1
|
Asbjornsdottir B, Lauth B, Fasano A, Thorsdottir I, Karlsdottir I, Gudmundsson LS, Gottfredsson M, Smarason O, Sigurdardottir S, Halldorsson TI, Marteinsson VT, Gudmundsdottir V, Birgisdottir BE. Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study): A protocol for an observational longitudinal case-control study. PLoS One 2022; 17:e0273855. [PMID: 36048886 PMCID: PMC9436124 DOI: 10.1371/journal.pone.0273855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Recent studies indicate that the interplay between diet, intestinal microbiota composition, and intestinal permeability can impact mental health. More than 10% of children and adolescents in Iceland suffer from mental disorders, and rates of psychotropics use are very high. The aim of this novel observational longitudinal case-control study, "Meals, Microbiota and Mental Health in Children and Adolescents (MMM-Study)" is to contribute to the promotion of treatment options for children and adolescents diagnosed with mental disorders through identification of patterns that may affect the symptoms. All children and adolescents, 5-15 years referred to the outpatient clinic of the Child and Adolescent Psychiatry Department at The National University Hospital in Reykjavik, Iceland, for one year (n≈150) will be invited to participate. There are two control groups, i.e., sex-matched children from the same postal area (n≈150) and same parent siblings (full siblings) in the same household close in age +/- 3 years (n<150). A three-day food diary, rating scales for mental health, and multiple questionnaires will be completed. Biosamples (fecal-, urine-, saliva-, blood samples, and buccal swab) will be collected and used for 16S rRNA gene amplicon sequencing of the oral and gut microbiome, measurements of serum factors, quantification of urine metabolites and host genotype, respectively. For longitudinal follow-up, data collection will be repeated after three years in the same groups. Integrative analysis of diet, gut microbiota, intestinal permeability, serum metabolites, and mental health will be conducted applying bioinformatics and systems biology approaches. Extensive population-based data of this quality has not been collected before, with collection repeated in three years' time, contributing to the high scientific value. The MMM-study follows the "Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) guidelines. Approval has been obtained from the Icelandic National Bioethics Committee, and the study is registered with Clinicaltrials.gov. The study will contribute to an improved understanding of the links between diet, gut microbiota and mental health in children through good quality study design by collecting information on multiple components, and a longitudinal approach. Furthermore, the study creates knowledge on possibilities for targeted and more personalized dietary and lifestyle interventions in subgroups. Trial registration numbers: VSN-19-225 & NCT04330703.
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Mucosal Immunology and Biology Research Center, Massachusetts Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bertrand Lauth
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Child and Adolescent Psychiatry (BUGL), Landspitali University Hospital, Reykjavik, Iceland
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Inga Thorsdottir
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Ingibjorg Karlsdottir
- Department of Child and Adolescent Psychiatry (BUGL), Landspitali University Hospital, Reykjavik, Iceland
| | - Larus S. Gudmundsson
- Faculty of Pharmaceutical Sciences and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Magnus Gottfredsson
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Science, Landspitali University Hospital, Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, Reykjavik, Iceland
| | - Orri Smarason
- Faculty of Psychology and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Sigurveig Sigurdardottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorhallur I. Halldorsson
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| | - Viggo Thor Marteinsson
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Matís ohf., Microbiology Group, Reykjavík, Iceland
| | - Valborg Gudmundsdottir
- Faculty of Medicine and Health Science Institute, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Bryndis Eva Birgisdottir
- Faculty of Food Sciences and Nutrition and Health Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Baughman J, Ambrogio J, Motevalli M. Irritable Bowel Syndrome and Depression: A Case Report. Integr Med (Encinitas) 2021; 20:38-43. [PMID: 34803539 PMCID: PMC8594971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A 26-year-old Caucasian woman presented with a two-year history of depression concomitant with irritable bowel syndrome (IBS-C; constipation subtype, gas/bloating). Past evaluation resulted in a clinical diagnosis of IBS-C in August of 2015. Between August and November of 2015, the patient developed worsening bowel irregularities and persistent depression. The patient opted out of conventional treatment and was referred for nutritional care in November of 2017. Throughout one year of treatment with dietary interventions, Chinese herbal medicine, and targeted nutritional supplementation, the patient gradually reached full remission of all complaints.
