1
|
Borgolte A, Sinke C, Michalke L, Möde L, Lepsy N, Wiswede D, Bleich S, Szycik GR, Ghaneirad E. Neural correlates of audiovisual integration in schizophrenia - an ERP study. Front Psychiatry 2024; 15:1492266. [PMID: 39720424 PMCID: PMC11666525 DOI: 10.3389/fpsyt.2024.1492266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Multisensory integration (MSI) enhances perception by combining information from different sensory modalities. In schizophrenia, individuals often exhibit impaired audiovisual processing, resulting in broader temporal binding windows (TBWs) which appear to be associated with symptom severity. Since the underlying mechanisms of these aberrations are not yet fully understood, the present study aims to investigate multisensory processing in schizophrenia in more detail. Methods Individuals with schizophrenia (SZ) and healthy controls (HC) performed a simultaneity judgement task, a paradigm that is suitable for the examination of multisensory integration processes. The paradigm was also conducted to allow for the comparison of perceptions under ecologically valid and invalid conditions. Additionally, EEG recordings were made to explore underlying neural mechanisms. Results In line with previous research, we replicated enlarged TBWs in SZ compared to HC, independent of ecological validity. Neurophysiological data further revealed reduced amplitudes in the early ERP complex N1/P2 in SZ compared to HC. Discussion Since amplitude reduction in the N1/P2 complex is often associated with audiovisual integration processes, the results highlight perceptual dysfunction in SZ, particularly concerning the disengagement of auditory and visual stimuli.
Collapse
Affiliation(s)
- A. Borgolte
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - C. Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - L. Michalke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - L. Möde
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - N. Lepsy
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - D. Wiswede
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - S. Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hanover, Germany
| | - G. R. Szycik
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - E. Ghaneirad
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Kamiya C, Iwatani Y, Yoshimoto S, Taniguchi H, Kitabatake Y, Kagitani-Shimono K. Inter-hemispheric somatosensory coherence and parental stress in hypersensitivity at 8 months old: An electroencephalography study. Clin Neurophysiol 2024; 163:185-196. [PMID: 38759514 DOI: 10.1016/j.clinph.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE Infant hypersensitivity affects daily challenges and parental stress. Although the crucial role of tactile sensation in infants' brain function has been highlighted, hypersensitive infants and their families lack support. Electroencephalography may be useful for understanding hypersensitivity traits. We investigated the relationship between infant perceptual hypersensitivity and parental stress, somatosensory-evoked potential (SEP), and magnitude-squared coherence (MSC) in the general population. METHODS Infants aged 8 months (n = 63) were evaluated for hypersensitivity and parental stress using a questionnaire and for cortical activity using electroencephalography. Vibration stimuli were applied to the infant's left foot. SEP components that peaked around 150 ms (N2) and at 200 ms (P2) after stimulus onset were evaluated by amplitude and latency at the midline electrode (Cz) and MSC between the midline electrodes (C3-C4). RESULTS Parental stress was associated with infant hypersensitivity. The latency of Cz was delayed, and C3-C4 delta MSC was high in infants with hypersensitivity. CONCLUSIONS Increasing inter-hemispheric MSC synchrony in the stimulated condition in infants with hypersensitivity suggested atypical somatosensory cortical function. SIGNIFICANCE These findings contribute to identifying, understanding the mechanisms of, and developing effective coping strategies for early-stage hypersensitivity.
Collapse
Affiliation(s)
- Chiori Kamiya
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita City, Osaka Prefecture 565-0871, Japan
| | - Yoshiko Iwatani
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita City, Osaka Prefecture 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita City, Osaka Prefecture 565-0871, Japan; Department of Pediatrics, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita City, Osaka Prefecture, 565-0871, Japan
| | - Shunsuke Yoshimoto
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa City, Chiba Prefecture, Japan
| | - Hidetoshi Taniguchi
- Department of Pediatrics, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita City, Osaka Prefecture, 565-0871, Japan; Izumi Pediatric and Rehabilitation Clinic, 2-1-1, Higashiyama, Kaizuka City, Osaka Prefecture, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita City, Osaka Prefecture, 565-0871, Japan
| | - Kuriko Kagitani-Shimono
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita City, Osaka Prefecture 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita City, Osaka Prefecture 565-0871, Japan; Department of Pediatrics, Graduate School of Medicine, Osaka University, 2-15, Yamadaoka, Suita City, Osaka Prefecture, 565-0871, Japan.
| |
Collapse
|
3
|
Heo MQ, English MCW, Maybery MT, Visser TAW. Visuospatial cueing differences as a function of autistic traits. Atten Percept Psychophys 2024; 86:1342-1359. [PMID: 38561567 PMCID: PMC11093807 DOI: 10.3758/s13414-024-02871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Atypical orienting of visuospatial attention in autistic individuals or individuals with a high level of autistic-like traits (ALTs) has been well documented and viewed as a core feature underlying the development of autism. However, there has been limited testing of three alternative theoretical positions advanced to explain atypical orienting - difficulty in disengagement, cue indifference, and delay in orienting. Moreover, research commonly has not separated facilitation (reaction time difference between neutral and valid cues) and cost effects (reaction time difference between invalid and neutral cues) in orienting tasks. We addressed these limitations in two experiments that compared groups selected for Low- and High-ALT levels on exogenous and endogenous versions of the Posner cueing paradigm. Experiment 1 showed that High-ALT participants exhibited a significantly reduced cost effect compared to Low-ALT participants in the endogenous cueing task, although the overall orienting effect remained small. In Experiment 2, we increased task difficulty of the endogenous task to augment cueing effects. Results were comparable to Experiment 1 regarding the finding of a reduced cost effect for High-ALT participants on the endogenous cueing task and additionally demonstrated a reduced facilitation effect in High-ALT participants on the same task. No ALT group differences were observed on an exogenous cueing task included in Experiment 2. These findings suggest atypical orienting in High-ALT individuals may be attributable to general cue indifference, which implicates differences in top-down attentional processes between Low- and High-ALT individuals. We discuss how indifference to endogenous cues may contribute to social cognitive differences in autism.
Collapse
Affiliation(s)
- Min Quan Heo
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Michael C W English
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Troy A W Visser
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
4
|
Keating CT, Ichijo E, Cook JL. Autistic adults exhibit highly precise representations of others' emotions but a reduced influence of emotion representations on emotion recognition accuracy. Sci Rep 2023; 13:11875. [PMID: 37481669 PMCID: PMC10363153 DOI: 10.1038/s41598-023-39070-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
To date, studies have not yet established the mechanisms underpinning differences in autistic and non-autistic emotion recognition. The current study first investigated whether autistic and non-autistic adults differed in terms of the precision and/or differentiation of their visual emotion representations and their general matching abilities, and second, explored whether differences therein were related to challenges in accurately recognizing emotional expressions. To fulfil these aims, 45 autistic and 45 non-autistic individuals completed three tasks employing dynamic point light displays of emotional facial expressions. We identified that autistic individuals had more precise visual emotion representations than their non-autistic counterparts, however, this did not confer any benefit for their emotion recognition. Whilst for non-autistic people, non-verbal reasoning and the interaction between precision of emotion representations and matching ability predicted emotion recognition, no variables contributed to autistic emotion recognition. These findings raise the possibility that autistic individuals are less guided by their emotion representations, thus lending support to Bayesian accounts of autism.
Collapse
Affiliation(s)
| | - Eri Ichijo
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jennifer L Cook
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Thérien VD, Degré-Pelletier J, Barbeau EB, Samson F, Soulières I. Different levels of visuospatial abilities linked to differential brain correlates underlying visual mental segmentation processes in autism. Cereb Cortex 2023; 33:9186-9211. [PMID: 37317036 PMCID: PMC10350832 DOI: 10.1093/cercor/bhad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
The neural underpinnings of enhanced locally oriented visual processing that are specific to autistics with a Wechsler's Block Design (BD) peak are largely unknown. Here, we investigated the brain correlates underlying visual segmentation associated with the well-established autistic superior visuospatial abilities in distinct subgroups using functional magnetic resonance imaging. This study included 31 male autistic adults (15 with (AUTp) and 16 without (AUTnp) a BD peak) and 28 male adults with typical development (TYP). Participants completed a computerized adapted BD task with models having low and high perceptual cohesiveness (PC). Despite similar behavioral performances, AUTp and AUTnp showed generally higher occipital activation compared with TYP participants. Compared with both AUTnp and TYP participants, the AUTp group showed enhanced task-related functional connectivity within posterior visuoperceptual regions and decreased functional connectivity between frontal and occipital-temporal regions. A diminished modulation in frontal and parietal regions in response to increased PC was also found in AUTp participants, suggesting heavier reliance on low-level processing of global figures. This study demonstrates that enhanced visual functioning is specific to a cognitive phenotypic subgroup of autistics with superior visuospatial abilities and reinforces the need to address autistic heterogeneity by good cognitive characterization of samples in future studies.
