1
|
Sharma S, Mashangva F, Oswalia J, Singh S, Alag R, Arya R. Calcium level and autophagy defect in GNE mutants of rare neuromuscular disorder. Cell Biol Int 2025; 49:343-356. [PMID: 39707730 DOI: 10.1002/cbin.12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024]
Abstract
Rare genetic disorders are low in prevalence and hence there is little or no attention paid to them in the mainstream medical industry. One of the ultra-rare neuromuscular disorders, GNE myopathy is caused due to biallelic mutations in the bifunctional enzyme, GNE (UDP N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase). It catalyses the rate-limiting step in sialic acid biosynthesis. There are no effective treatments for GNE myopathy as the pathomechanism is poorly understood. Pathologically, the disease is characterized by the formation of rimmed vacuoles that contain aggregates of β-amyloid, tau, presenilin etc proteins in muscle biopsy samples. Accumulation of aggregated proteins in the cells may occur due to the failure of the regulated autophagy phenomenon. In the present study, we aim to understand the effect of GNE mutations on autophagy. The cytosolic calcium levels in GNE mutant cells were found to be altered in a GNE mutation-specific manner. The chaperone levels, such as HSP70 and PDI, as well as autophagic markers (LC3II/I ratios) were altered in the GNE mutant cells. Treatment with BAPTA-AM, calcium chelator, significantly restored cytosolic calcium levels in some GNE mutant cells as well as autophagic marker levels and autophagic punctae formation. The effect on the calcium signalling cascade involving CaMKKβ/AMPK/mTOR was studied in the GNE mutant cells. Our study provides insights into the role of calcium in autophagic vacuole formation in the cells with GNE mutations that will have significance towards understanding the pathomechanism of GNE Myopathy and drug target identification for the rare disease.
Collapse
Affiliation(s)
- Shweta Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shagun Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rohan Alag
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Lebon S, Bruneel A, Drunat S, Albert A, Csaba Z, Elmaleh M, Ntorkou A, Ténier Y, Fenaille F, Gressens P, Passemard S, Boespflug-Tanguy O, Dorboz I, El Ghouzzi V. A biallelic variant in GORASP1 causes a novel Golgipathy with glycosylation and mitotic defects. Life Sci Alliance 2025; 8:e202403065. [PMID: 39933924 PMCID: PMC11814487 DOI: 10.26508/lsa.202403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
GRASP65 is a Golgi-associated peripheral protein encoded by the GORASP1 gene and required for Golgi cisternal stacking in vitro. A key role of GRASP65 in the regulation of cell division has also been suggested. However, depletion of GRASP65 in mice has little effect on the Golgi structure and the gene has not been associated with any human phenotype to date. Here, we report the identification of the first human pathogenic variant of GORASP1 (c.1170_1171del; p.Asp390Glufs*18) in a patient combining a neurodevelopmental disorder with neurosensory, neuromuscular, and skeletal abnormalities. Functional analysis revealed that the variant leads to a total absence of GRASP65. The structure of the Golgi apparatus did not show fragmentation, but glycosylation anomalies such as hyposialylation were detected. Mitosis analyses revealed an excess of prometaphases and metaphases with polar chromosomes, suggesting a delay in the cell cycle. These phenotypes were recapitulated in RPE cells in which a similar mutation was introduced by CRISPR/Cas9. These results indicate that loss of GRASP65 in humans causes a novel Golgipathy associated with defects in glycosylation and mitotic progression.
