1
|
Gray L, Ladlow P, Coppack RJ, Cassidy RP, Kelly L, Lewis S, Caplan N, Barker-Davies R, Bennett AN, Hughes L. How can Blood Flow Restriction Exercise be Utilised for the Management of Persistent Pain Following Complex Injuries in Military Personnel? A Narrative Review. SPORTS MEDICINE - OPEN 2025; 11:13. [PMID: 39900782 PMCID: PMC11790543 DOI: 10.1186/s40798-024-00804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/06/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND Persistent pain is a complicated phenomenon associated with a wide array of complex pathologies and conditions (e.g., complex regional pain syndrome, non-freezing cold injury), leading to extensive disability and reduced physical function. Conventional resistance training is commonly contraindicated in load compromised and/or persistent pain populations, compromising rehabilitation progression and potentially leading to extensive pharmacological intervention, invasive procedures, and reduced occupational status. The management of persistent pain and utility of adjunct therapies has become a clinical and research priority within numerous healthcare settings, including defence medical services. MAIN BODY Blood flow restriction (BFR) exercise has demonstrated beneficial morphological and physiological adaptions in load-compromised populations, as well as being able to elicit acute hypoalgesia. The aims of this narrative review are to: (1) explore the use of BFR exercise to elicit hypoalgesia; (2) briefly review the mechanisms of BFR-induced hypoalgesia; (3) discuss potential implications and applications of BFR during the rehabilitation of complex conditions where persistent pain is the primary limiting factor to progress, within defence rehabilitation healthcare settings. The review found BFR application is a feasible intervention across numerous load-compromised clinical populations (e.g., post-surgical, post-traumatic osteoarthritis), and there is mechanistic rationale for use in persistent pain pathologies. Utilisation may also be pleiotropic in nature by ameliorating pathological changes while also modulating pain response. Numerous application methods (e.g., with aerobic exercise, passive application, or resistance training) allow practitioners to cater for specific limitations (e.g., passive, or contralateral application with kinesiophobia) in clinical populations. Additionally, the low-mechanical load nature of BFR exercise may allow for high-frequency use within residential military rehabilitation, providing a platform for conventional resistance training thereafter. CONCLUSION Future research needs to examine the differences in pain modulation between persistent pain and pain-free populations with BFR application, supporting the investigation of mechanisms for BFR-induced hypoalgesia, the dose-response relationship between BFR-exercise and pain modulation, and the efficacy and effectiveness of BFR application in complex musculoskeletal and persistent pain populations.
Collapse
Affiliation(s)
- Luke Gray
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
| | - Peter Ladlow
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Russell J Coppack
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Robyn P Cassidy
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Lynn Kelly
- Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
| | - Sarah Lewis
- Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
| | - Nick Caplan
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom
| | - Robert Barker-Davies
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Alexander N Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre - Stanford Hall, Loughborough, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Luke Hughes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom.
| |
Collapse
|
2
|
Frechette ML, Cook SB, Scott BR, Tan J, Vallence AM. Post-exercise neural plasticity is augmented by adding blood flow restriction during low work rate arm cycling. Exp Physiol 2025. [PMID: 39835924 DOI: 10.1113/ep092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR. Twelve healthy males (24 ± 4 years) completed four, randomized 15-min arm cycling conditions: high work rate (HW: 60% maximal power output), low work rate (LW: 30% maximal power output), low work rate with BFR (LW-BFR) and BFR without exercise (BFR-only). For BFR conditions, cuffs were applied around the upper arm and inflated to 70% of arterial occlusion pressure continuously during exercise. Single-pulse transcranial magnetic stimulation was delivered to left primary motor cortex (M1) to elicit motor-evoked potentials (MEP) in the right biceps brachii during a low-level isometric contraction. MEP amplitude and cortical silent period (cSP) duration were measured before and 1, 10 and 15 min post-exercise. MEP amplitude increased significantly from baseline to Post-10 and Post-15 for both the HW (both z < -7.07, both P < 0.001) and LW-BFR conditions (both z < -5.56, both P < 0.001). For the LW condition without BFR, MEP amplitude increased significantly from baseline to Post-10 (z = -3.53, P = 0.003) but not Post-15 (z = -1.85, P = 0.388). The current findings show that HW arm cycling and LW-BFR led to longer-lasting increases in corticospinal excitability than LW arm cycling alone. Future research should examine whether the increased corticospinal excitability is associated with the improvements in muscle strength observed with BFR exercise. A mechanistic understanding of BFR exercise improvement could guide BFR interventions in clinical populations.
Collapse
Affiliation(s)
- Mikaela L Frechette
- Department of Kinesiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Summer B Cook
- Department of Kinesiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Brendan R Scott
- PHysical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
| | - Jane Tan
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
- School of Psychology, College of Health and Education, Murdoch University, Perth, Australia
| | - Ann-Maree Vallence
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
- School of Psychology, College of Health and Education, Murdoch University, Perth, Australia
| |
Collapse
|
3
|
Cummings M, Madhavan S. Blood flow modulation to improve motor and neurophysiological outcomes in individuals with stroke: a scoping review. Exp Brain Res 2024; 242:2665-2676. [PMID: 39368025 DOI: 10.1007/s00221-024-06941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Ischemic Conditioning (IC) is a procedure involving brief periods of occlusion followed by reperfusion in stationary limbs. Blood Flow Restriction with Exercise (BFR-E) is a technique comprising blood flow restriction during aerobic or resistance exercise. Both IC and BFR-E are Blood Flow Modulation (BFM) strategies that have shown promise across various health domains and are clinically relevant for stroke rehabilitation. Despite their potential benefits, our knowledge on the application and efficacy of either intervention in stroke is limited. This scoping review aims to synthesize the existing literature on the impact of IC and BFR-E on motor and neurophysiological outcomes in individuals post-stroke. Evidence from five studies displayed enhancements in paretic leg strength, gait speed, and paretic leg fatiguability after IC. Additionally, BFR-E led to improvements in clinical performance, gait parameters, and serum lactate levels. While trends toward motor function improvement were observed post-intervention, statistically significant differences were limited. Neurophysiological changes showed inconclusive results. Our review suggests that IC and BFR-E are promising clinical approaches in stroke, however high-quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of both in stroke. Recommendations regarding future directions and clinical utility are provided.
Collapse
Affiliation(s)
- Mark Cummings
- Brain Plasticity Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Heckler JN, Dankel SJ. Affective, perceptual and physiologic responses to isokinetic contractions under blood flow restriction. J Sports Med Phys Fitness 2024; 64:1157-1164. [PMID: 38965896 DOI: 10.23736/s0022-4707.24.16058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
BACKGROUND Blood flow restriction (BFR) has been shown to enhance the effectiveness of low load resistance exercise, but less research has examined its utility in conjunction with maximal isokinetic contractions, which may depend on the restrictive pressure and speed of contraction. METHODS Individuals reported to the laboratory for three visits to complete three sets of 20 maximal elbow flexion exercises at 60°/s and 300°/s under 0%, 40% and 80% of their arterial occlusion pressure. Muscle thickness was measured before and after exercise, and ratings of discomfort, perceived activation, and exercise-induced feelings were obtained at the completion of each exercise. Fatigue was assessed as the decline in average peak torque across the three sets. RESULTS A total of 27 individuals (11 females, 16 males) completed the study. There was a significant interaction for torque at both 60°/s and 300°/s (P<0.001), with each increasing pressure resulting in greater fatigue. Muscle swelling was present across all conditions but was lowest in the 40% BFR condition applied during the 300°/s speed. At both 60°/s and 300°/s speeds, the 80% BFR pressure was associated with lower enjoyment, greater discomfort, and greater perceived activation (all P<0.05). CONCLUSIONS The combined effects of BFR to maximal isokinetic contractions increased fatigue with less of an impact on muscle swelling. These results indicate that BFR may enhance the effectiveness of long-term isokinetic training, but it is also important to consider the addition of BFR was associated with lower levels of enjoyment and greater discomfort which may decrease adherence.
Collapse
Affiliation(s)
- Jordyn N Heckler
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, NJ, USA
| | - Scott J Dankel
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, NJ, USA -
| |
Collapse
|
5
|
Butt J, Ahmed Z. Blood Flow Restriction Training and Its Use in Rehabilitation After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:6265. [PMID: 39458215 PMCID: PMC11508829 DOI: 10.3390/jcm13206265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Anterior cruciate ligament (ACL) reconstruction (ACLR) is often followed by significant muscle atrophy and subsequent loss of strength. Blood flow restriction training (BFRT) has recently emerged as a potential mode of rehabilitation to mitigate these effects. The goal of this systematic review was to evaluate the efficacy of BFRT in functional recovery when compared to traditional rehabilitation methods. Methods: A literature review was conducted across July and August 2024 using multiple databases that reported randomised controlled trials comparing BFRT to traditional rehabilitation methods. Primary outcomes were changes to thigh muscle mass and knee extensor/flexor strength with secondary outcomes consisting of patient-reported functional measures (IKDC and Lysholm scores). The RoB-2 tool was used to assess the risk of bias. Results: Eight studies met the inclusion criteria; however, substantial heterogeneity prevented a meta-analysis being conducted for the primary outcomes. Three out of the five studies measuring muscle mass reported significant (p < 0.05) findings favouring BFRT. There was variation amongst the strength improvements, but BFRT was generally favoured over the control. Meta analysis of the secondary outcomes showed significant improvements (p < 0.05) favouring BFRT despite moderate heterogeneity. Conclusions: BFRT shows promise for maintaining muscle mass and improving patient reported outcomes following ACL reconstruction. However, the high risk of bias limits the strength of these conclusions. Further high-quality research needs to be conducted to establish optimal BFRT protocols for this cohort and to determine if BFRT has a place in ACL rehabilitation.
