1
|
Wang JW, Zhang DW, Johnstone SJ. Portable EEG for assessing attention in educational settings: A scoping review. Acta Psychol (Amst) 2025; 255:104933. [PMID: 40154053 DOI: 10.1016/j.actpsy.2025.104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Portable EEG provides the opportunity to capture neural correlates of attention in a more naturalistic environment. However, the field is still in its infancy, with varied research aims and methodologies. The current scoping review aims to clarify: (1) the research aims of the studies, (2) the portable EEG collection methodologies, and (3) the EEG measures of attention. METHOD The review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis - Scoping Review extension. Two authors extracted data items from 45 eligible studies. RESULTS Three research aims were identified in previous studies: examining the effects of learning-related factors on attention captured by portable EEG (n = 23), developing attention classification algorithms (n = 7) and software for monitoring and promoting attention (n = 10), and verifying the signal quality of EEG derived from portable EEG in attentional tasks (n = 5). The testing sites and tasks were predominantly out-of-lab controlled settings and structured learning materials. To quantify attention, 8 studies employed a theory-driven approach, e.g., using EEG measures based on prior research correlating specific spectral power with attention. In contrast, 37 studies used data-driven approaches, e.g., using spectral power as input features for machine learning models to index attention. DISCUSSION Portable EEG has been a promising approach to measuring attention in educational settings. Meanwhile, there are challenges and opportunities related to the better translation of cognitive neuroscience research into practice.
Collapse
Affiliation(s)
- Jian-Wei Wang
- Department of Psychology, Yangzhou University, Yangzhou, China
| | - Da-Wei Zhang
- Department of Psychology, Yangzhou University, Yangzhou, China; Department of Psychology, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, Australia; Brain Behaviour Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
2
|
Wang H, Guo J, Zhang Y, Fu Z, Yao Y. Closed-loop rehabilitation of upper-limb dyskinesia after stroke: from natural motion to neuronal microfluidics. J Neuroeng Rehabil 2025; 22:87. [PMID: 40253334 PMCID: PMC12008995 DOI: 10.1186/s12984-025-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/21/2025] Open
Abstract
This review proposes an innovative closed-loop rehabilitation strategy that integrates multiple subdomains of stroke science to address the global challenge of upper-limb dyskinesia post-stroke. Despite advancements in neural remodeling and rehabilitation research, the compartmentalization of subdomains has limited the effectiveness of current rehabilitation strategies. Our approach unites key areas-including the post-stroke brain, upper-limb rehabilitation robotics, motion sensing, metrics, neural microfluidics, and neuroelectronics-into a cohesive framework designed to enhance upper-limb motion rehabilitation outcomes. By leveraging cutting-edge technologies such as lightweight rehabilitation robotics, advanced motion sensing, and neural microfluidic models, this strategy enables real-time monitoring, adaptive interventions, and personalized rehabilitation plans. Furthermore, we explore the potential of closed-loop systems to drive neural plasticity and functional recovery, offering a transformative perspective on stroke rehabilitation. Finally, we discuss future directions, emphasizing the integration of emerging technologies and interdisciplinary collaboration to advance the field. This review highlights the promise of closed-loop strategies in achieving unprecedented integration of subdomains and improving post-stroke upper-limb rehabilitation outcomes.
Collapse
Affiliation(s)
- Honggang Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Junlong Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Yangqi Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Ze Fu
- Institute of Biological and Medical Technology, Harbin Institute of Technology (Weihai), Weihai, 264200, China
| | - Yufeng Yao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
3
|
Ueda M, Ueno K, Inoue T, Sakiyama M, Shiroma C, Ishii R, Naito Y. Detection of motor-related mu rhythm desynchronization by ear EEG. PLoS One 2025; 20:e0321107. [PMID: 40198632 PMCID: PMC11977992 DOI: 10.1371/journal.pone.0321107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/01/2025] [Indexed: 04/10/2025] Open
Abstract
Event-related desynchronization (ERD) of the mu rhythm (8-13 Hz) is an important indicator of motor execution, neurofeedback, and brain-computer interface in EEG. This study investigated the feasibility of an ear electroencephalography (EEG) device monitoring mu-ERD during hand grasp and release movements. The EEG data of the right hand movement and the eye opened resting condition were measured with an ear EEG device. We calculated and compared mu rhythm power and time-frequency data from 20 healthy participants during right hand movement and eye opened resting. Our results showed a significant difference of mean mu rhythm power between the eye opened rest condition and the right hand movement condition and significant suppression in the 9-12.5 Hz frequency band in the time-frequency data. These results support the utility of ear EEG in detecting motor activity-related mu-ERD. Ear EEG could be instrumental in refining rehabilitation strategies by providing in-situ assessment of motor function and tailored feedback.