Collapse
Affiliation(s)
- Véronique D Thérien
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal (Québec) H1E 1A4, Canada
| | - Janie Degré-Pelletier
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal (Québec) H1E 1A4, Canada
| | - Elise B Barbeau
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Fabienne Samson
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Isabelle Soulières
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal (Québec) H1E 1A4, Canada
| |
Collapse
|
6
|
Thérien VD, Degré-Pelletier J, Barbeau EB, Samson F, Soulières I. Differential neural correlates underlying mental rotation processes in two distinct cognitive profiles in autism. Neuroimage Clin 2022; 36:103221. [PMID: 36228483 PMCID: PMC9668634 DOI: 10.1016/j.nicl.2022.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Enhanced visuospatial abilities characterize the cognitive profile of a subgroup of autistics. However, the neural correlates underlying such cognitive strengths are largely unknown. Using functional magnetic resonance imaging (fMRI), we investigated the neural underpinnings of superior visuospatial functioning in different autistic subgroups. Twenty-seven autistic adults, including 13 with a Wechsler's Block Design peak (AUTp) and 14 without (AUTnp), and 23 typically developed adults (TYP) performed a classic mental rotation task. As expected, AUTp participants were faster at the task compared to TYP. At the neural level, AUTp participants showed enhanced bilateral parietal and occipital activation, stronger occipito-parietal and fronto-occipital connectivity, and diminished fronto-parietal connectivity compared to TYP. On the other hand, AUTnp participants presented greater activation in right and anterior regions compared to AUTp. In addition, reduced connectivity between occipital and parietal regions was observed in AUTnp compared to AUTp and TYP participants. A greater reliance on posterior regions is typically reported in the autism literature. Our results suggest that this commonly reported finding may be specific to a subgroup of autistic individuals with enhanced visuospatial functioning. Moreover, this study demonstrated that increased occipito-frontal synchronization was associated with superior visuospatial abilities in autism. This finding contradicts the long-range under-connectivity hypothesis in autism. Finally, given the relationship between distinct cognitive profiles in autism and our observed differences in brain functioning, future studies should provide an adequate characterization of the autistic subgroups in their research. The main limitations are small sample sizes and the inclusion of male-only participants.
Collapse
Affiliation(s)
- Véronique D. Thérien
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada
| | - Janie Degré-Pelletier
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada
| | - Elise B. Barbeau
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Fabienne Samson
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Isabelle Soulières
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada,Corresponding author at: Psychology Department, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal (Québec) H3C 3P8, Canada.
| |
Collapse
|
7
|
Korisky A, Gordon I, Goldstein A. Oxytocin impacts top-down and bottom-up social perception in adolescents with ASD: a MEG study of neural connectivity. Mol Autism 2022; 13:36. [PMID: 36064612 PMCID: PMC9446859 DOI: 10.1186/s13229-022-00513-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In the last decade, accumulative evidence has shown that oxytocin can modulate social perception in typically developed individuals and individuals diagnosed with autism. While several studies show that oxytocin (OT) modulates neural activation in social-related neural regions, the mechanism that underlies OT effects in ASD is not fully known yet. Despite evidence from animal studies on connections between the oxytocinergic system and excitation/inhibition neural balance, the influence of OT on oscillatory responses among individuals with ASD has been rarely examined. To bridge these gaps in knowledge, we investigated the effects of OT on both social and non-social stimuli while focusing on its specific influence on the neural connectivity between three socially related neural regions-the left and right fusiform and the medial frontal cortex. METHODS Twenty-five adolescents with ASD participated in a wall-established social task during a randomized, double-blind placebo-controlled MEG and OT administration study. Our main task was a social-related task that required the identification of social and non-social-related pictures. We hypothesized that OT would modulate the oscillatory connectivity between three pre-selected regions of interest to be more adaptive to social processing. Specifically, we focused on alpha and gamma bands which are known to play an important role in face processing and top-down/bottom-up balance. RESULTS Compared to placebo, OT reduced the connectivity between the medial frontal cortex and the fusiform in the low gamma more for social stimuli than for non-social ones, a reduction that was correlated with individuals' performance in the task. Additionally, for both social and non-social stimuli, OT increased the connectivity in the alpha and beta bands. LIMITATIONS Sample size was determined based on sample sizes previously reported in MEG in clinical populations, especially OT administration studies in combination with neuroimaging in ASD. We were limited in our capability to recruit for such a study, and as such, the sample size was not based on a priori power analysis. Additionally, we limited our analyses to specific neural bands and regions. To validate the current results, future studies may be needed to explore other parameters using whole-brain approaches in larger samples. CONCLUSION These results suggest that OT influenced social perception by modifying the communication between frontal and posterior regions, an attenuation that potentially impacts both social and non-social early perception. We also show that OT influences differ between top-down and bottom-up processes, depending on the social context. Overall, by showing that OT influences both social-related perception and overall attention during early processing stages, we add new information to the existing understanding of the impact of OT on neural processing in ASD. Furthermore, by highlighting the influence of OT on early perception, we provide new directions for treatments for difficulties in early attentional phases in this population. Trial registration Registered on October 27, 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05096676 (details on clinical registration can be found in www. CLINICALTRIAL gov , unique identifier: NCT05096676 ).
Collapse
Affiliation(s)
- Adi Korisky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Ilanit Gordon
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- Department of Psychology, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Abraham Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- Department of Psychology, Bar-Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
8
|
Dynamic neural reconfiguration for distinct strategies during competitive social interactions. Neuroimage 2022; 263:119585. [PMID: 36030063 DOI: 10.1016/j.neuroimage.2022.119585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Information exchange between brain regions is key to understanding information processing for social decision-making, but most analyses ignore its dynamic nature. New insights on this dynamic might help us to uncover the neural correlates of social cognition in the healthy population and also to understand the malfunctioning neural computations underlying dysfunctional social behavior in patients with mental disorders. In this work, we used a multi-round bargaining game to detect switches between distinct bargaining strategies in a cohort of 76 healthy participants. These switches were uncovered by dynamic behavioral modeling using the hidden Markov model. Proposing a novel model of dynamic effective connectivity to estimate the information flow between key brain regions, we found a stronger interaction between the right temporoparietal junction (rTPJ) and the right dorsolateral prefrontal cortex (rDLPFC) for the strategic deception compared with the social heuristic strategies. The level of deception was associated with the information flow from the Brodmann area 10 to the rTPJ, and this association was modulated by the rTPJ-to-rDLPFC information flow. These findings suggest that dynamic bargaining strategy is supported by dynamic reconfiguration of the rDLPFC-and-rTPJ interaction during competitive social interactions.
Collapse
|
9
|
Abassi E, Papeo L. Behavioral and neural markers of visual configural processing in social scene perception. Neuroimage 2022; 260:119506. [PMID: 35878724 DOI: 10.1016/j.neuroimage.2022.119506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Research on face perception has revealed highly specialized visual mechanisms such as configural processing, and provided markers of interindividual differences -including disease risks and alterations- in visuo-perceptual abilities that traffic in social cognition. Is face perception unique in degree or kind of mechanisms, and in its relevance for social cognition? Combining functional MRI and behavioral methods, we address the processing of an uncharted class of socially relevant stimuli: minimal social scenes involving configurations of two bodies spatially close and face-to-face as if interacting (hereafter, facing dyads). We report category-specific activity for facing (vs. non-facing) dyads in visual cortex. That activity shows face-like signatures of configural processing -i.e., stronger response to facing (vs. non-facing) dyads, and greater susceptibility to stimulus inversion for facing (vs. non-facing) dyads-, and is predicted by performance-based measures of configural processing in visual perception of body dyads. Moreover, we observe that the individual performance in body-dyad perception is reliable, stable-over-time and correlated with the individual social sensitivity, coarsely captured by the Autism-Spectrum Quotient. Further analyses clarify the relationship between single-body and body-dyad perception. We propose that facing dyads are processed through highly specialized mechanisms -and brain areas-, analogously to other biologically and socially relevant stimuli such as faces. Like face perception, facing-dyad perception can reveal basic (visual) processes that lay the foundations for understanding others, their relationships and interactions.
Collapse
Affiliation(s)
- Etienne Abassi
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de la Recherche Scientifique (CNRS) and Université Claude Bernard Lyon 1, 67 Bd. Pinel, 69675 Bron France.
| | - Liuba Papeo
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de la Recherche Scientifique (CNRS) and Université Claude Bernard Lyon 1, 67 Bd. Pinel, 69675 Bron France
| |
Collapse
|
10
|
Rudolph A, Liepelt R, Kaffes M, Hofmann-Shen C, Montag C, Neuhaus AH. Motor cognition in schizophrenia: Control of automatic imitation and mapping of action context are reduced. Schizophr Res 2022; 240:116-124. [PMID: 34995996 DOI: 10.1016/j.schres.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
The ability to imitate is considered impaired in schizophrenia patients. This assumption, however, is based on heterogeneous studies mostly targeting voluntary imitation, e.g., pantomime. Studies on automatic imitation, however, and on underlying mechanisms of top-down inhibition of automatic imitation and contextual modulation in schizophrenia are highly limited. We employed two sensorimotor paradigms to examine imitation-inhibition and action context mapping in 37 schizophrenia patients and 36 matched controls. In the first experiment, participants performed finger lifts while observing a hand executing compatible or incompatible finger lifts from the third-person perspective. The compatibility or incompatibility of these finger lifts affected participants' reaction times (RTs). The comparison of between-condition RT differences shows a larger movement compatibility effect in schizophrenia than in controls. The second experiment involved finger lifts while watching a still hand, from the first-person perspective, with constrained fingers that either corresponded or did not correspond to the participants' response fingers. Here, schizophrenia patients showed a diminished RT slowing in corresponding constraint trials. While the former results provide evidence for an impaired control of imitation in patients with schizophrenia, the latter results indicate a reduced encoding of action context. In conclusion, this study provides the first evidence for deficits of top-down control of imitation and motor context processing in the same sample of schizophrenia patients.