Collapse
Affiliation(s)
- Sophie Lebon
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Arnaud Bruneel
- Université Paris-Saclay, Inserm UMR1193, Faculté de Pharmacie, Orsay, France
- AP-HP Département de Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Séverine Drunat
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
- AP-HP Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Alexandra Albert
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Zsolt Csaba
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Monique Elmaleh
- AP-HP Département de Radiologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Alexandra Ntorkou
- AP-HP Département de Radiologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Yann Ténier
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - François Fenaille
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Sandrine Passemard
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
- AP-HP Département de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
- AP-HP Département de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Imen Dorboz
- Université Paris Cité, NeuroDiderot, Inserm UMR1141, Paris, France
- AP-HP Département de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | | |
Collapse
|
3
|
Suzuki N, Mori-Yoshimura M, Nishino I, Aoki M. Ultra-Orphan drug development for GNE Myopathy: A synthetic literature review and meta-analysis. J Neuromuscul Dis 2025; 12:183-194. [PMID: 39973407 DOI: 10.1177/22143602241296226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
GNE myopathy is an autosomal recessive hereditary muscle disorder that has the following clinical characteristics: develops in early adulthood, gradually progresses from the distal muscles, and is relatively sparing of quadriceps until the advanced stages of the disease. With further progression, patients become non-ambulatory and need a wheelchair. There is growing concern about extra-muscular presentations such as thrombocytopenia, respiratory dysfunction, and sleep apnea syndrome. Pathologically, rimmed vacuoles and tubulofilamentous inclusions are observed in affected muscles. The cause of the disease is thought to be a sialic acid deficiency due to mutations of the GNE gene required for in vivo sialic acid biosynthesis. Sialic acid supplementation to a presymptomatic GNE myopathy mouse model was effective in preventing the development of the disease. Several clinical studies have been conducted to evaluate the safety and efficacy of sialic acid supplementation in humans. Based on the favorable results of these studies, an extended-release aceneuramic acid formulation was approved for treatment of GNE myopathy in Japan in March 2024. It is anticipated that it will be a significant step in the development of an effective treatment for GNE myopathy and other ultra-orphan diseases.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Sun H, Zheng F, Yu J, Meng L, Gang Q, Lv H, Zhang W, Yuan Y, Yu M, Wang Z. Disease Progression of GNE Myopathy and Its Relationship With Genotype: A Retrospective, Observational Study in Chinese Patients. Neurol Genet 2024; 10:e200203. [PMID: 39539755 PMCID: PMC11558541 DOI: 10.1212/nxg.0000000000200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Background and Objectives Studies on the natural disease progression of detailed motor dysfunction in patients with GNE myopathy are rare. This study aimed to investigate motor function involvement during disease progression and its relationship with the genotype among Chinese patients with GNE myopathy. Methods This retrospective observational cohort study included all patients with genetically confirmed GNE myopathy enrolled at Peking University First Hospital between 2000 and 2023. Patients with GNE myopathy were stratified into 2 subgroups based on with or without p.D207V mutation. Data on clinically significant muscular problems were collected from patients' medical history and follow-up assessments to evaluate motor function using the GNE Myopathy Functional Activity Scale and the modified Rankin Scale. Results Eighty-three patients with GNE myopathy were included, with a median age at examination of 36 years (range 25-57) and a median age at onset (AAO) of 26 years (range 16-46). The Kaplan-Meier curves revealed that patients with the p.D207V mutation experienced a significantly later AAO (27 years [95% CI 25-29]) and onset age of wheelchair dependency (50 years [95% CI 46-54]) compared with those without the mutation, who had an AAO of 24 years (95% CI 22-26) and an onset age of wheelchair dependency of 45 years (95% CI 36-54). Multivariate Cox regression analysis, adjusted for sex and disease duration, revealed that patients without the p.D207V mutation had a higher risk of wheelchair dependency, with an adjusted hazard ratio of 2.361 (95% CI 1.030-5.411). Barthel indexes (BIs) were negatively correlated with the disease duration and positively correlated with AAOs. Patients with GNE with earlier AAO exhibited a shorter disease duration of developing functional dependency (BIs <60) than did those with later AAOs. Discussion Our results provide insights into the motor function involvement observed during disease progression in Chinese patients with GNE myopathy, and relatively mild disease severity was observed in those with the p.D207V mutation.