Collapse
Affiliation(s)
- Masaya Ueda
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Misao Sakiyama
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - China Shiroma
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Rehabilitation Unit, Murata Hospital, Osaka, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
4
|
Scanlon JEM, Küppers D, Büürma A, Winneke AH. Mind the road: attention related neuromarkers during automated and manual simulated driving captured with a new mobile EEG sensor system. FRONTIERS IN NEUROERGONOMICS 2025; 6:1542379. [PMID: 40144305 PMCID: PMC11937089 DOI: 10.3389/fnrgo.2025.1542379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
Background Decline in vigilance due to fatigue is a common concern in traffic safety. Partially automated driving (PAD) systems can aid driving but decrease the driver's vigilance over time, due to reduced task engagement. Mobile EEG solutions can obtain neural information while operating a vehicle. The purpose of this study was to investigate how the behavior and brain activity associated with vigilance (i.e., alpha, beta and theta power) differs between PAD and manual driving, as well as changes over time, and how these effects can be detected using two different EEG systems. Methods Twenty-eight participants performed two 1-h simulated driving tasks, while wearing both a standard 24 channel EEG cap and a newly developed, unobtrusive and easy to apply 10 channel mobile EEG sensor-grid system. One scenario required manual control of the vehicle (manual) while the other required only monitoring the vehicle (PAD). Additionally, lane deviation, percentage eye-closure (PERCLOS) and subjective ratings of workload, fatigue and stress were obtained. Results Alpha, beta and theta power of the EEG as well as PERCLOS were higher in the PAD condition and increased over time in both conditions. The same spectral EEG effects were evident in both EEG systems. Lane deviation as an index of driving performance in the manual driving condition increased over time. Conclusion These effects indicate significant increases in fatigue and vigilance decrement over time while driving, and overall higher levels of fatigue and vigilance decrement associated with PAD. The EEG measures revealed significant effects earlier than the behavioral measures, demonstrating that EEG might allow faster detection of decreased vigilance than behavioral driving measures. This new, mobile EEG-grid system could be used to evaluate and improve driver monitoring systems in the field or even be used in the future as additional sensor to inform drivers of critical changes in their level of vigilance. In addition to driving, further areas of application for this EEG-sensor grid are safety critical work environments where vigilance monitoring is pivotal.
Collapse
Affiliation(s)
| | - Daniel Küppers
- Fraunhofer Institute for Digital Media Technology, Branch Hearing, Speech and Audio Technology, Oldenburg, Germany
| | - Anneke Büürma
- Fraunhofer Institute for Digital Media Technology, Branch Hearing, Speech and Audio Technology, Oldenburg, Germany
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Axel Heinrich Winneke
- Fraunhofer Institute for Digital Media Technology, Branch Hearing, Speech and Audio Technology, Oldenburg, Germany
| |
Collapse
|
5
|
Hjortkjær J, Wong DDE, Catania A, Märcher-Rørsted J, Ceolini E, Fuglsang SA, Kiselev I, Di Liberto G, Liu SC, Dau T, Slaney M, de Cheveigné A. Real-time control of a hearing instrument with EEG-based attention decoding. J Neural Eng 2025; 22:016027. [PMID: 39996608 DOI: 10.1088/1741-2552/ad867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/14/2024] [Indexed: 02/26/2025]
Abstract
Enhancing speech perception in everyday noisy acoustic environments remains an outstanding challenge for hearing aids. Speech separation technology is improving rapidly, but hearing devices cannot fully exploit this advance without knowing which sound sources the user wants to hear. Even with high-quality source separation, the hearing aid must know which speech streams to enhance and which to suppress. Advances in EEG-based decoding of auditory attention raise the potential of neurosteering, in which a hearing instrument selectively enhances the sound sources that a hearing-impaired listener is focusing their attention on. Here, we present and discuss a real-time brain-computer interface system that combines a stimulus-response model based on canonical correlation analysis for real-time EEG attention decoding, coupled with a multi-microphone hardware platform enabling low-latency real-time speech separation through spatial beamforming. We provide an overview of the system and its various components, discuss prospects and limitations of the technology, and illustrate its application with case studies of listeners steering acoustic feedback of competing speech streams via real-time attention decoding. A software implementation code of the system is publicly available for further research and explorations.
Collapse
Affiliation(s)
- Jens Hjortkjær
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Daniel D E Wong
- Laboratoire des Systèmes Perceptifs, CNRS UMR, Paris 8248, France
- Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL, Paris, France
| | - Alessandro Catania
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jonatan Märcher-Rørsted
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Enea Ceolini
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Søren A Fuglsang
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Ilya Kiselev
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Giovanni Di Liberto
- School of Computer Science and Statistics, Institute of Neuroscience, Trinity College, The University of Dublin, Dublin, Ireland
| | - Shih-Chii Liu
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Malcolm Slaney
- Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, Stanford, CA, United States of America
| | - Alain de Cheveigné
- Laboratoire des Systèmes Perceptifs, CNRS UMR, Paris 8248, France
- Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL, Paris, France
| |
Collapse
|
6
|
Haupt T, Rosenkranz M, Bleichner MG. Exploring Relevant Features for EEG-Based Investigation of Sound Perception in Naturalistic Soundscapes. eNeuro 2025; 12:ENEURO.0287-24.2024. [PMID: 39753371 PMCID: PMC11747973 DOI: 10.1523/eneuro.0287-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 01/19/2025] Open
Abstract
A comprehensive analysis of everyday sound perception can be achieved using electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram. Using continuous data analysis, we contrast different features in terms of their predictive power for unseen data and thus their distinct contributions to explaining neural data. For this, we analyze data from a complex audio-visual motor task using a naturalistic soundscape. The results demonstrated that the feature sets that explain the most neural variability were a combination of highly detailed acoustic features with a comprehensive description of specific sound onsets. Furthermore, it showed that established features can be applied to complex soundscapes. Crucially, the outcome hinged on excluding periods devoid of sound onsets in the analysis in the case of the discrete features. Our study highlights the importance to comprehensively describe the soundscape, using acoustic and non-acoustic aspects, to fully understand the dynamics of sound perception in complex situations. This approach can serve as a foundation for future studies aiming to investigate sound perception in natural settings.