Collapse
Affiliation(s)
- Joshuan Baughman
- Corresponding author: Joshuan Baughman, MS, RH (AHG) (C), CN E-mail address:
| | | | | |
Collapse
|
3
|
Vafadari B. Stress and the Role of the Gut-Brain Axis in the Pathogenesis of Schizophrenia: A Literature Review. Int J Mol Sci 2021; 22:ijms22189747. [PMID: 34575911 PMCID: PMC8471971 DOI: 10.3390/ijms22189747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder, and its etiology remains largely unknown. Environmental factors have been reported to play roles in the pathogenesis of schizophrenia, and one of the major environmental factors identified for this disorder is psychosocial stress. Several studies have suggested that stressful life events, as well as the chronic social stress associated with city life, may lead to the development of schizophrenia. The other factor is the gut–brain axis. The composition of the gut microbiome and alterations thereof may affect the brain and may lead to schizophrenia. The main interest of this review article is in overviewing the major recent findings on the effects of stress and the gut–brain axis, as well as their possible bidirectional effects, in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Behnam Vafadari
- Clinic for Anesthesiology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
4
|
Lerner A, Freire de Carvalho J, Kotrova A, Shoenfeld Y. Gluten-free diet can ameliorate the symptoms of non-celiac autoimmune diseases. Nutr Rev 2021; 80:525-543. [PMID: 34338776 DOI: 10.1093/nutrit/nuab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/12/2022] Open
Abstract
CONTEXT A gluten-free diet (GFD) is the recommended treatment for gluten-dependent disease. In addition, gluten withdrawal is popular and occasionally is suggested as a treatment for other autoimmune diseases (ADs). OBJECTIVE The current systematic review summarizes those entities and discusses the logic behind using a GFD in classical non-gluten-dependentADs. DATA SOURCES A search for medical articles in PubMed/MEDLINE, Web of Sciences, LILACS, and Scielo published between 1960 and 2020 was conducted, using the key words for various ADs and GFDs. DATA EXXTRACTION Eight-three articles were included in the systematic review (using PRISMA guidelines). DATA ANALYSIS Reduction in symptoms of ADs after observance of a GFD was observed in 911 out of 1408 patients (64.7%) and in 66 out of the 83 selected studies (79.5%). The age of the patients ranged from 9 months to 69 years. The duration of the GFD varied from 1 month to 9 years. A GFD can suppress several harmful intraluminal intestinal events. Potential mechanisms and pathways for the action of GFD in the gut - remote organs' axis have been suggested. CONCLUSION A GFD might represent a novel nutritional therapeutic strategy for classical non-gluten-dependent autoimmune conditions.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Jozélio Freire de Carvalho
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Anna Kotrova
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yehuda Shoenfeld
- A. Lerner and Y. Shoenfeld are with the The Zabludowicz Research Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel Hashomer, Israel. J. Freire de Carvalho is with the Department of Rheumatology, Institute for Health Sciences of the Federal University of Bahia, Salvador, Bahia, Brazil. A. Kotrova and Y. Shoenfeld are with the Department of Autoimmune research, Saint Petersburg State University, St. Petersburg, Russia. Y. Shoenfeld is with the Department of Administration, Ariel University, Israel. Y. Shoenfeld is with the Department of Autoimmune research, I.M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Laswi I, Shafiq A, Al-Ali D, Burney Z, Pillai K, Salameh M, Mhaimeed N, Zakaria D, Chaari A, Yousri NA, Bendriss G. A Comparative Pilot Study of Bacterial and Fungal Dysbiosis in Neurodevelopmental Disorders and Gastrointestinal Disorders: Commonalities, Specificities and Correlations with Lifestyle. Microorganisms 2021; 9:741. [PMID: 33918112 PMCID: PMC8065742 DOI: 10.3390/microorganisms9040741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal disorders (GIDs) are a common comorbidity in patients with neurodevelopmental disorders (NDDs), while anxiety-like behaviors are common among patients with gastrointestinal diseases. It is still unclear as to which microbes differentiate these two groups. This pilot study aims at proposing an answer by exploring both the bacteriome and the mycobiome in a cohort of 55 volunteers with NDD, GID or controls, while accounting for additional variables that are not commonly included such as probiotic intake and diet. Recruited participants answered a questionnaire and provided a stool sample using the Fisherbrand collection kit. Bacterial and fungal DNA was extracted using the Qiagen Stool minikit. Sequencing (16sRNA and ITS) and phylogenetic analyses were performed using the PE300 Illumina Miseq v3 sequencing. Statistical analysis was performed using the R package. Results showed a significant decrease in bacterial alpha diversity in both NDD and GID, but an increased fungal alpha diversity in NDD. Data pointed at a significant bacterial dysbiosis between the three groups, but the mycobiome dysbiosis is more pronounced in NDD than in GID. Fungi seem to be more affected by probiotics, diet and antibiotic exposure and are proposed to be the main key player in differentiation between NDD and GID dybiosis.
