways. Additionally, the lesion volume and age of onset were remarkably correlated with the components of the left DMN. Using complementary approaches such as global metrics revealed differences in WM microstructural integrity between MS and HCs (efficiency, strength). Our findings demonstrated that the cutting-edge diffusion MRI biomarkers could hold the potential for interpreting brain abnormalities in a more distinctive way.
Collapse
Affiliation(s)
- Fatemeh Shahbodaghy
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Lida Shafaghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Rostampour
- Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran
| | - Pirhossein Kolivand
- Department of Health Economics, School of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
6
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
7
|
Nasiri E, Sarkesh A, Daei Sorkhabi A, Naseri A, Daneshvar S, Naser Moghadasi A, Talebi M. Radiological features of late-onset multiple sclerosis: A systematic review and meta-analysis. J Neuroradiol 2023; 50:571-580. [PMID: 37558179 DOI: 10.1016/j.neurad.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Late-onset multiple sclerosis (LOMS) is most commonly defined as the onset of the disease's presentations at age 50 or older. There is still much to discover about the radiological features of LOMS. The current study aims to assess the imaging features of LOMS, as well as the correlation between these findings and the clinical characteristics of these patients. METHOD This study was conducted following the PRISMA statement. A systematic search was conducted through PubMed, Scopus, and EMBASE databases to identify the studies that have applied magnetic-resonance imaging (MRI) or other imaging methods to investigate the radiological findings, as well as the relationship between them and clinical findings of LOMS patients. The risk of bias was assessed using the Joanna Briggs Institute (JBI) checklists. Meta-analysis was conducted using the third version of the compressive meta-analysis software (CMA3). RESULTS Our search identified 753 unique titles. Among them, 15 studies, including seven case-control, five case-series, and three cross-sectional studies, met the eligibility criteria. According to the quantitative synthesis, brain lesions were detected among 72.2% of LOMS patients (4 studies; 95% CI: 67.0% - 93.1%). In the context of spinal lesions, overall spinal cord involvement was 64.0% (8 studies; 95% CI: 42.5% - 81.1%). Based on the available evidence, supratentorial involvement was found in 82.7% of cases (3 studies; 95% CI: 17.4% - 99.1%), juxtacortical involvement in 34.1% (3 studies; 95% CI: 26.4% - 42.7%), infratentorial involvement in 51.3% (4 studies; 95% CI: 32.1% - 70.1%), and cerebellar involvement in 18.5% (3 studies; 95% CI: 13.9% - 24.1%). CONCLUSION Based on the neuroimaging findings, we found that, given the heterogeneity of MS, LOMS patients have a high rate of spinal cord lesions and supratentorial involvement. The limited available evidence suggests that Barkhof criteria are the best compromise for the diagnosis of LOMS. There is still a need for future studies.
Collapse
Affiliation(s)
- Ehsan Nasiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Daneshvar
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Wilferth T, Mennecke A, Huhn K, Uder M, Doerfler A, Schmidt M, Nagel AM. Influence of Residual Quadrupolar Interaction on Quantitative Sodium Brain Magnetic Resonance Imaging of Patients With Multiple Sclerosis. Invest Radiol 2023; 58:730-739. [PMID: 37185832 DOI: 10.1097/rli.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The purpose of this work was to evaluate the influence of residual quadrupolar interaction on the determination of human brain apparent tissue sodium concentrations (aTSCs) using quantitative sodium magnetic resonance imaging ( 23 Na MRI) in healthy controls (HCs) and patients with multiple sclerosis (MS). Especially, it was investigated if the more detailed examination of residual quadrupolar interaction effects enables further analysis of the observed 23 Na MRI signal increase in MS patients. MATERIALS AND METHODS 23 Na MRI with a 7 T MR system was performed on 21 HC and 50 MS patients covering all MS subtypes (25 patients with relapsing-remitting MS, 14 patients with secondary progressive MS, and 11 patients with primary progressive MS) using 2 different 23 Na pulse sequences for quantification: a commonly used standard sequence (aTSC Std ) as well as a sequence with shorter excitation pulse length and lower flip angle for minimizing signal loss resulting from residual quadrupolar interactions (aTSC SP ). Apparent tissue sodium concentration was determined using the same postprocessing pipeline including correction of the receive profile of the radiofrequency coil, partial volume correction, and relaxation correction. Spin dynamic simulations of spin-3/2 nuclei were performed to aid in the understanding of the measurement results and to get deeper insight in the underlying mechanisms. RESULTS In normal-appearing white matter (NAWM) of HC and all MS subtypes, the aTSC SP values were approximately 20% higher than the aTSC Std values ( P < 0.001). In addition, the ratio aTSC SP /aTSC Std was significantly higher in NAWM than in normal-appearing gray matter (NAGM) for all subject cohorts ( P < 0.002). In NAWM, aTSC Std values were significantly higher in primary progressive MS compared with HC ( P = 0.01) as well as relapsing-remitting MS ( P = 0.03). However, in contrast, no significant differences between the subject cohorts were found for aTSC SP . Spin simulations assuming the occurrence of residual quadrupolar interaction in NAWM were in good accordance with the measurement results, in particular, the ratio aTSC SP /aTSC Std in NAWM and NAGM. CONCLUSIONS Our results showed that residual quadrupolar interactions in white matter regions of the human brain have an influence on aTSC quantification and therefore must be considered, especially in pathologies with expected microstructural changes such as loss of myelin in MS. Furthermore, the more detailed examination of residual quadrupolar interactions may lead to a better understanding of the pathologies themselves.
Collapse
Affiliation(s)
| | | | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | | | | | | | | |
Collapse
|
9
|
Sneag DB, Abel F, Potter HG, Fritz J, Koff MF, Chung CB, Pedoia V, Tan ET. MRI Advancements in Musculoskeletal Clinical and Research Practice. Radiology 2023; 308:e230531. [PMID: 37581501 PMCID: PMC10477516 DOI: 10.1148/radiol.230531] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 08/16/2023]
Abstract
Over the past decades, MRI has become increasingly important for diagnosing and longitudinally monitoring musculoskeletal disorders, with ongoing hardware and software improvements aiming to optimize image quality and speed. However, surging demand for musculoskeletal MRI and increased interest to provide more personalized care will necessitate a stronger emphasis on efficiency and specificity. Ongoing hardware developments include more powerful gradients, improvements in wide-bore magnet designs to maintain field homogeneity, and high-channel phased-array coils. There is also interest in low-field-strength magnets with inherently lower magnetic footprints and operational costs to accommodate global demand in middle- and low-income countries. Previous approaches to decrease acquisition times by means of conventional acceleration techniques (eg, parallel imaging or compressed sensing) are now largely overshadowed by deep learning reconstruction algorithms. It is expected that greater emphasis will be placed on improving synthetic MRI and MR fingerprinting approaches to shorten overall acquisition times while also addressing the demand of personalized care by simultaneously capturing microstructural information to provide greater detail of disease severity. Authors also anticipate increased research emphasis on metal artifact reduction techniques, bone imaging, and MR neurography to meet clinical needs.
