1
|
Vardal O, Karapanagiotidis T, Stafford T, Drachen A, Wade A. Unsupervised identification of internal perceptual states influencing psychomotor performance. Neuroimage 2025; 310:121134. [PMID: 40101863 DOI: 10.1016/j.neuroimage.2025.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 01/25/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
When humans perform repetitive tasks over long periods, their performance is not constant. People drift in and out of states that might be loosely categorised as engagement, disengagement or 'flow' and these states will be reflected in aspects of their performance (for example, reaction time, accuracy, criteria shifts and potentially longer-term strategy). Until recently it has been challenging to relate these behavioural states to the underlying neural mechanisms that generate them. Here, we acquired magnetoencephalograpy recordings and contemporaneous, dense behavioural data from participants performing an engaging task (Tetris) that required rapid, strategic behavioural responses over the period of an entire game. We asked whether it was possible to infer the presence of distinct behavioural states from the behavioural data and, if so, whether these states would have distinct neural correlates. We used hidden Markov Modelling to segment the behavioural time series into states with unique behavioural signatures, finding that we could identify three distinct and robust behavioural states. We then computed occipital alpha power across each state. These within-participant differences in alpha power were statistically significant, suggesting that individuals shift between behaviourally and neurally distinct states during complex performance, and that visuo-spatial attention change across these states.
Collapse
Affiliation(s)
- Ozan Vardal
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, No. 825, Zhangheng Road, Zhangjiang High Tech Park, Shanghai, 200120, China.
| | | | - Tom Stafford
- Department of Psychology, University of Sheffield, ICOSS Building, 219 Portobello, Sheffield, S1 4DP, United Kingdom
| | - Anders Drachen
- Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, Odense, DK-5230, Denmark
| | - Alex Wade
- Department of Psychology, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Sampalo M, Lázaro E, Luna PM. Action Video Gaming and Attention in Young Adults: A Systematic Review. J Atten Disord 2023; 27:530-538. [PMID: 36779519 DOI: 10.1177/10870547231153878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
OBJECTIVE Existing research in action video games has increased in recent years due to the expansion of their use all over the world. Specifically, there is growing evidence about the positive development of the cognitive functions associated with the use of this kind of video game. Therefore, this work aims to explore the relationship between playing action video games and the development of attention span as well as the impact at the brain level from a functional perspective. METHODS Articles were searched in Scopus, Pubmed, and Web of Science. A total of 196 studies were retrieved, among which 13 studies were systematically reviewed. RESULTS The review has shown that playing action video games can improve cognitive functions, including attention, with reaction time and processing speed being the aspects that would most benefit from such practice, as well as the development of focused, sustained, and divided attention. Also, there are functional brain changes. CONCLUSION It is necessary to deepen the understanding of the association between playing action video games and the development of attention.
Collapse
Affiliation(s)
- Mar Sampalo
- Universidad Internacional de Valencia, Valencia, Spain
| | - Esther Lázaro
- Universidad Internacional de Valencia, Valencia, Spain
| | | |
Collapse
|
3
|
Association between real-time strategy video game learning outcomes and pre-training brain white matter structure: preliminary study. Sci Rep 2022; 12:20741. [PMID: 36456870 PMCID: PMC9715544 DOI: 10.1038/s41598-022-25099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years the association between video games, cognition, and the brain has been actively investigated. However, it is still unclear how individual predispositions, such as brain structure characteristics, play a role in the process of acquiring new skills, such as video games. The aim of this preliminary study was to investigate whether acquisition of cognitive-motor skills from the real-time strategy video game (StarCraft II) is associated with pre-training measures of brain white matter integrity. Results show that higher white matter integrity in regions (anterior limb of internal capsule, cingulum/hippocampus) and tracts (inferior longitudinal fasciculus) related with motoric functions, set shifting and visual decision making was associated with better Star Craft II performance. The presented findings inline with previous results and suggest that structural brain predispositions of individuals are related to the video game skill acquisition. Our study highlights the importance of neuroimaging studies that focus on white matter in predicting the outcomes of intervention studies and has implications for understanding the neural basis of the skill learning process.
Collapse
|
4
|
Kovbasiuk A, Lewandowska P, Brzezicka A, Kowalczyk-Grębska N. Neuroanatomical predictors of complex skill acquisition during video game training. Front Neurosci 2022; 16:834954. [PMID: 35937888 PMCID: PMC9354597 DOI: 10.3389/fnins.2022.834954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
It is known that the outcomes of complex video game (VG) skill acquisition are correlated with individual differences in demographic and behavioral variables, such as age, intelligence and visual attention. However, empirical studies of the relationship between neuroanatomical features and success in VG training have been few and far between. The present review summarizes existing literature on gray matter (GM) and white matter correlates of complex VG skill acquisition as well as explores its relationship with neuroplasticity. In particular, since age can be an important factor in the acquisition of new cognitive skills, we present studies that compare different age groups (young and old adults). Our review reveals that GM in subcortical brain areas predicts complex VG learning outcomes in young subjects, whereas in older subjects the same is true of cortical frontal areas. This may be linked to age-related compensatory mechanisms in the frontal areas, as proposed by The Scaffolding Theory of Aging and Cognition. In the case of plasticity, there is no such relationship - in the group of younger and older adults there are changes after training in both cortical and subcortical areas. We also summarize best practices in research on predictors of VG training performance and outline promising areas of research in the study of complex video game skill acquisition.