Collapse
Affiliation(s)
- Jamaal Butt
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Neurosurgery, University Hospitals Birmingham NHS Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, UK
| |
Collapse
|
6
|
Tsai CL, Chen ZR, Chia PS, Pan CY, Tseng YT, Chen WC. Acute resistance exercise combined with whole body vibration and blood flow restriction: Molecular and neurocognitive effects in late-middle-aged and older adults. Exp Gerontol 2024; 192:112450. [PMID: 38710456 DOI: 10.1016/j.exger.2024.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Limited research exists regarding the effects of resistance exercise (RE) combined with whole body vibration (WBV), blood flow restriction (BFR), or both on the neuropsychological performance of working memory (WM) in late-middle-aged and older adults and regarding the physiological mechanisms underlying this effect. This study thus explored the acute molecular and neurophysiological mechanisms underlying WM performance following RE combined with WBV, BFR, or both. Sixty-six participants were randomly assigned into a WBV, BFR, or WBV + BFR group. Before and after the participants engaged in a single bout of isometric RE combined with WBV, BFR, or both, this study gathered data on several neurocognitive measures of WM performance, namely, accuracy rate (AR), reaction time (RT), and brain event-related potential (specifically P3 latency and amplitude), and data on biochemical indices, such as the levels of insulin-like growth factor-1 (IGF-1), norepinephrine (NE), and brain-derived neurotrophic factor (BDNF). Although none of the RE modalities significantly affected RTs and P3 latencies, ARs and P3 amplitudes significantly improved in the WBV and WBV + BFR groups. The WBV + BFR group exhibited greater improvements than the WBV group did. Following acute RE combined with WBV, BFR, or both, IGF-1 and NE levels significantly increased in all groups, whereas BDNF levels did not change. Crucially, only the changes in NE levels were significantly correlated with improvements in ARs in the WBV + BFR and WBV groups. The findings suggest that combining acute RE with WBV, BFR, or both could distinctively mitigate neurocognitive decline in late-middle-aged and older adults.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan; Department of Psychology, National Cheng Kung University, Taiwan.
| | - Zi-Rong Chen
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan
| | - Pao-Shan Chia
- Southern Taiwan University of Science and Technology, Taiwan
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Taiwan
| | - Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Taiwan
| | - Wen-Chyuan Chen
- Chang Gung University of Science and Technology, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Sleep Center, Linkou-Chang Gung Memorial Hospital, Taiwan.
| |
Collapse
|
7
|
Yasuda T, Sato Y, Nakajima T. Effects of Acute Piano Performance With Blood Flow Restriction on Upper Limb Muscle and Perceptual Response in Pianists. Cureus 2024; 16:e63074. [PMID: 39055424 PMCID: PMC11272406 DOI: 10.7759/cureus.63074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Long-term and prolonged piano performance does not provide essential skeletal muscle training benefits while increasing the risk of injury to the upper extremities. Unlike high-intensity exercise training, moderate blood flow restriction (BFR) training has been found to improve neuromuscular mechanisms with a variety of physical exercises (machine, elastic band, walking, electrical stimulation, and body weight). AIM AND METHODS We investigated the physiological and perceptual responses related to piano performance with or without BFR based on acute responses of neuromuscular mechanisms. Student or professional pianists (n=7) performed the "Revolutionary Etude" on the piano with (Piano-BFR) and without (Piano-Ctrl) BFR. During the Piano-BFR performance, 150-180 mmHg of cuff pressure was applied around the most proximal region of both arms as a moderate BFR. RESULTS Changes in upper limb girth, muscle thickness, and hand grip strength were measured before and immediately after the performance. After the performance, perceptual and other responses were recorded. Immediately after the performance, the Piano-BFR condition induced greater changes in girth (forearm and upper arm), muscle thickness (forearm), and handgrip strength than the Piano-Ctrl condition. Piano-BFR was (p<0.01) higher than Piano-Ctrl on eight questions regarding perceptual response (upper arm fatigue and difficulty playing the piano). Piano performance with BFR was revealed to increase upper extremity muscle size and fatigue in pianists after playing. CONCLUSION Piano performance with BFR was revealed to increase upper extremity muscle size and fatigue in pianists after playing. The effect of BFR on neuromuscular mechanisms on piano performance was greater in the forearm than in the upper arm.
Collapse
Affiliation(s)
- Tomohiro Yasuda
- Exercise Physiology, Seirei Christopher University, Hamamatsu, JPN
| | - Yumi Sato
- Child Education, Okazaki Women's University, Aichi, JPN
| | | |
Collapse
|
8
|
Norbury R, Grant I, Woodhead A, Hughes L, Tallent J, Patterson SD. Acute hypoalgesic, neurophysiological and perceptual responses to low-load blood flow restriction exercise and high-load resistance exercise. Exp Physiol 2024; 109:672-688. [PMID: 38578259 PMCID: PMC11061633 DOI: 10.1113/ep091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
This study compared the acute hypoalgesic and neurophysiological responses to low-load resistance exercise with and without blood flow restriction (BFR), and free-flow, high-load exercise. Participants performed four experimental conditions where they completed baseline measures of pain pressure threshold (PPT), maximum voluntary force (MVF) with peripheral nerve stimulation to determine central and peripheral fatigue. Corticospinal excitability (CSE), corticospinal inhibition and short interval intracortical inhibition (SICI) were estimated with transcranial magnetic stimulation. Participants then performed low-load leg press exercise at 30% of one-repetition maximum (LL); low-load leg press with BFR at 40% (BFR40) or 80% (BFR80) of limb occlusion pressure; or high-load leg press of four sets of 10 repetitions at 70% one-repetition maximum (HL). Measurements were repeated at 5, 45 min and 24 h post-exercise. There were no differences in CSE or SICI between conditions (all P > 0.05); however, corticospinal inhibition was reduced to a greater extent (11%-14%) in all low-load conditions compared to HL (P < 0.005). PPTs were 12%-16% greater at 5 min post-exercise in BFR40, BFR80 and HL compared to LL (P ≤ 0.016). Neuromuscular fatigue displayed no clear difference in the magnitude or time course between conditions (all P > 0.05). In summary, low-load BFR resistance exercise does not induce different acute neurophysiological responses to low-load, free-flow exercise but it does promote a greater degree of hypoalgesia and reduces corticospinal inhibition more than high-load exercise, making it a useful rehabilitation tool. The changes in neurophysiology following exercise were not related to changes in PPT.
Collapse
Affiliation(s)
- Ryan Norbury
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Ian Grant
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Alex Woodhead
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Luke Hughes
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastle‐Upon TyneUK
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise SciencesUniversity of EssexColchesterUK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVAAustralia
| | - Stephen D. Patterson
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
9
|
Woodhead A, Rainer C, Hill J, Murphy CP, North JS, Kidgell D, Tallent J. Corticospinal and spinal responses following a single session of lower limb motor skill and resistance training. Eur J Appl Physiol 2024:10.1007/s00421-024-05464-9. [PMID: 38532177 DOI: 10.1007/s00421-024-05464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Prior studies suggest resistance exercise as a potential form of motor learning due to task-specific corticospinal responses observed in single sessions of motor skill and resistance training. While existing literature primarily focuses on upper limb muscles, revealing a task-dependent nature in eliciting corticospinal responses, our aim was to investigate such responses after a single session of lower limb motor skill and resistance training. Twelve participants engaged in a visuomotor force tracking task, self-paced knee extensions, and a control task. Corticospinal, spinal, and neuromuscular responses were measured using transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). Assessments occurred at baseline, immediately post, and at 30-min intervals over two hours. Force steadiness significantly improved in the visuomotor task (P < 0.001). Significant fixed-effects emerged between conditions for corticospinal excitability, corticospinal inhibition, and spinal excitability (all P < 0.001). Lower limb motor skill training resulted in a greater corticospinal excitability compared to resistance training (mean difference [MD] = 35%, P < 0.001) and control (MD; 37%, P < 0.001). Motor skill training resulted in a lower corticospinal inhibition compared to control (MD; - 10%, P < 0.001) and resistance training (MD; - 9%, P < 0.001). Spinal excitability was lower following motor skill training compared to control (MD; - 28%, P < 0.001). No significant fixed effect of Time or Time*Condition interactions were observed. Our findings highlight task-dependent corticospinal responses in lower limb motor skill training, offering insights for neurorehabilitation program design.
Collapse
Affiliation(s)
- Alex Woodhead
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK.
| | - Christopher Rainer
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Jessica Hill
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Colm P Murphy
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jamie S North
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Dawson Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, UK
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia
| |
Collapse
|
10
|
Mahmoud WS, Radwan NL, Ibrahim MM, Hasan S, Alamri AM, Ibrahim AR. Effect of blood flow restriction as a stand-alone treatment on muscle strength, dynamic balance, and physical function in female patients with chronic ankle instability. Medicine (Baltimore) 2023; 102:e35765. [PMID: 37933020 PMCID: PMC10627705 DOI: 10.1097/md.0000000000035765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Blood Flow Restriction (BFR) training has gained popularity as a novel training strategy in athletes and rehabilitation settings in recent years. OBJECTIVE To investigate whether BFR as a stand-alone treatment would affect muscle strength, dynamic balance, and physical function in female patients with chronic ankle instability (CAI). METHODS Thirty-nine patients with CAI were randomly allocated into 1 of 3 groups: BFR as a stand-alone (BFR) group, BFR with rehabilitation (BFR+R) group, and rehabilitation (R) group. All groups trained 3 times per week for 4 weeks. One week before and after the intervention, strength of muscles around ankle joint, 3 dynamic balance indices: Overall Stability Index, Anterior-Posterior Stability Index, and Medial-Lateral Stability Index, and physical function were assessed via an isokinetic dynamometer, the Biodex Balance System, and the Foot and Ankle Disability Index, respectively. RESULTS The strength of muscles around ankle and dynamic balance indices improved significantly in BFR + R and R groups (P < .006), but not in BFR group (P > .006). All dynamic balance indices showed improvement in BFR + R and R groups except the Medial-Lateral Stability Index (P > .006). Foot and Ankle Disability Index increased significantly in BFR + R and R groups (P < .006), however; no improvement occurred in BFR group (P > .006). CONCLUSIONS The BFR as a stand-alone treatment hasn't the ability to improve the strength of muscles around the ankle, dynamic balance, and physical function in females with CAI compared to the BFR + R or the R program. In addition, the strength of muscles around the ankle correlated significantly with both dynamic balance and physical function in BFR + R and R groups.
Collapse
Affiliation(s)
- Waleed S. Mahmoud
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Nadia L. Radwan
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Biomechanics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Marwa M. Ibrahim
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Shahnaz Hasan
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, KSA
| | - Aiyshah M. Alamri
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abeer R. Ibrahim
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University, Giza, Egypt
- Department of Physiotherapy, Collage of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
11
|
Yamada Y, Kataoka R, Bell ZW, Wong V, Spitz RW, Song JS, Abe T, Loenneke JP. Improved interference control after exercise with blood flow restriction and cooling is associated with but not mediated by increased lactate. Physiol Behav 2023; 270:114291. [PMID: 37442356 DOI: 10.1016/j.physbeh.2023.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND To evaluate the effects of recumbent sprint interval exercise with and without blood flow restriction and body cooling on interference control and whether the changes in interference control can be explained by the changes in blood lactate. METHODS 85 participants (22 SD 3 years old) completed 1 familiarization visit and then 5 experimental visits in a randomized order: exercise only (Ex), exercise with blood flow restriction (ExB), exercise with cooling (ExC), and exercise with blood flow restriction and cooling (ExBC), and non-exercise control (Con). Measurements of blood lactate and the Stroop Color Word Test were performed before and after exercise. Each bout began with a 15-minute low-moderate intensity warm-up, followed by five 20-second "all out" sprints separated by 40 s of active recovery. Bayes Factors (BF10) quantified evidence for or against the null hypothesis. Within-subject mediation analysis quantified the indirect effect of changes in blood lactate (mediator) on the change in interference control (each exercise condition vs. Con). RESULTS Bayesian pairwise comparisons found that only ExC [σ: -0.37 (-0.59, -0.15)] and ExBC [σ: -0.3 (-0.53, -0.09)] produced changes in incongruent reaction time different from that of Con. There was also evidence that all exercise conditions increased blood lactate (BF10 = 8.65e+29 - 1.9e+32) and improved congruent reaction time (BF10 = 4.01 - 15.371) compared to that of Con. There was no evidence to show that changes in lactate mediated the change in incongruent reaction time. CONCLUSIONS Both exercise with body cooling and when body cooling was combined with blood flow restriction presented favorable changes in incongruent reaction time (a marker of interference control), which might not be explained by the changes in systemic blood lactate concentration.