Collapse
Affiliation(s)
- Armin Rudolph
- Department of Psychiatry, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany.
| | - Roman Liepelt
- Department of General Psychology, FernUniversität in Hagen, Universitätsstraße 27, 58097 Hagen, Germany.
| | - Maximilian Kaffes
- Department of Neurology, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany.
| | - Christina Hofmann-Shen
- Department of Psychiatry, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany.
| | - Christiane Montag
- Department of Psychiatry, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany.
| | - Andres H Neuhaus
- Department of Psychiatry, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; Department of Psychiatry, Brandenburg Medical School, Fehrbelliner Str. 38, 16816 Neuruppin, Germany.
| |
Collapse
|
11
|
Keating CT, Sowden S, Cook JL. Comparing internal representations of facial expression kinematics between autistic and non-autistic adults. Autism Res 2021; 15:493-506. [PMID: 34846102 DOI: 10.1002/aur.2642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022]
Abstract
Recent developments suggest that autistic individuals require dynamic angry expressions to have a higher speed in order for them to be successfully identified. Therefore, it is plausible that autistic individuals do not have a 'deficit' in angry expression recognition, but rather their internal representation of these expressions is characterised by very high-speed movement. In this study, matched groups of autistic and non-autistic adults completed a novel emotion-based task which employed dynamic displays of happy, angry and sad point light facial (PLF) expressions. On each trial, participants moved a slider to manipulate the speed of a PLF stimulus until it moved at a speed that, in their 'mind's eye', was typical of happy, angry or sad expressions. Participants were shown three different types of PLFs-those showing the full-face, only the eye region, and only the mouth region, wherein the latter two were included to test whether differences in facial information sampling underpinned any dissimilarities in speed attributions. Across both groups, participants attributed the highest speeds to angry, then happy, then sad, facial motion. Participants increased the speed of angry and happy expressions by 41% and 27% respectively and decreased the speed of sad expressions by 18%. This suggests that participants have 'caricatured' internal representations of emotion, wherein emotion-related kinematic cues are over-emphasised. There were no differences between autistic and non-autistic individuals in the speeds attributed to full-face and partial-face angry, happy and sad expressions respectively. Consequently, we find no evidence that autistic adults possess atypically fast internal representations of anger.
Collapse
Affiliation(s)
| | - Sophie Sowden
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Jennifer L Cook
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Rybicki AJ, Galea JM, Schuster BA, Hiles C, Fabian C, Cook JL. Intact predictive motor sequence learning in autism spectrum disorder. Sci Rep 2021; 11:20693. [PMID: 34667226 PMCID: PMC8526822 DOI: 10.1038/s41598-021-00173-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Atypical motor learning has been suggested to underpin the development of motoric challenges (e.g., handwriting difficulties) in autism. Bayesian accounts of autistic cognition propose a mechanistic explanation for differences in the learning process in autism. Specifically, that autistic individuals overweight incoming, at the expense of prior, information and are thus less likely to (a) build stable expectations of upcoming events and (b) react to statistically surprising events. Although Bayesian accounts have been suggested to explain differences in learning across a range of domains, to date, such accounts have not been extended to motor learning. 28 autistic and 35 non-autistic controls (IQ > 70) completed a computerised task in which they learned sequences of actions. On occasional "surprising" trials, an expected action had to be replaced with an unexpected action. Sequence learning was indexed as the reaction time difference between blocks which featured a predictable sequence and those that did not. Surprise-related slowing was indexed as the reaction time difference between surprising and unsurprising trials. No differences in sequence-learning or surprise-related slowing were observed between the groups. Bayesian statistics provided anecdotal to moderate evidence to support the conclusion that sequence learning and surprise-related slowing were comparable between the two groups. We conclude that individuals with autism do not show atypicalities in response to surprising events in the context of motor sequence-learning. These data demand careful consideration of the way in which Bayesian accounts of autism can (and cannot) be extended to the domain of motor learning.
Collapse
Affiliation(s)
- A. J. Rybicki
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - J. M. Galea
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - B. A. Schuster
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - C. Hiles
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - C. Fabian
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| | - J. L. Cook
- grid.6572.60000 0004 1936 7486School of Psychology, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
13
|
Top-Down Attentional Processing and Relational Density Evident in Word Search Performance of Children. Behav Anal Pract 2021; 15:684-697. [DOI: 10.1007/s40617-021-00614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
|
14
|
Opoku-Baah C, Schoenhaut AM, Vassall SG, Tovar DA, Ramachandran R, Wallace MT. Visual Influences on Auditory Behavioral, Neural, and Perceptual Processes: A Review. J Assoc Res Otolaryngol 2021; 22:365-386. [PMID: 34014416 PMCID: PMC8329114 DOI: 10.1007/s10162-021-00789-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 01/03/2023] Open
Abstract
In a naturalistic environment, auditory cues are often accompanied by information from other senses, which can be redundant with or complementary to the auditory information. Although the multisensory interactions derived from this combination of information and that shape auditory function are seen across all sensory modalities, our greatest body of knowledge to date centers on how vision influences audition. In this review, we attempt to capture the state of our understanding at this point in time regarding this topic. Following a general introduction, the review is divided into 5 sections. In the first section, we review the psychophysical evidence in humans regarding vision's influence in audition, making the distinction between vision's ability to enhance versus alter auditory performance and perception. Three examples are then described that serve to highlight vision's ability to modulate auditory processes: spatial ventriloquism, cross-modal dynamic capture, and the McGurk effect. The final part of this section discusses models that have been built based on available psychophysical data and that seek to provide greater mechanistic insights into how vision can impact audition. The second section reviews the extant neuroimaging and far-field imaging work on this topic, with a strong emphasis on the roles of feedforward and feedback processes, on imaging insights into the causal nature of audiovisual interactions, and on the limitations of current imaging-based approaches. These limitations point to a greater need for machine-learning-based decoding approaches toward understanding how auditory representations are shaped by vision. The third section reviews the wealth of neuroanatomical and neurophysiological data from animal models that highlights audiovisual interactions at the neuronal and circuit level in both subcortical and cortical structures. It also speaks to the functional significance of audiovisual interactions for two critically important facets of auditory perception-scene analysis and communication. The fourth section presents current evidence for alterations in audiovisual processes in three clinical conditions: autism, schizophrenia, and sensorineural hearing loss. These changes in audiovisual interactions are postulated to have cascading effects on higher-order domains of dysfunction in these conditions. The final section highlights ongoing work seeking to leverage our knowledge of audiovisual interactions to develop better remediation approaches to these sensory-based disorders, founded in concepts of perceptual plasticity in which vision has been shown to have the capacity to facilitate auditory learning.
Collapse
Affiliation(s)
- Collins Opoku-Baah
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Adriana M Schoenhaut
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Sarah G Vassall
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - David A Tovar
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ramnarayan Ramachandran
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vision Research Center, Nashville, TN, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Department of Hearing and Speech, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Vision Research Center, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
15
|
Lokey SB, Iwanski CM, Demos AP, Herbener ES. Individuals with schizophrenia display behaviour inconsistent with learned social impressions during a gambling task. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2021; 60:149-159. [PMID: 33755215 DOI: 10.1111/bjc.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Many studies of social perception and judgement have required individuals to make evaluations of social parameters based on static presentations of social stimuli. In the current study, we assessed whether individuals with a schizophrenia spectrum disorder and community controls differed in their judgements of others based on a series of computerized encounters designed to simulate impression formation over time. Twenty-eight community controls and 29 individuals with a schizophrenia spectrum disorder completed 25 gambling interactions with three different computer partners. After interacting with each partner, subjects rated how much they liked, trusted, and would like to play again with each partner. Results indicated that while individuals with schizophrenia rated the three partners differently (evaluating partners who returned more money higher than partners who returned less money), they did not adjust their gambling strategies with the different partners. Community controls adjusted the amount of money they gambled with the different partners, gambling more with partners that returned more money and gambling less with partners who returned less money, despite not rating the neutral and positive partners significantly differently from one another. These results suggest differences in behavioural strategies and social evaluation practices between community controls and individuals with schizophrenia. PRACTITIONER POINTS: Schizophrenia (SZ) and community control (CC) participants evaluate virtual partners on a gambling task in accordance with their behaviour (e.g., positive > neutral > negative in terms of trustworthiness, how much they liked them, and the likelihood that they would play with that individual again). Individuals with schizophrenia gambled equally with neutral, negative, and positive partner. Individuals with schizophrenia demonstrate an intact ability to form social impressions based on others' behaviour. However, subsequent behaviour does not parallel the formed impression (i.e., changing their gambling amount so that they are betting less money with a virtual partner they know is untrustworthy).
Collapse
Affiliation(s)
- Savannah B Lokey
- Psychology Department, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Colin M Iwanski
- Psychology Department, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Alexander P Demos
- Psychology Department, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Ellen S Herbener
- Psychology Department, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| |
Collapse
|
16
|
Mamashli F, Kozhemiako N, Khan S, Nunes AS, McGuiggan NM, Losh A, Joseph RM, Ahveninen J, Doesburg SM, Hämäläinen MS, Kenet T. Children with autism spectrum disorder show altered functional connectivity and abnormal maturation trajectories in response to inverted faces. Autism Res 2021; 14:1101-1114. [PMID: 33709531 DOI: 10.1002/aur.2497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
The processing of information conveyed by faces is a critical component of social communication. While the neurophysiology of processing upright faces has been studied extensively in autism spectrum disorder (ASD), less is known about the neurophysiological abnormalities associated with processing inverted faces in ASD. We used magnetoencephalography (MEG) to study both long-range and local functional connectivity, with the latter assessed using local cross-frequency coupling, in response to inverted faces stimuli, in 7-18 years old individuals with ASD and age and IQ matched typically developing (TD) individuals. We found abnormally reduced coupling between the phase of the alpha rhythm and the amplitude of the gamma rhythm in the fusiform face area (FFA) in response to inverted faces, as well as reduced long-range functional connectivity between the FFA and the inferior frontal gyrus (IFG) in response to inverted faces in the ASD group. These group differences were absent in response to upright faces. The magnitude of functional connectivity between the FFA and the IFG was significantly correlated with the severity of ASD, and FFA-IFG long-range functional connectivity increased with age in TD group, but not in the ASD group. Our findings suggest that both local and long-range functional connectivity are abnormally reduced in children with ASD when processing inverted faces, and that the pattern of abnormalities associated with the processing of inverted faces differs from the pattern of upright faces in ASD, likely due to the presumed greater reliance on top-down regulations necessary for efficient processing of inverted faces. LAY SUMMARY: We found alterations in the neurophysiological responses to inverted faces in children with ASD, that were not reflected in the evoked responses, and were not observed in the responses to upright faces. These alterations included reduced local functional connectivity in the fusiform face area (FFA), and decreased long-range alpha-band modulated functional connectivity between the FFA and the left IFG. The magnitude of long-range functional connectivity between the FFA and the inferior frontal gyrus was correlated with the severity of ASD.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts, USA.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Nataliia Kozhemiako
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts, USA.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Adonay S Nunes
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Nicole M McGuiggan
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts, USA
| | - Ainsley Losh
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts, USA.,Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts, USA.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada.,Behavioral and Cognitive Neuroscience Institute, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts, USA.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Tal Kenet
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts, USA.,Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Croft J, Martin D, Madley-Dowd P, Strelchuk D, Davies J, Heron J, Teufel C, Zammit S. Childhood trauma and cognitive biases associated with psychosis: A systematic review and meta-analysis. PLoS One 2021; 16:e0246948. [PMID: 33630859 PMCID: PMC7906349 DOI: 10.1371/journal.pone.0246948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Childhood trauma is associated with an increased risk of psychosis, but the mechanisms that mediate this relationship are unknown. Exposure to trauma has been hypothesised to lead to cognitive biases that might have causal effects on psychotic symptoms. The literature on whether childhood trauma is associated with psychosis-related cognitive biases has not been comprehensively reviewed. A systematic review and meta-analysis or narrative synthesis of studies examining the association between childhood trauma and the following biases: external locus of control (LOC), external attribution, probabilistic reasoning, source monitoring, top-down processing, and bias against disconfirmatory evidence. Studies were assessed for quality, and sources of heterogeneity were explored. We included 25 studies from 3,465 studies identified. Individuals exposed to childhood trauma reported a more external LOC (14 studies: SMD Median = 0.40, Interquartile range 0.07 to 0.52), consistent with a narrative synthesis of 11 other studies of LOC. There was substantial heterogeneity in the meta-analysis (I2 = 93%) not explained by study characteristics examined. Narrative syntheses for other biases showed weaker, or no evidence of association with trauma. The quality of included studies was generally low. Our review provides some evidence of an association between childhood trauma and a more external LOC, but not with the other biases examined. The low quality and paucity of studies for most of the cognitive biases examined highlights the need for more rigorous studies to determine which biases occur after trauma, and whether they mediate an effect of childhood trauma on psychosis.