Collapse
Affiliation(s)
- Thorge Haupt
- Neurophysiology of Everyday Life Group, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Marc Rosenkranz
- Neurophysiology of Everyday Life Group, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Martin G Bleichner
- Neurophysiology of Everyday Life Group, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
7
|
Imhof MA, Flösch KP, Schmälzle R, Renner B, Schupp HT. Portable EEG in groups shows increased brain coupling to strong health messages. Soc Cogn Affect Neurosci 2024; 19:nsae087. [PMID: 39611493 PMCID: PMC11669318 DOI: 10.1093/scan/nsae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/05/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024] Open
Abstract
Health messages are core building blocks of public health efforts. Neuroscientific measures offer insights into how target audiences receive health messages. To move towards real-world applications, however, challenges regarding costs, lab restraints, and slow data acquisition need to be addressed. Using portable electroencephalography (EEG) and inter-subject correlation (ISC) analysis as measure of message strength, we ask whether these challenges can be met. Portable EEG was recorded while participants viewed strong and weak video health messages against risky alcohol use. Participants viewed the messages either individually or in a focus group-like setting with six participants simultaneously. For both viewing conditions, three correlated components were extracted. The topographies of these components showed a high spatial correlation with previous high-density EEG results. Moreover, ISC was strongly enhanced when viewing strong as compared to weak health messages in both the group and individual viewing conditions. The findings suggest that ISC analysis shows sensitivity to message strength, even in a group setting using low-density portable EEG. Measuring brain responses to messages in group settings is more efficient and scalable beyond the laboratory. Overall, these results support a translational perspective for the use of neuroscientific measures in health message development.
Collapse
Affiliation(s)
- Martin A Imhof
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| | - Karl-Philipp Flösch
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| | - Ralf Schmälzle
- Department of Communication, Michigan State University, East Lansing, MI 48824, United States
| | - Britta Renner
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| | - Harald T Schupp
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
8
|
Klein F, Kohl SH, Lührs M, Mehler DMA, Sorger B. From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230087. [PMID: 39428887 PMCID: PMC11513164 DOI: 10.1098/rstb.2023.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS—Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Simon H. Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute of Translational Psychiatry, Medical Faculty, University of Münster, Münster, Germany
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Xu Y, Uppal A, Lee MS, Mahato K, Wuerstle BL, Lin M, Djassemi O, Chen T, Lin R, Paul A, Jain S, Chapotot F, Tasali E, Mercier P, Xu S, Wang J, Cauwenberghs G. Earable Multimodal Sensing and Stimulation: A Prospective Towards Unobtrusive Closed-Loop Biofeedback. IEEE Rev Biomed Eng 2024; PP:5-25. [PMID: 40030565 DOI: 10.1109/rbme.2024.3508713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The human ear has emerged as a bidirectional gateway to the brain's and body's signals. Recent advances in around-the-ear and in-ear sensors have enabled the assessment of biomarkers and physiomarkers derived from brain and cardiac activity using ear-electroencephalography (ear-EEG), photoplethysmography (ear-PPG), and chemical sensing of analytes from the ear, with ear-EEG having been taken beyond-the-lab to outer space. Parallel advances in non-invasive and minimally invasive brain stimulation techniques have leveraged the ear's access to two cranial nerves to modulate brain and body activity. The vestibulocochlear nerve stimulates the auditory cortex and limbic system with sound, while the auricular branch of the vagus nerve indirectly but significantly couples to the autonomic nervous system and cardiac output. Acoustic and current mode stimuli delivered using discreet and unobtrusive earables are an active area of research, aiming to make biofeedback and bioelectronic medicine deliverable outside of the clinic, with remote and continuous monitoring of therapeutic responsivity and long-term adaptation. Leveraging recent advances in ear-EEG, transcutaneous auricular vagus nerve stimulation (taVNS), and unobtrusive acoustic stimulation, we review accumulating evidence that combines their potential into an integrated earable platform for closed-loop multimodal sensing and neuromodulation, towards personalized and holistic therapies that are near, in- and around-the-ear.
Collapse
|
10
|
Straetmans L, Adiloglu K, Debener S. Neural speech tracking and auditory attention decoding in everyday life. Front Hum Neurosci 2024; 18:1483024. [PMID: 39606787 PMCID: PMC11599177 DOI: 10.3389/fnhum.2024.1483024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction In our complex world, the auditory system plays a crucial role in perceiving and processing our environment. Humans are able to segment and stream concurrent auditory objects, allowing them to focus on specific sounds, such as speech, and suppress irrelevant auditory objects. The attentional enhancement or suppression of sound processing is evident in neural data through a phenomenon called neural speech tracking. Previous studies have identified correlates of neural speech tracking in electroencephalography (EEG) data, but EEG measures are susceptible to motion artefacts, and the association between neural data and auditory objects is vulnerable to distraction. Methods The current study investigated EEG-based auditory attention decoding in realistic everyday scenarios. N=20 participants were exposed to the sound of a busy cafeteria or walked along busy and quiet streets while listening to one or two simultaneous speech streams. We also investigated the robustness of neural speech tracking estimates within subjects. Linear decoding models were used to determine the magnitude of neural speech tracking. Results The results confirmed that neural speech tracking was strongest in single speaker scenarios. In dual speaker conditions, there was significantly stronger neural speech tracking for the attended speaker compared to the ignored speaker, even in complex environments such as a busy cafeteria or outdoor settings. Discussion In conclusion, EEG-based attention decoding is feasible in highly complex and realistic everyday conditions while humans behave naturally.