Collapse
Affiliation(s)
- Ibrahim Laswi
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ameena Shafiq
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dana Al-Ali
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Zain Burney
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Krishnadev Pillai
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Mohammad Salameh
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Nada Mhaimeed
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dalia Zakaria
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ali Chaari
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Noha A. Yousri
- Research Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar;
- Computers and System Engineering, Alexandria University, Alexandria 21526, Egypt
| | - Ghizlane Bendriss
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| |
Collapse
|
6
|
Lerner A, Benzvi C. "Let Food Be Thy Medicine": Gluten and Potential Role in Neurodegeneration. Cells 2021; 10:756. [PMID: 33808124 PMCID: PMC8065505 DOI: 10.3390/cells10040756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Wheat is a most favored staple food worldwide and its major protein is gluten. It is involved in several gluten dependent diseases and lately was suggested to play a role in non-celiac autoimmune diseases. Its involvement in neurodegenerative conditions was recently suggested but no cause-and-effect relationship were established. The present narrative review expands on various aspects of the gluten-gut-brain axes events, mechanisms and pathways that connect wheat and gluten consumption to neurodegenerative disease. Gluten induced dysbiosis, increased intestinal permeabillity, enteric and systemic side effects, cross-reactive antibodies, and the sequence of homologies between brain antigens and gluten are highlighted. This combination may suggest molecular mimicry, alluding to some autoimmune aspects between gluten and neurodegenerative disease. The proverb of Hippocrates coined in 400 BC, "let food be thy medicine," is critically discussed in the frame of gluten and potential neurodegeneration evolvement.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel;
| | | |
Collapse
|
7
|
Infection threat shapes our social instincts. Behav Ecol Sociobiol 2021; 75:47. [PMID: 33583997 PMCID: PMC7873116 DOI: 10.1007/s00265-021-02975-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
We social animals must balance the need to avoid infections with the need to interact with conspecifics. To that end we have evolved, alongside our physiological immune system, a suite of behaviors devised to deal with potentially contagious individuals. Focusing mostly on humans, the current review describes the design and biological innards of this behavioral immune system, laying out how infection threat shapes sociality and sociality shapes infection threat. The paper shows how the danger of contagion is detected and posted to the brain; how it affects individuals’ mate choice and sex life; why it strengthens ties within groups but severs those between them, leading to hostility toward anyone who looks, smells, or behaves unusually; and how it permeates the foundation of our moral and political views. This system was already in place when agriculture and animal domestication set off a massive increase in our population density, personal connections, and interaction with other species, amplifying enormously the spread of disease. Alas, pandemics such as COVID-19 not only are a disaster for public health, but, by rousing millions of behavioral immune systems, could prove a threat to harmonious cohabitation too.