Collapse
Affiliation(s)
- Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Zachary W Bell
- Department of Kinesiology and Physical Education. Exercise Metabolism and Nutrition Research Laboratory, McGill University, Montreal, Oquebec H3A 0G4, Canada
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America
| | - Takashi Abe
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1360, Japan
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
12
|
Márquez G, Colomer D, Benavente C, Morenilla L, Alix-Fages C, Padial P, Feriche B. Altitude-induced effects on neuromuscular, metabolic and perceptual responses before, during and after a high-intensity resistance training session. Eur J Appl Physiol 2023; 123:2119-2129. [PMID: 37209140 PMCID: PMC10492878 DOI: 10.1007/s00421-023-05195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE We tested if an acute ascending to 2320 m above sea level (asl) affects corticospinal excitability (CSE) and intracortical inhibition (SICI) measured with transcranial magnetic stimulation (TMS) at rest, before, during and after a traditional hypertrophy-oriented resistance training (RT) session. We also explored whether blood lactate concentration (BLa), ratings of perceived exertion (RPE), perceived muscular pain and total training volume differed when the RT session was performed at hypoxia (H) or normoxia (N). METHODS Twelve resistance-trained men performed eight sets of 10 repetitions at 70% of one repetition maximum of a bar biceps curl at N (SpO2 = 98.0 ± 0.9%) and H (at 2320 asl, SpO2 = 94.0 ± 1.9%) in random order. Before each session, a subjective well-being questionnaire, the resting motor threshold (rMT) and a single pulse recruitment curve were measured. Before, during and after the RT session, BLa, RPE, muscle pain, CSE and SICI were measured. RESULTS Before the RT session only the rMT differed between H (- 5.3%) and N (ES = 0.38). RPE, muscle pain and BLa increased through the RT session and were greater at H than N (12%, 54% and 15%, respectively) despite a similar training volume (1618 ± 468 kg vs. 1638 ± 509 kg). CSE was reduced during the RT session (~ 27%) but recovered ten minutes after, regardless of the environmental condition. SICI did not change after any RT session. CONCLUSIONS The data suggest that acute exposure to moderate hypoxia slightly increased the excitability of the most excitable structures of the corticospinal tract but did not influence intracortical or corticospinal responses to a single RT session.
Collapse
Affiliation(s)
- Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain.
| | - David Colomer
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain
| | - Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| | - Luis Morenilla
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Avda. Ernesto Che Guevara, 121-Pazos-Liáns, 15179, Oleiros, A Coruña, Spain
| | - Carlos Alix-Fages
- Applied Biomechanics and Sports Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sports Sciences, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Reina-Ruiz ÁJ, Martínez-Cal J, Molina-Torres G, Romero-Galisteo RP, Galán-Mercant A, Carrasco-Vega E, González-Sánchez M. Effectiveness of Blood Flow Restriction on Functionality, Quality of Life and Pain in Patients with Neuromusculoskeletal Pathologies: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1401. [PMID: 36674158 PMCID: PMC9858892 DOI: 10.3390/ijerph20021401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Blood flow restriction is characterized as a method used during exercise at low loads of around 20-40% of a repetition maximum, or at a low-moderate intensity of aerobic exercise, in which cuffs that occlude the proximal part of the extremities can partially reduce arterial flow and fully restrict the venous flow of the musculature in order to achieve the same benefits as high-load exercise. OBJECTIVE The main objective of this systematic literature review was to analyze the effects of BFR intervention on pain, functionality, and quality of life in subjects with neuromusculoskeletal pathologies. METHODS The search to carry out was performed in PubMed, Cochrane, EMBASE, PEDro, CINHAL, SPORTDiscus, Trip Medical Database, and Scopus: "kaatsu" OR "ischemic training" OR "blood flow restriction" OR "occlusion resistance training" OR "vascular occlusion" OR "vascular restriction". RESULTS After identifying 486 papers and eliminating 175 of them due to duplication and 261 after reading the title and abstract, 50 papers were selected. Of all the selected articles, 28 were excluded for not presenting a score equal to or higher than 6 points on the PEDro scale and 8 for not analyzing the target outcome variables. Finally, 14 papers were selected for this systematic review. CONCLUSIONS The data collected indicate that the blood flow restriction tool is a therapeutic alternative due to its effectiveness under different exercise modalities. The benefits found include decreases in pain thresholds and improvement in the functionality and quality of life of the neuro-musculoskeletal patient during the first six weeks. However, the results provided by this tool are still not clear for medium- and long-term interventions.
Collapse
Affiliation(s)
- Álvaro Jesús Reina-Ruiz
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
| | - Jesús Martínez-Cal
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almería, Spain
| | - Guadalupe Molina-Torres
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almería, Spain
| | - Rita-Pilar Romero-Galisteo
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| | - Alejandro Galán-Mercant
- Institute of Biomedicine of Cádiz (INIBICA), 11009 Cádiz, Spain
- MOVE-IT Research Group, Department of Nursing and Physiotherapy, Faculty of Health Sciences, University of Cádiz, 11009 Cádiz, Spain
| | - Elio Carrasco-Vega
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| | - Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| |
Collapse
|
14
|
Chua MT, Sim A, Burns SF. Acute and Chronic Effects of Blood Flow Restricted High-Intensity Interval Training: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:122. [PMID: 36178530 PMCID: PMC9525532 DOI: 10.1186/s40798-022-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
Background The implementation of blood flow restriction (BFR) during exercise is becoming an increasingly useful adjunct method in both athletic and rehabilitative settings. Advantages in pairing BFR with training can be observed in two scenarios: (1) training at lower absolute intensities (e.g. walking) elicits adaptations akin to high-intensity sessions (e.g. running intervals); (2) when performing exercise at moderate to high intensities, higher physiological stimulus may be attained, leading to larger improvements in aerobic, anaerobic, and muscular parameters. The former has been well documented in recent systematic reviews, but consensus on BFR (concomitant or post-exercise) combined with high-intensity interval training (HIIT) protocols is not well established. Therefore, this systematic review evaluates the acute and chronic effects of BFR + HIIT. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify relevant studies. A systematic search on 1 February 2022, was conducted on four key databases: ScienceDirect, PubMed, Scopus and SPORTDiscus. Quality of each individual study was assessed using the Physiotherapy Evidence Database (PEDro) scale. Extraction of data from included studies was conducted using an adapted version of the 'Population, Intervention, Comparison, Outcome' (PICO) framework. Results A total of 208 articles were identified, 18 of which met inclusion criteria. Of the 18 BFR + HIIT studies (244 subjects), 1 reported both acute and chronic effects, 5 examined acute responses and 12 investigated chronic effects. Acutely, BFR challenges the metabolic processes (vascular and oxygenation responses) during high-intensity repeated sprint exercise—which accelerates central and peripheral neuromuscular fatigue mechanisms resulting in performance impairments. Analysis of the literature exploring the chronic effects of BFR + HIIT suggests that BFR does provide an additive physiological training stimulus to HIIT protocols, especially for measured aerobic, muscular, and, to some extent, anaerobic parameters. Conclusion Presently, it appears that the addition of BFR into HIIT enhances physiological improvements in aerobic, muscular, and, to some extent, anaerobic performance. However due to large variability in permutations of BFR + HIIT methodologies, it is necessary for future research to explore and recommend standardised BFR guidelines for each HIIT exercise type.
Collapse
|
15
|
Werasirirat P, Yimlamai T. Effect of supervised rehabilitation combined with blood flow restriction training in athletes with chronic ankle instability: a randomized placebo-controlled trial. J Exerc Rehabil 2022; 18:123-132. [PMID: 35582686 PMCID: PMC9081407 DOI: 10.12965/jer.2244018.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022] Open
Abstract
Blood flow restriction (BFR) resistance exercise has been advocated as an alternative approach for improving muscle strength in patients undergoing musculoskeletal rehabilitation. The present study aimed to evaluate the effectiveness of a 4-week supervised rehabilitation (R) with and without BFR on muscle strength, cross-sectional area (CSA), dynamic balance, and functional performance in athletes with chronic ankle instability (CAI). A total of 16 collegiate athletes with CAI participated in this study. They were randomly assigned to the BFR+R group (n=8) or the R group (n=8). Both groups underwent supervised rehabilitation 3 times weekly for 4 consecutive weeks. Additionally, the BFR+R group was applied with a cuff around the proximal thigh at 80% arterial occlusion pressure in addition to the traditional rehabilitation program, whereas the R group received the sham BFR only. Before and after 4 weeks of intervention, isokinetic muscle strength, CSA, Y-balance test, and side hop test (SHT) were measured. Following a 4-week intervention, the BFR+R group exhibited significant improvements in muscle strength of ankle plantarflexor and evertor, CSA of fibularis longus, and SHT timed performance compared with prior training and the R group (all, P<0.05). However, no significant difference was observed on dynamic balance among the groups. The present finding indicated that a 4-week supervised rehabilitation combined with BFR is more effective in improving muscle strength and size and functional performance compared with the traditional rehabilitation alone. This information could have implications for physical therapists and clinician in developing and designing a rehabilitation program for athletes with CAI.