Collapse
Affiliation(s)
- Jazz Croft
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Martin
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Paul Madley-Dowd
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Daniela Strelchuk
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jonathan Davies
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jon Heron
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Christoph Teufel
- Cardiff University Brain Research Imaging Centre, School of Psychology, University of Cardiff, Cardiff, United Kingdom
| | - Stanley Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
18
|
Ramsey R, Ward R. Challenges and opportunities for top-down modulation research in cognitive psychology. Acta Psychol (Amst) 2020; 209:103118. [PMID: 32623130 DOI: 10.1016/j.actpsy.2020.103118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Studying social modulation of cognitive processes holds much promise for illuminating how, where, when and why social factors influence how we perceive and act in the world, as well as providing insight into the underlying cognitive mechanisms. This is no small objective; it reflects an ambitious programme of research. At present, based on the modal theoretical and methodological approach, we suggest that several challenges exist to achieving such lofty aims. These challenges span an overreliance on a simplistic dichotomy between "top-down" and "bottom-up" modulation, a lack of specificity about mechanisms that renders clear interpretations difficult, and theories that largely test against null hypotheses. We suggest that these challenges present several opportunities for new research and we encourage the field to abandon simplistic dichotomies and connect much more with existing research programmes such as semantics, memory and attention, which have all built diverse research platforms over many decades and that can help shape how social modulation is conceptualised and studied from a cognitive and brain perspective. We also outline ways that stronger theoretical positions can be taken, which avoid comparing to null hypotheses, and endorse methodological reform through fully embracing proposals from the open science movement and "credibility revolution". We feel that by taking these opportunities, the field will have a better chance of reaching its potential to build a cumulative science of social modulation that can inform understanding of basic cognitive and brain systems, as well as real-life social interactions and the varied abilities observed across the Autism Spectrum.
Collapse
|
19
|
Maróthi R, Csigó K, Kéri S. Early-Stage Vision and Perceptual Imagery in Autism Spectrum Conditions. Front Hum Neurosci 2019; 13:337. [PMID: 31632255 PMCID: PMC6781947 DOI: 10.3389/fnhum.2019.00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum conditions (ASC) are characterized by multifaceted alterations in visual perception and mental imagery. However, the interaction between early-stage visual perception and imagery has not been explored. We recruited 40 individuals with ASC and 20 neurotypical control volunteers to participate in a lateral masking task. Participants detected a luminance-contrast target pattern (Gabor patch) flanked by two collinear masks. The flanking masks inhibit target detection at small target-mask distances and facilitate target detection at intermediate target-mask distances. In the perceptual task, the masks appeared adjacent to the target. In the imagery task, participants imagined the masks immediately after seeing them. Results revealed that individuals with ASC characterized by exceptional visuoconstructional abilities (enhanced Block Design performance; n = 20) showed weaker inhibition at small target-mask distances and stronger facilitation at intermediate target-mask distances relative to the controls. Visual imagery was markedly dampened in ASC regardless of the visuoconstructional abilities. At the behavioral level, these results indicate increased facilitation via lateral connections in the primary visual cortex (V1) of individuals with ASC who exhibit exceptional visuoconstructional abilities, together with less efficient mental imagery.
Collapse
Affiliation(s)
- Rebeka Maróthi
- Nyírö Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Katalin Csigó
- Nyírö Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Szabolcs Kéri
- Nyírö Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Department of Physiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Crespi B, Dinsdale N. Autism and psychosis as diametrical disorders of embodiment. Evol Med Public Health 2019; 2019:121-138. [PMID: 31402979 PMCID: PMC6682708 DOI: 10.1093/emph/eoz021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Humans have evolved an elaborate system of self-consciousness, self-identity, self-agency, and self-embodiment that is grounded in specific neurological structures including an expanded insula. Instantiation of the bodily self has been most-extensively studied via the 'rubber hand illusion', whereby parallel stimulation of a hidden true hand, and a viewed false hand, leads to the felt belief that the false hand is one's own. Autism and schizophrenia have both long been regarded as conditions centrally involving altered development of the self, but they have yet to be compared directly with regard to the self and embodiment. Here, we synthesize the embodied cognition literature for these and related conditions, and describe evidence that these two sets of disorders exhibit opposite susceptibilities from typical individuals to the rubber hand illusion: reduced on the autism spectrum and increased in schizophrenia and other psychotic-affective conditions. Moreover, the opposite illusion effects are mediated by a consilient set of associated phenomena, including empathy, interoception, anorexia risk and phenotypes, and patterns of genetic correlation. Taken together, these findings: (i) support the diametric model of autism and psychotic-affective disorders, (ii) implicate the adaptive human system of self-embodiment, and its neural bases, in neurodevelopmental disorders, and suggest new therapies and (iii) experimentally ground Bayesian predictive coding models with regard to autism compared with psychosis. Lay summary: Humans have evolved a highly developed sense of self and perception of one's own body. The 'rubber hand illusion' can be used to test individual variation in sense of self, relative to connection with others. We show that this illusion is reduced in autism spectrum disorders, and increased in psychotic and mood disorders. These findings have important implications for understanding and treatment of mental disorders.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Natalie Dinsdale
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Torregrossa LJ, Bian D, Wade J, Adery LH, Ichinose M, Nichols H, Bekele E, Sarkar N, Park S. Decoupling of spontaneous facial mimicry from emotion recognition in schizophrenia. Psychiatry Res 2019; 275:169-176. [PMID: 30921747 PMCID: PMC8080256 DOI: 10.1016/j.psychres.2019.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
Abstract
Past research indicates that spontaneous mimicry facilitates the decoding of others' emotions, leading to enhanced social perception and interpersonal rapport. Individuals with schizophrenia (SZ) show consistent deficits in emotion recognition and expression associated with poor social functioning. Given the prominence of blunted affect in schizophrenia, it is possible that spontaneous facial mimicry may also be impaired. However, studies assessing automatic facial mimicry in schizophrenia have yielded mixed results. It is therefore unknown whether emotion recognition deficits and impaired automatic facial mimicry are related in schizophrenia. SZ and demographically matched controls (CO) participated in a dynamic emotion recognition task. Electromyographic activity in muscles responsible for producing facial expressions was recorded during the task to assess spontaneous facial mimicry. SZ showed deficits in emotion identification compared to CO, but there was no group difference in the predictive power of spontaneous facial mimicry for avatar's expressed emotion. In CO, facial mimicry supported accurate emotion recognition, but it was decoupled in SZ. The finding of intact facial mimicry in SZ bears important clinical implications. For instance, clinicians might be able to improve the social functioning of patients by teaching them to pair specific patterns of facial muscle activation with distinct emotion words.