Collapse
Affiliation(s)
- Anna Kovbasiuk
- Neurocognitive Research Center, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
- Department of Management in Networked and Digital Societies, Kozminski University, Warsaw, Poland
| | - Paulina Lewandowska
- Neurocognitive Research Center, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Aneta Brzezicka
- Neurocognitive Research Center, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Natalia Kowalczyk-Grębska
- Neurocognitive Research Center, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| |
Collapse
|
5
|
Gamified Neurorehabilitation Strategies for Post-stroke Motor Recovery: Challenges and Advantages. Curr Neurol Neurosci Rep 2022; 22:183-195. [PMID: 35278172 PMCID: PMC8917333 DOI: 10.1007/s11910-022-01181-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/23/2022]
Abstract
Abstract Purpose of Review Stroke is the leading cause of permanent motor disability in the United States (US), but there has been little progress in developing novel, effective strategies for treating post-stroke motor deficits. The past decade has seen the rapid development of many promising, gamified neurorehabilitation technologies; however, clinical adoption remains limited. The purpose of this review is to evaluate the recent literature surrounding the adoption and use of gamification in neurorehabilitation after stroke. Recent Findings Gamification of neurorehabilitation protocols is both feasible and effective. Deployment strategies and scalability need to be addressed with more rigor. Relationship between engaged time on task and rehabilitation outcomes should be explored further as it may create benefits beyond repetitive movement. Summary As gamification becomes a more common and feasible way of delivering exercise-based therapies, additional benefits of gamification are emerging. In spite of this, questions still exist about scalability and widespread clinical adoption.
Collapse
|
6
|
Qu 曲晓霞 X, Ding 丁静文 J, Wang 王倩 Q, Cui 崔靖 J, Dong J, Guo 郭健 J, Li 李婷 T, Xie 解立志 L, Li 李冬梅 D, Xian 鲜军舫 J. Effect of the long-term lack of half visual inputs on the white matter microstructure in congenital monocular blindness. Brain Res 2022; 1781:147832. [DOI: 10.1016/j.brainres.2022.147832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/31/2023]
|
7
|
de Ruiter MB, Reneman L, Kieffer JM, Oldenburg HSA, Schagen SB. Brain White Matter Microstructure as a Risk Factor for Cognitive Decline After Chemotherapy for Breast Cancer. J Clin Oncol 2021; 39:3908-3917. [PMID: 34591652 DOI: 10.1200/jco.21.00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Cognitive decline is frequently observed after chemotherapy. As chemotherapy is associated with changes in brain white matter microstructure, we investigated whether white matter microstructure before chemotherapy is a risk factor for cognitive decline after chemotherapy. METHODS Neuropsychologic tests were administered before and 6 months (n = 49), 2 years (n = 32), and 3 years (n = 32) after chemotherapy in patients with breast cancer receiving anthracycline-based chemotherapy (BC + CT group), at matched intervals to patients with BC who did not receive systemic therapy (BC - CT group: n = 39, 23, and 19, respectively) and to no-cancer controls (NC group: n = 37, 29, and 28, respectively). Using multivariate normative comparison, we evaluated to what extent the cognitive profiles of patients deviated from those of controls. Fractional anisotropy (FA), derived from magnetic resonance diffusion tensor imaging, was used to measure white matter microstructure before treatment. FA was evaluated as a risk factor for cognitive decline, in addition to baseline age, fatigue, cognitive complaints, and premorbid intelligence quotient. We subsequently ran voxel-wise diffusion tensor imaging analyses to investigate white matter microstructure in specific nerve tracts. RESULTS Low FA independently predicted cognitive decline early (6 months, P = .013) and late (3 years, P < .001) after chemotherapy. FA did not predict cognitive decline in the BC - CT and NC groups. Voxel-wise analysis indicated involvement of white matter tracts essential for cognitive functioning. CONCLUSION Low FA may reflect low white matter reserve. This may be a risk factor for cognitive decline after chemotherapy for BC. If validated in future trials, identification of patients with low white matter reserve could improve patient care, for example, by facilitating targeted, early interventions or even by influencing choices of patients and doctors for receiving chemotherapy.