Collapse
Affiliation(s)
- Lisa Straetmans
- Department of Psychology, Neuropsychology Lab, University of Oldenburg, Oldenburg, Germany
| | - Kamil Adiloglu
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
- Sonova Consumer Hearing GmbH, Wedemark, Germany
| | - Stefan Debener
- Department of Psychology, Neuropsychology Lab, University of Oldenburg, Oldenburg, Germany
- Sonova Consumer Hearing GmbH, Wedemark, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
de la Torre-Ortiz C, Spape MM, Ravaja N, Ruotsalo T. Cross-Subject EEG Feedback for Implicit Image Generation. IEEE TRANSACTIONS ON CYBERNETICS 2024; 54:6105-6117. [PMID: 38889044 DOI: 10.1109/tcyb.2024.3406159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Generative models are powerful tools for producing novel information by learning from example data. However, the current approaches require explicit manual input to steer generative models to match human goals. Furthermore, how these models would integrate implicit, diverse feedback and goals of multiple users remains largely unexplored. Here, we present a first-of-its-kind system that produces novel images of faces by inferring human goals directly from cross-subject brain signals while study subjects are looking at example images. We report on an experiment where brain responses to images of faces were recorded using electroencephalography in 30 subjects, focusing on specific salient visual features (VFs). Preferences toward VFs were decoded from subjects' brain responses and used as implicit feedback for a generative adversarial network (GAN), which generated new images of faces. The results from a follow-up user study evaluating the presence of the target salient VFs show that the images generated from brain feedback represent the goal of the study subjects and are comparable to images generated with manual feedback. The methodology provides a stepping stone toward humans-in-the-loop image generation.
Collapse
|
12
|
Sanguantrakul J, Hemakom A, Soonrach T, Israsena P. PDMS/CNT electrodes with bioamplifier for practical in-the-ear and conventional biosignal recordings. J Neural Eng 2024; 21:056017. [PMID: 39255830 DOI: 10.1088/1741-2552/ad7905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Objective.Potential usage of dry electrodes in emerging applications such as wearable devices, flexible tattoo circuits, and stretchable displays requires that, to become practical solutions, issues such as easy fabrication, strong durability, and low-cost materials must be addressed. The objective of this study was to propose soft and dry electrodes developed from polydimethylsiloxane (PDMS) and carbon nanotube (CNT) composites.Approach.The electrodes were connected with both conventional and in-house NTAmp biosignal instruments for comparative studies. The performances of the proposed dry electrodes were evaluated through electromyogram, electrocardiogram, and electroencephalogram measurements.Main results.Results demonstrated that the capability of the PDMS/CNT electrodes to receive biosignals was on par with that of commercial electrodes (adhesive and gold-cup electrodes). Depending on the type of stimuli, a signal-to-noise ratio of 5-10 dB range was achieved.Significance.The results of the study show that the performance of the proposed dry electrode is comparable to that of commercial electrodes, offering possibilities for diverse applications. These applications may include the physical examination of vital medical signs, the control of intelligent devices and robots, and the transmission of signals through flexible materials.
Collapse
Affiliation(s)
- Jongsook Sanguantrakul
- Biomedical Electronics and Systems Research Team, National Electronics and Computer Technology Center, Pathum Thani, Thailand
| | - Apit Hemakom
- Biomedical Electronics and Systems Research Team, National Electronics and Computer Technology Center, Pathum Thani, Thailand
| | - Tharapong Soonrach
- Biomedical Electronics and Systems Research Team, National Electronics and Computer Technology Center, Pathum Thani, Thailand
| | - Pasin Israsena
- Biomedical Electronics and Systems Research Team, National Electronics and Computer Technology Center, Pathum Thani, Thailand
| |
Collapse
|
13
|
Balconi M, Rovelli K, Angioletti L, Allegretta RA. Working Memory Workload When Making Complex Decisions: A Behavioral and EEG Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:5754. [PMID: 39275665 PMCID: PMC11397910 DOI: 10.3390/s24175754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Working memory (WM) is crucial for adequate performance execution in effective decision-making, enabling individuals to identify patterns and link information by focusing on current and past situations. This work explored behavioral and electrophysiological (EEG) WM correlates through a novel decision-making task, based on real-life situations, assessing WM workload related to contextual variables. A total of 24 participants performed three task phases (encoding, retrieval, and metacognition) while their EEG activity (delta, theta, alpha, and beta frequency bands) was continuously recorded. From the three phases, three main behavioral indices were computed: Efficiency in complex Decision-making, Tolerance of Decisional Complexity, and Metacognition of Difficulties. Results showed the central role of alpha and beta bands during encoding and retrieval: decreased alpha/beta activity in temporoparietal areas during encoding might indicate activation of regions related to verbal WM performance and a load-related effect, while decreased alpha activity in the same areas and increased beta activity over posterior areas during retrieval might indicate, respectively, active information processing and focused attention. Evidence from correlational analysis between the three indices and EEG bands are also discussed. Integration of behavioral and metacognitive data gathered through this novel task and their interrelation with EEG correlates during task performance proves useful to assess WM workload during complex managerial decision-making.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Roberta A Allegretta
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
14
|
Mathewson KE, Kuziek JP, Scanlon JEM, Robles D. The moving wave: Applications of the mobile EEG approach to study human attention. Psychophysiology 2024; 61:e14603. [PMID: 38798056 DOI: 10.1111/psyp.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Although historically confined to traditional research laboratories, electroencephalography (EEG) paradigms are now being applied to study a wide array of behaviors, from daily activities to specialized tasks in diverse fields such as sports science, neurorehabilitation, and education. This transition from traditional to real-world mobile research can provide new tools for understanding attentional processes as they occur naturally. Early mobile EEG research has made progress, despite the large size and wired connections. Recent developments in hardware and software have expanded the possibilities of mobile EEG, enabling a broader range of applications. Despite these advancements, limitations influencing mobile EEG remain that must be overcome to achieve adequate reliability and validity. In this review, we first assess the feasibility of mobile paradigms, including electrode selection, artifact correction techniques, and methodological considerations. This review underscores the importance of ecological, construct, and predictive validity in ensuring the trustworthiness and applicability of mobile EEG findings. Second, we explore studies on attention in naturalistic settings, focusing on replicating classic P3 component studies in mobile paradigms like stationary biking in our lab, and activities such as walking, cycling, and dual-tasking outside of the lab. We emphasize how the mobile approach complements traditional laboratory paradigms and the types of insights gained in naturalistic research settings. Third, we discuss promising applications of portable EEG in workplace safety and other areas including road safety, rehabilitation medicine, and brain-computer interfaces. In summary, this review explores the expanding possibilities of mobile EEG while recognizing the existing challenges in fully realizing its potential.