Collapse
|
8
|
Mumolo MG, Rettura F, Melissari S, Costa F, Ricchiuti A, Ceccarelli L, de Bortoli N, Marchi S, Bellini M. Is Gluten the Only Culprit for Non-Celiac Gluten/Wheat Sensitivity? Nutrients 2020; 12:E3785. [PMID: 33321805 PMCID: PMC7762999 DOI: 10.3390/nu12123785] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gluten-free diet (GFD) has gained increasing popularity in recent years, supported by marketing campaigns, media messages and social networks. Nevertheless, real knowledge of gluten and GF-related implications for health is still poor among the general population. The GFD has also been suggested for non-celiac gluten/wheat sensitivity (NCG/WS), a clinical entity characterized by intestinal and extraintestinal symptoms induced by gluten ingestion in the absence of celiac disease (CD) or wheat allergy (WA). NCG/WS should be regarded as an "umbrella term" including a variety of different conditions where gluten is likely not the only factor responsible for triggering symptoms. Other compounds aside from gluten may be involved in the pathogenesis of NCG/WS. These include fructans, which are part of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), amylase trypsin inhibitors (ATIs), wheat germ agglutinin (WGA) and glyphosate. The GFD might be an appropriate dietary approach for patients with self-reported gluten/wheat-dependent symptoms. A low-FODMAP diet (LFD) should be the first dietary option for patients referring symptoms more related to FODMAPs than gluten/wheat and the second-line treatment for those with self-reported gluten/wheat-related symptoms not responding to the GFD. A personalized approach, regular follow-up and the help of a skilled dietician are mandatory.
Collapse
Affiliation(s)
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.M.); (S.M.); (F.C.); (A.R.); (L.C.); (N.d.B.); (S.M.); (M.B.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zonulin-Dependent Intestinal Permeability in Children Diagnosed with Mental Disorders: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12071982. [PMID: 32635367 PMCID: PMC7399941 DOI: 10.3390/nu12071982] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Worldwide, up to 20% of children and adolescents experience mental disorders, which are the leading cause of disability in young people. Research shows that serum zonulin levels are associated with increased intestinal permeability (IP), affecting neural, hormonal, and immunological pathways. This systematic review and meta-analysis aimed to summarize evidence from observational studies on IP in children diagnosed with mental disorders. The review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search of the Cochrane Library, PsycINFO, PubMed, and the Web of Science identified 833 records. Only non-intervention (i.e., observational) studies in children (<18 years) diagnosed with mental disorders, including a relevant marker of intestinal permeability, were included. Five studies were selected, with the risk of bias assessed according to the Newcastle–Ottawa scale (NOS). Four articles were identified as strong and one as moderate, representing altogether 402 participants providing evidence on IP in children diagnosed with attention deficit and hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive–compulsive disorder (OCD). In ADHD, elevated serum zonulin levels were associated with impaired social functioning compared to controls. Children with ASD may be predisposed to impair intestinal barrier function, which may contribute to their symptoms and clinical outcome compared to controls. Children with ASD, who experience gastro-intestinal (GI) symptoms, seem to have an imbalance in their immune response. However, in children with OCD, serum zonulin levels were not significantly different compared to controls, but serum claudin-5, a transmembrane tight-junction protein, was significantly higher. A meta-analysis of mean zonulin plasma levels of patients and control groups revealed a significant difference between groups (p = 0.001), including the four studies evaluating the full spectrum of the zonulin peptide family. Therefore, further studies are required to better understand the complex role of barrier function, i.e., intestinal and blood–brain barrier, and of inflammation, to the pathophysiology in mental and neurodevelopmental disorders. This review was PROSPERO preregistered, (162208).
Collapse
|
10
|
Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients 2019; 11:nu11112714. [PMID: 31717475 PMCID: PMC6893834 DOI: 10.3390/nu11112714] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
As food is an active subject and may have anti-inflammatory or pro-inflammatory effects, dietary habits may modulate the low-grade neuroinflammation associated with chronic neurodegenerative diseases. Food is living matter different from us, but made of our own nature. Therefore, it is at the same time foreign to us (non-self), if not yet digested, and like us (self), after its complete digestion. To avoid the efflux of undigested food from the lumen, the intestinal barrier must remain intact. What and how much we eat shape the composition of gut microbiota. Gut dysbiosis, as a consequence of Western diets, leads to intestinal inflammation and a leaky intestinal barrier. The efflux of undigested food, microbes, endotoxins, as well as immune-competent cells and molecules, causes chronic systemic inflammation. Opening of the blood-brain barrier may trigger microglia and astrocytes and set up neuroinflammation. We suggest that what determines the organ specificity of the autoimmune-inflammatory process may depend on food antigens resembling proteins of the organ being attacked. This applies to the brain and neuroinflammatory diseases, as to other organs and other diseases, including cancer. Understanding the cooperation between microbiota and undigested food in inflammatory diseases may clarify organ specificity, allow the setting up of adequate experimental models of disease and develop targeted dietary interventions.