Collapse
Affiliation(s)
- Michiel B de Ruiter
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacobien M Kieffer
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hester S A Oldenburg
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Choi E, Shin SH, Ryu JK, Jung KI, Hyun Y, Kim J, Park MH. Association of Extensive Video Gaming and Cognitive Function Changes in Brain-Imaging Studies of Pro Gamers and Individuals With Gaming Disorder: Systematic Literature Review. JMIR Serious Games 2021; 9:e25793. [PMID: 34255648 PMCID: PMC8304135 DOI: 10.2196/25793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The World Health Organization announced the inclusion of gaming disorder (GD) in the International Classification of Diseases, 11th Revision, despite some concerns. However, video gaming has been associated with the enhancement of cognitive function. Moreover, despite comparable extensive video gaming, pro gamers have not shown any of the negative symptoms that individuals with GD have reported. It is important to understand the association between extensive video gaming and alterations in brain regions more objectively. OBJECTIVE This study aimed to systematically explore the association between extensive video gaming and changes in cognitive function by focusing on pro gamers and individuals with GD. METHODS Studies about pro gamers and individuals with GD were searched for in the PubMed and Web of Science databases using relevant search terms, for example, "pro-gamers" and "(Internet) gaming disorder." While studies for pro gamers were searched for without date restrictions, only studies published since 2013 about individuals with GD were included in search results. Article selection was conducted by following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS By following the PRISMA guidelines, 1903 records with unique titles were identified. Through the screening process of titles and abstracts, 86 full-text articles were accessed to determine their eligibility. A total of 18 studies were included in this systematic review. Among the included 18 studies, six studies included pro gamers as participants, one study included both pro gamers and individuals with GD, and 11 studies included individuals with GD. Pro gamers showed structural and functional alterations in brain regions (eg, the left cingulate cortex, the insula subregions, and the prefrontal regions). Cognitive function (eg, attention and sensorimotor function) and cognitive control improved in pro gamers. Individuals with GD showed structural and functional alterations in brain regions (eg, the striatum, the orbitofrontal cortex, and the amygdala) that were associated with impaired cognitive control and higher levels of craving video game playing. They also showed increased cortical thickness in the middle temporal cortex, which indicated the acquisition of better skills. Moreover, it was suggested that various factors (eg, gaming expertise, duration or severity of GD, and level of self-control) seemed to modulate the association of extensive video game playing with changes in cognitive function. CONCLUSIONS Although a limited number of studies were identified that included pro gamers and/or individuals who reported showing symptoms of GD for more than 1 year, this review contributed to the objective understanding of the association between extensive video game playing and changes in cognitive function. Conducting studies with a longitudinal design or with various comparison groups in the future would be helpful in deepening the understanding of this association.
Collapse
Affiliation(s)
- Eunhye Choi
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk-Ho Shin
- Dr. Shin's Child and Adolescent Psychiatry Clinic, Seoul, Republic of Korea
| | - Jeh-Kwang Ryu
- Department of Physical Education, College of Education, Dongguk University, Seoul, Republic of Korea
| | - Kyu-In Jung
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yerin Hyun
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jiyea Kim
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Hyeon Park
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Wang H, Wen H, Li J, Chen Q, Li S, Wang Y, Wang Z. Characterization of Brain Microstructural Abnormalities in High Myopia Patients: A Preliminary Diffusion Kurtosis Imaging Study. Korean J Radiol 2021; 22:1142-1151. [PMID: 33987989 PMCID: PMC8236370 DOI: 10.3348/kjr.2020.0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Objective To evaluate microstructural damage in high myopia (HM) patients using 3T diffusion kurtosis imaging (DKI). Materials and Methods This prospective study included 30 HM patients and 33 age- and sex-matched healthy controls (HCs) with DKI. Kurtosis parameters including kurtosis fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) as well as diffusion metrics including FA, mean diffusivity, axial diffusivity (AD), and radial diffusivity derived from DKI were obtained. Group differences in these metrics were compared using tract-based spatial statistics. Partial correlation analysis was used to evaluate correlations between microstructural changes and disease duration. Results Compared to HCs, HM patients showed significantly reduced AK, RK, MK, and FA and significantly increased AD, predominately in the bilateral corticospinal tract, right inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and left thalamus (all p < 0.05, threshold-free cluster enhancement corrected). In addition, DKI-derived kurtosis parameters (AK, RK, and MK) had negative correlations (r = −0.448 to −0.376, all p < 0.05) and diffusion parameter (AD) had positive correlations (r = 0.372 to 0.409, all p < 0.05) with disease duration. Conclusion HM patients showed microstructural alterations in the brain regions responsible for motor conduction and vision-related functions. DKI is useful for detecting white matter abnormalities in HM patients, which might be helpful for exploring and monitoring the pathogenesis of the disease.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University, Chongqing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shanshan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Giboin LS, Reunis T, Gruber M. Corticospinal properties are associated with sensorimotor performance in action video game players. Neuroimage 2020; 226:117576. [PMID: 33221450 DOI: 10.1016/j.neuroimage.2020.117576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/10/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022] Open
Abstract
Notwithstanding the apparent demands regarding fine motor skills that are required to perform in action video games, the motor nervous system of players has not been studied systematically. In the present study, we hypothesized to find differences in sensorimotor performance and corticospinal characteristics between action video game players (Players) and Controls. We tested sensorimotor performance in video games tasks and used transcranial magnetic stimulation (TMS) to measure motor map, input-output (IO) and short intra-cortical inhibition (SICI) curves in the first dorsal interosseous (FDI) muscle of Players (n = 18) and Control (n = 18). Players scored higher in performance tests and had stronger SICI and higher motor evoked potential (MEP) amplitudes. Multiple linear regressions showed that Players and Control differed with respect to their relation between reaction time and corticospinal excitability. However, we did not find different motor map topography or different IO curves for Players when compared to Controls. Action video game players showed an increased efficiency of motor cortical inhibitory and excitatory neural networks. Players also showed a different relation of MEPs with reaction time. The present study demonstrates the potential of action video game players as an ideal population to study the mechanisms underlying visuomotor performance and sensorimotor learning.