Collapse
Affiliation(s)
- Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan P Kuziek
- Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Daniel Robles
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Klapprott M, Debener S. Mobile EEG for the study of cognitive-motor interference during swimming? Front Hum Neurosci 2024; 18:1466853. [PMID: 39268221 PMCID: PMC11390454 DOI: 10.3389/fnhum.2024.1466853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Research on brain function in natural environments has become a new interest in cognitive science. In this study, we aim to advance mobile electroencephalography (EEG) participant and device mobility. We investigated the feasibility of measuring human brain activity using mobile EEG during a full-body motion task as swimming, by the example of cognitive-motor interference (CMI). Eleven participants were given an auditory oddball task while sitting and swimming, with mobile EEG recording ongoing brain activity. Measures of interest were event-related potentials (ERPs) elicited by experimental stimuli. While the auditory N100 was measured to verify signal quality, the P300 to task-relevant stimuli served as a marker of CMI effects. Analyzes were first performed within subjects, while binomial tests assessed the proportion of significant effects. Event-related changes in the time-frequency domain around turns during swimming were analyzed in an exploratory fashion. The successful recording of the N100 in all conditions shows that the setup was functional throughout the experiment. Regarding CMI, we did not find reliable changes in P300 amplitude in different motor settings in all subjects. However, we found plausible modulations in the alpha/mu and beta bands before and after turns. This study shows that it is generally feasible to measure mobile EEG in the time and time-frequency domain in an aquatic environment while subjects are freely moving. We see promising potential in the use of mobile EEG in extreme settings, advancing toward the application of mobile EEG in more real-life situations.
Collapse
Affiliation(s)
- Melanie Klapprott
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4All, University of Oldenburg, Oldenburg, Germany
- Fraunhofer Institute of Digital Media Technology, Oldenburg Branch for Hearing, Oldenburg, Germany
| |
Collapse
|
16
|
Grasso-Cladera A, Bremer M, Ladouce S, Parada F. A systematic review of mobile brain/body imaging studies using the P300 event-related potentials to investigate cognition beyond the laboratory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:631-659. [PMID: 38834886 DOI: 10.3758/s13415-024-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The P300 ERP component, related to the onset of task-relevant or infrequent stimuli, has been widely used in the Mobile Brain/Body Imaging (MoBI) literature. This systematic review evaluates the quality and breadth of P300 MoBI studies, revealing a maturing field with well-designed research yet grappling with standardization and global representation challenges. While affirming the reliability of measuring P300 ERP components in mobile settings, the review identifies significant hurdles in standardizing data cleaning and processing techniques, impacting comparability and reproducibility. Geographical disparities emerge, with studies predominantly in the Global North and a dearth of research from the Global South, emphasizing the need for broader inclusivity to counter the WEIRD bias in psychology. Collaborative projects and mobile EEG systems showcase the feasibility of reaching diverse populations, which is essential to advance precision psychiatry and to integrate varied data streams. Methodologically, a trend toward ecological validity is noted, shifting from lab-based to real-world settings with portable EEG system advancements. Future hardware developments are expected to balance signal quality and sensor intrusiveness, enriching data collection in everyday contexts. Innovative methodologies reflect a move toward more natural experimental settings, prompting critical questions about the applicability of traditional ERP markers, such as the P300 outside structured paradigms. The review concludes by highlighting the crucial role of integrating mobile technologies, physiological sensors, and machine learning to advance cognitive neuroscience. It advocates for an operational definition of ecological validity to bridge the gap between controlled experiments and the complexity of embodied cognitive experiences, enhancing both theoretical understanding and practical application in study design.
Collapse
Affiliation(s)
| | - Marko Bremer
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile
- Facultad de Psicología, Programa de Magíster en Neurociencia Social, Diego Portales University, Santiago, Chile
| | - Simon Ladouce
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Francisco Parada
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile.
| |
Collapse
|
17
|
Kim HG, Song S, Cho BH, Jang DP. Deep learning-based stress detection for daily life use using single-channel EEG and GSR in a virtual reality interview paradigm. PLoS One 2024; 19:e0305864. [PMID: 38959272 PMCID: PMC11221693 DOI: 10.1371/journal.pone.0305864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
This research aims to establish a practical stress detection framework by integrating physiological indicators and deep learning techniques. Utilizing a virtual reality (VR) interview paradigm mirroring real-world scenarios, our focus is on classifying stress states through accessible single-channel electroencephalogram (EEG) and galvanic skin response (GSR) data. Thirty participants underwent stress-inducing VR interviews, with biosignals recorded for deep learning models. Five convolutional neural network (CNN) architectures and one Vision Transformer model, including a multiple-column structure combining EEG and GSR features, showed heightened predictive capabilities and an enhanced area under the receiver operating characteristic curve (AUROC) in stress prediction compared to single-column models. Our experimental protocol effectively elicited stress responses, observed through fluctuations in stress visual analogue scale (VAS), EEG, and GSR metrics. In the single-column architecture, ResNet-152 excelled with a GSR AUROC of 0.944 (±0.027), while the Vision Transformer performed well in EEG, achieving peak AUROC values of 0.886 (±0.069) respectively. Notably, the multiple-column structure, based on ResNet-50, achieved the highest AUROC value of 0.954 (±0.018) in stress classification. Through VR-based simulated interviews, our study induced social stress responses, leading to significant modifications in GSR and EEG measurements. Deep learning models precisely classified stress levels, with the multiple-column strategy demonstrating superiority. Additionally, discreetly placing single-channel EEG measurements behind the ear enhances the convenience and accuracy of stress detection in everyday situations.