Collapse
Affiliation(s)
- Darryl B. Sneag
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Frederik Abel
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Hollis G. Potter
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Jan Fritz
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Matthew F. Koff
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Christine B. Chung
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Valentina Pedoia
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Ek T. Tan
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| |
Collapse
|
10
|
Ruck L, Mennecke A, Wilferth T, Lachner S, Müller M, Egger N, Doerfler A, Uder M, Nagel AM. Influence of image contrasts and reconstruction methods on the classification of multiple sclerosis-like lesions in simulated sodium magnetic resonance imaging. Magn Reson Med 2023; 89:1102-1116. [PMID: 36373186 DOI: 10.1002/mrm.29476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the classifiability of small multiple sclerosis (MS)-like lesions in simulated sodium (23 Na) MRI for different 23 Na MRI contrasts and reconstruction methods. METHODS 23 Na MRI and 23 Na inversion recovery (IR) MRI of a phantom and simulated brain with and without lesions of different volumes (V = 1.3-38.2 nominal voxels) were simulated 100 times by adding Gaussian noise matching the SNR of real 3T measurements. Each simulation was reconstructed with four different reconstruction methods (Gridding without and with Hamming filter, Compressed sensing (CS) reconstruction without and with anatomical 1 H prior information). Based on the mean signals within the lesion volumes of simulations with and without lesions, receiver operating characteristics (ROC) were determined and the area under the curve (AUC) was calculated to assess the classifiability for each lesion volume. RESULTS Lesions show higher classifiability in 23 Na MRI than in 23 Na IR MRI. For typical parameters and SNR of a 3T scan, the voxel normed minimal classifiable lesion volume (AUC > 0.9) is 2.8 voxels for 23 Na MRI and 19 voxels for 23 Na IR MRI, respectively. In terms of classifiability, Gridding with Hamming filter and CS without anatomical 1 H prior outperform CS reconstruction with anatomical 1 H prior. CONCLUSION Reliability of lesion classifiability strongly depends on the lesion volume and the 23 Na MRI contrast. Additional incorporation of 1 H prior information in the CS reconstruction was not beneficial for the classification of small MS-like lesions in 23 Na MRI.
Collapse
Affiliation(s)
- Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Wilferth T, Mennecke A, Gast LV, Lachner S, Müller M, Rothhammer V, Huhn K, Uder M, Doerfler A, Nagel AM, Schmidt M. Quantitative 7T sodium magnetic resonance imaging of the human brain using a 32-channel phased-array head coil: Application to patients with secondary progressive multiple sclerosis. NMR IN BIOMEDICINE 2022; 35:e4806. [PMID: 35892310 DOI: 10.1002/nbm.4806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Apparent tissue sodium concentrations (aTSCs) determined by 23 Na brain magnetic resonance imaging (MRI) have the potential to serve as a biomarker in pathologies such as multiple sclerosis (MS). However, the quantification is hindered by the intrinsically low signal-to-noise ratio of 23 Na MRI. The purpose of this study was to improve the accuracy and reliability of quantitative 23 Na brain MRI by implementing a dedicated postprocessing pipeline and to evaluate the applicability of the developed approach for the examination of MS patients. 23 Na brain MRI measurements of 13 healthy volunteers and 17 patients with secondary progressive multiple sclerosis (SPMS) were performed at 7 T using a dual-tuned 23 Na/1 H birdcage coil with a receive-only 32-channel phased array. The aTSC values were determined for normal appearing white matter (NAWM) and normal appearing gray matter (NAGM) in healthy subjects and SPMS patients. Signal intensities were normalized using the mean cerebrospinal fluid (CSF) sodium concentration determined in 37 separate patients receiving a spinal tap for routine diagnostic purposes. Five volunteers underwent MRI examinations three times in a row to assess repeatability. Coefficients of variation (CoVs) were used to quantify the repeatability of the proposed method. aTSC values were compared regarding brain regions and subject cohort using the paired-samples Wilcoxon rank-sum test. Laboratory CSF sodium concentration did not differ significantly between patients without and with MS (p = 0.42). The proposed quantification workflow for 23 Na MRI was highly repeatable with CoVs averaged over all five volunteers of 1.9% ± 0.9% for NAWM and 2.2% ± 1.6% for NAGM. Average NAWM aTSC was significantly higher in patients with SPMS compared with the control group (p = 0.009). Average NAGM aTSC did not differ significantly between healthy volunteers and MS patients (p = 0.98). The proposed postprocessing pipeline shows high repeatability and the results can serve as a baseline for further studies establishing 23 Na brain MRI as a biomarker in diseases such as MS.
Collapse
Affiliation(s)
- Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Kim S, Merugumala S, Lin AP. A uniformity correction method to reduce scan time for 7T sodium imaging of brain tumors. J Neuroimaging 2022; 32:1062-1069. [PMID: 35989449 PMCID: PMC9649857 DOI: 10.1111/jon.13041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium imaging shows great potential for the characterization of brain tumors. Intensity correction is required but the additional scan time is costly. Recent developments can halve the time but were optimized in normal brains and may not be applicable in brain tumor imaging. We aim to develop an individualized uniformity correction for sodium imaging optimized for brain tumor patients that reduces scan time but provides high-resolution images for clinical practice. METHODS Two-, 4-, and 6-mm iso-cubic voxel resolution birdcage coil images were used to calculate the 2-mm iso-cubic voxel individual sensitivity maps in healthy subjects (n = 3). Cut profiles were compared to determine the optimal approach. In addition, a 3-dimensional phantom was developed to test a generalized uniformity correction approach in both healthy subjects (n = 3) and tumor patients (n = 3). RESULTS The cut profiles showed that the average correlation coefficient between 2- and 4-mm birdcage image correction results was r = .9937, and r = .9876 for 2- and 6-mm birdcage images. The correlation result between individual map correction and phantom map correction was r = .9817. CONCLUSION The 4 mm birdcage coil image provided the optimal approach for both as a compromise between the time-savings effect and image quality. This method allows for a 2-mm iso-cubic voxel resolution clinical sodium scan within 12 minutes. We also presented prescanned phantom sensitivity map results, which were designed to cover all patient head sizes. This approach provides an alternative solution in more time-sensitive cases.
Collapse
Affiliation(s)
- Sanghoon Kim
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sai Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Peter Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
14
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
15
|
Increased Subcortical Sodium Levels in Patients with Progressive Supranuclear Palsy. Biomedicines 2022; 10:biomedicines10071728. [PMID: 35885033 PMCID: PMC9313136 DOI: 10.3390/biomedicines10071728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a debilitating neurodegenerative disease characterized by an aggressive disease course. Total and intracellular-weighted sodium imaging (23Na-MRI) is a promising method for investigating neurodegeneration in vivo. We enrolled 10 patients with PSP and 20 age- and gender-matched healthy control subjects; all study subjects underwent a neurological examination, whole-brain structural, and (total and intracellular-weighted) 23Na-MRI. Voxel-wise analyses revealed increased brainstem total sodium content in PSP that correlated with disease severity. The ROI-wise analysis highlighted additional sodium level changes in other regions implicated in the pathophysiology of PSP. 23Na-MRI yields substantial benefits for the diagnostic workup of patients with PSP and adds complementary information on the underlying neurodegenerative tissue changes in PSP.
Collapse
|
16
|
Müller HP, Nagel AM, Keidel F, Wunderlich A, Hübers A, Gast LV, Ludolph AC, Beer M, Kassubek J. Relaxation-weighted 23Na magnetic resonance imaging maps regional patterns of abnormal sodium concentrations in amyotrophic lateral sclerosis. Ther Adv Chronic Dis 2022; 13:20406223221109480. [PMID: 35837670 PMCID: PMC9274400 DOI: 10.1177/20406223221109480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: Multiparametric magnetic resonance imaging (MRI) is established as a
technical instrument for the characterisation of patients with amyotrophic
lateral sclerosis (ALS). The contribution of relaxation-weighted sodium
(23NaR) MRI remains to be defined. The aim of this study is
to apply 23NaR MRI to investigate brain sodium homeostasis and
map potential alterations in patients with ALS as compared with healthy
controls. Materials and Methods: Seventeen patients with ALS (mean age 61.1 ± 11.4 years, m/f = 9/8) and 10
healthy control subjects (mean age 60.3 ± 15.3 years, m/f = 6/4) were
examined by 23NaR MRI at 3 T. Regional sodium maps were obtained
by the calculation of the weighted difference from two image data sets with
different echo times (TE1 = 0.3 ms, TE2 = 25 ms).