Collapse
Affiliation(s)
- Louis-Solal Giboin
- Sensorimotor Performance Lab, Human Performance Research Centre, Department of Sport Science, University of Konstanz, Germany.
| | - Tom Reunis
- Sensorimotor Performance Lab, Human Performance Research Centre, Department of Sport Science, University of Konstanz, Germany
| | - Markus Gruber
- Sensorimotor Performance Lab, Human Performance Research Centre, Department of Sport Science, University of Konstanz, Germany
| |
Collapse
|
11
|
Dale G, Joessel A, Bavelier D, Green CS. A new look at the cognitive neuroscience of video game play. Ann N Y Acad Sci 2020; 1464:192-203. [DOI: 10.1111/nyas.14295] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gillian Dale
- Environmental Sustainability Research CentreBrock University St. Catharines Ontario Canada
| | - Augustin Joessel
- Faculté de Psychologie et Sciences de L'Education (FPSE)Université de Genève Geneva Switzerland
- Campus Biotech Geneva Switzerland
| | - Daphne Bavelier
- Faculté de Psychologie et Sciences de L'Education (FPSE)Université de Genève Geneva Switzerland
- Campus Biotech Geneva Switzerland
| | - C. Shawn Green
- Department of PsychologyUniversity of Wisconsin–Madison Madison Wisconsin
| |
Collapse
|
12
|
Duyck S, Op de Beeck H. An investigation of far and near transfer in a gamified visual learning paradigm. PLoS One 2019; 14:e0227000. [PMID: 31877187 PMCID: PMC6932774 DOI: 10.1371/journal.pone.0227000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
After training, visual perceptual learning improvements are mostly constrained to the trained stimulus feature and retinal location. The aim of this study is to construct an integrated paradigm where the visual learning happens in a more natural context and in parallel for multiple stimulus types, and to test the generalization of learning-related improvements towards untrained features, locations, and more general cognitive domains. Half the subjects were trained with a gamified perceptual learning paradigm for ten hours, which consisted of an orientation discrimination task and a novel object categorization task embedded in a three-dimensional maze. A second group of subjects, an active control group, played ten hours of Candy Crush Saga. Before and after training, all subjects completed a 'near transfer' orientation discrimination and novel object categorization task, as well as a set of 'far transfer' general cognitive and attentional tasks. During the perceptual learning tasks, two different stimulus features and two retinal location pairs were assessed in each task. For the experimental group, one stimulus feature and retinal location pair was trained, whilst the other one remained untrained. Both features and location pairs were untrained in the control group. Far transfer did occur in some domains across all subjects irrespective of the training regimen (i.e. executive functioning, mental rotation performance, and multitask performance and speed). Near transfer was present in both groups, however only more pronounced for one particular task in the experimental group, namely novel object categorization. To conclude, all but one near transfer task did not generalize more than the control group.
Collapse
Affiliation(s)
- Stefanie Duyck
- Brain and Cognition, Faculty of Psychology and Educational Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hans Op de Beeck
- Brain and Cognition, Faculty of Psychology and Educational Sciences, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
13
|
Enhancing Attentional Control: Lessons from Action Video Games. Neuron 2019; 104:147-163. [DOI: 10.1016/j.neuron.2019.09.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
|
14
|
Soliman SA, Kamal BM, Abd-Elhafeez HH. Cellular Invasion and Matrix Degradation, a Different Type of Matrix-Degrading Cells in the Cartilage of Catfish ( Clarias gariepinus) and Japanese Quail Embryos ( Coturnix coturnix japonica). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1283-1292. [PMID: 31583991 DOI: 10.1017/s1431927619014892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We previously studied the phenomena of the mesenchymal cell-dependent mode of cartilage growth in quail and catfish. Thus, we selected the two cartilage models in which mesenchymal cells participate in their growth. In such models, cartilage degradation occurred to facilitate cellular invasion. The studies do not explain the nature of the cartilage degrading cells. The current study aims to explore the nature of the cartilage-degrading cells using transmission electron microscopy (TEM) and immunohistochemistry. Samples of cartilage have been isolated from the air-breathing organ of catfish and the cartilage of the prospective occipital bone of quail embryos. Samples have been processed for TEM and immunohistochemistry. We found that two different cell types are involved in cartilage degradation; the macrophage in the cartilage of catfish and mesenchymal cells in the cartilage of the quail. Areas of cellular invasion in both catfish cartilage and quail embryo cartilage had an immunological affinity for MMP-9. In catfish, cartilage-degrading cells had identical morphological features of macrophages, whereas in quail embryos, cartilage-degrading cells were mesenchymal-like cells which had cell processes rich in vesicles and expressed CD117. Further study should consider the role of macrophage and mesenchymal cells during cartilage degradation. This could be valuable to be applied to remove the defective cartilage matrix formed in osteoarthritic patients to improve cartilage repair strategies.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Basma Mohamed Kamal
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Sadat-City University, Sadat City, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Anatomy, Embryology and Histology, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
15
|
Does Video Gaming Have Impacts on the Brain: Evidence from a Systematic Review. Brain Sci 2019; 9:brainsci9100251. [PMID: 31557907 PMCID: PMC6826942 DOI: 10.3390/brainsci9100251] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Video gaming, the experience of playing electronic games, has shown several benefits for human health. Recently, numerous video gaming studies showed beneficial effects on cognition and the brain. A systematic review of video gaming has been published. However, the previous systematic review has several differences to this systematic review. This systematic review evaluates the beneficial effects of video gaming on neuroplasticity specifically on intervention studies. Literature research was conducted from randomized controlled trials in PubMed and Google Scholar published after 2000. A systematic review was written instead of a meta-analytic review because of variations among participants, video games, and outcomes. Nine scientific articles were eligible for the review. Overall, the eligible articles showed fair quality according to Delphi Criteria. Video gaming affects the brain structure and function depending on how the game is played. The game genres examined were 3D adventure, first-person shooting (FPS), puzzle, rhythm dance, and strategy. The total training durations were 16–90 h. Results of this systematic review demonstrated that video gaming can be beneficial to the brain. However, the beneficial effects vary among video game types.