Collapse
Affiliation(s)
- Lénie J Torregrossa
- Department of Psychology, Vanderbilt University, 111 21st Ave. S, Wilson Hall, Room 311, Nashville, TN 37240, USA.
| | - Dayi Bian
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joshua Wade
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Laura H Adery
- Department of Psychology, Vanderbilt University, 111 21st Ave. S, Wilson Hall, Room 311, Nashville, TN 37240, USA
| | - Megan Ichinose
- Department of Psychology, Vanderbilt University, 111 21st Ave. S, Wilson Hall, Room 311, Nashville, TN 37240, USA
| | - Heathman Nichols
- Department of Psychology, Vanderbilt University, 111 21st Ave. S, Wilson Hall, Room 311, Nashville, TN 37240, USA
| | - Esube Bekele
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Nilanjan Sarkar
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sohee Park
- Department of Psychology, Vanderbilt University, 111 21st Ave. S, Wilson Hall, Room 311, Nashville, TN 37240, USA; Global Academy for Future Civilizations, Kyung Hee University, Seoul, Korea
| |
Collapse
|
22
|
Foti F, Piras F, Vicari S, Mandolesi L, Petrosini L, Menghini D. Observational Learning in Low-Functioning Children With Autism Spectrum Disorders: A Behavioral and Neuroimaging Study. Front Psychol 2019; 9:2737. [PMID: 30687188 PMCID: PMC6338041 DOI: 10.3389/fpsyg.2018.02737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
New skills may be learned from the outcomes of their own internally generated actions (experiential learning) or from the observation of the consequences of externally generated actions (observational learning). Observational learning requires the coordination of cognitive functions and the processing of social information. Due to the “social” abilities underlying observational learning, the study of this process in individuals with limited social abilities such as those affected by Autism Spectrum Disorders (ASD) is worthy of being investigated. We asked a group of 16 low-functioning young children with ASD and group of 16 sex- and mental age-matched typically developing (TD) children to build a house with a set of bricks after a video-demonstration showing an actor who built the house (observational task – OBS task) and then to build by trial and error another house (experiential task – EXP task). For ASD group, performances in learning tasks were correlated with measures of cortical thickness of specific Regions of Interest (ROI) and volume of deep gray matter structures known to be related with such kinds of learning. According to our a priori hypothesis, for OBS task we selected the following ROI: frontal lobe (pars opercularis, pars triangularis, and premotor area), parietal lobe (inferior parietal gyrus), temporal lobe (superior temporal gyrus), cerebellar hemispheres. For EXP task, we selected the following ROI: precentral frontal gyrus and superior frontal gyrus, cerebellar hemispheres, basal ganglia, thalamus. Although performances of ASD and TD children improved in both OBS and EXP tasks, children with ASD obtained lower scores of goal achievement than TD children in both learning tasks. Only in ASD group, goal achievement scores positively correlated with hyperimitations indicating that children with ASD tended to have a “copy-all” approach that facilitated the goal achievement. Moreover, the marked hyperimitative tendencies of children with ASD were positively associated with the thickness of left pars opercularis, left premotor area, and right superior temporal gyrus, areas belonging to mirror neuron system, and with the volume of both cerebellar hemispheres. These findings suggest that in children with ASD the hyperimitation can represent a learning strategy that might be related to the mirror neuron system.
Collapse
Affiliation(s)
- Francesca Foti
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Children's Hospital Bambino Gesù, Rome, Italy
| | - Laura Mandolesi
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Motor Sciences and Wellness, Università degli Studi di Napoli Parthenope, Naples, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Deny Menghini
- Child Neuropsychiatry Unit, Neuroscience Department, Children's Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
23
|
Wright AC, Fowler D, Greenwood KE. Developing a dynamic model of anomalous experiences and function in young people with or without psychosis: a cross-sectional and longitudinal study protocol. BMJ Open 2018; 8:e022546. [PMID: 30391913 PMCID: PMC6231554 DOI: 10.1136/bmjopen-2018-022546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/06/2018] [Accepted: 09/21/2018] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Anomalous experiences are common within the general population, but the frequency and intensity is increased in young people with psychosis. Studies have demonstrated that perceptual biases towards noticing these phenomena plays a role, but the way one thinks about one's experience (metacognition) may also be relevant. While poor metacognitive function has been theoretically associated with anomalous experiences, this relationship is currently unclear. However, metacognition may work along a continuum with various metacognitive levels, many of which have been demonstrated as impaired in psychosis. These metacognitive components may interact via processes that maintain poor metacognition across levels, and that potentially impact both what people do in their everyday lives (functional outcome) and how people feel about their everyday lives (subjective recovery outcome) in young people with psychosis compared with healthy control participants. METHODS AND ANALYSIS This study will investigate the association and contribution of metacognition to anomalous experiences and outcome measures cross-sectionally and longitudinally in a 36-month follow-up. First, young people with psychosis will be compared with healthy control participants on selected measures of anomalous experience, metacognition, and function, using analysis of covariance to identify group differences. Next, the relationship between metacognitive components and processes will be explored, including processes connecting the different components, using regression analyses. Finally, mediation analyses will be used to assess the predictive value of metacognitive measures on outcome measures, both cross-sectionally and longitudinally at 36 months, while controlling for symptoms and cognition. ETHICS AND DISSEMINATION Ethical and Health Research Authority approval has been obtained through Camberwell St. Giles Research Ethics Committee (reference number: 17/LO/0055). This research project will be reported within a PhD thesis and submitted for journal publication. Once key predictive components of poor outcome in psychosis are identified, this study will develop a series of dynamic models to understand influences on outcome for young people with psychosis.
Collapse
Affiliation(s)
- Abigail C Wright
- School of Psychology, University of Sussex, Brighton, UK
- Research & Development, Sussex Partnership NHS Foundation Trust, Worthing, UK
| | - David Fowler
- School of Psychology, University of Sussex, Brighton, UK
- Research & Development, Sussex Partnership NHS Foundation Trust, Worthing, UK
| | - Kathryn E Greenwood
- School of Psychology, University of Sussex, Brighton, UK
- Research & Development, Sussex Partnership NHS Foundation Trust, Worthing, UK
| |
Collapse
|
24
|
Intaitė M, Georgescu AL, Noreika V, von Saldern MA, Vogeley K, Falter-Wagner CM. Adults with autism spectrum condition have atypical perception of ambiguous figures when bottom-up and top-down interactions are incongruous. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2018; 23:1133-1142. [PMID: 30288989 DOI: 10.1177/1362361318782221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the perception of an ambiguous squares stimulus evoking bistable perception in a sample of 31 individuals with autistic spectrum condition and 22 matched typical adults. The perception of the ambiguous figure was manipulated by adaptation to unambiguous figures and/or by placing the ambiguous figure into a context of unambiguous figures. This resulted in four conditions testing the independent and combined (congruent and incongruent) manipulations of adaptation (bottom-up) and spatial context (top-down) effects. The strength of perception, as measured by perception of the first reported orientation of the ambiguous stimulus, was affected comparably between groups. Nevertheless, the strength of perception, as measured by perceptual durations, was affected differently between groups: the perceptual effect was strongest for the autistic spectrum condition group when combined bottom-up and top-down conditions were congruent. In contrast, the strength of the perceptual effect in response to the same condition in the typical adults group was comparable to the adaptation, but stronger than both the context and the incongruent combined bottom-up and top-down conditions. Furthermore, the context condition was stronger than the incongruent combined bottom-up and top-down conditions for the typical adults group. Thus, our findings support the view of stimulus-specific top-down modulation in autistic spectrum condition.
Collapse
Affiliation(s)
| | | | | | | | - Kai Vogeley
- 3 University Hospital of Cologne, Germany.,6 Research Center Jülich, Germany
| | | |
Collapse
|
25
|
Task switching in autism: An EEG study on intentions and actions. Neuropsychologia 2018; 117:398-407. [DOI: 10.1016/j.neuropsychologia.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022]
|
26
|
Li F, Wang J, Jiang Y, Si Y, Peng W, Song L, Jiang Y, Zhang Y, Dong W, Yao D, Xu P. Top-Down Disconnectivity in Schizophrenia During P300 Tasks. Front Comput Neurosci 2018; 12:33. [PMID: 29875646 PMCID: PMC5974256 DOI: 10.3389/fncom.2018.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/03/2018] [Indexed: 12/03/2022] Open
Abstract
Cognitive deficits in schizophrenia are correlated with the dysfunctions of distinct brain regions including anterior cingulate cortex (ACC) and prefrontal cortex (PFC). Apart from the dysfunctions of the intrinsic connectivity of related areas, how the coupled neural populations work is also crucial in related processes. Twenty-four patients with schizophrenia (SZs) and 24 matched healthy controls (HCs) were recruited in our study. Based on the electroencephalogram (EEG) datasets recorded, the Dynamic Causal Modeling (DCM) was then adopted to estimate how the brain architecture adapts among related areas in SZs and to investigate the mechanism that accounts for their cognitive deficits. The distinct winning models in SZs and HCs consistently emphasized the importance of ACC in regulating the elicitations of P300s. Specifically, comparing to that in HCs, the winning model in SZs uncovered a compensatory pathway from dorsolateral PFC to intraparietal sulcus that promised the SZs' accomplishing P300 tasks. The findings demonstrated that the “disconnectivity hypothesis” is helpful and useful in explaining the cognitive deficits in SZs, while the brain architecture adapted with related compensatory pathway promises the limited brain cognitions in SZs. This study provides a new viewpoint that deepens our understanding of the cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuju Wang
- Institute of Mental Health, Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yuanling Jiang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Si
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjing Peng
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Limeng Song
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Jiang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangsong Zhang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Wentian Dong
- Institute of Mental Health, Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Liberati A, Fadda R, Doneddu G, Congiu S, Javarone MA, Striano T, Chessa A. A Statistical Physics Perspective to Understand Social Visual Attention in Autism Spectrum Disorder. Perception 2017; 46:889-913. [PMID: 28056653 DOI: 10.1177/0301006616685976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study investigated social visual attention in children with Autism Spectrum Disorder (ASD) and with typical development (TD) in the light of Brockmann and Geisel's model of visual attention. The probability distribution of gaze movements and clustering of gaze points, registered with eye-tracking technology, was studied during a free visual exploration of a gaze stimulus. A data-driven analysis of the distribution of eye movements was chosen to overcome any possible methodological problems related to the subjective expectations of the experimenters about the informative contents of the image in addition to a computational model to simulate group differences. Analysis of the eye-tracking data indicated that the scanpaths of children with TD and ASD were characterized by eye movements geometrically equivalent to Lévy flights. Children with ASD showed a higher frequency of long saccadic amplitudes compared with controls. A clustering analysis revealed a greater dispersion of eye movements for these children. Modeling of the results indicated higher values of the model parameter modulating the dispersion of eye movements for children with ASD. Together, the experimental results and the model point to a greater dispersion of gaze points in ASD.