Voxel-based analysis of the relaxation-weighted maps, together with
23Na concentration maps for comparison, was performed. Results: ROI-based analyses of relaxation-weighted brain sodium concentration maps
demonstrated increased sodium concentrations in the upper corticospinal
tracts and in the frontal lobes in patients with ALS; no differences between
ALS patients and controls were found in reference ROIs, where no involvement
in ALS-associated neurodegeneration could be anticipated. Conclusion: 23NaR MRI mapped regional alterations within disease-relevant
areas in ALS which correspond to the stages of the central nervous system
(CNS) pathology, providing evidence that the technique is a potential
biological marker of the cerebral neurodegenerative process in ALS.
Collapse
Affiliation(s)
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Franziska Keidel
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - Arthur Wunderlich
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | | | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| |
Collapse
|
17
|
El Mendili MM, Grapperon AM, Dintrich R, Stellmann JP, Ranjeva JP, Guye M, Verschueren A, Attarian S, Zaaraoui W. Alterations of Microstructure and Sodium Homeostasis in Fast Amyotrophic Lateral Sclerosis Progressors: A Brain DTI and Sodium MRI Study. AJNR Am J Neuroradiol 2022; 43:984-990. [PMID: 35772800 DOI: 10.3174/ajnr.a7559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE While conventional MR imaging has limited value in amyotrophic lateral sclerosis, nonconventional MR imaging has shown alterations of microstructure using diffusion MR imaging and recently sodium homeostasis with sodium MR imaging. We aimed to investigate the topography of brain regions showing combined microstructural and sodium homeostasis alterations in amyotrophic lateral sclerosis subgroups according to their disease-progression rates. MATERIALS AND METHODS Twenty-nine patients with amyotrophic lateral sclerosis and 24 age-matched healthy controls were recruited. Clinical assessments included disease duration and the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale. Patients were clinically differentiated into fast (n = 13) and slow (n = 16) progressors according to the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale progression rate. 3T MR imaging brain protocol included 1H T1-weighted and diffusion sequences and a 23Na density-adapted radial sequence. Quantitative maps of diffusion with fractional anisotropy, mean diffusivity, and total sodium concentration were measured. The topography of diffusion and sodium abnormalities was assessed by voxelwise analyses. RESULTS Patients with amyotrophic lateral sclerosis showed significantly higher sodium concentrations and lower fractional anisotropy, along with higher sodium concentrations and higher mean diffusivity compared with healthy controls, primarily within the corticospinal tracts, corona radiata, and body and genu of the corpus callosum. Fast progressors showed wider-spread abnormalities mainly in the frontal areas. In slow progressors, only fractional anisotropy measures showed abnormalities compared with healthy controls, localized in focal regions of the corticospinal tracts, the body of corpus callosum, corona radiata, and thalamic radiation. CONCLUSIONS The present study evidenced widespread combined microstructural and sodium homeostasis brain alterations in fast amyotrophic lateral sclerosis progressors.
Collapse
Affiliation(s)
- M M El Mendili
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France .,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - A-M Grapperon
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France.,APHM, Hôpital de la Timone (A.-M.G., R.D., S.A.), Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - R Dintrich
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France.,APHM, Hôpital de la Timone (A.-M.G., R.D., S.A.), Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - J-P Stellmann
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - J-P Ranjeva
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - M Guye
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - A Verschueren
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - S Attarian
- APHM, Hôpital de la Timone (A.-M.G., R.D., S.A.), Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - W Zaaraoui
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| |
Collapse
|
18
|
Mohamud A, Zeghal M, Patel S, Laroche G, Blgacim N, Giguère PM. Functional Characterization of Sodium Channel Inhibitors at the Delta-Opioid Receptor. ACS OMEGA 2022; 7:16939-16951. [PMID: 35647460 PMCID: PMC9134235 DOI: 10.1021/acsomega.1c07226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Existing pharmacotherapies acting on the opioid receptor system have been extensively used to treat chronic pain and addictive disorders. Nevertheless, the adverse side effects associated with opioid therapy underscore the need for concerted measures to develop safer analgesics. A promising avenue of research stems from the characterization of a sodium-dependent allosteric regulation site housed within the delta-opioid receptor and several other G protein-coupled receptors (GPCRs), thereby revealing the presence of a cluster of sodium and water molecules lodged in a cavity thought to be present only in the inactive conformation of the receptor. Studies into the structure-function relationship of said pocket demonstrated its critical involvement in the functional control of GPCR signaling. While the sodium pocket has been proposed to be present in the majority of class A GPCRs, the shape of this allosteric cavity appears to have significant structural variation among crystallographically solved GPCRs, making this site optimal for the design of new allosteric modulators that will be selective for opioid receptors. The size of the sodium pocket supports the accommodation of small molecules, and it has been speculated that promiscuous amiloride and 5'-substituted amiloride-related derivatives could target this cavity within many GPCRs, including opioid receptors. Using pharmacological approaches, we have described the selectivities of 5'-substituted amiloride-related derivatives, as well as the hitherto undescribed activity of the NHE1 inhibitor zoniporide toward class A GPCRs. Our investigations into the structural features of the delta-opioid receptor and its ensuing signaling activities suggest a bitopic mode of overlapping interactions involving the orthosteric site and the juxtaposed Na+ pocket, but only at the active or partially active opioid receptor.
Collapse
Affiliation(s)
- Abdulhamid
O. Mohamud
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Manel Zeghal
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Shivani Patel
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Geneviève Laroche
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Nuria Blgacim
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Patrick M. Giguère
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
- Brain
and Mind Research Institute, University
of Ottawa, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
19
|
Handa P, Samkaria A, Sharma S, Arora Y, Mandal PK. Comprehensive Account of Sodium Imaging and Spectroscopy for Brain Research. ACS Chem Neurosci 2022; 13:859-875. [PMID: 35324144 DOI: 10.1021/acschemneuro.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sodium (23Na) is a vital component of neuronal cells and plays a key role in various signal transmission processes. Hence, information on sodium distribution in the brain using magnetic resonance imaging (MRI) provides useful information on neuronal health. 23Na MRI and MR spectroscopy (MRS) improve the diagnosis, prognosis, and clinical monitoring of neurological diseases but confront some inherent limitations that lead to low signal-to-noise ratio, longer scan time, and diminished partial volume effects. Recent advancements in multinuclear MR technology have helped in further exploration in this domain. We aim to provide a comprehensive description of 23Na MRI and MRS for brain research including the following aspects: (a) theoretical background for understanding 23Na MRI and MRS fundamentals; (b) technological advancements of 23Na MRI with respect to pulse sequences, RF coils, and sodium compartmentalization; (c) applications of 23Na MRI in the early diagnosis and prognosis of various neurological disorders; (d) structural-chronological evolution of sodium spectroscopy in terms of its numerous applications in human studies; (e) the data-processing tools utilized in the quantitation of sodium in the respective anatomical regions.