Collapse
Affiliation(s)
- Haozhe Sun
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Fuze Zheng
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Jiaxi Yu
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Lingchao Meng
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Qiang Gang
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - He Lv
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Wei Zhang
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Yun Yuan
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Meng Yu
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Zhaoxia Wang
- From the Department of Neurology (H.S., F.Z., J.Y., L.M., Q.G., H.L., W.Z., Y.Y., M.Y., Z.W.), Peking University First Hospital; Beijing Key Laboratory of Neurovascular Disease Discovery (M.Y., Z.W.); and Key Laboratory for Neuroscience (M.Y., Z.W.), Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
5
|
Manis C, Casula M, Roos A, Hentschel A, Vorgerd M, Pogoryelova O, Derksen A, Spendiff S, Lochmüller H, Caboni P. Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy. Molecules 2024; 29:5211. [PMID: 39519852 PMCID: PMC11547195 DOI: 10.3390/molecules29215211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
GNE myopathy, also known as hereditary inclusion body myopathy (HIBM), is a rare genetic muscle disorder marked by a gradual onset of muscle weakness in young adults. GNE myopathy (GNEM) is caused by bi-allelic variants in the UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase)/N-acetylmannosamine kinase (ManNAc kinase) gene (GNE), clinically resulting in the loss of ambulation within 10-20 years from the onset of the initial symptoms. The disease's mechanism is poorly understood and non-invasive biomarkers are lacking, hindering effective therapy development. Based on the available evidence, we employed a lipidomic approach to study the serum lipid profile of GNE patients. The multivariate statistical analysis revealed a downregulation of carnitines, as well as of lysophosphatidylcholines, in sera samples derived from GNEM patients. Furthermore, we identified lower levels of sphingomyelins and, concomitantly, high levels of ceramides in serum samples from GNEM patients when compared to control samples derived from healthy donors. Moreover, the GNEM serum samples showed the upregulation of Krebs cycle intermediates, in addition to a decrease in oxaloacetic acid. The correlated data gathered in this study can offer a promising diagnostic panel of complex lipids and polar metabolites that can be used in clinic for GNEM in terms of a metabolic fingerprint measurable in a minimally invasive manner.
Collapse
Affiliation(s)
- Cristina Manis
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| | - Mattia Casula
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany;
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany;
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| | - Alexa Derksen
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| |
Collapse
|
6
|
Jiao K, Zhang J, Li Q, Lv X, Yu Y, Zhu B, Zhong H, Yu X, Song J, Ke Q, Qian F, Luan X, Zhang X, Chang X, Wang L, Liu M, Dong J, Zou Z, Bu B, Jiang H, Liu L, Li Y, Yue D, Chang X, Zheng Y, Wang N, Gao M, Xia X, Cheng N, Wang T, Luo SS, Xi J, Lin J, Lu J, Zhao C, Yang H, Lin P, Hong D, Zhao Z, Wang Z, Zhu W. Novel variants and genotype-phenotype correlation in a multicentre cohort of GNE myopathy in China. J Med Genet 2024; 61:1053-1061. [PMID: 39332896 DOI: 10.1136/jmg-2024-110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND GlcNAc2-epimerase (GNE) myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. OBJECTIVE This multi-centre study aimed to delineate the clinical phenotype and GNE variant spectrum in Chinese patients, enhancing our understanding of the genetic diversity and clinical manifestation across different populations. METHODS We retrospectively analysed GNE variants from 113 patients, integrating these data with external GNE variants from online databases for a global perspective, examining their consequences, distribution, ethnicity and severity. RESULTS This study revealed 97 distinct GNE variants, including 35 (36.08%) novel variants. Two more patients with deep intronic variant c.862+870C>T were identified, while whole genome sequencing (WGS) uncovered another two novel intronic variants: c.52-8924G>T and c.1505-12G>A. Nanopore long reads sequencing (LRS) and further PCR analysis verified a 639 bp insertion at chr9:36249241. Missense variants predominantly located in the epimerase/kinase domain coding region, indicating the impairment of catalytic function as a key pathogenic consequence. Comparative studies with Japanese, Korean and Jewish, our cohorts showed later onset ages by 2 years. The high allele frequency of the non-catalytic GNE variant, c.620A>T, might underlie the milder phenotype of Chinese patients. CONCLUSIONS Comprehensive techniques such as WGS and Nanopore LRS warrants the identifying of GNE variants. Patients with the non-catalytic GNE variant, c.620A>T, had a milder disease progression and later wheelchair use.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Qiuxiang Li