Collapse
Affiliation(s)
- Alessio Liberati
- Department of Physics, University of Cagliari, Complesso Universitario di Monserrato, Italy
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Italy
| | - Giuseppe Doneddu
- Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Sara Congiu
- Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Marco A Javarone
- DUMAS-Department of Human and Social Sciences, University of Sassari, Italy
| | - Tricia Striano
- Department of Psychology, Hunter College, New York, NY, USA
| | | |
Collapse
|
28
|
The influence of action observation on action execution: Dissociating the contribution of action on perception, perception on action, and resolving conflict. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 17:381-393. [DOI: 10.3758/s13415-016-0485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Mamashli F, Khan S, Bharadwaj H, Michmizos K, Ganesan S, Garel KLA, Ali Hashmi J, Herbert MR, Hämäläinen M, Kenet T. Auditory processing in noise is associated with complex patterns of disrupted functional connectivity in autism spectrum disorder. Autism Res 2016; 10:631-647. [PMID: 27910247 DOI: 10.1002/aur.1714] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022]
Abstract
Autism spectrum disorder (ASD) is associated with difficulty in processing speech in a noisy background, but the neural mechanisms that underlie this deficit have not been mapped. To address this question, we used magnetoencephalography to compare the cortical responses between ASD and typically developing (TD) individuals to a passive mismatch paradigm. We repeated the paradigm twice, once in a quiet background, and once in the presence of background noise. We focused on both the evoked mismatch field (MMF) response in temporal and frontal cortical locations, and functional connectivity with spectral specificity between those locations. In the quiet condition, we found common neural sources of the MMF response in both groups, in the right temporal gyrus and inferior frontal gyrus (IFG). In the noise condition, the MMF response in the right IFG was preserved in the TD group, but reduced relative to the quiet condition in ASD group. The MMF response in the right IFG also correlated with severity of ASD. Moreover, in noise, we found significantly reduced normalized coherence (deviant normalized by standard) in ASD relative to TD, in the beta band (14-25 Hz), between left temporal and left inferior frontal sub-regions. However, unnormalized coherence (coherence during deviant or standard) was significantly increased in ASD relative to TD, in multiple frequency bands. Our findings suggest increased recruitment of neural resources in ASD irrespective of the task difficulty, alongside a reduction in top-down modulations, usually mediated by the beta band, needed to mitigate the impact of noise on auditory processing. Autism Res 2016,. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 631-647. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,McGovern Institute for Brain Research Massachusetts Institute of Technology, Boston, Massachusetts
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Konstantinos Michmizos
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,McGovern Institute for Brain Research Massachusetts Institute of Technology, Boston, Massachusetts
| | - Santosh Ganesan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Keri-Lee A Garel
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Javeria Ali Hashmi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Martha R Herbert
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science Espoo, Finland
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/Harvard, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Robinson BL, Harper NS, McAlpine D. Meta-adaptation in the auditory midbrain under cortical influence. Nat Commun 2016; 7:13442. [PMID: 27883088 PMCID: PMC5123015 DOI: 10.1038/ncomms13442] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022] Open
Abstract
Neural adaptation is central to sensation. Neurons in auditory midbrain, for example, rapidly adapt their firing rates to enhance coding precision of common sound intensities. However, it remains unknown whether this adaptation is fixed, or dynamic and dependent on experience. Here, using guinea pigs as animal models, we report that adaptation accelerates when an environment is re-encountered-in response to a sound environment that repeatedly switches between quiet and loud, midbrain neurons accrue experience to find an efficient code more rapidly. This phenomenon, which we term meta-adaptation, suggests a top-down influence on the midbrain. To test this, we inactivate auditory cortex and find acceleration of adaptation with experience is attenuated, indicating a role for cortex-and its little-understood projections to the midbrain-in modulating meta-adaptation. Given the prevalence of adaptation across organisms and senses, meta-adaptation might be similarly common, with extensive implications for understanding how neurons encode the rapidly changing environments of the real world.
Collapse
Affiliation(s)
- Benjamin L. Robinson
- University College London Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
- Southwark and Central Integrated Psychological Therapies Team, The Maudsley Hospital, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, UK
| | - Nicol S. Harper
- Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - David McAlpine
- University College London Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
- The Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia
| |
Collapse
|
31
|
Takesaki N, Kikuchi M, Yoshimura Y, Hiraishi H, Hasegawa C, Kaneda R, Nakatani H, Takahashi T, Mottron L, Minabe Y. The Contribution of Increased Gamma Band Connectivity to Visual Non-Verbal Reasoning in Autistic Children: A MEG Study. PLoS One 2016; 11:e0163133. [PMID: 27631982 PMCID: PMC5025179 DOI: 10.1371/journal.pone.0163133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/03/2016] [Indexed: 12/12/2022] Open
Abstract
Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas.
Collapse
Affiliation(s)
- Natsumi Takesaki
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
- * E-mail:
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Reizo Kaneda
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hideo Nakatani
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Tetsuya Takahashi
- Health Administration Center, University of Fukui, Matsuokashimoaizuki, 910–1193, Japan
| | - Laurent Mottron
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| | - Yoshio Minabe
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| |
Collapse
|
32
|
Khan S, Hashmi JA, Mamashli F, Bharadwaj HM, Ganesan S, Michmizos KP, Kitzbichler MG, Zetino M, Garel KLA, Hämäläinen MS, Kenet T. Altered Onset Response Dynamics in Somatosensory Processing in Autism Spectrum Disorder. Front Neurosci 2016; 10:255. [PMID: 27375417 PMCID: PMC4896941 DOI: 10.3389/fnins.2016.00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in cortical connectivity and evoked responses have been extensively documented in autism spectrum disorder (ASD). However, specific signatures of these cortical abnormalities remain elusive, with data pointing toward abnormal patterns of both increased and reduced response amplitudes and functional connectivity. We have previously proposed, using magnetoencephalography (MEG) data, that apparent inconsistencies in prior studies could be reconciled if functional connectivity in ASD was reduced in the feedback (top-down) direction, but increased in the feedforward (bottom-up) direction. Here, we continue this line of investigation by assessing abnormalities restricted to the onset, feedforward inputs driven, component of the response to vibrotactile stimuli in somatosensory cortex in ASD. Using a novel method that measures the spatio-temporal divergence of cortical activation, we found that relative to typically developing participants, the ASD group was characterized by an increase in the initial onset component of the cortical response, and a faster spread of local activity. Given the early time window, the results could be interpreted as increased thalamocortical feedforward connectivity in ASD, and offer a plausible mechanism for the previously observed increased response variability in ASD, as well as for the commonly observed behaviorally measured tactile processing abnormalities associated with the disorder.
Collapse
Affiliation(s)
- Sheraz Khan
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Javeria A Hashmi
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Hari M Bharadwaj
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Santosh Ganesan
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA
| | | | - Manfred G Kitzbichler
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Manuel Zetino
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA
| | - Keri-Lee A Garel
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA; Department of Radiology, Massachusetts General HospitalBoston, MA, USA; Department of Neuroscience and Biomedical Engineering, Aalto University School of ScienceEspoo, Finland
| | - Tal Kenet
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
33
|
Intentional action processing results from automatic bottom-up attention: An EEG-investigation into the Social Relevance Hypothesis using hypnosis. Conscious Cogn 2016; 42:101-112. [PMID: 26998562 DOI: 10.1016/j.concog.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/10/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
Abstract
Social stimuli grab our attention. However, it has rarely been investigated how variations in attention affect the processing of social stimuli, although the answer could help us uncover details of social cognition processes such as action understanding. In the present study, we examined how changes to bottom-up attention affects neural EEG-responses associated with intentional action processing. We induced an increase in bottom-up attention by using hypnosis. We recorded the electroencephalographic μ-wave suppression of hypnotized participants when presented with intentional actions in first and third person perspective in a video-clip paradigm. Previous studies have shown that the μ-rhythm is selectively suppressed both when executing and observing goal-directed motor actions; hence it can be used as a neural signal for intentional action processing. Our results show that neutral hypnotic trance increases μ-suppression in highly suggestible participants when they observe intentional actions. This suggests that social action processing is enhanced when bottom-up attentional processes are predominant. Our findings support the Social Relevance Hypothesis, according to which social action processing is a bottom-up driven attentional process, and can thus be altered as a function of bottom-up processing devoted to a social stimulus.
Collapse
|
34
|
Gould RW, Dencker D, Grannan M, Bubser M, Zhan X, Wess J, Xiang Z, Locuson C, Lindsley CW, Conn PJ, Jones CK. Role for the M1 Muscarinic Acetylcholine Receptor in Top-Down Cognitive Processing Using a Touchscreen Visual Discrimination Task in Mice. ACS Chem Neurosci 2015; 6:1683-95. [PMID: 26176846 DOI: 10.1021/acschemneuro.5b00123] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The M1 muscarinic acetylcholine receptor (mAChR) subtype has been implicated in the underlying mechanisms of learning and memory and represents an important potential pharmacotherapeutic target for the cognitive impairments observed in neuropsychiatric disorders such as schizophrenia. Patients with schizophrenia show impairments in top-down processing involving conflict between sensory-driven and goal-oriented processes that can be modeled in preclinical studies using touchscreen-based cognition tasks. The present studies used a touchscreen visual pairwise discrimination task in which mice discriminated between a less salient and a more salient stimulus to assess the influence of the M1 mAChR on top-down processing. M1 mAChR knockout (M1 KO) mice showed a slower rate of learning, evidenced by slower increases in accuracy over 12 consecutive days, and required more days to acquire (achieve 80% accuracy) this discrimination task compared to wild-type mice. In addition, the M1 positive allosteric modulator BQCA enhanced the rate of learning this discrimination in wild-type, but not in M1 KO, mice when BQCA was administered daily prior to testing over 12 consecutive days. Importantly, in discriminations between stimuli of equal salience, M1 KO mice did not show impaired acquisition and BQCA did not affect the rate of learning or acquisition in wild-type mice. These studies are the first to demonstrate performance deficits in M1 KO mice using touchscreen cognitive assessments and enhanced rate of learning and acquisition in wild-type mice through M1 mAChR potentiation when the touchscreen discrimination task involves top-down processing. Taken together, these findings provide further support for M1 potentiation as a potential treatment for the cognitive symptoms associated with schizophrenia.