Collapse
Affiliation(s)
- Palak Handa
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3010, Australia
| |
Collapse
|
20
|
Wilferth T, Müller M, Gast LV, Ruck L, Meyerspeer M, Lopez Kolkovsky AL, Uder M, Dörfler A, Nagel AM. Motion‐corrected
23
Na MRI
of the human brain using interleaved
1
H 3D
navigator images. Magn Reson Med 2022; 88:309-321. [DOI: 10.1002/mrm.29221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Tobias Wilferth
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Max Müller
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Lena V. Gast
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Laurent Ruck
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
| | - Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- NMR Laboratory CEA/DRF/IBFJ/Molecular Imaging Research Center Paris France
| | - Michael Uder
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Arnd Dörfler
- Department of Neuroradiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
21
|
Hussain A, Rafeeq H, Munir N, Jabeen Z, Afsheen N, Rehman KU, Bilal M, Iqbal HMN. Dendritic Cell-Targeted Therapies to Treat Neurological Disorders. Mol Neurobiol 2022; 59:603-619. [PMID: 34743292 DOI: 10.1007/s12035-021-02622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cells (DCs) are the immune system's highly specialized antigen-presenting cells. When DCs are sluggish and mature, self-antigen presentation results in tolerance; however, when pathogen-associated molecular patterns stimulate mature DCs, antigen presentation results in the development of antigen-specific immunity. DCs have been identified in various vital organs of mammals (e.g., the skin, heart, lungs, intestines, and spleen), but the brain has long been thought to be devoid of DCs in the absence of neuroinflammation. However, neuroinflammation is becoming more recognized as a factor in a variety of brain illnesses. DCs are present in the brain parenchyma in trace amounts under healthy circumstances, but their numbers rise during neuroinflammation. New therapeutics are being developed that can reduce dendritic cell immunogenicity by inhibiting pro-inflammatory cytokine production and T cell co-stimulatory pathways. Additionally, innovative ways of regulating dendritic cell growth and differentiation and harnessing their tolerogenic capability are being explored. Herein, we described the function of dendritic cells in neurological disorders and discussed the potential for future therapeutic techniques that target dendritic cells and dendritic cell-related targets in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nimra Munir
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Khalil Ur Rehman
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
22
|
Chen Q, Shah NJ, Worthoff WA. Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects. J Magn Reson Imaging 2021; 55:1340-1356. [PMID: 34918429 DOI: 10.1002/jmri.28029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
Sodium (23 Na) yields the second strongest nuclear magnetic resonance (NMR) signal in biological tissues and plays a vital role in cell physiology. Sodium magnetic resonance imaging (MRI) can provide insights into cell integrity and tissue viability relative to pathologies without significant anatomical alternations, and thus it is considered to be a potential surrogate biomarker that provides complementary information for standard hydrogen (1 H) MRI in a noninvasive and quantitative manner. However, sodium MRI suffers from a relatively low signal-to-noise ratio and long acquisition times due to its relatively low NMR sensitivity. Compressed sensing-based (CS-based) methods have been shown to accelerate sodium imaging and/or improve sodium image quality significantly. In this manuscript, the basic concepts of CS and how CS might be applied to improve sodium MRI are described, and the historical milestones of CS-based sodium MRI are briefly presented. Representative advanced techniques and evaluation methods are discussed in detail, followed by an expose of clinical applications in multiple anatomical regions and diseases as well as thoughts and suggestions on potential future research prospects of CS in sodium MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
23
|
Müller M, Egger N, Sommer S, Wilferth T, Meixner CR, Laun FB, Mennecke A, Schmidt M, Huhn K, Rothhammer V, Uder M, Dörfler A, Nagel AM. Direct imaging of white matter ultrashort T 2∗ components at 7 Tesla. Magn Reson Imaging 2021; 86:107-117. [PMID: 34906631 DOI: 10.1016/j.mri.2021.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To demonstrate direct imaging of the white matter ultrashort T2∗ components at 7 Tesla using inversion recovery (IR)-enhanced ultrashort echo time (UTE) MRI. To investigate its characteristics, potentials and limitations, and to establish a clinical protocol. MATERIAL AND METHODS The IR UTE technique suppresses long T2∗ signals within white matter by using adiabatic inversion in combination with dual-echo difference imaging. Artifacts arising at 7 T from long T2∗ scalp fat components were reduced by frequency shifting the IR pulse such that those frequencies were inverted likewise. For 8 healthy volunteers, the T2∗ relaxation times of white matter were then quantified. In 20 healthy volunteers, the UTE difference and fraction contrast were evaluated. Finally, in 6 patients with multiple sclerosis (MS), the performance of the technique was assessed. RESULTS A frequency shift of -1.2 ppm of the IR pulse (i.e. towards the fat frequency) provided a good suppression of artifacts. With this, an ultrashort compartment of (68 ± 6) % with a T2∗ time of (147 ± 58) μs was quantified with a chemical shift of (-3.6 ± 0.5) ppm from water. Within healthy volunteers' white matter, a stable ultrashort T2∗ fraction contrast was calculated. For the MS patients, a significant fraction reduction in the identified lesions as well as in the normal-appearing white matter was observed. CONCLUSIONS The quantification results indicate that the observed ultrashort components arise primarily from myelin tissue. Direct IR UTE imaging of the white matter ultrashort T2∗ components is thus feasible at 7 T with high quantitative inter-subject repeatability and good detection of signal loss in MS.
Collapse
Affiliation(s)
- Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Sommer
- Siemens Healthcare, Zurich, Switzerland; Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian R Meixner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Haeger A, Bottlaender M, Lagarde J, Porciuncula Baptista R, Rabrait-Lerman C, Luecken V, Schulz JB, Vignaud A, Sarazin M, Reetz K, Romanzetti S, Boumezbeur F. What can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in Alzheimer's disease? Alzheimers Dement 2021; 17:1843-1854. [PMID: 34855281 DOI: 10.1002/alz.12501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
The pathophysiological processes underlying the development and progression of Alzheimer's disease (AD) on the neuronal level are still unclear. Previous research has hinted at metabolic energy deficits and altered sodium homeostasis with impaired neuronal function as a potential metabolic marker relevant for neurotransmission in AD. Using sodium (23 Na) magnetic resonance (MR) imaging on an ultra-high-field 7 Tesla MR scanner, we found increased cerebral tissue sodium concentration (TSC) in 17 biomarker-defined AD patients compared to 22 age-matched control subjects in vivo. TSC was highly discriminative between controls and early AD stages and was predictive for cognitive state, and associated with regional tau load assessed with flortaucipir-positron emission tomography as a possible mediator of TSC-associated neurodegeneration. TSC could therefore serve as a non-invasive, stage-dependent, metabolic imaging marker. Setting a focus on cellular metabolism and potentially disturbed interneuronal communication due to energy-dependent altered cell homeostasis could hamper progressive cognitive decline by targeting these processes in future interventions.