Collapse
Affiliation(s)
| | - Tossaporn Yimlamai
- Corresponding author: Tossaporn Yimlamai, Department of Sports Science, Faculty of Sports Science, Chulalongkorn University, Rama I Road, Pathumwan District, Bangkok 10330, Thailand,
| |
Collapse
|
16
|
May AK, Russell AP, Della Gatta PA, Warmington SA. Muscle Adaptations to Heavy-Load and Blood Flow Restriction Resistance Training Methods. Front Physiol 2022; 13:837697. [PMID: 35185627 PMCID: PMC8850930 DOI: 10.3389/fphys.2022.837697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Resistance-based blood flow restriction training (BFRT) improves skeletal muscle strength and size. Unlike heavy-load resistance training (HLRT), there is debate as to whether strength adaptations following BFRT interventions can be primarily attributed to concurrent muscle hypertrophy, as the magnitude of hypertrophy is often minor. The present study aimed to investigate the effect of 7 weeks of BFRT and HLRT on muscle strength and hypertrophy. The expression of protein growth markers from muscle biopsy samples was also measured. Male participants were allocated to moderately heavy-load training (HL; n = 9), low-load BFRT (LL + BFR; n = 8), or a control (CON; n = 9) group to control for the effect of time. HL and LL + BFR completed 21 training sessions (3 d.week−1) comprising bilateral knee extension and knee flexion exercises (HL = 70% one-repetition maximum (1-RM), LL + BFR = 20% 1-RM + blood flow restriction). Bilateral knee extension and flexion 1-RM strength were assessed, and leg muscle CSA was measured via peripheral quantitative computed tomography. Protein growth markers were measured in vastus lateralis biopsy samples taken pre- and post the first and last training sessions. Biopsy samples were also taken from CON at the same time intervals as HL and LL + BFR. Knee extension 1-RM strength increased in HL (19%) and LL + BFR (19%) but not CON (2%; p < 0.05). Knee flexion 1-RM strength increased similarly between all groups, as did muscle CSA (50% femur length; HL = 2.2%, LL + BFR = 3.0%, CON = 2.1%; TIME main effects). 4E-BP1 (Thr37/46) phosphorylation was lower in HL and LL + BFR immediately post-exercise compared with CON in both sessions (p < 0.05). Expression of other growth markers was similar between groups (p > 0.05). Overall, BFRT and HLRT improved muscle strength and size similarly, with comparable changes in intramuscular protein growth marker expression, both acutely and chronically, suggesting the activation of similar anabolic pathways. However, the low magnitude of muscle hypertrophy was not significantly different to the non-training control suggesting that strength adaptation following 7 weeks of BFRT is not driven by hypertrophy, but rather neurological adaptation.
Collapse
|
17
|
Reina-Ruiz ÁJ, Galán-Mercant A, Molina-Torres G, Merchán-Baeza JA, Romero-Galisteo RP, González-Sánchez M. Effect of Blood Flow Restriction on Functional, Physiological and Structural Variables of Muscle in Patients with Chronic Pathologies: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1160. [PMID: 35162182 PMCID: PMC8835162 DOI: 10.3390/ijerph19031160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023]
Abstract
The main objective of this systematic review of the current literature is to analyze the changes that blood flow restriction (BFR) causes in subjects with neuro-musculoskeletal and/or systemic pathologies focusing on the following variables: strength, physiological changes, structural changes and cardiocirculatory variables. The search was carried out in seven databases, including randomized clinical trials in which therapeutic exercise was combined with the blood flow restriction tool in populations with musculoskeletal pathologies. Outcome variables are strength, structural changes, physiological changes and cardiocirculatory variables. Twenty studies were included in the present study. Although there is a lot of heterogeneity between the interventions and evaluation instruments, we observed how the restriction of blood flow presents significant differences in the vast majority of the variables analyzed. In addition, we observed how BFR can become a supplement that provides benefits when performed with low intensity, similar to those obtained through high-intensity muscular efforts. The application of the BFR technique can provide benefits in the short and medium term to increase strength, muscle thickness and cardiovascular endurance, even improving the physiological level of the cardiovascular system. In addition, BFR combined with low-load exercises also achieves benefits comparable to high-intensity exercises without the application of BFR, benefiting patients who are unable to lift high loads.
Collapse
Affiliation(s)
- Álvaro Jesús Reina-Ruiz
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, Arquitecto Francisco Peñalosa, 3, 29071 Málaga, Spain; (Á.J.R.-R.); (R.P.R.-G.); (M.G.-S.)
| | - Alejandro Galán-Mercant
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education, Sciences University of Cádiz, 11002 Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, 11002 Cádiz, Spain
| | - Guadalupe Molina-Torres
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Nursing and Physiotherapy, University of Almeria, 04120 Almeria, Spain
| | - Jose Antonio Merchán-Baeza
- Centre for Health and Social Care Research (CESS), Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Science and Welfare, University of Vic-Central University of Catalonia (UVIC-UCC), C. Sagrada Família, 7, 08500 Vic, Spain;
| | - Rita Pilar Romero-Galisteo
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, Arquitecto Francisco Peñalosa, 3, 29071 Málaga, Spain; (Á.J.R.-R.); (R.P.R.-G.); (M.G.-S.)
- Instituto de Investigación Biomédica de Málaga, IBIMA, Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, Arquitecto Francisco Peñalosa, 3, 29071 Málaga, Spain; (Á.J.R.-R.); (R.P.R.-G.); (M.G.-S.)
- Instituto de Investigación Biomédica de Málaga, IBIMA, Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| |
Collapse
|
18
|
Alibazi RJ, Frazer AK, Pearce AJ, Tallent J, Avela J, Kidgell DJ. Corticospinal and intracortical excitability is modulated in the knee extensors after acute strength training. J Sports Sci 2021; 40:561-570. [PMID: 34796778 DOI: 10.1080/02640414.2021.2004681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The corticospinal responses to high-intensity and low-intensity strength-training of the upper limb are modulated in an intensity-dependent manner. Whether an intensity-dependent threshold occurs following acute strength training of the knee extensors (KE) remains unclear. We assessed the corticospinal responses following high-intensity (85% of maximal strength) or low-intensity (30% of maximal strength) KE strength-training with measures taken during an isometric KE task at baseline, post-5, 30 and 60-min. Twenty-eight volunteers (23 ± 3 years) were randomized to high-intensity (n = 11), low-intensity (n = 10) or to a control group (n = 7). Corticospinal responses were evoked with transcranial magnetic stimulation at intracortical and corticospinal levels. High- or low-intensity KE strength-training had no effect on maximum voluntary contraction force post-exercise (P > 0.05). High-intensity training increased corticospinal excitability (range 130-180%) from 5 to 60 min post-exercise compared to low-intensity training (17-30% increase). Large effect sizes (ES) showed that short-interval cortical inhibition (SICI) was reduced only for the high-intensity training group from 5-60 min post-exercise (24-44% decrease) compared to low-intensity (ES ranges 1-1.3). These findings show a training-intensity threshold is required to adjust CSE and SICI following strength training in the lower limb.
Collapse
Affiliation(s)
- Razie J Alibazi
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Jamie Tallent
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.,School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
The Effect of Increasing Blood Flow Restriction Pressure When the Contractions Are Already Occlusive. J Sport Rehabil 2021; 31:152-157. [PMID: 34697249 DOI: 10.1123/jsr.2020-0402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/25/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Blood flow restricted exercise involves the use of external pressure to enhance fatigue and augment exercise adaptations. The mechanisms by which blood flow restricted exercise limits muscular endurance are not well understood. OBJECTIVE To determine how increasing blood flow restriction pressure impacts local muscular endurance, discomfort, and force steadiness when the contractions are already occlusive. DESIGN Within-participant, repeated-measures crossover design. SETTING University laboratory. PATIENTS A total of 22 individuals (13 males and 9 females). INTERVENTION Individuals performed a contraction at 30% of maximal isometric elbow flexion force for as long as possible. One arm completed the contraction with 100% of arterial occlusion pressure applied, while the other arm had 150% of arterial occlusion pressure applied. At the end of the protocol, individuals were asked to rate their perceived discomfort. MAIN OUTCOME MEASURES Time to task failure, discomfort, and force steadiness. RESULTS Individuals had a longer time to task failure when performing the 100% arterial occlusion condition compared with the 150% arterial occlusion pressure condition (time to task failure = 82.4 vs 70.8 s; Bayes factors = 5.77). There were no differences in discomfort between the 100% and 150% conditions (median discomfort = 5.5 vs 6; Bayes factors = 0.375) nor were there differences in force steadiness (SD of force output 3.16 vs 3.31 N; Bayes factors = 0.282). CONCLUSION The results of the present study suggest that, even when contractions are already occlusive, increasing the restriction pressure reduces local muscle endurance but does not impact discomfort or force steadiness. This provides an indication that mechanisms other than the direct alteration of blood flow are contributing to the increased fatigue with added restrictive pressure. Future studies are needed to examine neural mechanisms that may explain this finding.
Collapse
|
20
|
Martin-Rincon M, Gelabert-Rebato M, Perez-Valera M, Galvan-Alvarez V, Morales-Alamo D, Dorado C, Boushel R, Hallen J, Calbet JAL. Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise. J Physiol 2021; 599:3853-3878. [PMID: 34159610 DOI: 10.1113/jp281293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/17/2021] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Females have lower fatigability than males during single limb isometric and dynamic contractions, but whether sex-differences exist during high-intensity whole-body exercise remains unknown. This study shows that males and females respond similarly to repeated supramaximal whole-body exercise, and that at task failure a large functional reserve remains in both sexes. Using post-exercise ischaemia with repeated exercise, we have shown that this functional reserve depends on the glycolytic component of substrate-level phosphorylation and is almost identical in both sexes. Metaboreflex activation during post-exercise ischaemia and the O2 debt per kg of active lean mass are also similar in males and females after supramaximal exercise. Females have a greater capacity to extract oxygen during repeated supramaximal exercise and reach lower P ETC O 2 , experiencing a larger drop in brain oxygenation than males, without apparent negative repercussion on performance. Females had no faster recovery of performance after accounting for sex differences in lean mass. ABSTRACT The purpose of this study was to ascertain what mechanisms explain sex differences at task failure and to determine whether males and females have a functional reserve at exhaustion. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation were determined in 18 males and 18 females (21-36 years old) in two sessions consisting of three bouts of constant-power exercise at 120% of V ̇ O 2 max until exhaustion interspaced by 20 s recovery periods. In one of the two sessions, the circulation of both legs was occluded instantaneously (300 mmHg) during the recovery periods. Females had a higher muscle O2 extraction during fatiguing supramaximal exercise than males. Metaboreflex activation, and lean mass-adjusted O2 deficit and debt were similar in males and females. Compared to males, females reached lower P ETC O 2 and brain oxygenation during supramaximal exercise, without apparent negative consequences on performance. After the occlusions, males and females were able to restart exercising at 120% of V ̇ O 2 max , revealing a similar functional reserve, which depends on glycolytic component of substrate-level phosphorylation and its rate of utilization. After ischaemia, muscle O2 extraction was increased, and muscle V ̇ O 2 was similarly reduced in males and females. The physiological response to repeated supramaximal exercise to exhaustion is remarkably similar in males and females when differences in lean mass are considered. Both sexes fatigue with a large functional reserve, which depends on the glycolytic energy supply, yet females have higher oxygen extraction capacity, but reduced P ETC O 2 and brain oxygenation.