Collapse
|
16
|
Abend R, Rosenfelder A, Shamai D, Pine DS, Tavor I, Assaf Y, Bar-Haim Y. Brain structure changes induced by attention bias modification training. Biol Psychol 2019; 146:107736. [PMID: 31352029 DOI: 10.1016/j.biopsycho.2019.107736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Attention bias modification (ABM) therapy aims to reduce anxiety by changing threat-related attention patterns using computerized training tasks. We examined changes in brain microstructure following ABM training. Thirty-two participants were randomly assigned to one of two training conditions: active ABM training shifting attention away from threat or attention control training involving no attention modification. Participants completed six lab visits, including five training sessions and three diffusion tensor imaging scans: immediately before and after the first training session, and at the end of the training series. Indices of local and global changes in microstructure and connectivity were measured. Significant longitudinal differences in fractional anisotropy (FA) between the active and control training regimens occurred in inferior temporal cortex. Changes in FA occurred across groups within ventromedial prefrontal cortex and middle occipital gyrus. These results indicate specific effects of active ABM on brain structure. Such changes could relate to clinical effects of ABM.
Collapse
Affiliation(s)
- Rany Abend
- Section on Development and Affective Neuroscience, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Ariel Rosenfelder
- School of Psychological Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Dana Shamai
- School of Psychological Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Daniel S Pine
- Section on Development and Affective Neuroscience, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Yaniv Assaf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| | - Yair Bar-Haim
- School of Psychological Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Hisam A, Mashhadi SF, Faheem M, Sohail M, Ikhlaq B, Iqbal I. Does playing video games effect cognitive abilities in Pakistani children? Pak J Med Sci 2018; 34:1507-1511. [PMID: 30559813 PMCID: PMC6290198 DOI: 10.12669/pjms.346.15532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: To find out the effect of playing video games on cognitive abilities among teenagers. Methods: A comparative cross sectional study was conducted at two schools in Rawalpindi from August 2014 till February 2015. A sample size of 171 was calculated by using WHO sample size calculator using non-probability convenient sampling technique. A mixed questionnaire was used as a data collection tool and two groups were defined as video gamers and non-video gamers. Video gamers were those students who were using video games for two hours or more. Cognitive ability of the students were assess by standardized questionnaire named Wonderlic Cognitive Ability Test Questionnaire. Data were entered and analyzed in SPSS version 20. Results: There were 93 (54.4%) gamers whereas 78(45.4%) were non-gamers. Mean age of the participants was 18.86+1.46 years. Gamers with correct answers to knowledge, analogy, processing speed, deductive reasoning, mathematical intelligence were 57(61.3%), 67(72%), 68 (73%), 58 (62.4%) and 73(78.5%) respectively. Significant association was found between gamer status and gender (p=0.023), analogy (p=0.049), processing speed (p<0.001), deductive reasoning (p=0.003) and mathematical intelligence (p<0.001). There was no significant association of gamer status with knowledge (p=0.188). Conclusion: Gamers exhibit better range of cognitive abilities specifically involving analogy, processing speed, deductive reasoning and mathematical intelligence. In this study, those who play video games on long term basis, showed improvement in cognitive abilities, in comparison to those who do not indulge in gaming activities.