Collapse
Affiliation(s)
- Hun-gyeom Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Solwoong Song
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Baek Hwan Cho
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Korea
- Institute of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
18
|
Radke FA, da Silva Souto CF, Pätzold W, Wolf KI. Transfer Learning for Automatic Sleep Staging Using a Pre-Gelled Electrode Grid. Diagnostics (Basel) 2024; 14:909. [PMID: 38732323 PMCID: PMC11083934 DOI: 10.3390/diagnostics14090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Novel sensor solutions for sleep monitoring at home could alleviate bottlenecks in sleep medical care as well as enable selective or continuous observation over long periods of time and contribute to new insights in sleep medicine and beyond. Since especially in the latter case the sensor data differ strongly in signal, number and extent of sensors from the classical polysomnography (PSG) sensor technology, an automatic evaluation is essential for the application. However, the training of an automatic algorithm is complicated by the fact that the development phase of the new sensor technology, extensive comparative measurements with standardized reference systems, is often not possible and therefore only small datasets are available. In order to circumvent high system-specific training data requirements, we employ pre-training on large datasets with finetuning on small datasets of new sensor technology to enable automatic sleep phase detection for small test series. By pre-training on publicly available PSG datasets and finetuning on 12 nights recorded with new sensor technology based on a pre-gelled electrode grid to capture electroencephalography (EEG), electrooculography (EOG) and electromyography (EMG), an F1 score across all sleep phases of 0.81 is achieved (wake 0.84, N1 0.62, N2 0.81, N3 0.87, REM 0.88), using only EEG and EOG. The analysis additionally considers the spatial distribution of the channels and an approach to approximate classical electrode positions based on specific linear combinations of the new sensor grid channels.
Collapse
Affiliation(s)
- Fabian A. Radke
- Fraunhofer Institute for Digital Media Technology IDMT, Oldenburg Branch for Hearing, Speech and Audio Technology HSA, 26129 Oldenburg, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To review recent advances in the field of seizure detection in ambulatory patients with epilepsy. RECENT FINDINGS Recent studies have shown that wrist or arm wearable sensors, using 3D-accelerometry, electrodermal activity or photoplethysmography, in isolation or in combination, can reliably detect focal-to-bilateral and generalized tonic-clonic seizures (GTCS), with a sensitivity over 90%, and false alarm rates varying from 0.1 to 1.2 per day. A headband EEG has also demonstrated a high sensitivity for detecting and help monitoring generalized absence seizures. In contrast, no appropriate solution is yet available to detect focal seizures, though some promising findings were reported using ECG-based heart rate variability biomarkers and subcutaneous EEG. SUMMARY Several FDA and/or EU-certified solutions are available to detect GTCS and trigger an alarm with acceptable rates of false alarms. However, data are still missing regarding the impact of such intervention on patients' safety. Noninvasive solutions to reliably detect focal seizures in ambulatory patients, based on either EEG or non-EEG biosignals, remain to be developed. To this end, a number of challenges need to be addressed, including the performance, but also the transparency and interpretability of machine learning algorithms.
Collapse
Affiliation(s)
- Adriano Bernini
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne
| | - Jonathan Dan
- Embedded Systems Laboratory, Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne, Switzerland
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne
| |
Collapse
|
20
|
Meiser A, Lena Knoll A, Bleichner MG. High-density ear-EEG for understanding ear-centered EEG. J Neural Eng 2024; 21:016001. [PMID: 38118173 DOI: 10.1088/1741-2552/ad1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Background. Mobile ear-EEG provides the opportunity to record EEG unobtrusively in everyday life. However, in real-life, the EEG data quickly becomes difficult to interpret, as the neural signal is contaminated by other, non-neural signal contributions. Due to the small number of electrodes in ear-EEG devices, the interpretation of the EEG becomes even more difficult. For meaningful and reliable ear-EEG, it is crucial that the brain signals we wish to record in real life are well-understood and that we make optimal use of the available electrodes. Their placement should be guided by prior knowledge about the characteristics of the signal of interest.Objective.We want to understand the signal we record with ear-EEG and make recommendations on how to optimally place a limited number of electrodes.Approach.We built a high-density ear-EEG with 31 channels spaced densely around one ear. We used it to record four auditory event-related potentials (ERPs): the mismatch negativity, the P300, the N100 and the N400. With this data, we gain an understanding of how different stages of auditory processing are reflected in ear-EEG. We investigate the electrode configurations that carry the most information and use a mass univariate ERP analysis to identify the optimal channel configuration. We additionally use a multivariate approach to investigate the added value of multi-channel recordings.Main results.We find significant condition differences for all ERPs. The different ERPs vary considerably in their spatial extent and different electrode positions are necessary to optimally capture each component. In the multivariate analysis, we find that the investigation of the ERPs benefits strongly from multi-channel ear-EEG.Significance.Our work emphasizes the importance of a strong theoretical and practical background when building and using ear-EEG. We provide recommendations on finding the optimal electrode positions. These results will guide future research employing ear-EEG in real-life scenarios.