Collapse
Affiliation(s)
- Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jostein Hallen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
21
|
Mendonca GV, Vila-Chã C, Teodósio C, Goncalves AD, Freitas SR, Mil-Homens P, Pezarat-Correia P. Contralateral training effects of low-intensity blood-flow restricted and high-intensity unilateral resistance training. Eur J Appl Physiol 2021; 121:2305-2321. [PMID: 33982187 DOI: 10.1007/s00421-021-04708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Determine whether unilateral low-intensity blood-flow restricted (LIBFR) exercise is as effective as high-intensity (HI) resistance training for improving contralateral muscle strength. METHODS Thirty healthy adults (20-30 years) were randomly allocated to the following dynamic plantar-flexion training interventions: HI [75% of one-repetition maximum (1RM), 4 sets, 10 reps] and LIBFR [20% of 1RM, 4 sets, 30 + 15 + 15 + 15 reps]. Evoked V-wave and H-reflex recruitment curves, as well as maximal voluntary contraction (MVC) and panoramic ultrasound assessments of the trained and untrained soleus muscles were obtained pre-training, post-4 weeks of training and post-4 weeks of detraining. RESULTS Both interventions failed to increase contralateral MVC and muscle cross-sectional area (CSA). Yet, contralateral rate of torque development (RTD) was enhanced by both regimens (12-26%) and this was accompanied by heightened soleus EMG within the first milliseconds of the rising torque-time curve (14-22%; p < 0.05). These improvements were dissipated after detraining. Contralateral adaptations were not accompanied by changes in V-wave or H-reflex excitability. Conversely, LIBFR and HI elicited a similar magnitude of ipsilateral increase in MVC, RTD and CSA post-training (10-18%). Improvements in V-wave amplitude and soleus EMG were limited to the trained leg assigned to LIBFR training (p < 0.05). While gains in strength and CSA remained preserved post-4 weeks of detraining, this did not occur with RTD. CONCLUSION Since gains in RTD were similar between interventions, our findings indicate that both training regimens can be used interchangeably for improving contralateral rapid torque production. Ultimately, this may be beneficial in circumstances of limb immobilization after injury or surgery.
Collapse
Affiliation(s)
- Goncalo V Mendonca
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal. .,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal.
| | - Carolina Vila-Chã
- Polytechnic Institute of Guarda, Av. Dr. Francisco Sá Carneiro, n. 50, 6300-559, Guarda, Portugal.,Research Center in Sports Sciences, Health and Human Development (CIDESD), Vila-Real, Portugal
| | - Carolina Teodósio
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal
| | - André D Goncalves
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal
| | - Sandro R Freitas
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| | - Pedro Mil-Homens
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| |
Collapse
|
22
|
Yamada Y, Frith EM, Wong V, Spitz RW, Bell ZW, Chatakondi RN, Abe T, Loenneke JP. Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction. Med Hypotheses 2021; 151:110586. [PMID: 33848917 DOI: 10.1016/j.mehy.2021.110586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022]
Abstract
Blood flow restriction, in combination with low load/intensity exercise, has consistently been shown to increase both muscle size and strength. In contrast, the effects of blood flow restricted exercise on cognition have not been well studied. Therefore, the purpose of this paper is 1) to review the currently available literature investigating the impact of blood flow restricted exercise on cognition and 2) to provide some hypotheses for how blood flow restriction might provide an additive stimulus for augmenting specific cognitive domains above exercise alone. Given the lack of research in this area, the effects of blood flow restricted exercise on cognition are still unclear. We hypothesize that blood flow restricted exercise could potentially enhance several cognitive domains (such as attention, executive functioning, and memory) through increases in lactate production, catecholamine concentration, and PGC-1α expression. We review work that suggests that blood flow restriction is not only a beneficial strategy to improve musculoskeletal function but could also be a favorable method for enhancing multiple domains of cognition. Nonetheless, it must be emphasized this is a hypothesis that currently has only minimal experimental support, and further investigations in the future are necessary to test the hypothesis.
Collapse
Affiliation(s)
- Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Emily M Frith
- Department of Psychology, Cognitive Neuroscience of Creativity Laboratory, Pennsylvania State University, PA 16801, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Raksha N Chatakondi
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
23
|
Rolnick N, Schoenfeld BJ. Blood Flow Restriction Training and the Physique Athlete: A Practical Research-Based Guide to Maximizing Muscle Size. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Centner C, Lauber B. A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don't Know. Front Physiol 2020; 11:887. [PMID: 32848843 PMCID: PMC7417362 DOI: 10.3389/fphys.2020.00887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: To summarize the existing evidence on the long-term effects of low-load (LL) blood flow restricted (BFR) exercise on neural markers including both central and peripheral adaptations. Methods: A systematic review and meta-analysis was conducted according to the PRISMA guidelines. The literature search was performed independently by two reviewers in the following electronic databases: PubMed, Web of Science, Scopus and CENTRAL. The systematic review included long-term trials investigating the effects of LL-BFR training in healthy subjects and compared theses effects to either LL or high-load (HL) training without blood flow restriction. Results: From a total of N = 4499 studies, N = 10 studies were included in the qualitative synthesis and N = 4 studies in a meta-analysis. The findings indicated that LL-BFR resulted in enhanced levels of muscle excitation compared to LL training with pooled effect sizes of 0.87 (95% CI: 0.38-1.36). Compared to HL training, muscle excitation following LL-BFR was reported as either similar or slightly lower. Differences between central activation between LL-BFR and LL or HL are less clear. Conclusion: The summarized effects in this systematic review and meta-analysis highlight that BFR training facilitates neural adaptations following LL training, although differences to conventional HL training are less evident. Future research is urgently needed to identify neural alterations following long-term blood flow restricted exercise.
Collapse
Affiliation(s)
- Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
25
|
Minniti MC, Statkevich AP, Kelly RL, Rigsby VP, Exline MM, Rhon DI, Clewley D. The Safety of Blood Flow Restriction Training as a Therapeutic Intervention for Patients With Musculoskeletal Disorders: A Systematic Review. Am J Sports Med 2020; 48:1773-1785. [PMID: 31710505 DOI: 10.1177/0363546519882652] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The effectiveness of blood flow restriction training (BFRT) as compared with other forms of training, such as resistance training, has been evaluated in the literature in clinical and nonclinical populations. However, the safety of this intervention has been summarized only in healthy populations and not in clinical populations with musculoskeletal disorders. PURPOSE To evaluate the safety and adverse events associated with BFRT in patients with musculoskeletal disorders. STUDY DESIGN Systematic review. METHODS A literature search was conducted with 3 online databases (MEDLINE, CINAHL, and Embase). Eligibility criteria for selecting studies were as follows: (1) BFRT was used as a clinical intervention, (2) study participants had a disorder of the musculoskeletal system, (3) authors addressed adverse events, (4) studies were published in English, and (5) the intervention was performed with human participants. RESULTS Nineteen studies met eligibility criteria, with a pooled sample size of 322. Diagnoses included various knee-related disorders, inclusion body myositis, polymyositis or dermatomyositis, thoracic outlet syndrome, Achilles tendon rupture, and bony fractures. Nine studies reported no adverse events, while 3 reported rare adverse events, including an upper extremity deep vein thrombosis and rhabdomyolysis. Three case studies reported common adverse events, including acute muscle pain and acute muscle fatigue. In the randomized controlled trials, individuals exposed to BFRT were not more likely to have an adverse event than individuals exposed to exercise alone. Of the 19 studies, the adverse events were as follows: overall, 14 of 322; rare overall, 3 of 322; rare BFRT, 3 of 168; rare control, 0 of 154; any adverse BFRT, 10 of 168; any adverse control, 4 of 154. A majority of studies were excluded because they did not address safety. CONCLUSION BFRT appears to be a safe strengthening approach for knee-related musculoskeletal disorders, but further research is needed to make definitive conclusions and to evaluate the safety in other musculoskeletal conditions. Improved definitions of adverse events related to BFRT are needed to include clear criteria for differentiating among common, uncommon, and rare adverse events. Finally, further research is needed to effectively screen who might be at risk for rare adverse events.
Collapse
Affiliation(s)
- Melissa C Minniti
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Andrew P Statkevich
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Ryan L Kelly
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Victoria P Rigsby
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Meghan M Exline
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Daniel I Rhon
- Physical Performance Service Line, Office of the Army Surgeon General, Falls Church, Virginia, USA.,Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Derek Clewley
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Hughes L, Rosenblatt B, Haddad F, Gissane C, McCarthy D, Clarke T, Ferris G, Dawes J, Paton B, Patterson SD. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sports Med 2020; 49:1787-1805. [PMID: 31301034 DOI: 10.1007/s40279-019-01137-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND We implemented a blood flow restriction resistance training (BFR-RT) intervention during an 8-week rehabilitation programme in anterior cruciate ligament reconstruction (ACLR) patients within a National Health Service setting. OBJECTIVE To compare the effectiveness of BFR-RT and standard-care traditional heavy-load resistance training (HL-RT) at improving skeletal muscle hypertrophy and strength, physical function, pain and effusion in ACLR patients following surgery. METHODS 28 patients scheduled for unilateral ACLR surgery with hamstring autograft were recruited for this parallel-group, two-arm, single-assessor blinded, randomised clinical trial following appropriate power analysis. Following surgery, a criteria-driven approach to rehabilitation was utilised and participants were block randomised to either HL-RT at 70% repetition maximum (1RM) (n = 14) or BFR-RT (n = 14) at 30% 1RM. Participants completed 8 weeks of biweekly unilateral leg press training on both limbs, totalling 16 sessions, alongside standard hospital rehabilitation. Resistance exercise protocols were designed consistent with standard recommended protocols for each type of exercise. Scaled maximal isotonic strength (10RM), muscle morphology of the vastus lateralis of the injured limb, self-reported function, Y-balance test performance and knee joint pain, effusion and range of motion (ROM) were assessed at pre-surgery, post-surgery, mid-training and post-training. Knee joint laxity and scaled maximal isokinetic knee extension and flexion strength at 60°/s, 150°/s and 300°/s were measured at pre-surgery and post-training. RESULTS Four participants were lost, with 24 participants completing the study (12 per group). There were no adverse events or differences between groups for any baseline anthropometric variable or pre- to post-surgery change in any outcome measure. Scaled 10RM strength significantly increased in the injured limb (104 ± 30% and 106 ± 43%) and non-injured limb (33 ± 13% and 39 ± 17%) with BFR-RT and HL-RT, respectively, with no group differences. Significant increases in knee extension and flexion peak torque were observed at all speeds in the non-injured limb with no group differences. Significantly greater attenuation of knee extensor peak torque loss at 150°/s and 300°/s and knee flexor torque loss at all speeds was observed with BFR-RT. No group differences in knee extensor peak torque loss were found at 60°/s. Significant and comparable increases in muscle thickness (5.8 ± 0.2% and 6.7 ± 0.3%) and pennation angle (4.1 ± 0.3% and 3.4 ± 0.1%) were observed with BFR-RT and HL-RT, respectively, with no group differences. No significant changes in fascicle length were observed. Significantly greater and clinically important increases in several measures of self-reported function (50-218 ± 48% vs. 35-152 ± 56%), Y-balance performance (18-59 ± 22% vs. 18-33 ± 19%), ROM (78 ± 22% vs. 48 ± 13%) and reductions in knee joint pain (67 ± 15% vs. 39 ± 12%) and effusion (6 ± 2% vs. 2 ± 2%) were observed with BFR-RT compared to HL-RT, respectively. CONCLUSION BFR-RT can improve skeletal muscle hypertrophy and strength to a similar extent to HL-RT with a greater reduction in knee joint pain and effusion, leading to greater overall improvements in physical function. Therefore, BFR-RT may be more appropriate for early rehabilitation in ACLR patient populations within the National Health Service.