Collapse
|
11
|
Moerkens R, Mooiweer J, Withoff S, Wijmenga C. Celiac disease-on-chip: Modeling a multifactorial disease in vitro. United European Gastroenterol J 2019; 7:467-476. [PMID: 31065364 PMCID: PMC6488795 DOI: 10.1177/2050640619836057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Conventional model systems cannot fully recapitulate the multifactorial character of complex diseases like celiac disease (CeD), a common chronic intestinal disorder in which many different genetic risk factors interact with environmental factors such as dietary gluten. However, by combining recently developed human induced pluripotent stem cell (hiPSC) technology and organ-on-chip technology, in vitro intestine-on-chip systems can now be developed that integrate the genetic background of complex diseases, the different interacting cell types involved in disease pathology, and the modulating environmental factors such as gluten and the gut microbiome. The hiPSCs that are the basis of these systems can be generated from both diseased and healthy individuals, which means they can be stratified based on their load of genetic risk factors. A CeD-on-chip model system has great potential to improve our understanding of disease etiology and accelerate the development of novel treatments and preventive therapies in CeD and other complex diseases.
Collapse
Affiliation(s)
- Renée Moerkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joram Mooiweer
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,K.G. Jebsen Coeliac Disease Research Center, Department of Immunology, University of Oslo, Norway
| |
Collapse
|
12
|
Kramer P, Bressan P. Mitochondria Inspire a Lifestyle. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2019; 231:105-126. [PMID: 30610376 DOI: 10.1007/102_2018_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tucked inside our cells, we animals (and plants, and fungi) carry mitochondria, minuscule descendants of bacteria that invaded our common ancestor 2 billion years ago. This unplanned breakthrough endowed our ancestors with a convenient, portable source of energy, enabling them to progress towards more ambitious forms of life. Mitochondria still manufacture most of our energy; we have evolved to invest it to grow and produce offspring, and to last long enough to make it all happen. Yet because the continuous generation of energy is inevitably linked to that of toxic free radicals, mitochondria give us life and give us death. Stripping away clutter and minutiae, here we present a big-picture perspective of how mitochondria work, how they are passed on virtually only by mothers, and how they shape the lifestyles of species and individuals. We discuss why restricting food prolongs lifespan, why reproducing shortens it, and why moving about protects us from free radicals despite increasing their production. We show that our immune cells use special mitochondria to keep control over our gut microbes. And we lay out how the fabrication of energy and free radicals sets the internal clocks that command our everyday rhythms-waking, eating, sleeping. Mitochondria run the show.
Collapse
Affiliation(s)
- Peter Kramer
- Dipartimento di Psicologia Generale, University of Padova, Padova, Italy
| | - Paola Bressan
- Dipartimento di Psicologia Generale, University of Padova, Padova, Italy.