Collapse
Affiliation(s)
- Alexa Haeger
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Michel Bottlaender
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Julien Lagarde
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | | | | | - Volker Luecken
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Alexandre Vignaud
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marie Sarazin
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
25
|
Kakkar P, Kakkar T, Patankar T, Saha S. Current approaches and advances in the imaging of stroke. Dis Model Mech 2021; 14:273651. [PMID: 34874055 PMCID: PMC8669490 DOI: 10.1242/dmm.048785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A stroke occurs when the blood flow to the brain is suddenly interrupted, depriving brain cells of oxygen and glucose and leading to further cell death. Neuroimaging techniques, such as computed tomography and magnetic resonance imaging, have greatly improved our ability to visualise brain structures and are routinely used to diagnose the affected vascular region of a stroke patient's brain and to inform decisions about clinical care. Currently, these multimodal imaging techniques are the backbone of the clinical management of stroke patients and have immensely improved our ability to visualise brain structures. Here, we review recent developments in the field of neuroimaging and discuss how different imaging techniques are used in the diagnosis, prognosis and treatment of stroke. Summary: Stroke imaging has undergone seismic shifts in the past decade. Although magnetic resonance imaging (MRI) is superior to computed tomography in providing vital information, further research on MRI is still required to bring its full potential into clinical practice.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Tarun Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
26
|
Kannenkeril D, Jung S, Harazny J, Striepe K, Ott C, Dahlmann A, Kopp C, Schiffer M, Linz P, Nagel AM, Uder M, Schmieder RE. Tissue sodium content correlates with hypertrophic vascular remodeling in type 2 diabetes. J Diabetes Complications 2021; 35:108055. [PMID: 34620556 DOI: 10.1016/j.jdiacomp.2021.108055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/16/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prospective studies describe a linkage between increased sodium intake and higher incidence of cardiovascular organ damage and end points. We analyzed whether tissue sodium content in the skin and muscles correlate with vascular hypertrophic remodeling, a risk factor for cardiovascular disease. METHODS In patients with type 2 diabetes we assessed tissue sodium content and vascular structural parameters of the retinal arterioles. The structural parameters of retinal arterioles assessed by Scanning Laser Doppler Flowmetry were vessel (VD) and lumen diameter (LD), wall thickness (WT), wall-to-lumen ratio (WLR) and wall cross sectional area (WCSA). Tissue sodium content was measured with a 3.0 T clinical 23Sodium-Magnetic Resonance Imaging (23Na-MRI) system. RESULTS In patients with type 2 diabetes (N = 52) we observed a significant correlation between muscle sodium content and VD (p = 0.005), WT (p = 0.003), WCSA (p = 0.002) and WLR (p = 0.013). With respect to skin sodium content a significant correlation has been found with VD (p = 0.042), WT (p = 0.023) and WCSA (p = 0.019). Further analysis demonstrated that tissue sodium content of skin and muscle is a significant determinant of hypertrophic vascular remodeling independent of age, gender, diuretic use and 24-hour ambulatory BP. CONCLUSION With the 23Na-MRI technology we could demonstrate that high tissue sodium content is independently linked to hypertrophic vascular remodeling in type 2 diabetes. TRIAL REGISTRATION Trial registration number: NCT02383238 Date of registration: March 9, 2015.
Collapse
Affiliation(s)
- Dennis Kannenkeril
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Susanne Jung
- Department of Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Joanna Harazny
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany; Department of Human Physiology and Pathophysiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Kristina Striepe
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
27
|
Arai AE, Sirajuddin A. What Can We Learn About Heart Failure From Sodium Magnetic Resonance Imaging? Circ Cardiovasc Imaging 2021; 14:e013628. [PMID: 34784239 DOI: 10.1161/circimaging.121.013628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Potential Biomarkers Associated with Multiple Sclerosis Pathology. Int J Mol Sci 2021; 22:ijms221910323. [PMID: 34638664 PMCID: PMC8508638 DOI: 10.3390/ijms221910323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS) that involves an intricate and aberrant interaction of immune cells leading to inflammation, demyelination, and neurodegeneration. Due to the heterogeneity of clinical subtypes, their diagnosis becomes challenging and the best treatment cannot be easily provided to patients. Biomarkers have been used to simplify the diagnosis and prognosis of MS, as well as to evaluate the results of clinical treatments. In recent years, research on biomarkers has advanced rapidly due to their ability to be easily and promptly measured, their specificity, and their reproducibility. Biomarkers are classified into several categories depending on whether they address personal or predictive susceptibility, diagnosis, prognosis, disease activity, or response to treatment in different clinical courses of MS. The identified members indicate a variety of pathological processes of MS, such as neuroaxonal damage, gliosis, demyelination, progression of disability, and remyelination, among others. The present review analyzes biomarkers in cerebrospinal fluid (CSF) and blood serum, the most promising imaging biomarkers used in clinical practice. Furthermore, it aims to shed light on the criteria and challenges that a biomarker must face to be considered as a standard in daily clinical practice.
Collapse
|
30
|
Hampton DG, Goldman-Yassen AE, Sun PZ, Hu R. Metabolic Magnetic Resonance Imaging in Neuroimaging: Magnetic Resonance Spectroscopy, Sodium Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer. Semin Ultrasound CT MR 2021; 42:452-462. [PMID: 34537114 DOI: 10.1053/j.sult.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance (MR) is a powerful and versatile technique that offers much more beyond conventional anatomic imaging and has the potential of probing in vivo metabolism. Although MR spectroscopy (MRS) predates clinical MR imaging (MRI), its clinical application has been limited by technical and practical challenges. Other MR techniques actively being developed for in vivo metabolic imaging include sodium concentration imaging and chemical exchange saturation transfer. This article will review some of the practical aspects of MRS in neuroimaging, introduce sodium MRI and chemical exchange saturation transfer MRI, and highlight some of their emerging clinical applications.
Collapse
Affiliation(s)
- Daniel G Hampton
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA.
| | - Adam E Goldman-Yassen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
31
|
Marino M, Cordero-Grande L, Mantini D, Ferrazzi G. Conductivity Tensor Imaging of the Human Brain Using Water Mapping Techniques. Front Neurosci 2021; 15:694645. [PMID: 34393709 PMCID: PMC8363203 DOI: 10.3389/fnins.2021.694645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Conductivity tensor imaging (CTI) has been recently proposed to map the conductivity tensor in 3D using magnetic resonance imaging (MRI) at the frequency range of the brain at rest, i.e., low-frequencies. Conventional CTI mapping methods process the trans-receiver phase of the MRI signal using the MR electric properties tomography (MR-EPT) technique, which in turn involves the application of the Laplace operator. This results in CTI maps with a low signal-to-noise ratio (SNR), artifacts at tissue boundaries and a limited spatial resolution. In order to improve on these aspects, a methodology independent from the MR-EPT method is proposed. This relies on the strong assumption for which electrical conductivity is univocally pre-determined by water concentration. In particular, CTI maps are calculated by combining high-frequency conductivity derived from water maps and multi b-value diffusion tensor imaging (DTI) data. Following the implementation of a pipeline to optimize the pre-processing of diffusion data and the fitting routine of a multi-compartment diffusivity model, reconstructed conductivity images were evaluated in terms of the achieved spatial resolution in five healthy subjects scanned at rest. We found that the pre-processing of diffusion data and the optimization of the fitting procedure improve the quality of conductivity maps. We achieve reproducible measurements across healthy participants and, in particular, we report conductivity values across subjects of 0.55 ± 0.01Sm, 0.3 ± 0.01Sm and 2.15 ± 0.02Sm for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), respectively. By attaining an actual spatial resolution of the conductivity tensor close to 1 mm in-plane isotropic, partial volume effects are reduced leading to good discrimination of tissues with similar conductivity values, such as GM and WM. The application of the proposed framework may contribute to a better definition of the head tissue compartments in electroencephalograpy/magnetoencephalography (EEG/MEG) source imaging and be used as biomarker for assessing conductivity changes in pathological conditions, such as stroke and brain tumors.