Collapse
Affiliation(s)
- Luke Hughes
- School of Sport, Health and Applied Science, St Mary's University, London, TW1 4SX, UK.,Institute of Sport, Exercise and Health, 170 Tottenham Court Road, London, UK
| | | | - Fares Haddad
- Institute of Sport, Exercise and Health, 170 Tottenham Court Road, London, UK
| | - Conor Gissane
- School of Sport, Health and Applied Science, St Mary's University, London, TW1 4SX, UK
| | | | | | | | - Joanna Dawes
- University College London, Bloomsbury, London, UK
| | - Bruce Paton
- Institute of Sport, Exercise and Health, 170 Tottenham Court Road, London, UK.
| | | |
Collapse
|
27
|
Copithorne DB, Rice CL, McNeil CJ. Effect of blood flow occlusion on corticospinal excitability during sustained low-intensity isometric elbow flexion. J Neurophysiol 2020; 123:1113-1119. [PMID: 31995434 DOI: 10.1152/jn.00644.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood flow occlusion (BFO) has been used to study the influence of group III/IV muscle afferents after fatiguing exercise, but it is unknown how BFO-induced activity of these afferents affects motor cortical and motoneuronal excitability during low-intensity exercise. Therefore, the purpose of this study was to assess the acute effect of BFO on peripheral [maximal M wave (Mmax)], spinal [cervicomedullary motor evoked potential (CMEP) normalized to Mmax], and motor cortical [motor evoked potential (MEP) normalized to CMEP] excitability. Nine healthy men completed a sustained isometric contraction of the elbow flexors at 20% of maximal force under three conditions: 1) contractile failure with BFO, 2) a time-matched trial without restriction [free flow (FFiso)], and 3) contractile failure with free flow (FFfail). Time to failure for BFO (and FFiso) were ~80% shorter than that for FFfail (P < 0.05). For FFfail and FFiso, Mmax area decreased ~17% and ~7%, respectively (P < 0.05), with no change during BFO. CMEP/Mmax area increased ~226% and ~80% during BFO and FFfail, respectively (P < 0.05), with no change during FFiso (P > 0.05). The increase in normalized CMEP area was greater for BFO and FFfail compared with FFiso and for BFO compared with FFfail. MEP/CMEP area was not different among the protocols (P > 0.05) and increased ~64% with time (P < 0.05). It is likely that group III/IV muscle afferent feedback to the spinal cord modulates the large increase in motoneuronal excitability for the BFO compared with FFfail and FFiso protocols.NEW & NOTEWORTHY We have observed how blood flow occlusion modulates motor cortical, spinal, and peripheral excitability during and immediately after a sustained low-intensity isometric elbow flexion contraction to failure. We conclude that blood flow occlusion causes a greater and more rapid increase in motoneuronal excitability.
Collapse
Affiliation(s)
- D B Copithorne
- Canadian Centre for Activity and Aging, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - C L Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - C J McNeil
- School of Health and Exercise Sciences, The University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
28
|
Kjeldsen SS, Næss-Schmidt ET, Hansen GM, Nielsen JF, Stubbs PW. Neuromuscular effects of dorsiflexor training with and without blood flow restriction. Heliyon 2019; 5:e02341. [PMID: 31467996 PMCID: PMC6710534 DOI: 10.1016/j.heliyon.2019.e02341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 08/15/2019] [Indexed: 10/27/2022] Open
Abstract
Blood flow restriction training (BFRT) has been proposed for elderly and clinical populations with weakness. Before being used in these populations it is important to understand the neurological effects of, and subject perceptions to, BFRT. Seventeen healthy subjects were recruited and performed 2 experimental sessions, BFRT and training without blood flow restriction (TR-only), on separate days. Four sets of concentric/eccentric dorsiflexion contractions against theraband resistance were performed. Surface electromyography of the tibialis anterior was recorded during exercise and for the electrophysiological measures. At baseline, immediately-post, 10-min-post and 20-min-post exercise, motor evoked potentials (MEPs) from single pulse transcranial magnetic stimulation (TMS), paired-pulse TMS with interstimulus intervals of 2-ms (SICI) and 15-ms (ICF), and the M-max amplitude were recorded in the resting TA. Following training, subjects provided a numerical rating of the levels of pain, discomfort, fatigue, focus and difficulty during training. Muscle activation was higher in the last 20 contractions during BFRT compared to TR. There was no difference (time × condition interaction) between BFRT and TR for single-pulse MEP, SICI, ICF or M-max amplitude. There was a significant main effect of timepoint for single-pulse MEP and M-max amplitudes with both significantly reduced for 20-min-post exercise. No reductions were observed for SICI and ICF amplitudes. Taken together, BFRT and TR-only were only different during exercise and both regimes induced similar significant reductions in M-Max and MEP-amplitude post-training. Due to the lack of changes in SICI and ICF, it is unlikely that changes occurred in cortical sites related to these pathways. The increased surface electromyography activity in the last 20 contractions, indicate that the training regimes are different and that BFRT possibly induces more fatigue than TR. As such, BFRT could be used as an adjunct to conventional training. However, as subjects perceived BFRT as more painful, difficult and uncomfortable than TR-only, people should be selected carefully to undertake BFRT.
Collapse
Affiliation(s)
- Simon Svanborg Kjeldsen
- Research Department, Hammel Neurorehabilitation and Research Center, Aarhus University, Hammel, Denmark
| | | | - Gunhild Mo Hansen
- Research Department, Hammel Neurorehabilitation and Research Center, Aarhus University, Hammel, Denmark
| | - Jørgen Feldbæk Nielsen
- Research Department, Hammel Neurorehabilitation and Research Center, Aarhus University, Hammel, Denmark
| | - Peter William Stubbs
- Research Department, Hammel Neurorehabilitation and Research Center, Aarhus University, Hammel, Denmark.,University of Technology Sydney, Graduate School of Health, Discipline of Physiotherapy, Sydney, Australia
| |
Collapse
|
29
|
Jessee MB, Buckner SL, Mattocks KT, Dankel SJ, Mouser JG, Bell ZW, Abe T, Loenneke JP. Blood flow restriction augments the skeletal muscle response during very low-load resistance exercise to volitional failure. Physiol Int 2019; 106:180-193. [PMID: 31262205 DOI: 10.1556/2060.106.2019.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to compare the acute muscular response with resistance exercise between the following conditions [labeled (% one-repetition maximum/% arterial occlusion pressure)]: high-load (70/0), very low-load (15/0), very low-load with moderate (15/40), and high (15/80) blood flow restriction pressures. Twenty-three participants completed four sets of unilateral knee extension to failure (up to 90 repetitions) with each condition, one condition per leg, each day. Muscle thickness and maximal voluntary contraction (MVC) were measured before (Pre), immediately after (Post-0), and 15 min after (Post-15) exercise and electromyography (EMG) amplitude during exercise. Pre to Post-0 muscle thickness changes in cm [95% CI] were greater with 15/40 [0.57 (0.41, 0.73)] and 15/80 [0.49 (0.35, 0.62)] compared to 70/0 [0.33 (0.25, 0.40)]. Pre to Post-0 MVC changes in Nm [95% CI] were higher with 15/40 [-127.0 (-162.1, -91.9)] and 15/80 [-133.6 (-162.8, -104.4)] compared to 70/0 [-48.4 (-70.1, -26.6)] and 15/0 [-98.4 (-121.9, -74.9)], which were also different. Over the first three repetitions, EMG increased across sets, whereas in the last three repetitions it did not. EMG was also different between conditions and was generally greater during 70/0. Repetitions decreased across sets reaching the lowest for 70/0, and for very low loads decreased with increased pressure. In trained participants exercising to failure, lower load and the application of restriction pressure augment changes in muscle thickness and torque. The EMG amplitude was augmented by load. Training studies should compare these conditions, as the results herein suggest some muscular adaptations may differ.
Collapse
Affiliation(s)
- M B Jessee
- 1 School of Kinesiology and Nutrition, The University of Southern Mississippi , Hattiesburg, MS, USA
| | - S L Buckner
- 2 Exercise Science Program, University of South Florida , Tampa, FL, USA
| | - K T Mattocks
- 3 Department of Exercise Science, Lindenwood University-Belleville , Belleville, IL, USA
| | - S J Dankel
- 4 Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi , University, MS, USA
| | - J G Mouser
- 5 Department of Kinesiology and Health Promotion, Troy University , Troy, AL, USA
| | - Z W Bell
- 4 Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi , University, MS, USA
| | - T Abe
- 4 Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi , University, MS, USA
| | - J P Loenneke
- 4 Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi , University, MS, USA
| |
Collapse
|
30
|
Edwards LL, King EM, Buetefisch CM, Borich MR. Putting the "Sensory" Into Sensorimotor Control: The Role of Sensorimotor Integration in Goal-Directed Hand Movements After Stroke. Front Integr Neurosci 2019; 13:16. [PMID: 31191265 PMCID: PMC6539545 DOI: 10.3389/fnint.2019.00016] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Integration of sensory and motor information is one-step, among others, that underlies the successful production of goal-directed hand movements necessary for interacting with our environment. Disruption of sensorimotor integration is prevalent in many neurologic disorders, including stroke. In most stroke survivors, persistent paresis of the hand reduces function and overall quality of life. Current rehabilitative methods are based on neuroplastic principles to promote motor learning that focuses on regaining motor function lost due to paresis, but the sensory contributions to motor control and learning are often overlooked and currently understudied. There is a need to evaluate and understand the contribution of both sensory and motor function in the rehabilitation of skilled hand movements after stroke. Here, we will highlight the importance of integration of sensory and motor information to produce skilled hand movements in healthy individuals and individuals after stroke. We will then discuss how compromised sensorimotor integration influences relearning of skilled hand movements after stroke. Finally, we will propose an approach to target sensorimotor integration through manipulation of sensory input and motor output that may have therapeutic implications.