Collapse
Affiliation(s)
- Arnd Meiser
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Faculty of Business Studies and Economics, University of Bremen, Bremen, Germany
| | - Anna Lena Knoll
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Martin G Bleichner
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
21
|
Ziccardi A, Van Benthem K, Liu CC, Herdman CM, Ghosh Hajra S. Towards ubiquitous and nonintrusive measurements of brain function in the real world: assessing blink-related oscillations during simulated flight using portable low-cost EEG. Front Neurosci 2024; 17:1286854. [PMID: 38260016 PMCID: PMC10801007 DOI: 10.3389/fnins.2023.1286854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Blink-related oscillations (BRO) are newly discovered neurophysiological phenomena associated with spontaneous blinking and represent cascading neural mechanisms including visual sensory, episodic memory, and information processing responses. These phenomena have been shown to be present at rest and during tasks and are modulated by cognitive load, creating the possibility for brain function assessments that can be integrated seamlessly into real-world settings. Prior works have largely examined the BRO phenomenon within controlled laboratory environments using magnetoencephalography and high-density electroencephalography (EEG) that are ill-suited for real-world deployment. Investigating BROs using low-density EEG within complex environments reflective of the real-world would further our understanding of how BRO responses can be utilized in real-world settings. We evaluated whether the BRO response could be captured in a high-fidelity flight simulation environment using a portable, low-density wireless EEG system. The effects of age and task demands on BRO responses were also examined. EEG data from 30 licensed pilots (age 43.37 +/- 17.86, 2 females) were collected during simulated flights at two cognitive workload levels. Comparisons of signal amplitudes were undertaken to confirm the presence of BRO responses and mixed model ANOVAs quantified the effects of workload and age group on BRO amplitudes. Significant increases in neural activity were observed post-blink compared to the baseline period (p < 0.05), confirming the presence of BRO responses. In line with prior studies, results showed BRO time-domain responses from the delta band (0.5-4 Hz) consisting of an early negative peak followed by a positive peak post-blink in temporal and parietal electrodes. Additionally, task workload and age-related effects were also found, with observations of the enhancement of BRO amplitudes with older age and attenuation of BRO responses in high workloads (p < 0.05). These findings demonstrate that it is possible to capture BRO responses within simulated flight environments using portable, low-cost, easy-to-use EEG systems. Furthermore, biological and task salience were reflected in these BRO responses. The successful detection and demonstration of both task-and age-related modulation of BRO responses in this study open the possibility of assessing human brain function across the lifespan with BRO responses in complex and realistic environments.
Collapse
Affiliation(s)
- Alexia Ziccardi
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | | | - Careesa Chang Liu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Chris M. Herdman
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Sujoy Ghosh Hajra
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
- Aerospace Research Centre, National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
22
|
Blümer M, Heeren J, Mirkovic B, Latzel M, Gordon C, Crowhen D, Meis M, Wagener K, Schulte M. The Impact of Hearing Aids on Listening Effort and Listening-Related Fatigue - Investigations in a Virtual Realistic Listening Environment. Trends Hear 2024; 28:23312165241265199. [PMID: 39095047 PMCID: PMC11378347 DOI: 10.1177/23312165241265199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Participation in complex listening situations such as group conversations in noisy environments sets high demands on the auditory system and on cognitive processing. Reports of hearing-impaired people indicate that strenuous listening situations occurring throughout the day lead to feelings of fatigue at the end of the day. The aim of the present study was to develop a suitable test sequence to evoke and measure listening effort (LE) and listening-related fatigue (LRF), and, to evaluate the influence of hearing aid use on both dimensions in mild to moderately hearing-impaired participants. The chosen approach aims to reconstruct a representative acoustic day (Time Compressed Acoustic Day [TCAD]) by means of an eight-part hearing-test sequence with a total duration of approximately 2½ h. For this purpose, the hearing test sequence combined four different listening tasks with five different acoustic scenarios and was presented to the 20 test subjects using virtual acoustics in an open field measurement in aided and unaided conditions. Besides subjective ratings of LE and LRF, behavioral measures (response accuracy, reaction times), and an attention test (d2-R) were performed prior to and after the TCAD. Furthermore, stress hormones were evaluated by taking salivary samples. Subjective ratings of LRF increased throughout the test sequence. This effect was observed to be higher when testing unaided. In three of the eight listening tests, the aided condition led to significantly faster reaction times/response accuracies than in the unaided condition. In the d2-R test, an interaction in processing speed between time (pre- vs. post-TCAD) and provision (unaided vs. aided) was found suggesting an influence of hearing aid provision on LRF. A comparison of the averaged subjective ratings at the beginning and end of the TCAD shows a significant increase in LRF for both conditions. At the end of the TCAD, subjective fatigue was significantly lower when wearing hearing aids. The analysis of stress hormones did not reveal significant effects.
Collapse
Affiliation(s)
- M Blümer
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Heeren
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
- Cluster of Excellence Hearing4All, Oldenburg, Germany
| | - B Mirkovic
- Department of Psychology, University of Oldenburg School VI-Medicine and Health Sciences, Oldenburg, Germany
| | - M Latzel
- Sonova Holding AG, Stäfa, Switzerland
| | - C Gordon
- Sonova New Zealand, Auckland, New Zealand
| | - D Crowhen
- Sonova New Zealand, Auckland, New Zealand
| | - M Meis
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
- Cluster of Excellence Hearing4All, Oldenburg, Germany
| | - K Wagener
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
- Cluster of Excellence Hearing4All, Oldenburg, Germany
| | - M Schulte
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
- Cluster of Excellence Hearing4All, Oldenburg, Germany
| |
Collapse
|
23
|
Zhang J, Li J, Huang Z, Huang D, Yu H, Li Z. Recent Progress in Wearable Brain-Computer Interface (BCI) Devices Based on Electroencephalogram (EEG) for Medical Applications: A Review. HEALTH DATA SCIENCE 2023; 3:0096. [PMID: 38487198 PMCID: PMC10880169 DOI: 10.34133/hds.0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/19/2023] [Indexed: 03/17/2024]
Abstract
Importance: Brain-computer interface (BCI) decodes and converts brain signals into machine instructions to interoperate with the external world. However, limited by the implantation risks of invasive BCIs and the operational complexity of conventional noninvasive BCIs, applications of BCIs are mainly used in laboratory or clinical environments, which are not conducive to the daily use of BCI devices. With the increasing demand for intelligent medical care, the development of wearable BCI systems is necessary. Highlights: Based on the scalp-electroencephalogram (EEG), forehead-EEG, and ear-EEG, the state-of-the-art wearable BCI devices for disease management and patient assistance are reviewed. This paper focuses on the EEG acquisition equipment of the novel wearable BCI devices and summarizes the development direction of wearable EEG-based BCI devices. Conclusions: BCI devices play an essential role in the medical field. This review briefly summarizes novel wearable EEG-based BCIs applied in the medical field and the latest progress in related technologies, emphasizing its potential to help doctors, patients, and caregivers better understand and utilize BCI devices.