Collapse
Affiliation(s)
- Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | | |
Collapse
|
32
|
Stobbe R, Boyd A, Smyth P, Emery D, Valdés Cabrera D, Beaulieu C. Sodium Intensity Changes Differ Between Relaxation- and Density-Weighted MRI in Multiple Sclerosis. Front Neurol 2021; 12:693447. [PMID: 34335450 PMCID: PMC8323606 DOI: 10.3389/fneur.2021.693447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: The source of Tissue Sodium Concentration (TSC) increase in Multiple Sclerosis (MS) remains unclear, and could be attributed to altered intracellular sodium concentration or tissue microstructure. This paper investigates sodium in MS using three new MRI sequences. Methods: Three sodium scans were acquired at 4.7 T from 30 patients (11 relapsing-remitting, 10 secondary-progressive, 9 primary-progressive) and 9 healthy controls including: Density-Weighted (NaDW), with very short 30° excitation for more accurate TSC measurement; Projection Acquisition with Coherent MAgNetization (NaPACMAN), designed for enhanced relaxation-based contrast; and Soft Inversion Recovery FLuid Attenuation (NaSIRFLA), developed to reduce fluid space contribution. Signal was measured in both lesions (n = 397) and normal appearing white matter (NAWM) relative to controls in the splenium of corpus callosum and the anterior and posterior limbs of internal capsule. Correlations with clinical and cognitive evaluations were tested over all MS patients. Results: Sodium intensity in MS lesions was elevated over control WM by a greater amount for NaPACMAN (75%) than NaDW (35%), the latter representing TSC. In contrast, NaSIRFLA exhibited lower intensity, but only for region specific analysis in the SCC (-7%). Sodium intensity in average MS NAWM was not significantly different than control WM for either of the three scans. NaSIRFLA in the average NAWM and specifically the posterior limb of internal capsules positively correlated with the Paced Auditory Serial Addition Test (PASAT). Discussion: Lower NaSIRFLA signal in lesions and ~2× greater NaPACMAN signal elevation over control WM than NaDW can be explained with a demyelination model that also includes edema. A NAWM demyelination model that includes tissue atrophy suggests no signal change for NaSIRFLA, and only slightly greater NAWM signal than control WM for both NaDW and NaPACMAN, reflecting experimental results. Models were derived from previous total and myelin water fraction study in MS with T2-relaxometry, and for the first time include sodium within the myelin water space. Reduced auditory processing association with lower signal on NaSIRFLA cannot be explained by greater demyelination and its modeled impact on the three sodium MRI sequences. Alternative explanations include intra- or extracellular sodium concentration change. Relaxation-weighted sodium MRI in combination with sodium-density MRI may help elucidate microstructural and metabolic changes in MS.
Collapse
Affiliation(s)
- Robert Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Annie Boyd
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Penelope Smyth
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Derek Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Diana Valdés Cabrera
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Mennecke AB, Nagel AM, Huhn K, Linker RA, Schmidt M, Rothhammer V, Wilferth T, Linz P, Wegmann J, Eisenhut F, Engelhorn T, Doerfler A. Longitudinal Sodium MRI of Multiple Sclerosis Lesions: Is there Added Value of Sodium Inversion Recovery MRI. J Magn Reson Imaging 2021; 55:140-151. [PMID: 34259373 DOI: 10.1002/jmri.27832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sodium enhancement has been demonstrated in multiple sclerosis (MS) lesions. PURPOSE To investigate sodium MRI with and without an inversion recovery pulse in acute MS lesions in an MS relapse and during recovery. STUDY TYPE Prospective. SUBJECTS Twenty-nine relapsing-remitting MS patients with an acute relapse were included. FIELD STRENGTH/SEQUENCE A 3D density-adapted radial sodium sequence at 3 T using a dual-tuned (23 Na/1 H) head coil. ASSESSMENT Full-brain images of the tissue sodium concentration (TSC1, n = 29) and a sodium inversion recovery sequence (SIR1, n = 20) at the beginning of the anti-inflammatory therapy and on medium-term follow-up visits (days 27-99, n = 12 [TSC], n = 5 [SIR]) were measured. Regions of interest (RoIs) with contrast enhancement (T1 CE+) and without change in T1-weighted imaging (FL + T1n) were normalized (nTSC and nSIR). To gain insight on the origin of the TSC enhancement at time point 1, it is investigated whether the nTSC enhancement of the lesions is accompanied by a change of the respective nSIR. Potential prognostic value of nSIR1 is examined referring to the nTSC progression. STATISTICAL TESTS: nTSC and nSIR were compared regarding the type of lesion and the time point using a one-way ANOVA. Pearson's correlation coefficient was calculated for nTSC over nSIR and for nTSC1-nTSC2 over nSIR1. A P-value <0.05 was considered statistically significant. RESULTS At the first measurement, all lesion types showed increased nTSC, while nSIR was decreased in the FL + T1 n and the T1 CE+ lesions in comparison to the normal-appearing white matter. For acute lesions, the difference between nTSC at baseline and nTSC at time point 2 showed a significant correlation with the baseline nSIR. DATA CONCLUSION At time point 1, nTSC is increased, while nSIR is unchanged or decreased in the lesions. The mean sodium IR signal at baseline correlates with recovery or progression of an acute lesion. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Angelika B Mennecke
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, University Clinic Regensburg, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Linz
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julius Wegmann
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Eisenhut
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Huhn K, Linz P, Pemsel F, Michalke B, Seyferth S, Kopp C, Chaudri MA, Rothhammer V, Dörfler A, Uder M, Nagel AM, Müller DN, Waschbisch A, Lee DH, Bäuerle T, Linker RA, Haase S. Skin sodium is increased in male patients with multiple sclerosis and related animal models. Proc Natl Acad Sci U S A 2021; 118:e2102549118. [PMID: 34260395 PMCID: PMC8285971 DOI: 10.1073/pnas.2102549118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel MRI techniques allow a noninvasive quantification of tissue sodium and reveal the skin as a prominent compartment of sodium storage in health and disease. Since multiple sclerosis (MS) immunopathology is initiated in the periphery and increased sodium concentrations induce proinflammatory immune cells, the skin represents a promising compartment linking high sodium concentrations and MS immunopathology. We used a 7-T sodium MRI (23Na-MRI) and inductively coupled plasma mass spectrometry to investigate the skin sodium content in two mouse models of MS. We additionally performed 3-T 23Na-MRI of calf skin and muscles in 29 male relapsing-remitting MS (RRMS) patients and 29 matched healthy controls. Demographic and clinical information was collected from interviews, and disease activity was assessed by expanded disability status scale scoring. 23Na-MRI and chemical analysis demonstrated a significantly increased sodium content in the skin during experimental autoimmune encephalomyelitis independent of active immunization. In male patients with RRMS, 23Na-MRI demonstrated a higher sodium signal in the area of the skin compared to age- and biological sex-matched healthy controls with higher sodium, predicting future disease activity in cranial MRI. In both studies, the sodium enrichment was specific to the skin, as we found no alterations of sodium signals in the muscle or other tissues. Our data add to the recently identified importance of the skin as a storage compartment of sodium and may further represent an important organ for future investigations on salt as a proinflammatory agent driving autoimmune neuroinflammation such as that in MS.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Franziska Pemsel
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
- Department of Radiation Therapy, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München German Research Center for Environmental Health, 85764 Munich, Germany
| | - Stefan Seyferth
- Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Mohammad Anwar Chaudri
- Institute of Corrosion and Surface Science, Department of Material Science, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health, 13125 Berlin, Germany
| | - Anne Waschbisch
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Bäuerle
- Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stefanie Haase
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
35
|
Kratzer FJ, Flassbeck S, Schmitter S, Wilferth T, Magill AW, Knowles BR, Platt T, Bachert P, Ladd ME, Nagel AM. 3D sodium ( 23 Na) magnetic resonance fingerprinting for time-efficient relaxometric mapping. Magn Reson Med 2021; 86:2412-2425. [PMID: 34061397 DOI: 10.1002/mrm.28873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop a framework for 3D sodium (23 Na) MR fingerprinting (MRF), based on irreducible spherical tensor operators with tailored flip angle (FA) pattern and time-efficient data acquisition for simultaneous quantification of T1 , T 2 l ∗ , T 2 s ∗ , and T 2 ∗ in addition to ΔB0 . METHODS 23 Na-MRF was implemented in a 3D sequence and irreducible spherical tensor operators were exploited in the simulations. Furthermore, the Cramér Rao lower bound was used to optimize the flip angle pattern. A combination of single and double echo readouts was implemented to increase the readout efficiency. A study was conducted to compare results in a multicompartment phantom acquired with MRF and reference methods. Finally, the relaxation times in the human brain were measured in four healthy volunteers. RESULTS Phantom experiments revealed a mean difference of 1.0% between relaxation times acquired with MRF and results determined with the reference methods. Simultaneous quantification of the longitudinal and transverse relaxation times in the human brain was possible within 32 min using 3D 23 Na-MRF with a nominal resolution of (5 mm)3 . In vivo measurements in four volunteers yielded average relaxation times of: T1,brain = (35.0 ± 3.2) ms, T 2 l , brain ∗ = (29.3 ± 3.8) ms and T 2 s , brain ∗ = (5.5 ± 1.3) ms in brain tissue, whereas T1,CSF = (61.9 ± 2.8) ms and T 2 , CSF ∗ = (46.3 ± 4.5) ms was found in cerebrospinal fluid. CONCLUSION The feasibility of in vivo 3D relaxometric sodium mapping within roughly ½ h is demonstrated using MRF in the human brain, moving sodium relaxometric mapping toward clinically relevant measurement times.