Collapse
Affiliation(s)
- Lauren L Edwards
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Erin M King
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Cathrin M Buetefisch
- Department of Rehabilitation Medicine, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Neurology, Emory University, Atlanta, GA, United States.,Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, United States
| | - Michael R Borich
- Department of Rehabilitation Medicine, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
31
|
Amani-Shalamzari S, Farhani F, Rajabi H, Abbasi A, Sarikhani A, Paton C, Bayati M, Berdejo-Del-Fresno D, Rosemann T, Nikolaidis PT, Knechtle B. Blood Flow Restriction During Futsal Training Increases Muscle Activation and Strength. Front Physiol 2019; 10:614. [PMID: 31178752 PMCID: PMC6538690 DOI: 10.3389/fphys.2019.00614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the effect of leg blood flow restriction (BFR) applied during a 3-a-side futsal game on strength-related parameters. Twelve male futsal players were randomly assigned into two groups (n = 6 for each group) during 10 training sessions either with or without leg BFR. Prior to and post-training sessions, participants completed a series of tests to assess anabolic hormones and leg strength. Pneumatic cuffs were initially inflated to 110% of leg systolic blood pressure and further increased by 10% after every two completed sessions. In comparison with baseline, the resting post-training levels of myostatin (p = 0.002) and IGF-1/MSTN ratio (p = 0.006) in the BFR group changed, whereas no change in the acute level of IGF-1 and myostatin after exercise was observed. Peak torque of knee extension and flexion increased in both groups (p < 0.05). A trend of increased neural activation of all heads of the quadriceps was observed in both groups, however, it was statistically significant only for rectus femoris in BFR (p = 0.02). These findings indicated that the addition of BFR to normal futsal training might induce greater neuromuscular benefits by increasing muscle activation and augmenting the hormonal response.
Collapse
Affiliation(s)
- Sadegh Amani-Shalamzari
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran
| | - Farid Farhani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran
| | - Ali Abbasi
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Science, Kharazmi University, Tehran, Iran
| | - Ali Sarikhani
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran
| | - Carl Paton
- Faculty of Health and Sport Science, Eastern Institute of Technology, Napier, New Zealand
| | - Mahdi Bayati
- Department of Exercise Physiology, Sports Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran
| | | | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.,Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| |
Collapse
|
32
|
Neuromuscular evaluation of arm-cycling repeated sprints under hypoxia and/or blood flow restriction. Eur J Appl Physiol 2019; 119:1533-1545. [PMID: 31011807 DOI: 10.1007/s00421-019-04143-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE This study aimed to determine the effects of hypoxia and/or blood flow restriction (BFR) on an arm-cycling repeated sprint ability test (aRSA) and its impact on elbow flexor neuromuscular function. METHODS Fourteen volunteers performed an aRSA (10 s sprint/20 s recovery) to exhaustion in four randomized conditions: normoxia (NOR), normoxia plus BFR (NBFR), hypoxia (FiO2 = 0.13, HYP) and hypoxia plus BFR (HBFR). Maximal voluntary contraction (MVC), resting twitch force (Db10), and electromyographic responses from the elbow flexors [biceps brachii (BB)] to electrical and transcranial magnetic stimulation were obtained to assess neuromuscular function. Main effects of hypoxia, BFR, and interaction were analyzed on delta values from pre- to post-exercise. RESULTS BFR and hypoxia decreased the number of sprints during aRSA with no significant cumulative effect (NOR 16 ± 8; NBFR 12 ± 4; HYP 10 ± 3 and HBFR 8 ± 3; P < 0.01). MVC decrease from pre- to post-exercise was comparable whatever the condition. M-wave amplitude (- 9.4 ± 1.9% vs. + 0.8 ± 2.0%, P < 0.01) and Db10 force (- 41.8 ± 4.7% vs. - 27.9 ± 4.5%, P < 0.01) were more altered after aRSA with BFR compared to without BFR. The exercise-induced increase in corticospinal excitability was significantly lower in hypoxic vs. normoxic conditions (e.g., BB motor evoked potential at 75% of MVC: - 2.4 ± 4.2% vs. + 16.0 ± 5.9%, respectively, P = 0.03). CONCLUSION BFR and hypoxia led to comparable aRSA performance impairments but with distinct fatigue etiology. BFR impaired the muscle excitation-contraction coupling whereas hypoxia predominantly affected corticospinal excitability indicating incapacity of the corticospinal pathway to adapt to fatigue as in normoxia.
Collapse
|
33
|
Törpel A, Herold F, Hamacher D, Müller NG, Schega L. Strengthening the Brain-Is Resistance Training with Blood Flow Restriction an Effective Strategy for Cognitive Improvement? J Clin Med 2018; 7:E337. [PMID: 30304785 PMCID: PMC6210989 DOI: 10.3390/jcm7100337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is accompanied by a decrease in physical capabilities (e.g., strength loss) and cognitive decline. The observed bidirectional relationship between physical activity and brain health suggests that physical activities could be beneficial to maintain and improve brain functioning (e.g., cognitive performance). However, the exercise type (e.g., resistance training, endurance training) and their exercise variables (e.g., load, duration, frequency) for an effective physical activity that optimally enhance cognitive performance are still unknown. There is growing evidence that resistance training induces substantial brain changes which contribute to improved cognitive functions. A relative new method in the field of resistance training is blood flow restriction training (BFR). While resistance training with BFR is widely studied in the context of muscular performance, this training strategy also induces an activation of signaling pathways associated with neuroplasticity and cognitive functions. Based on this, it seems reasonable to hypothesize that resistance training with BFR is a promising new strategy to boost the effectiveness of resistance training interventions regarding cognitive performance. To support our hypothesis, we provide rationales of possible adaptation processes induced by resistance training with BFR. Furthermore, we outline recommendations for future studies planning to investigate the effects of resistance training with BFR on cognition.
Collapse
Affiliation(s)
- Alexander Törpel
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Dennis Hamacher
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany.
| |
Collapse
|
34
|
Ladlow P, Coppack RJ, Dharm-Datta S, Conway D, Sellon E, Patterson SD, Bennett AN. Low-Load Resistance Training With Blood Flow Restriction Improves Clinical Outcomes in Musculoskeletal Rehabilitation: A Single-Blind Randomized Controlled Trial. Front Physiol 2018; 9:1269. [PMID: 30246795 PMCID: PMC6139300 DOI: 10.3389/fphys.2018.01269] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
Background: There is growing evidence to support the use of low-load blood flow restriction (LL-BFR) exercise in musculoskeletal rehabilitation. Purpose: The purpose of this study was to evaluate the efficacy and feasibility of low-load blood flow restricted (LL-BFR) training versus conventional high mechanical load resistance training (RT) on the clinical outcomes of patient’s undergoing inpatient multidisciplinary team (MDT) rehabilitation. Study design: A single-blind randomized controlled study. Methods: Twenty-eight lower-limb injured adults completed a 3-week intensive MDT rehabilitation program. Participants were randomly allocated into a conventional RT (3-days/week) or twice-daily LL-BFR training group. Outcome measurements were taken at baseline and 3-weeks and included quadriceps and total thigh muscle cross-sectional area (CSA) and volume, muscle strength [five repetition maximum (RM) leg press and knee extension test, isometric hip extension], pain and physical function measures (Y-balance test, multistage locomotion test—MSLT). Results: A two-way repeated measures analysis of variance revealed no significant differences between groups for any outcome measure post-intervention (p > 0.05). Both groups showed significant improvements in mean scores for muscle CSA/volume, 5-RM leg press, and 5-RM knee extension (p < 0.01) after treatment. LL-BFR group participants also demonstrated significant improvements in MSLT and Y-balance scores (p < 0.01). The Pain scores during training reduced significantly over time in the LL-BFR group (p = 0.024), with no adverse events reported during the study. Conclusion: Comparable improvements in muscle strength and hypertrophy were shown in LL-BFR and conventional training groups following in-patient rehabilitation. The LL-BFR group also achieved significant improvements in functional capacity. LL-BFR training is a rehabilitation tool that has the potential to induce positive adaptations in the absence of high mechanical loads and therefore could be considered a treatment option for patients suffering significant functional deficits for whom conventional loaded RT is contraindicated. Trial Registration: ISRCTN Reference: ISRCTN63585315, dated 25 April 2017.
Collapse
Affiliation(s)
- Peter Ladlow
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Headley Court, Epsom, United Kingdom.,Department for Health, University of Bath, Bath, United Kingdom
| | - Russell J Coppack
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Headley Court, Epsom, United Kingdom.,Department for Health, University of Bath, Bath, United Kingdom
| | - Shreshth Dharm-Datta
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Headley Court, Epsom, United Kingdom
| | - Dean Conway
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Headley Court, Epsom, United Kingdom
| | - Edward Sellon
- Imaging Department, Oxford University Hospitals, Oxford, United Kingdom
| | - Stephen D Patterson
- School of Sport, Health and Applied Science, St. Mary's University, London, United Kingdom
| | - Alexander N Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Headley Court, Epsom, United Kingdom.,Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
Blood Flow Restriction Training in Rehabilitation Following Anterior Cruciate Ligament Reconstructive Surgery: A Review. Tech Orthop 2018. [DOI: 10.1097/bto.0000000000000265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
|
37
|
Faltus J, Owens J, Hedt C. THEORETICAL APPLICATIONS OF BLOOD FLOW RESTRICTION TRAINING IN MANAGING CHRONIC ANKLE INSTABILITY IN THE BASKETBALL ATHLETE. Int J Sports Phys Ther 2018; 13:552-560. [PMID: 30038841 PMCID: PMC6044586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Chronic ankle instability (CAI) is a common dysfunctional state in the basketball population accompanied by pain, weakness and proprioceptive deficits which greatly affect performance. Research evidence has supported the use of blood flow restriction (BFR) training as an effective treatment strategy for improving muscle strength, hypertrophy and function following injury in a variety of patient populations. In managing CAI, it is important to address proximal and distal muscle weakness, pain, and altered proprioception to reduce the likelihood of re-occurring ankle injury. The ability to mitigate acute and cumulative strength and muscle volume losses through the integration of BFR after injury has been supported in research literature. In addition, applications of BFR training for modulating pain, improving muscle activation and proximal muscle strength have recently been suggested and may provide potential benefit for athletes with CAI. The purpose of this clinical commentary is to discuss background evidence supporting the implementation of blood flow restriction training and use a theoretical model for managing CAI as well as to suggest novel treatment strategies using this method. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- John Faltus
- University Physical Therapy and Sports Medicine at Clemson University, Clemson, SC, USA
| | | | | |
Collapse
|
38
|
Hughes L, Rosenblatt B, Gissane C, Paton B, Patterson SD. Interface pressure, perceptual, and mean arterial pressure responses to different blood flow restriction systems. Scand J Med Sci Sports 2018; 28:1757-1765. [DOI: 10.1111/sms.13092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- L. Hughes
- School of Sport, Health and Applied Science; St Mary's University; London UK
- Institute of Sport, Exercise and Health; London UK
| | | | - C. Gissane
- School of Sport, Health and Applied Science; St Mary's University; London UK
| | - B. Paton
- Institute of Sport, Exercise and Health; London UK
| | - S. D. Patterson
- School of Sport, Health and Applied Science; St Mary's University; London UK
| |
Collapse
|
39
|
Brandner CR, Warmington SA. Delayed Onset Muscle Soreness and Perceived Exertion After Blood Flow Restriction Exercise. J Strength Cond Res 2018; 31:3101-3108. [PMID: 28118308 DOI: 10.1519/jsc.0000000000001779] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brandner, CR, and Warmington, SA. Delayed onset muscle soreness and perceived exertion after blood flow restriction exercise. J Strength Cond Res 31(11): 3101-3108, 2017-The purpose of this study was to determine the perceptual responses to resistance exercise with heavy loads (80% 1 repetition maximum [1RM]), light loads (20% 1RM), or light loads in combination with blood flow restriction (BFR). Despite the use of light loads, it has been suggested that the adoption of BFR resistance exercise may be limited because of increases in delayed onset muscle soreness (DOMS) and perceived exertion. Seventeen healthy untrained males participated in this balanced, randomized cross-over study. After 4 sets of elbow-flexion exercise, participants reported ratings of perceived exertion (RPE), with DOMS also recorded for 7 days after each trial. Delayed onset muscle soreness was significantly greater for low-pressure continuous BFR (until 48 hours postexercise) and high-pressure intermittent BFR (until 72 hours postexercise) than for traditional heavy-load resistance exercise and light-load resistance exercise. In addition, RPE was higher for heavy-load resistance exercise and high-pressure intermittent BFR than for low-pressure continuous BFR, with all trials greater than light-load resistance exercise. For practitioners working with untrained participants, this study provides evidence to suggest that to minimize the perception of effort and postexercise muscle soreness associated with BFR resistance exercise, continuous low-pressure application may be more preferential than intermittent high-pressure application. Importantly, these perceptual responses are relatively short-lived (∼2 days) and have previously been shown to subside after a few exercise sessions. Combined with smaller initial training volumes (set × repetitions), this may limit RPE and DOMS to strengthen uptake and adherence and assist in program progression for muscle hypertrophy and gains in strength.