Collapse
Affiliation(s)
| | - D. Dencker
- Laboratory
of Neuropsychiatry, Psychiatric Center Copenhagen, DK-2100 Copenhangen, Denmark
| | | | | | | | - J. Wess
- Laboratory
of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | | | |
Collapse
|
35
|
Crespi BJ, Go MC. Diametrical diseases reflect evolutionary-genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol Med Public Health 2015; 2015:216-53. [PMID: 26354001 PMCID: PMC4600345 DOI: 10.1093/emph/eov021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Tradeoffs centrally mediate the expression of human adaptations. We propose that tradeoffs also influence the prevalence and forms of human maladaptation manifest in disease. By this logic, increased risk for one set of diseases commonly engenders decreased risk for another, diametric, set of diseases. We describe evidence for such diametric sets of diseases from epidemiological, genetic and molecular studies in four clinical domains: (i) psychiatry (autism vs psychotic-affective conditions), (ii) rheumatology (osteoarthritis vs osteoporosis), (iii) oncology and neurology (cancer vs neurodegenerative disorders) and (iv) immunology (autoimmunity vs infectious disease). Diametric disorders are important to recognize because genotypes or environmental factors that increase risk for one set of disorders protect from opposite disorders, thereby providing novel and direct insights into disease causes, prevention and therapy. Ascertaining the mechanisms that underlie disease-related tradeoffs should also indicate means of circumventing or alleviating them, and thus reducing the incidence and impacts of human disease in a more general way.
Collapse
Affiliation(s)
| | - Matthew C Go
- Department of Biological Sciences; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 Present address: Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, 607 S Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
36
|
|
37
|
Sowden S, Koehne S, Catmur C, Dziobek I, Bird G. Intact Automatic Imitation and Typical Spatial Compatibility in Autism Spectrum Disorder: Challenging the Broken Mirror Theory. Autism Res 2015; 9:292-300. [PMID: 26112060 DOI: 10.1002/aur.1511] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 11/11/2022]
Abstract
A lack of imitative behavior is frequently described as a core feature of Autism Spectrum Disorder (ASD), and is consistent with claims of mirror neuron system dysfunction in these individuals. Previous research has questioned this characterization of ASD however, arguing that when tests of automatic imitation are used--which do not require higher-level cognitive processing--imitative behavior is intact or even enhanced in individuals with ASD. In Experiment 1, 60 adult individuals with ASD and a matched Control group completed an automatic imitation task in which they were required to perform an index or a middle finger lift while observing a hand making either the same, or the alternate, finger movement. Both groups demonstrated a significant imitation effect whereby actions were executed faster when preceded by observation of the same action, than when preceded by the alternate action. The magnitude of this "imitation effect" was statistically indistinguishable in the ASD and Control groups. Experiment 2 utilized an improved automatic imitation paradigm to demonstrate that, when automatic imitation effects are isolated from those due to spatial compatibility, increasing autism symptom severity is associated with an increased tendency to imitate. Notably, there was no association between autism symptom severity and spatial compatibility, demonstrating the specificity of the link between ASD symptoms and increased imitation. These results provide evidence against claims of a lack of imitative behavior in ASD, and challenge the "Broken Mirror Theory of Autism."
Collapse
Affiliation(s)
- Sophie Sowden
- MRC Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Svenja Koehne
- Department of Psychology, Humboldt University, Berlin
| | - Caroline Catmur
- Department of Psychology, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Isabel Dziobek
- MRC Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Geoffrey Bird
- MRC Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London.,Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, United Kingdom
| |
Collapse
|
38
|
Butler EE, Ward R, Ramsey R. Investigating the Relationship between Stable Personality Characteristics and Automatic Imitation. PLoS One 2015; 10:e0129651. [PMID: 26079137 PMCID: PMC4469457 DOI: 10.1371/journal.pone.0129651] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
Automatic imitation is a cornerstone of nonverbal communication that fosters rapport between interaction partners. Recent research has suggested that stable dimensions of personality are antecedents to automatic imitation, but the empirical evidence linking imitation with personality traits is restricted to a few studies with modest sample sizes. Additionally, atypical imitation has been documented in autism spectrum disorders and schizophrenia, but the mechanisms underpinning these behavioural profiles remain unclear. Using a larger sample than prior studies (N=243), the current study tested whether performance on a computer-based automatic imitation task could be predicted by personality traits associated with social behaviour (extraversion and agreeableness) and with disorders of social cognition (autistic-like and schizotypal traits). Further personality traits (narcissism and empathy) were assessed in a subsample of participants (N=57). Multiple regression analyses showed that personality measures did not predict automatic imitation. In addition, using a similar analytical approach to prior studies, no differences in imitation performance emerged when only the highest and lowest 20 participants on each trait variable were compared. These data weaken support for the view that stable personality traits are antecedents to automatic imitation and that neural mechanisms thought to support automatic imitation, such as the mirror neuron system, are dysfunctional in autism spectrum disorders or schizophrenia. In sum, the impact that personality variables have on automatic imitation is less universal than initial reports suggest.
Collapse
Affiliation(s)
- Emily E. Butler
- Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Adeilad Brigantia, Bangor, Gwynedd, Wales, United Kingdom
- * E-mail: (EEB); (RR)
| | - Robert Ward
- Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Adeilad Brigantia, Bangor, Gwynedd, Wales, United Kingdom
| | - Richard Ramsey
- Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Adeilad Brigantia, Bangor, Gwynedd, Wales, United Kingdom
- * E-mail: (EEB); (RR)
| |
Collapse
|
39
|
Khan S, Michmizos K, Tommerdahl M, Ganesan S, Kitzbichler MG, Zetino M, Garel KLA, Herbert MR, Hämäläinen MS, Kenet T. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale. Brain 2015; 138:1394-409. [PMID: 25765326 DOI: 10.1093/brain/awv043] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8-18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism group, P < 0.01 and P < 0.0001 for the typical group), with autism severity (P < 0.03), and with diagnosis (89% accuracy). A biophysically realistic computational model using data driven feedforward and feedback parameters replicated the magnetoencephalography data faithfully. The direct observation of both abnormally increased and abnormally decreased functional connectivity in autism occurring simultaneously in different functional connectivity streams, offers a potential unifying framework for the unexplained discrepancies in current findings. Given that cortical feedback, whether local or long-range, is intrinsically non-linear, while cortical feedforward is generally linear relative to the stimulus, the present results suggest decreased non-linearity alongside an increased veridical component of the cortical response in autism.
Collapse
Affiliation(s)
- Sheraz Khan
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Konstantinos Michmizos
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Mark Tommerdahl
- 3 Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Santosh Ganesan
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Manfred G Kitzbichler
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Manuel Zetino
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Keri-Lee A Garel
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Martha R Herbert
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Matti S Hämäläinen
- 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA 4 Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA 5 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tal Kenet
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| |
Collapse
|
40
|
Hogeveen J, Obhi SS, Banissy MJ, Santiesteban I, Press C, Catmur C, Bird G. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation. Soc Cogn Affect Neurosci 2014; 10:1003-9. [PMID: 25481003 PMCID: PMC4483570 DOI: 10.1093/scan/nsu148] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022] Open
Abstract
The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation-participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sukhvinder S Obhi
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK
| | - Michael J Banissy
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK
| | - Idalmis Santiesteban
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK
| | - Clare Press
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK
| | - Caroline Catmur
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK
| | - Geoffrey Bird
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago and Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada, Department of Psychology, Goldsmiths and Department of Psychological Sciences, Birkbeck College, University of London, London, UK, Department of Psychology, University of Surrey, Guildford, UK, and MRC Social, Genetic, and Developmental Psychology Centre, King's College London and Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
41
|
Sowden S, Shah P. Self-other control: a candidate mechanism for social cognitive function. Front Hum Neurosci 2014; 8:789. [PMID: 25339888 PMCID: PMC4189007 DOI: 10.3389/fnhum.2014.00789] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/17/2014] [Indexed: 11/23/2022] Open
Affiliation(s)
- Sophie Sowden
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience King's College London, UK
| | - Punit Shah
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience King's College London, UK
| |
Collapse
|
42
|
Foti F, Mazzone L, Menghini D, De Peppo L, Federico F, Postorino V, Baumgartner E, Valeri G, Petrosini L, Vicari S. Learning by observation in children with autism spectrum disorder. Psychol Med 2014; 44:2437-2447. [PMID: 24433947 DOI: 10.1017/s003329171300322x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Learning by observation requires specific skills such as attending, imitating and understanding contingencies. Individuals with autism spectrum disorder (ASD) exhibit deficits in these skills. METHOD The performance of 20 ASD children was compared with that of a group of typically developing (TD) children matched for chronological age (CA), IQ and gender on tasks of learning of a visuomotor sequence by observation or by trial and error. Acquiring the correct sequence involved three phases: a detection phase (DP), in which participants discovered the correct sequence and learned how to perform the task; an exercise phase (EP), in which they reproduced the sequence until performance was error free; and an automatization phase (AP), in which by repeating the error-free sequence they became accurate and speedy. RESULTS In the DP, ASD children were impaired in detecting a sequence by trial and error only when the task was proposed as first, whereas they were as efficient as TD children in detecting a sequence by observation. In the EP, ASD children were as efficient as TD children. In the AP, ASD children were impaired in automatizing the sequence. Although the positive effect of learning by observation was evident, ASD children made a high number of imitative errors, indicating marked tendencies to hyperimitate. CONCLUSIONS These findings demonstrate the imitative abilities of ASD children although the presence of imitative errors indicates an impairment in the control of imitative behaviours.