- Department of Neurology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xiaoqing Lv
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanyan Yu
- Department of Neurology and Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Huahua Zhong
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Xu'en Yu
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Jia Song
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qing Ke
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyuan Qian
- Department of Neurology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai, China
| | - Xueli Chang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liang Wang
- Department of Neurology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Meirong Liu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, Shanghai, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haishan Jiang
- Department of Neurology, Southern Medical University Nanfang Hospital, Guangzhou, China, China
| | - LingChun Liu
- Department of Neurology, First People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Centre Hospital of Shanghai, Shanghai, Shanghai, China
| | - Xuechun Chang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Yongsheng Zheng
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Tao Wang
- Department of Anesthesiology, Zhongshan hospital, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science,Fudan University, Shanghai, China
| | - Su-Shan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Huan Yang
- Department of Neurology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Pengfei Lin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Daojun Hong
- Department of Neurology and Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Zhao
- Department of Neuromuscular Disease, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiqiang Wang
- The Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| |
Collapse
|
7
|
Kotioumbé M, Maiga AB, Bamba S, Cissé L, Diarra S, Diallo S, Yalcouyé A, Kané F, Diallo SH, Coulibaly D, Coulibaly T, Dembélé K, Maiga B, Guinto CO, Landouré G. A novel variant in the GNE gene in a Malian patient presenting with distal myopathy. Neurogenetics 2024; 25:487-492. [PMID: 39088149 DOI: 10.1007/s10048-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 08/02/2024]
Abstract
GNE-myopathy (GNE-M) is a rare autosomal recessive disorder caused by variants in the GNE gene. We report a novel variant in GNE causing GNE-M in a Malian family. A 19-year-old male patient from consanguineous marriage was seen for progressive walking difficulty. Neurological examination found predominant distal muscle weakness and atrophy, decreased tendon reflexes, predominating in lower limbs. Electroneuromyography showed an axonal neuropathy pattern. However, whole exome sequencing (WES) revealed a novel biallelic variant in GNE c.1838G > A:p.Gly613Glu, segregating with the phenotype within the family. This study highlights its diagnosis challenges in sub-Saharan Africa and broadens the genetic spectrum of this rare disease.
Collapse
Affiliation(s)
- Mahamadou Kotioumbé
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
| | - Alassane B Maiga
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
| | - Salia Bamba
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
| | - Lassana Cissé
- Service de Neurologie, Centre Hospitalier Universitaire Point "G", Bamako, Mali
| | - Salimata Diarra
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA
| | - Salimata Diallo
- Service de Neurologie, Centre Hospitalier Universitaire "Gabriel Touré", Bamako, Mali
| | - Abdoulaye Yalcouyé
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
| | - Fousseyni Kané
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
| | - Seybou H Diallo
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
- Service de Neurologie, Centre Hospitalier Universitaire "Gabriel Touré", Bamako, Mali
| | - Dramane Coulibaly
- Service de Médecine, Centre Hospitalier Universitaire "Le Luxembourg", Bamako, Mali
| | - Thomas Coulibaly
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
- Service de Neurologie, Centre Hospitalier Universitaire Point "G", Bamako, Mali
| | - Kékouta Dembélé
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
| | - Boubacar Maiga
- Service de Neurologie, Centre Hospitalier Universitaire Point "G", Bamako, Mali
| | - Cheick O Guinto
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali
- Service de Neurologie, Centre Hospitalier Universitaire Point "G", Bamako, Mali
| | - Guida Landouré
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, BP: 1805, Mali.
- Service de Neurologie, Centre Hospitalier Universitaire Point "G", Bamako, Mali.
| |
Collapse
|
8
|
Oswalia J, Singh S, Gautam V, Arya R. Altered autophagic flux in GNE mutant cells of Indian origin: Potential drug target for GNE myopathy. Exp Cell Res 2024; 440:114118. [PMID: 38852763 DOI: 10.1016/j.yexcr.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of β-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.