Collapse
Affiliation(s)
- Fabian J Kratzer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Biomedical Imaging, Department of Radiology, New York University, New York, New York, USA
- Center for Advanced Imaging Innovation and Research, New York University, New York, New York, USA
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| | - Tobias Wilferth
- Institute of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arthur W Magill
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin R Knowles
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
36
|
Khan MH, Walsh JJ, Mihailović JM, Mishra SK, Coman D, Hyder F. Imaging the transmembrane and transendothelial sodium gradients in gliomas. Sci Rep 2021; 11:6710. [PMID: 33758290 PMCID: PMC7987982 DOI: 10.1038/s41598-021-85925-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
Under normal conditions, high sodium (Na+) in extracellular (Na+e) and blood (Na+b) compartments and low Na+ in intracellular milieu (Na+i) produce strong transmembrane (ΔNa+mem) and weak transendothelial (ΔNa+end) gradients respectively, and these manifest the cell membrane potential (Vm) as well as blood–brain barrier (BBB) integrity. We developed a sodium (23Na) magnetic resonance spectroscopic imaging (MRSI) method using an intravenously-administered paramagnetic polyanionic agent to measure ΔNa+mem and ΔNa+end. In vitro 23Na-MRSI established that the 23Na signal is intensely shifted by the agent compared to other biological factors (e.g., pH and temperature). In vivo 23Na-MRSI showed Na+i remained unshifted and Na+b was more shifted than Na+e, and these together revealed weakened ΔNa+mem and enhanced ΔNa+end in rat gliomas (vs. normal tissue). Compared to normal tissue, RG2 and U87 tumors maintained weakened ΔNa+mem (i.e., depolarized Vm) implying an aggressive state for proliferation, whereas RG2 tumors displayed elevated ∆Na+end suggesting altered BBB integrity. We anticipate that 23Na-MRSI will allow biomedical explorations of perturbed Na+ homeostasis in vivo.
Collapse
Affiliation(s)
- Muhammad H Khan
- Department of Biomedical Engineering, Yale University, N143 TAC (MRRC), 300 Cedar Street, New Haven, CT, 06520, USA.
| | - John J Walsh
- Department of Biomedical Engineering, Yale University, N143 TAC (MRRC), 300 Cedar Street, New Haven, CT, 06520, USA
| | - Jelena M Mihailović
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, N143 TAC (MRRC), 300 Cedar Street, New Haven, CT, 06520, USA. .,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
37
|
Modo M. 19F Magnetic Resonance Imaging and Spectroscopy in Neuroscience. Neuroscience 2021; 474:37-50. [PMID: 33766776 DOI: 10.1016/j.neuroscience.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
1H magnetic resonance imaging (MRI) has established itself as a key diagnostic technique, affording the visualization of brain anatomy, blood flow, activity and connectivity. The detection of other atoms (e.g. 19F, 23Na, 31P), so called hetero-nuclear MRI and spectroscopy (MRS), provides investigative avenues that complement and extend the richness of information that can be gained from 1H MRI. Especially 19F MRI is increasingly emerging as a multi-nuclear (1H/19F) technique that can be exploited to visualize cell migration and trafficking. The lack of a 19F background signal in the brain affords an unequivocal detection suitable for quantification. Fluorine-based contrast material can be engineered as nanoemulsions, nanocapsules, or nanoparticles to label cells in vitro or in vivo. Fluorinated blood substitutes, typically nanoemulsions, can also carry oxygen and serve as a theranostic in poorly perfused brain regions. Brain tissue concentrations of fluorinated pharmaceuticals, including inhalation anesthetics (e.g. isoflurane) and anti-depressants (e.g. fluoxetine), can also be measured using MRS. However, the low signal from these compounds provides a challenge for imaging. Further methodological advances that accelerate signal acquisition (e.g. compressed sensing, cryogenic coils) are required to expand the applications of 19F MR imaging to, for instance, determine the regional pharmacokinetics of novel fluorine-based drugs. Improvements in 19F signal detection and localization, combined with the development of novel sensitive probes, will increase the utility of these multi-nuclear studies. These advances will provide new insights into cellular and molecular processes involved in neurodegenerative disease, as well as the mode of action of pharmaceutical compounds.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Lachner S, Utzschneider M, Zaric O, Minarikova L, Ruck L, Zbýň Š, Hensel B, Trattnig S, Uder M, Nagel AM. Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction. Z Med Phys 2021; 31:48-57. [PMID: 33183893 DOI: 10.1016/j.zemedi.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets. METHODS In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND). RESULTS The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506). CONCLUSION The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI.