Collapse
Affiliation(s)
- Aliya Hisam
- Dr. Aliya Hisam, MBBS, MPH, FCPS (Community Medicine). Associate Professor, Department of Community Medicine, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Syed Fawad Mashhadi
- Dr. Syed Fawad Mashhadi, MBBS, MPH, MPhil. Assistant Professor, Department of Community Medicine, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Mahum Faheem
- Dr. Mahum Faheem, MBBS. House Officers, Combined Military Hospital, Rawalpindi, Pakistan
| | - Mahrukh Sohail
- Dr. Mahrukh Sohail, MBBS. House Officers, Combined Military Hospital, Rawalpindi, Pakistan
| | - Bilal Ikhlaq
- Dr. Bilal Ikhlaq, MBBS. House Officers, Combined Military Hospital, Rawalpindi, Pakistan
| | - Irfan Iqbal
- Irfan Iqbal, MBBS. House Officers, Combined Military Hospital, Rawalpindi, Pakistan
| |
Collapse
|
18
|
Kowalczyk N, Shi F, Magnuski M, Skorko M, Dobrowolski P, Kossowski B, Marchewka A, Bielecki M, Kossut M, Brzezicka A. Real-time strategy video game experience and structural connectivity - A diffusion tensor imaging study. Hum Brain Mapp 2018; 39:3742-3758. [PMID: 29923660 DOI: 10.1002/hbm.24208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/28/2018] [Accepted: 04/29/2018] [Indexed: 01/17/2023] Open
Abstract
Experienced video game players exhibit superior performance in visuospatial cognition when compared to non-players. However, very little is known about the relation between video game experience and structural brain plasticity. To address this issue, a direct comparison of the white matter brain structure in RTS (real time strategy) video game players (VGPs) and non-players (NVGPs) was performed. We hypothesized that RTS experience can enhance connectivity within and between occipital and parietal regions, as these regions are likely to be involved in the spatial and visual abilities that are trained while playing RTS games. The possible influence of long-term RTS game play experience on brain structural connections was investigated using diffusion tensor imaging (DTI) and a region of interest (ROI) approach in order to describe the experience-related plasticity of white matter. Our results revealed significantly more total white matter connections between occipital and parietal areas and within occipital areas in RTS players compared to NVGPs. Additionally, the RTS group had an altered topological organization of their structural network, expressed in local efficiency within the occipito-parietal subnetwork. Furthermore, the positive association between network metrics and time spent playing RTS games suggests a close relationship between extensive, long-term RTS game play and neuroplastic changes. These results indicate that long-term and extensive RTS game experience induces alterations along axons that link structures of the occipito-parietal loop involved in spatial and visual processing.
Collapse
Affiliation(s)
- Natalia Kowalczyk
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Feng Shi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mikolaj Magnuski
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Maciek Skorko
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maksymilian Bielecki
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Malgorzata Kossut
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Brzezicka
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
19
|
Sharma K, Trivedi R, Chandra S, Kaur P, Kumar P, Singh K, Dubey AK, Khushu S. Enhanced White Matter Integrity in Corpus Callosum of Long-Term Brahmakumaris Rajayoga Meditators. Brain Connect 2017; 8:49-55. [PMID: 29065696 DOI: 10.1089/brain.2017.0524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Meditation has a versatile nature to affect cognitive functioning of human brain. Recent researches demonstrated its effects on white matter (WM) properties of human brain. In this research, we aim to investigate WM microstructure of corpus callosum (CC) in long-term meditators (LTMs) of rajayoga meditation using diffusion tensor imaging. For this cross-sectional analysis, 22 LTMs and 17 control participants of age ranging from 30 to 50 years were recruited. Results show high fractional anisotropy values with low mean diffusivity in whole as well as different segments of CC in the LTM group. Also the experience of meditation was correlated with WM properties of CC tracts. Findings may suggest rajayoga meditation to bring potential changes in microstructure of CC segments. Further studies are suggested in clinical population to check its validity and efficacy against disorders involving agenesis of WM.
Collapse
Affiliation(s)
- Kanishka Sharma
- 1 Department of Biomedical Engineering, Institute of Nuclear Medicine and Allied Science (INMAS) , Defence R&D Organization, Timarpur, Delhi, India .,2 Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, Delhi, India
| | - Richa Trivedi
- 3 Division of NMR, Institute of Nuclear Medicine and Allied Science (INMAS) , Defence R&D Organization, Timarpur, Delhi, India
| | - Sushil Chandra
- 1 Department of Biomedical Engineering, Institute of Nuclear Medicine and Allied Science (INMAS) , Defence R&D Organization, Timarpur, Delhi, India
| | - Prabhjot Kaur
- 3 Division of NMR, Institute of Nuclear Medicine and Allied Science (INMAS) , Defence R&D Organization, Timarpur, Delhi, India
| | - Pawan Kumar
- 3 Division of NMR, Institute of Nuclear Medicine and Allied Science (INMAS) , Defence R&D Organization, Timarpur, Delhi, India
| | - Kavita Singh
- 3 Division of NMR, Institute of Nuclear Medicine and Allied Science (INMAS) , Defence R&D Organization, Timarpur, Delhi, India
| | - Ashok K Dubey
- 2 Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, Delhi, India
| | - Subash Khushu
- 3 Division of NMR, Institute of Nuclear Medicine and Allied Science (INMAS) , Defence R&D Organization, Timarpur, Delhi, India
| |
Collapse
|
20
|
Du X, Liu L, Yang Y, Qi X, Gao P, Zhang Y, Zhu J, Du G, Dai S, Li X, Zhang Q. Diffusion tensor imaging of the structural integrity of white matter correlates with impulsivity in adolescents with internet gaming disorder. Brain Behav 2017; 7:e00753. [PMID: 28828214 PMCID: PMC5561314 DOI: 10.1002/brb3.753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 05/14/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Internet gaming disorder (IGD) is usually defined as the inability of an individual to control internet gaming resulting in serious negative consequences, and trait impulsivity has been viewed as a hallmark feature of IGD. Recent studies have suggested that the structural integrity of the white matter (WM) plays an important role in the neuromediation of an individual's impulsivity. However, no study has examined the association between WM integrity and impulsivity in IGD adolescents. METHODS In this study, 33 adolescents with IGD and 32 healthy controls (HCs) were recruited, and the intergroup differences in the relationships between impulsivity and fractional anisotropy (FA) values across the whole brain WM were investigated using voxel-wise correlation analyses. RESULTS Our results revealed significant intergroup differences in the correlations between impulsivity and the FA values of the right corticospinal tract (CST) and the right occipital WM. Region of interest-based tests revealed that the FA values of these clusters were positive or insignificantly correlated with impulsivity in the IGD adolescents contrasted to the significantly negative correlation in the HCs. CONCLUSIONS This altered correlations in the IGD adolescents might reflect potential WM microstructural changes which may be associated with the greater impulsivity of IGD adolescents and provide possible therapeutic targets for interventions in this population.