Collapse
Affiliation(s)
- Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shagun Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vaishali Gautam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Mashangva F, Oswalia J, Singh S, Arya R. Potential small effector molecules restoring cellular defects due to sialic acid biosynthetic enzyme deficiency: Pathological relevance to GNE myopathy. Biochem Pharmacol 2024; 223:116199. [PMID: 38604256 DOI: 10.1016/j.bcp.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
GNEM (GNE Myopathy) is a rare neuromuscular disease caused due to biallelic mutations in sialic acid biosynthetic GNE enzyme (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase). Recently direct or indirect role of GNE in other cellular functions have been elucidated. Hyposialylation of IGF-1R leads to apoptosis due to mitochondrial dysfunction while hyposialylation of β1 integrin receptor leads to altered F-actin assembly, disrupted cytoskeletal organization and slow cell migration. Other cellular defects in presence of GNE mutation include altered ER redox state and chaperone expression such as HSP70 or PrdxIV. Currently, there is no cure to treat GNEM. Possible therapeutic trials focus on supplementation with sialic acid, ManNAc, sialyllactose and gene therapy that slows the disease progression. In the present study, we analyzed the effect of small molecules like BGP-15 (HSP70 modulator), IGF-1 (IGF-1R ligand) and CGA (cofilin activator) on cellular phenotypes of GNE heterozygous knock out L6 rat skeletal muscle cell line (SKM‑GNEHz). Treatment with BGP-15 improved GNE epimerase activity by 40 % and reduced ER stress by 45 % for SKM‑GNEHz. Treatment with IGF-1 improved epimerase activity by 37.5 %, F-actin assembly by 100 %, cell migration upto 36 % (36 h) and atrophy by 0.44-fold for SKM‑GNEHz. Treatment with CGA recovered epimerase activity by 49 %, F-actin assembly by 132 % and cell migration upto 41 % (24 h) in SKM‑GNEHz. Our study shows that treatment with these small effector molecules reduces the detrimental phenotype observed in SKM‑GNEHz, thereby, providing insights into potential therapeutic targets for GNEM.
Collapse
Affiliation(s)
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shagun Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Tamanna N, Pi BK, Lee AJ, Kanwal S, Choi BO, Chung KW. Recessive GNE Mutations in Korean Nonaka Distal Myopathy Patients with or without Peripheral Neuropathy. Genes (Basel) 2024; 15:485. [PMID: 38674419 PMCID: PMC11050279 DOI: 10.3390/genes15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Autosomal recessive Nonaka distal myopathy is a rare autosomal recessive genetic disease characterized by progressive degeneration of the distal muscles, causing muscle weakness and decreased grip strength. It is primarily associated with mutations in the GNE gene, which encodes a key enzyme of sialic acid biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase). This study was performed to find GNE mutations in six independent distal myopathy patients with or without peripheral neuropathy using whole-exome sequencing (WES). In silico pathogenic prediction and simulation of 3D structural changes were performed for the mutant GNE proteins. As a result, we identified five pathogenic or likely pathogenic missense variants: c.86T>C (p.Met29Thr), c.527A>T (p.Asp176Val), c.782T>C (p.Met261Thr), c.1714G>C (p.Val572Leu), and c.1771G>A (p.Ala591Thr). Five affected individuals showed compound heterozygous mutations, while only one patient revealed a homozygous mutation. Two patients revealed unreported combinations of combined heterozygous mutations. We observed some specific clinical features, such as complex phenotypes of distal myopathy with distal hereditary peripheral neuropathy, an earlier onset of weakness in legs than that of hands, and clinical heterogeneity between two patients with the same set of compound heterozygous mutations. Our findings on these genetic causes expand the clinical spectrum associated with the GNE mutations and can help prepare therapeutic strategies.
Collapse
Affiliation(s)
- Nasrin Tamanna
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| | - Byung Kwon Pi
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| | - Sumaira Kanwal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal 45550, Pakistan;
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology, Seoul 06351, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (N.T.); (B.K.P.); (A.J.L.)