Collapse
Affiliation(s)
- Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olgica Zaric
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lenka Minarikova
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Štefan Zbýň
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
39
|
Choi HK, Lee JH, Lee T, Lee SN, Choi JW. Flexible Electronics for Monitoring in vivo Electrophysiology and Metabolite Signals. Front Chem 2020; 8:547591. [PMID: 33330353 PMCID: PMC7710703 DOI: 10.3389/fchem.2020.547591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous efforts have been made to develop efficient biosensors for detecting analytes in the human body. However, biosensors are often developed on rigid materials, which limits their application on skin, organs, and other tissues in the human body where good flexibility is required. Developing flexible materials for biosensors that can be used on soft and irregularly shaped surfaces would significantly expand the clinical application of biosensors. In this review, we will provide a selective overview of recently developed flexible electronic devices and their applications for monitoring in vivo metabolite and electrophysiology signals. The article provides guidelines for the development of an in vivo signal monitoring system and emphasizes research from various disciplines for the further development of flexible electronics that can be used in more biomedical applications in the future.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, South Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul, South Korea
| | | | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| |
Collapse
|
40
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
41
|
Rezabakhsh A, Rahbarghazi R, Fathi F. Surface plasmon resonance biosensors for detection of Alzheimer's biomarkers; an effective step in early and accurate diagnosis. Biosens Bioelectron 2020; 167:112511. [PMID: 32858422 DOI: 10.1016/j.bios.2020.112511] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
The rapid and direct detection of biomarkers in biofluids at clinically relevant concentrations faces serious limitations to develop diagnostic criteria for neurodegenerative diseases such as Alzheimer's disease (AD). In this regard, the early detection of biomarkers correlated with AD using novel modalities and instruments is at the center of attention. Recently, some newly invented optical-based biosensors namely Surface Plasmon Resonance (SPR) has been extensively investigated for the detection of biomarkers using a label-free method or by checking interaction between ligand and analyte. These approaches can sense a very small amount of target molecules in the blood and cerebrospinal fluids samples. In this review, the different hypothesis related to AD, and the structural properties of AD biomarkers was introduced. Also, we aim to highlight the specific role of available SPR-based sensing methods for early detection of AD biomarkers such as aggregated β-amyloid and tau proteins. Efforts to better understand the accuracy and efficiency of optical-based biosensors in the field of neurodegenerative disease enable us to accelerate the advent of novel modalities in the clinical setting for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
42
|
Sodium relaxometry using
23
Na MR fingerprinting: A proof of concept. Magn Reson Med 2020; 84:2577-2591. [DOI: 10.1002/mrm.28316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
43
|
Haeger A, Costa AS, Romanzetti S, Kilders A, Trautwein C, Haberl L, Beulertz M, Hildebrand F, Schulz JB, Reetz K. Effect of a multicomponent exercise intervention on brain metabolism: A randomized controlled trial on Alzheimer's pathology (Dementia-MOVE). ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12032. [PMID: 32490142 PMCID: PMC7243943 DOI: 10.1002/trc2.12032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Physical activity has shown a positive impact on aging and neurodegeneration and represents a possible treatment option in cognitive decline. However, its underlying mechanisms and influences on brain pathology remain unclear. Dementia-MOVE (Multi-Objective Validation of Exercise) is a randomized-controlled pilot trial, including 50 patients with amnestic cognitive impairment associated with Alzheimer's pathology, aiming to analyze the effect of physical activity and fitness on disease progression. METHODS Dementia-MOVE is divided into two arms, of either an intervention comprising physical activity, for at least twice a week, combined with a psychoeducational program, or a sole psychoeducational program. Physical activity intervention includes a supervised and unsupervised multimodal concept combining resistance, endurance, coordinative, and aerobic training. The primary outcome is the change of brain metabolism due to physical interventional treatment. Besides metabolic magnetic resonance imaging (MRI) including sodium and phosphorus imaging, resting state functional MRI, T1-, T2-weighted and fluid-attenuated inversion recovery (FLAIR), as well as diffusion-weighted imaging (DWI) of the brain and whole-body fat MRI are performed before and after intervention, and will be compared in their sensitivity for the detection of intervention effects. We further assess cognitive performance, neuropsychiatric symptoms, quality of life, fitness, and sleep via questionnaires/interviews and/or fitness trackers, as well as microbiome, under the aspect of Alzheimer's pathology. DISCUSSION The aim of Dementia-MOVE is to investigate the effect of a multimodal exercise program on Alzheimer's pathology under different aspects of the disease. In this context, one of the main aims is the comparison of different MRI methods regarding their responsiveness for the detection of alterations induced by physical activity. As an underlying goal, new treatment and diagnostic options, as well as the exploration of fitness effects on brain structure and metabolism within a whole-body perspective of Alzheimer's disease are envisaged.
Collapse
Affiliation(s)
- Alexa Haeger
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Ana S. Costa
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Axel Kilders
- Department of PhysiotherapyRWTH Aachen UniversityAachenGermany
| | | | - Luisa Haberl
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | | | - Frank Hildebrand
- Department of Orthopedic Trauma SurgeryRWTH Aachen UniversityAachenGermany
| | - Jörg B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| |
Collapse
|
44
|
Lachner S, Ruck L, Niesporek SC, Utzschneider M, Lott J, Hensel B, Dörfler A, Uder M, Nagel AM. Comparison of optimized intensity correction methods for 23Na MRI of the human brain using a 32-channel phased array coil at 7 Tesla. Z Med Phys 2019; 30:104-115. [PMID: 31866116 DOI: 10.1016/j.zemedi.2019.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE To correct for the non-homogeneous receive profile of a phased array head coil in sodium magnetic resonance imaging (23Na MRI). METHODS 23Na MRI of the human brain (n = 8) was conducted on a 7T MR system using a dual-tuned quadrature 1H/23Na transmit/receive birdcage coil, equipped with a 32-channel receive-only array. To correct the inhomogeneous receive profile four different methods were applied: (1) the uncorrected phased array image and an additionally acquired birdcage image as reference image were low-pass filtered and divided by each other. (2) The second method substituted the reference image by a support region. (3) By averaging the individually calculated receive profiles, a universal sensitivity map was obtained and applied. (4) The receive profile was determined by a pre-scanned large uniform phantom. The calculation of the sensitivity maps was optimized in a simulation study using the normalized root-mean-square error (NRMSE). All methods were evaluated in phantom measurements and finally applied to in vivo 23Na MRI data sets. The in vivo measurements were partial volume corrected and for further evaluation the signal ratio between the outer and inner cerebrospinal fluid compartments (CSFout:CSFin) was calculated. RESULTS Phantom measurements show the correction of the intensity profile applying the given methods. Compared to the uncorrected phased array image (NRMSE = 0.46, CSFout:CSFin = 1.71), the quantitative evaluation of simulated and measured intensity corrected human brain data sets indicates the best performance utilizing the birdcage image (NRMSE = 0.39, CSFout:CSFin = 1.00). However, employing a support region (NRMSE = 0.40, CSFout:CSFin = 1.17), a universal sensitivity map (NRMSE = 0.41, CSFout:CSFin = 1.05) or a pre-scanned sensitivity map (NRMSE = 0.42, CSFout:CSFin = 1.07) shows only slightly worse results. CONCLUSION Acquiring a birdcage image as reference image to correct for the receive profile demonstrates the best performance. However, when aiming to reduce acquisition time or for measurements without existing birdcage coil, methods that use a support region as reference image, a universal or a pre-scanned sensitivity map provide good alternatives for correction of the receive profile.
Collapse
Affiliation(s)
- Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johanna Lott
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University of Heidelberg, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
45
|
Tang B, Zhong Z, Qiu Z, Wu HP, Hu JY, Ma JP, Wu JP. Serum soluble TWEAK levels in severe traumatic brain injury and its prognostic significance. Clin Chim Acta 2019; 495:227-232. [PMID: 31009601 DOI: 10.1016/j.cca.2019.04.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Severe traumatic brain injury (sTBI) is characterized by a high mortality. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in inflammation. We determined serum soluble TWEAK (sTWEAK) levels with respect to its prognostic ability. METHODS This was a single-center prospective, observational study that was performed from December 2014 to December 2017. A total of 114 sTBI patients who met the inclusion criteria and 114 randomly selected healthy controls were included in the study. Serum sTWEAK levels were gauged. Patients were followed-up until death or completion of 6 months. Poor outcome was referred to as Glasgow outcome scale score of 1-3. RESULTS In comparison with controls, patients displayed predominantly higher serum sTWEAK levels. Serum sTWEAK levels were strongly correlated with Glasgow coma scale scores and serum C-reactive protein levels. 32 patients (28.1%) died and 60 patients (52.6%) suffered from a poor outcome. Receiver operating characteristic curve analysis clearly showed that serum sTWEAK levels had substantially high predictive performance for 6-month mortality and poor outcome. Serum sTWEAK emerged as an independent predictor for 6-month mortality, overall survival and poor outcome. CONCLUSIONS Raised serum sTWEAK levels are closely related to increasing inflammatory response, elevated trauma severity and worse clinical outcome after sTBI.
Collapse
Affiliation(s)
- Bei Tang
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Ze Zhong
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China.
| | - Zheng Qiu
- Department of Neurosurgery, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Hui-Ping Wu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Jia-Yuan Hu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Jian-Ping Ma
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Jin-Ping Wu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| |
Collapse
|