Collapse
Affiliation(s)
- Christopher R Brandner
- 1Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne Campus at Burwood, Victoria, Australia; and 2Sport Science Department, Aspire Academy for Sports Excellence, Doha, Qatar
| | | |
Collapse
|
40
|
Váczi M, Río-Rodríguez D, Négyesi J, Fernández Del Olmo M. Acute neuromechanical modifications and 24-h recovery in quadriceps muscle after maximal stretch-shortening cycle exercise. J Electromyogr Kinesiol 2018; 40:64-71. [PMID: 29631118 DOI: 10.1016/j.jelekin.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/07/2018] [Accepted: 03/19/2018] [Indexed: 02/04/2023] Open
Abstract
In the present study we investigated the acute and the delayed changes in corticospinal excitability and in the neuromechanical properties of the quadriceps muscle after maximal intensity stretch-shortening cycle exercise. Ten young males performed 150 jumps to provoke fatigue and muscle damage. Voluntary force, various electrically evoked force variables, and corticospinal excitability were measured at baseline, immediately (IP) and at 24 h post-exercise. Voluntary force, single twitch force, and low frequency force decreased at IP (p < 0.05) but recovered at 24 h, although mild soreness developed in the quadriceps. High frequency force, voluntary activation, and corticospinal excitability remained unchanged. However, vastus lateralis myoelectric activity increased from baseline to IP (p < 0.05). The jumps selectively induced low frequency peripheral fatigue, and central mechanisms did not mediate the acute loss of voluntary force. Because soreness developed at 24 h post-exercise, all force variables recovered, and vastus lateralis electric activity increased, we argue that a dual process of muscle damage, and early neural adaptation as a compensation mechanism took place after the maximal stretch-shortening cycle exercise.
Collapse
Affiliation(s)
- Márk Váczi
- Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary.
| | - Dan Río-Rodríguez
- Faculty of Sciences of Sport and Physical Education, University of A Coruña, A Coruña, Spain
| | - János Négyesi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
41
|
Lower body blood flow restriction training may induce remote muscle strength adaptations in an active unrestricted arm. Eur J Appl Physiol 2018; 118:617-627. [PMID: 29350278 DOI: 10.1007/s00421-018-3806-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE We examined the concurrent characteristics of the remote development of strength and cross-sectional area (CSA) of upper body skeletal muscle in response to lower body resistance training performed with an applied blood flow restriction (BFR). METHODS Males allocated to an experimental BFR group (EXP; n = 12) or a non-BFR control group (CON; n = 12) completed 7-weeks of resistance training comprising three sets of unilateral bicep curls [50% 1-repetition maximum (1-RM)], then four sets of bilateral knee extension and flexion exercises (30% 1-RM). EXP performed leg exercises with an applied BFR (60% limb occlusion pressure). 1-RM strength was measured using bilateral leg exercises and unilateral bicep curls in both trained and untrained arms. Muscle CSA was measured via peripheral quantitative computed tomography in the dominant leg and both arms. RESULTS 1-RM in the trained arm increased more in EXP (2.5 ± 0.4 kg; mean ± SEM) than the contralateral untrained arm (0.8 ± 0.4 kg), and the trained arm of CON (0.6 ± 0.3 kg, P < 0.05). The increase in knee extension 1-RM was twofold that of CON (P < 0.01). Knee flexion 1-RM, leg CSA, and trained arm CSA increased similarly between groups (P > 0.05), while untrained arm CSA did not change (P > 0.05). CONCLUSION Lower limb BFR training increased trained arm strength more than the contralateral untrained arm, and the trained arm of controls. However, there was no additional effect on muscle CSA. These findings support evidence for a BFR training-derived remote strength transfer that may be relevant to populations with localised movement disorders.
Collapse
|
42
|
NIELSEN JAKOBLINDBERG, FRANDSEN ULRIK, PROKHOROVA TATYANA, BECH RUNEDUEHOLM, NYGAARD TOBIAS, SUETTA CHARLOTTE, AAGAARD PER. Delayed Effect of Blood Flow–restricted Resistance Training on Rapid Force Capacity. Med Sci Sports Exerc 2017; 49:1157-1167. [DOI: 10.1249/mss.0000000000001208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Effects of 4 weeks of low-load unilateral resistance training, with and without blood flow restriction, on strength, thickness, V wave, and H reflex of the soleus muscle in men. Eur J Appl Physiol 2017; 117:1339-1347. [PMID: 28451748 DOI: 10.1007/s00421-017-3622-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/24/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE To test the effects of 4 weeks of unilateral low-load resistance training (LLRT), with and without blood flow restriction (BFR), on maximal voluntary contraction (MVC), muscle thickness, volitional wave (V wave), and Hoffmann reflex (H reflex) of the soleus muscle. METHODS Twenty-two males were randomly distributed into three groups: a control group (CTR; n = 8); a low-load blood flow restriction resistance training group (BFR-LLRT; n = 7), who were an inflatable cuff to occlude blood flow; and a low-load resistance training group without blood flow restriction (LLRT; n = 7). The training consisted of four sets of unilateral isometric LLRT (25% of MVC) three times a week over 4 weeks. RESULTS MVC increased 33% (P < 0.001) and 22% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. The soleus thickness increased 9.5% (P < 0.001) and 6.5% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. However, neither MVC nor thickness changed in either of the legs tested in the CTR group (MVC -1 and -5%, and muscle thickness 1.9 and 1.2%, for the control and trained leg, respectively). Moreover, V wave and H reflex did not change significantly in all the groups studied (Vwave/M wave ratio -7.9 and -2.6%, and H max/M max ratio -3.8 and -4%, for the control and trained leg, respectively). CONCLUSIONS Collectively, the present data suggest that in spite of the changes occurring in soleus strength and thickness, 4 weeks of low-load resistance training, with or without BFR, does not cause any change in neural drive or motoneuronal excitability.
Collapse
|
44
|
Jessee MB, Mattocks KT, Buckner SL, Mouser JG, Counts BR, Dankel SJ, Laurentino GC, Loenneke JP. The acute muscular response to blood flow-restricted exercise with very low relative pressure. Clin Physiol Funct Imaging 2017; 38:304-311. [PMID: 28251784 DOI: 10.1111/cpf.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
Abstract
To investigate the acute responses to blood flow-restricted (BFR) exercise across low, moderate and high relative pressures. Muscle thickness, maximal voluntary contraction (MVC) and electromyography (EMG) amplitude were assessed following exercise with six different BFR pressures: 0%, 10%, 20%, 30%, 50% and 90% of arterial occlusion pressure (AOP). There were differences between each time point within each condition for muscle thickness, which increased postexercise [+0·47 (0·40, 0·54) cm] and then trended towards baseline. For MVC, higher pressures resulted in greater decrements than lower pressures [e.g. 10% AOP: -20·7 (-15·5, -25·8) Nm versus 90% AOP: -24 (-19·1, -28·9) Nm] postexercise. EMG amplitude increased from the first three repetitions to the last three repetitions within each set. When using a common BFR protocol with 30% 1RM, applying BFR does not seem to augment acute responses over that of exercise alone when exercise is taken to failure.
Collapse
Affiliation(s)
- Matthew B Jessee
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Kevin T Mattocks
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Samuel L Buckner
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - J Grant Mouser
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Brittany R Counts
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Scott J Dankel
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Gilberto C Laurentino
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
45
|
Corticospinal excitability changes following blood flow restriction training of the tibialis anterior: a preliminary study. Heliyon 2017; 3:e00217. [PMID: 28127587 PMCID: PMC5241574 DOI: 10.1016/j.heliyon.2016.e00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022] Open
Abstract
AIM To examine the neural excitability of projections to the tibialis anterior (TA) following blood flow restriction training (BFRT). This is the first study to examine the TA following BFRT. METHODS Ten subjects performed each experiment. Experiment one consisted of BFRT at 130 mmHg (BFRT-low). Experiment two consisted of BFRT at 200 mmHg (BFRT-high), training (TR-only) and blood flow restriction at 200 mmHg (BFR-only) performed on separate days. Blood flow restriction was applied to the thigh and training consisted of rapid dorsiflexion contractions against gravity every 10 s for 15-min. The motor evoked potential (MEP) peak-to-peak amplitudes were recorded pre-intervention and 1-, 10-, 20- and 30-min post-intervention and expressed relative to the maximal peak-to-peak M-wave at each time-point. RESULTS Experiment one revealed no difference in MEP amplitudes for BFRT-low over time (P = 0.09). Experiment two revealed a significant effect of time (P < 0.001), with 1-min post-intervention MEP amplitudes significantly facilitated compared to pre-intervention, but no effect of intervention (P = 0.79) or intervention*time interaction (P = 0.25). Post-hoc power calculations were performed for the intervention*time interaction. DISCUSSION AND CONCLUSIONS Corticospinal excitability of projections to the TA did not change following BFRT-low and corticospinal excitability changes between BFRT-high, BFR-only and TR-only interventions were not different over time. In experiment two, there was a significant main effect of time 1-min post-intervention which was mainly due to the BFRT-high intervention. Post-hoc power calculations revealed that 15 subjects were required for a significant interaction effect 80% of the time however, as the changes in corticospinal excitability were not prolonged, a new dataset of ≥ 15 subjects was not acquired.
Collapse
|