Collapse
Affiliation(s)
- F Foti
- Department of Psychology,Sapienza University of Rome,Italy
| | - L Mazzone
- Child Neuropsychiatry Unit, Department of Neuroscience,Bambino Gesù Children's Hospital,Rome,Italy
| | - D Menghini
- Child Neuropsychiatry Unit, Department of Neuroscience,Bambino Gesù Children's Hospital,Rome,Italy
| | - L De Peppo
- Child Neuropsychiatry Unit, Department of Neuroscience,Bambino Gesù Children's Hospital,Rome,Italy
| | - F Federico
- Department of Developmental and Social Psychology,Sapienza University of Rome,Italy
| | - V Postorino
- Child Neuropsychiatry Unit, Department of Neuroscience,Bambino Gesù Children's Hospital,Rome,Italy
| | - E Baumgartner
- Department of Developmental and Social Psychology,Sapienza University of Rome,Italy
| | - G Valeri
- Child Neuropsychiatry Unit, Department of Neuroscience,Bambino Gesù Children's Hospital,Rome,Italy
| | - L Petrosini
- Department of Psychology,Sapienza University of Rome,Italy
| | - S Vicari
- Child Neuropsychiatry Unit, Department of Neuroscience,Bambino Gesù Children's Hospital,Rome,Italy
| |
Collapse
|
43
|
Vivanti G, Dissanayake C. Propensity to imitate in autism is not modulated by the model's gaze direction: an eye-tracking study. Autism Res 2014; 7:392-9. [PMID: 24740914 DOI: 10.1002/aur.1376] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 03/19/2014] [Indexed: 11/07/2022]
Abstract
Individuals with Autism Spectrum Disorder (ASD) show a diminished propensity to imitate others' actions, as well as a diminished sensitivity and responsivity to others' communicative cues, such as a direct gaze. However, it is not known whether failure to appreciate the communicative value of a direct gaze is associated with imitation abnormalities in this population. In this eye-tracking study, we investigated how 25 preschoolers with ASD, compared with 25 developmental and chronological age-matched children, imitate actions that are associated with a model's direct gaze versus averted gaze. We found that the model's direct gaze immediately prior to the demonstration increased the attention to the model and the propensity to imitate the demonstrated action in children without ASD. In contrast, preschoolers with ASD showed a similar propensity to look at the model's face and to imitate the demonstrated actions across the direct gaze and the averted gaze conditions. These data indicate that atypical imitation in ASD might be linked to abnormal processing of the model's communicative signals (such as a direct gaze) that modulate imitative behaviours in individuals without ASD. Autism Res 2014, 7: 392-399. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giacomo Vivanti
- Olga Tennison Autism Research Centre, School of Psychological Science, La Trobe University, Melbourne, Victoria; Victorian Autism Specific Early Learning and Care Centre: The Margot Prior Wing, La Trobe University, Melbourne, Victoria
| | | |
Collapse
|
44
|
Cook J, Swapp D, Pan X, Bianchi-Berthouze N, Blakemore SJ. Atypical interference effect of action observation in autism spectrum conditions. Psychol Med 2014; 44:731-740. [PMID: 23759288 PMCID: PMC3898726 DOI: 10.1017/s0033291713001335] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Observing incongruent actions interferes with ongoing action execution. This 'interference effect' is larger for observed biological actions than for non-biological actions. The current study used virtual reality to investigate the biological specificity of interference effects of action observation in autism spectrum conditions (ASC). METHOD High-functioning adults with ASC and age- and IQ-matched healthy controls performed horizontal sinusoidal arm movements whilst observing arm movements conducted by a virtual reality agent with either human or robot form, which moved with either biological motion or at a constant velocity. In another condition, participants made the same arm movements while observing a real human. Observed arm movements were either congruent or incongruent with executed arm movements. An interference effect was calculated as the average variance in the incongruent action dimension during observation of incongruent compared with congruent movements. RESULTS Control participants exhibited an interference effect when observing real human and virtual human agent incongruent movements but not when observing virtual robot agent movements. Individuals with ASC differed from controls in that they showed no interference effects for real human, virtual human or virtual robot movements. CONCLUSIONS The current study demonstrates atypical interference effects in ASC.
Collapse
Affiliation(s)
- J. Cook
- UCL Institute of Cognitive Neuroscience, London, UK
- Donders Centre for Cognitive Neuroimaging, Radboud Univeristy, Nijmegen, The Netherlands
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Cambridge Biomedical Campus, CambridgeUK
| | - D. Swapp
- UCL Department of Computer Science, London, UK
| | - X. Pan
- UCL Department of Computer Science, London, UK
| | | | | |
Collapse
|
45
|
Neural and behavioural responses to face-likeness of objects in adolescents with autism spectrum disorder. Sci Rep 2014; 4:3874. [PMID: 24464152 PMCID: PMC5379204 DOI: 10.1038/srep03874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/06/2014] [Indexed: 01/27/2023] Open
Abstract
Numerous studies have revealed atypical face processing in autism spectrum disorders (ASD) characterized by social interaction and communication difficulties. This study investigated sensitivity to face-likeness in ASD. In Experiment 1, we found a strong positive correlation between the face-likeness ratings of non-face objects in the ASD (11–19 years old) and the typically developing (TD) group (9–21 years old). In Experiment 2 (the scalp-recorded event-related potential experiment), the participants of both groups (ASD, 12–19 years old; TD, 12–18 years old) exhibited an enhanced face-sensitive N170 amplitude to a face-like object. Whereas the TD adolescents showed an enhanced N170 during the face-likeness judgements, adolescents with ASD did not. Thus, both individuals with ASD and TD individuals have a perceptual and neural sensitivity to face-like features in objects. When required to process face-like features, a face-related brain system reacts more strongly in TD individuals but not in individuals with ASD.
Collapse
|
46
|
Zalla T, Sperduti M. The amygdala and the relevance detection theory of autism: an evolutionary perspective. Front Hum Neurosci 2013; 7:894. [PMID: 24416006 PMCID: PMC3874476 DOI: 10.3389/fnhum.2013.00894] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/08/2013] [Indexed: 11/13/2022] Open
Abstract
In the last few decades there has been increasing interest in the role of the amygdala in psychiatric disorders and, in particular, in its contribution to the socio-emotional impairments in autism spectrum disorders (ASDs). Given that the amygdala is a component structure of the "social brain," several theoretical explanations compatible with amygdala dysfunction have been proposed to account for socio-emotional impairments in ASDs, including abnormal eye contact, gaze monitoring, face processing, mental state understanding, and empathy. Nevertheless, many theoretical accounts, based on the Amygdala Theory of Autism, fail to elucidate the complex pattern of impairments observed in this population, which extends beyond the social domain. As posited by the Relevance Detector theory (Sander et al., 2003), the human amygdala is a critical component of a brain circuit involved in the appraisal of self-relevant events that include, but are not restricted to, social stimuli. Here, we propose that the behavioral and social-emotional features of ASDs may be better understood in terms of a disruption in a "Relevance Detector Network" affecting the processing of stimuli that are relevant for the organism's self-regulating functions. In the present review, we will first summarize the main literature supporting the involvement of the amygdala in socio-emotional disturbances in ASDs. Next, we will present a revised version of the Amygdala Relevance Detector hypothesis and we will show that this theoretical framework can provide a better understanding of the heterogeneity of the impairments and symptomatology of ASDs. Finally, we will discuss some predictions of our model, and suggest new directions in the investigation of the role of the amygdala within the more generally disrupted cortical connectivity framework as a model of neural organization of the autistic brain.
Collapse
Affiliation(s)
- Tiziana Zalla
- Institut Jean Nicod, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris, France
| | - Marco Sperduti
- Laboratoire Mémoire et Cognition, Institut de Psychologie, Université Paris Descartes Boulogne-Billancourt, France ; Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes Paris, France
| |
Collapse
|
47
|
Bird G, Cook R. Mixed emotions: the contribution of alexithymia to the emotional symptoms of autism. Transl Psychiatry 2013; 3:e285. [PMID: 23880881 PMCID: PMC3731793 DOI: 10.1038/tp.2013.61] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/02/2013] [Accepted: 05/25/2013] [Indexed: 12/22/2022] Open
Abstract
It is widely accepted that autism is associated with disordered emotion processing and, in particular, with deficits of emotional reciprocity such as impaired emotion recognition and reduced empathy. However, a close examination of the literature reveals wide heterogeneity within the autistic population with respect to emotional competence. Here we argue that, where observed, emotional impairments are due to alexithymia-a condition that frequently co-occurs with autism-rather than a feature of autism per se. Alexithymia is a condition characterized by a reduced ability to identify and describe one's own emotion, but which results in reduced empathy and an impaired ability to recognize the emotions of others. We briefly review studies of emotion processing in alexithymia, and in autism, before describing a recent series of studies directly testing this 'alexithymia hypothesis'. If found to be correct, the alexithymia hypothesis has wide-reaching implications for the study of autism, and how we might best support subgroups of autistic individuals with, and without, accompanying alexithymia. Finally, we note the presence of elevated rates of alexithymia, and inconsistent reports of emotional impairments, in eating disorders, schizophrenia, substance abuse, Parkinson's Disease, multiple sclerosis and anxiety disorders. We speculate that examining the contribution of alexithymia to the emotional symptoms of these disorders may bear fruit in the same way that it is starting to do in autism.
Collapse
Affiliation(s)
- G Bird
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Kings College London, London, UK.
| | | |
Collapse
|
48
|
Hamilton AFDC. Reflecting on the mirror neuron system in autism: a systematic review of current theories. Dev Cogn Neurosci 2013; 3:91-105. [PMID: 23245224 PMCID: PMC6987721 DOI: 10.1016/j.dcn.2012.09.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/21/2022] Open
Abstract
There is much interest in the claim that dysfunction of the mirror neuron system in individuals with autism spectrum condition causes difficulties in social interaction and communication. This paper systematically reviews all published studies using neuroscience methods (EEG/MEG/TMS/eyetracking/EMG/fMRI) to examine the integrity of the mirror system in autism. 25 suitable papers are reviewed. The review shows that current data are very mixed and that studies using weakly localised measures of the integrity of the mirror system are hard to interpret. The only well localised measure of mirror system function is fMRI. In fMRI studies, those using emotional stimuli have reported group differences, but studies using non-emotional hand action stimuli do not. Overall, there is little evidence for a global dysfunction of the mirror system in autism. Current data can be better understood under an alternative model in which social top-down response modulation is abnormal in autism. The implications of this model and future research directions are discussed.
Collapse
|