Collapse
Affiliation(s)
- Xin Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Linlin Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Yongxin Yang
- Department of Psychology Linyi Fourth People's Hospital Linyi Shandong China
| | - Xin Qi
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Peihong Gao
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Yang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| | - Jiyu Zhu
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Guijin Du
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Shouping Dai
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Xiaodong Li
- Department of Radiology Linyi People's Hospital Linyi Shandong China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging Tianjin Medical University General Hospital Tianjin China
| |
Collapse
|
21
|
Liu L, Li W, Zhang Y, Qin W, Lu S, Zhang Q. Weaker Functional Connectivity Strength in Patients with Type 2 Diabetes Mellitus. Front Neurosci 2017; 11:390. [PMID: 28736516 PMCID: PMC5500656 DOI: 10.3389/fnins.2017.00390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is related to cognitive impairments and increased risk for dementia. Neuroimaging studies have demonstrated T2DM-related brain structural and functional changes which are partly associated to the cognitive decline. However, few studies focused on the early neuroimaging findingsin T2DM patients. In this study, a data-driven whole-brain resting state functional connectivity strength (rsFCS) methodwas used to evaluate resting functional changes in 53 T2DM patients compared with 55 matched healthy controls (HCs), and to detect the associations between the rsFCSchanges and cognitive functions in T2DM patients. The T2DM patients exhibited weaker long-range rsFCS in the right insula and weaker short-range rsFCS in the right supramarginalgyrus (SG) compared with the HCs. Additionally, seed-based functional connectivity (FC) analysis revealed weaker FC between the right insula and the bilateral superior parietal lobule (SPL), and between the right SG and the bilateral supplementary motor area (SMA)/right SPL in T2DM patientscompared with the HCs. In T2DM patients, negative correlation was found between the long-range rsFCS in the right insula and HbA1c levels; and the FC between the right SG and the bilateral SMA negatively correlated with TMT-A scores. Our results indicated that the rsFCS alteration occurredbefore obvious cognitive deficits in T2DM patients, which might be helpful for understanding the neuromechanism of cognitive declines in T2DM patients.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| | - Wanhu Li
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical SciencesJinan, China
| | - Yang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| | - Shan Lu
- Department of Radiology, Tianjin Medical University Metabolic Diseases HospitalTianjin, China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General HospitalTianjin, China
| |
Collapse
|
22
|
Palaus M, Marron EM, Viejo-Sobera R, Redolar-Ripoll D. Neural Basis of Video Gaming: A Systematic Review. Front Hum Neurosci 2017; 11:248. [PMID: 28588464 PMCID: PMC5438999 DOI: 10.3389/fnhum.2017.00248] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies.
Collapse
Affiliation(s)
- Marc Palaus
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de CatalunyaBarcelona, Spain
| | - Elena M Marron
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de CatalunyaBarcelona, Spain
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de CatalunyaBarcelona, Spain.,Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General HospitalBoston, MA, USA
| | - Diego Redolar-Ripoll
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de CatalunyaBarcelona, Spain
| |
Collapse
|
23
|
Xie Y, Zhang Y, Qin W, Lu S, Ni C, Zhang Q. White Matter Microstructural Abnormalities in Type 2 Diabetes Mellitus: A Diffusional Kurtosis Imaging Analysis. AJNR Am J Neuroradiol 2017; 38:617-625. [PMID: 27979796 DOI: 10.3174/ajnr.a5042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/18/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Increasing DTI studies have demonstrated that white matter microstructural abnormalities play an important role in type 2 diabetes mellitus-related cognitive impairment. In this study, the diffusional kurtosis imaging method was used to investigate WM microstructural alterations in patients with type 2 diabetes mellitus and to detect associations between diffusional kurtosis imaging metrics and clinical/cognitive measurements. MATERIALS AND METHODS Diffusional kurtosis imaging and cognitive assessments were performed on 58 patients with type 2 diabetes mellitus and 58 controls. Voxel-based intergroup comparisons of diffusional kurtosis imaging metrics were conducted, and ROI-based intergroup comparisons were further performed. Correlations between the diffusional kurtosis imaging metrics and cognitive/clinical measurements were assessed after controlling for age, sex, and education in both patients and controls. RESULTS Altered diffusion metrics were observed in the corpus callosum, the bilateral frontal WM, the right superior temporal WM, the left external capsule, and the pons in patients with type 2 diabetes mellitus compared with controls. The splenium of the corpus callosum and the pons had abnormal kurtosis metrics in patients with type 2 diabetes mellitus. Additionally, altered diffusion metrics in the right prefrontal WM were significantly correlated with disease duration and attention task performance in patients with type 2 diabetes mellitus. CONCLUSIONS With both conventional diffusion and additional kurtosis metrics, diffusional kurtosis imaging can provide additional information on WM microstructural abnormalities in patients with type 2 diabetes mellitus. Our results indicate that WM microstructural abnormalities occur before cognitive decline and may be used as neuroimaging markers for predicting the early cognitive impairment in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Y Xie
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging (Y.X., Y.Z., W.Q., Q.Z.), Tianjin Medical University General Hospital, Tianjin, China
| | - Y Zhang
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging (Y.X., Y.Z., W.Q., Q.Z.), Tianjin Medical University General Hospital, Tianjin, China
| | - W Qin
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging (Y.X., Y.Z., W.Q., Q.Z.), Tianjin Medical University General Hospital, Tianjin, China
| | - S Lu
- Departments of Radiology (S.L.)