| |
Collapse
|
11
|
Kotioumbe M, Maiga AB, Bamba S, Cissé L, Diarra S, Diallo S, Yalcouyé A, Kané F, Diallo SH, Coulibaly D, Coulibaly T, Dembélé K, Maiga B, Guinto CO, Landouré G. A novel variant in the GNE gene in a Malian patient presenting with distal myopathy. RESEARCH SQUARE 2024:rs.3.rs-4004982. [PMID: 38496429 PMCID: PMC10942567 DOI: 10.21203/rs.3.rs-4004982/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background GNE myopathy (GM) is a rare autosomal recessive disorder caused by variants in the GNE gene and characterized by progressive distal muscle weakness and atrophy. We report a novel variant in theGNE gene causing GM in a consanguineous Malian family. Case presentation A 19-year-old male patient from a consanguineous family of Bambara ethnicity was seen for progressive walking difficulty and frequent falls. Neurological examination found distalmuscle weakness and atrophy and reduced tendon reflexes in four limbs. Electroneuromyography (ENMG) showed an axonal neuropathy pattern with reduced distal motor amplitudes. Charcot-Marie-Tooth (CMT) gene panel testing (Medical Neurogenetics LLC, Atlanta, GA) was negative. However, whole exome sequencing (WES) revealed a novel biallelic variant in GNE (c.1838G>A:p.Gly613Glu), segregating with the phenotype in the family. This variant is predicted to be pathogenic by several in silicoprediction tools including CADD= 29. Moreover, protein folding model showed major structural disruptions in the mutant protein. Conclusion This study reports a novel variant in the GNE gene causing GM, the first molecularly diagnosed in sub-Saharan Africa (SSA). It highlights the diagnosis challenges in this region and broadens the genetic spectrum of this rare disease.
Collapse
Affiliation(s)
- Mahamadou Kotioumbe
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Alassane B Maiga
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Salia Bamba
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Lassana Cissé
- Service de Neurologie, Centre Hospitalier Universitaire du Point "G", Bamako
| | - Salimata Diarra
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Salimata Diallo
- Service de Neurologie, Centre Hospitalier Universitaire "Gabriel Touré", Bamako
| | - Abdoulaye Yalcouyé
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Fousseyni Kané
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Seybou H Diallo
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Dramane Coulibaly
- Service de Médecine, Centre Hospitalier Universitaire "Le Luxembourg", Bamako
| | - Thomas Coulibaly
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Kékouta Dembélé
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Boubacar Maiga
- Service de Neurologie, Centre Hospitalier Universitaire du Point "G", Bamako
| | - Cheick O Guinto
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| | - Guida Landouré
- Faculté de Médecine et d'Odontostomatologie, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako
| |
Collapse
|
12
|
Mori-Yoshimura M, Suzuki N, Katsuno M, Takahashi MP, Yamashita S, Oya Y, Hashizume A, Yamada S, Nakamori M, Izumi R, Kato M, Warita H, Tateyama M, Kuroda H, Asada R, Yamaguchi T, Nishino I, Aoki M. Efficacy confirmation study of aceneuramic acid administration for GNE myopathy in Japan. Orphanet J Rare Dis 2023; 18:241. [PMID: 37568154 PMCID: PMC10416530 DOI: 10.1186/s13023-023-02850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND A rare muscle disease, GNE myopathy is caused by mutations in the GNE gene involved in sialic acid biosynthesis. Our recent phase II/III study has indicated that oral administration of aceneuramic acid to patients slows disease progression. METHODS We conducted a phase III, randomized, placebo-controlled, double-blind, parallel-group, multicenter study. Participants were assigned to receive an extended-release formulation of aceneuramic acid (SA-ER) or placebo. Changes in muscle strength and function over 48 weeks were compared between treatment groups using change in the upper extremity composite (UEC) score from baseline to Week 48 as the primary endpoint and the investigator-assessed efficacy rate as the key secondary endpoint. For safety, adverse events, vital signs, body weight, electrocardiogram, and clinical laboratory results were monitored. RESULTS A total of 14 patients were enrolled and given SA-ER (n = 10) or placebo (n = 4) tablets orally. Decrease in least square mean (LSM) change in UEC score at Week 48 with SA-ER (- 0.115 kg) was numerically smaller as compared with placebo (- 2.625 kg), with LSM difference (95% confidence interval) of 2.510 (- 1.720 to 6.740) kg. In addition, efficacy was higher with SA-ER as compared with placebo. No clinically significant adverse events or other safety concerns were observed. CONCLUSIONS The present study reproducibly showed a trend towards slowing of loss of muscle strength and function with orally administered SA-ER, indicating supplementation with sialic acid might be a promising replacement therapy for GNE myopathy. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT04671472).
Collapse
Affiliation(s)
- Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Satoshi Yamashita
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Hiroshi Kuroda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan
| | - Ryuta Asada
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience and Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8574, Japan.
| |
Collapse
|