| |
Collapse
|
13
|
Palmieri B, Vadala' M, Laurino C. Gluten-free diet in non-celiac patients: beliefs, truths, advantages and disadvantages. MINERVA GASTROENTERO 2018; 65:153-162. [PMID: 30545212 DOI: 10.23736/s1121-421x.18.02519-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A gluten-free diet is the safest treatment for the treatment of patient with celiac disease (CD) and other gluten-related disorders. However, in the last years, gluten-free diet is one of the most popular diet followed by the general population and by patients affected from others clinical conditions, such as non-celiac gluten sensitivity (NCGS), irritable bowel syndrome (IBS), autism, neurological, psychiatric and rheumatologic diseases and for improving sports practice. This review highlights some questions about the appropriateness of following this trend answering to some questions such as how safe are the current gluten-free products, what are the benefits and side effects of gluten-free diet and what are clinical conditions that might benefit from gluten avoidance.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Department of Surgery, Dental and Morphological Sciences with Interest in Transplantation, Oncology and Regenerative Medicine, University of Modena e Reggio Emilia, Modena, Italy.,Second Opinion Medical Network, Modena, Italy
| | - Maria Vadala'
- Department of Surgery, Dental and Morphological Sciences with Interest in Transplantation, Oncology and Regenerative Medicine, University of Modena e Reggio Emilia, Modena, Italy.,Second Opinion Medical Network, Modena, Italy
| | - Carmen Laurino
- Department of Surgery, Dental and Morphological Sciences with Interest in Transplantation, Oncology and Regenerative Medicine, University of Modena e Reggio Emilia, Modena, Italy - .,Second Opinion Medical Network, Modena, Italy
| |
Collapse
|
14
|
Brietzke E, Cerqueira RO, Mansur RB, McIntyre RS. Gluten related illnesses and severe mental disorders: a comprehensive review. Neurosci Biobehav Rev 2017; 84:368-375. [PMID: 28830676 DOI: 10.1016/j.neubiorev.2017.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022]
Abstract
The putative role of gluten in the pathophysiology of severe mental illnesses remains uncertain and there is doubt about the possible benefit of gluten-free diets for individuals affected by psychosis and mood disorders. The objective of this review was to summarize the findings linking gluten related conditions to pathophysiological substrates implicated in schizophrenia and mood disorders and review the evidences of potential benefits of glute-free diets in these populations. A literature search was conducted within PubMed and Scielo databases including references from inception until March 1st 2017. The strategy search was to use the key words "gluten", "celiac disease", "wheat", "bipolar disorder", "mood disorders", "psychosis", "schizophrenia", "depression". In the review about the potential efficacy of gluten-free diets in severe mental illnesses, we included only studies with original data, including cross sectional and longitudinal studies and clinical trials. Book chapters, review articles and meta-analysis and republished data were excluded. Although the current available evidences suggest that people with celiac disease or gluten allergy could have a slightly higher risk of schizophrenia and mood disorders compared to the general population, the literature review reveals significant inaccuracies in the data. There is insufficient evidence to recommend gluten-free diets for populations with psychosis and mood disorders.
Collapse
Affiliation(s)
- Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil; Mood Disorders Psychpharmachology Unit (MDPU), Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, Canada.
| | - Raphael O Cerqueira
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Rodrigo B Mansur
- Mood Disorders Psychpharmachology Unit (MDPU), Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychpharmachology Unit (MDPU), Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| |
Collapse
|
15
|
Fasano A. Celiac Disease, Gut-Brain Axis, and Behavior: Cause, Consequence, or Merely Epiphenomenon? Pediatrics 2017; 139:peds.2016-4323. [PMID: 28219968 DOI: 10.1542/peds.2016-4323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 11/24/2022] Open
Affiliation(s)
- Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, and Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, Massachusetts
| |
Collapse
|
16
|
Oliveira-Maia AJ, Andrade I, Barahona-Corrêa JB. Case of coeliac disease presenting in the psychiatry ward. BMJ Case Rep 2016; 2016:bcr-2016-216825. [PMID: 28003229 DOI: 10.1136/bcr-2016-216825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We describe a case of coeliac disease that was diagnosed in the psychiatry inpatient unit of a general hospital. The patient was admitted due to suicidal behaviours and developed an agitated catatonic state while in the inpatient psychiatry unit. An extensive diagnostic study allowed for the diagnosis of coeliac disease and while her state was unresponsive to antidepressants, anxiolytics, antipsychotics and electroconvulsive therapy, the patient improved significantly when a gluten-free diet was started. While it is well known that, occasionally, gluten sensitivity and coeliac disease can present as brain gluten sensitivity, such cases are typically characterised by motor and/or cognitive symptoms and by white matter abnormalities. Psychiatric presentations of these conditions have only rarely been reported.
Collapse
Affiliation(s)
- Albino J Oliveira-Maia
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental and NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Isabel Andrade
- Department of Pathology, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - J Bernardo Barahona-Corrêa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental and NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisboa, Portugal
| |
Collapse
|