| | - C Ni
- Cardiology (C.N.), Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Q Zhang
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging (Y.X., Y.Z., W.Q., Q.Z.), Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Morin-Moncet O, Therrien-Blanchet JM, Ferland MC, Théoret H, West GL. Action Video Game Playing Is Reflected In Enhanced Visuomotor Performance and Increased Corticospinal Excitability. PLoS One 2016; 11:e0169013. [PMID: 28005989 PMCID: PMC5179116 DOI: 10.1371/journal.pone.0169013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
Action video game playing is associated with improved visuomotor performance; however, the underlying neural mechanisms associated with this increased performance are not well understood. Using the Serial Reaction Time Task in conjunction with Transcranial Magnetic Stimulation, we investigated if improved visuomotor performance displayed in action video game players (actionVGPs) was associated with increased corticospinal plasticity in primary motor cortex (M1) compared to non-video game players (nonVGPs). Further, we assessed if actionVGPs and nonVGPs displayed differences in procedural motor learning as measured by the SRTT. We found that at the behavioral level, both the actionVGPs and nonVGPs showed evidence of procedural learning with no significant difference between groups. However, the actionVGPs displayed higher visuomotor performance as evidenced by faster reaction times in the SRTT. This observed enhancement in visuomotor performance amongst actionVGPs was associated with increased corticospinal plasticity in M1, as measured by corticospinal excitability changes pre- and post- SRTT and corticospinal excitability at rest before motor practice. Our results show that aVGPs, who are known to have better performance on visual and motor tasks, also display increased corticospinal excitability after completing a novel visuomotor task.
Collapse
Affiliation(s)
| | | | - Marie C. Ferland
- Department of Psychology, Université de Montréal, Montréal, Canada
| | - Hugo Théoret
- Department of Psychology, Université de Montréal, Montréal, Canada
- Hôpital Sainte-Justine Research Center, Montréal, Canada
| | - Greg L. West
- Department of Psychology, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
25
|
Compensatory increase of functional connectivity density in adolescents with internet gaming disorder. Brain Imaging Behav 2016; 11:1901-1909. [DOI: 10.1007/s11682-016-9655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Suenderhauf C, Walter A, Lenz C, Lang UE, Borgwardt S. Counter striking psychosis: Commercial video games as potential treatment in schizophrenia? A systematic review of neuroimaging studies. Neurosci Biobehav Rev 2016; 68:20-36. [PMID: 27090742 DOI: 10.1016/j.neubiorev.2016.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/19/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a severe, chronic, and strongly disabling neuropsychiatric disorder, characterized by cognitive decline, positive and negative symptoms. Positive symptoms respond well to antipsychotic medication and psycho-social interventions, in contrast to negative symptoms and neurocognitive impairments. Cognitive deficits have been linked to a poorer outcome and hence specific cognitive remediation therapies have been proposed. Their effectiveness is nowadays approved and neurobiological correlates have been reconfirmed by brain imaging studies. Interestingly, recent MRI work showed that commercial video games modified similar brain areas as these specialized training programs. If gray matter increases and functional brain modulations would translate in better cognitive and every day functioning, commercial video game training could be an enjoyable and economically interesting treatment option for patients with neuropsychiatric disorders. This systematic review summarizes advances in the area with emphasis on imaging studies dealing with brain changes upon video game training and contrasts them to conventional cognitive remediation. Moreover, we discuss potential challenges therapeutic video game development and research would have to face in future treatment of schizophrenia.
Collapse
Affiliation(s)
- Claudia Suenderhauf
- Neuropsychiatry and Brain Imaging Group, Department of Psychiatry (UPK), Department of Clinical Research (DKF), Wilhelm Klein-Strasse 27, 4012 Basel, Switzerland.
| | - Anna Walter
- Neuropsychiatry and Brain Imaging Group, Department of Psychiatry (UPK), Department of Clinical Research (DKF), Wilhelm Klein-Strasse 27, 4012 Basel, Switzerland
| | - Claudia Lenz
- Neuropsychiatry and Brain Imaging Group, Department of Psychiatry (UPK), Department of Clinical Research (DKF), Wilhelm Klein-Strasse 27, 4012 Basel, Switzerland
| | - Undine E Lang
- Neuropsychiatry and Brain Imaging Group, Department of Psychiatry (UPK), Department of Clinical Research (DKF), Wilhelm Klein-Strasse 27, 4012 Basel, Switzerland
| | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging Group, Department of Psychiatry (UPK), Department of Clinical Research (DKF), Wilhelm Klein-Strasse 27, 4012 Basel, Switzerland
| |
Collapse
|