Collapse
Affiliation(s)
- Jiayan Zhang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| | - Junshi Li
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| | - Zhe Huang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
- Shenzhen Graduate School,
Peking University, Shenzhen, China
| | - Dong Huang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
- School of Electronics,
Peking University, Beijing, China
| | - Huaiqiang Yu
- Sichuan Institute of Piezoelectric and Acousto-optic Technology, Chongqing, China
| | - Zhihong Li
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| |
Collapse
|
24
|
Kaongoen N, Choi J, Woo Choi J, Kwon H, Hwang C, Hwang G, Kim BH, Jo S. The future of wearable EEG: a review of ear-EEG technology and its applications. J Neural Eng 2023; 20:051002. [PMID: 37748474 DOI: 10.1088/1741-2552/acfcda] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Objective.This review paper provides a comprehensive overview of ear-electroencephalogram (EEG) technology, which involves recording EEG signals from electrodes placed in or around the ear, and its applications in the field of neural engineering.Approach.We conducted a thorough literature search using multiple databases to identify relevant studies related to ear-EEG technology and its various applications. We selected 123 publications and synthesized the information to highlight the main findings and trends in this field.Main results.Our review highlights the potential of ear-EEG technology as the future of wearable EEG technology. We discuss the advantages and limitations of ear-EEG compared to traditional scalp-based EEG and methods to overcome those limitations. Through our review, we found that ear-EEG is a promising method that produces comparable results to conventional scalp-based methods. We review the development of ear-EEG sensing devices, including the design, types of sensors, and materials. We also review the current state of research on ear-EEG in different application areas such as brain-computer interfaces, and clinical monitoring.Significance.This review paper is the first to focus solely on reviewing ear-EEG research articles. As such, it serves as a valuable resource for researchers, clinicians, and engineers working in the field of neural engineering. Our review sheds light on the exciting future prospects of ear-EEG, and its potential to advance neural engineering research and become the future of wearable EEG technology.
Collapse
Affiliation(s)
- Netiwit Kaongoen
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jaehoon Choi
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin Woo Choi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States of America
| | - Haram Kwon
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Chaeeun Hwang
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Guebin Hwang
- Robotics Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung Hyung Kim
- Department of Artificial Intelligence, Inha University, Incheon, Republic of Korea
| | - Sungho Jo
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
25
|
Hoemann K, Wormwood JB, Barrett LF, Quigley KS. Multimodal, Idiographic Ambulatory Sensing Will Transform our Understanding of Emotion. AFFECTIVE SCIENCE 2023; 4:480-486. [PMID: 37744967 PMCID: PMC10513989 DOI: 10.1007/s42761-023-00206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/17/2023] [Indexed: 09/26/2023]
Abstract
Emotions are inherently complex - situated inside the brain while being influenced by conditions inside the body and outside in the world - resulting in substantial variation in experience. Most studies, however, are not designed to sufficiently sample this variation. In this paper, we discuss what could be discovered if emotion were systematically studied within persons 'in the wild', using biologically-triggered experience sampling: a multimodal and deeply idiographic approach to ambulatory sensing that links body and mind across contexts and over time. We outline the rationale for this approach, discuss challenges to its implementation and widespread adoption, and set out opportunities for innovation afforded by emerging technologies. Implementing these innovations will enrich method and theory at the frontier of affective science, propelling the contextually situated study of emotion into the future.
Collapse
Affiliation(s)
- Katie Hoemann
- Department of Psychology, KU Leuven, Tiensestraat 102, Box 3727, 3000 Leuven, BE Belgium
| | - Jolie B. Wormwood
- Department of Psychology, University of New Hampshire, Durham, NH USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA USA
| |
Collapse
|
26
|
Van Den Broucke A, Van Kerrebrouck J, Van Ransbeeck W, Pynckels R, Frater A, Torfs G, Verhulst S. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083060 DOI: 10.1109/embc40787.2023.10340180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Aside from a clinical interest in electroencephalography (EEG) measurements of real-time data with a high temporal resolution, there is a demand for acquisition systems that are operable outside the laboratory environment. In this study, we designed a wearable and low-power EEG system for multichannel EEG acquisition beyond the lab doors. Around-the-ear cEEGrid electrodes are used to capture 8 biopotential channels which are amplified by low-power precision instrumentation amplifiers and passed on to an analog-to-digital converter (ADC). An ESP32 micro-controller captures the data from the ADC and stores it on an external SD card. The proposed system is compared to a state-of-the-art EEG acquisition system (BioSemi) to assess its diagnostic power for auditory brainstem responses (ABRs). The recordings with our portable system match, and even outperform, the baseline method's specifications. Our hardware opens up new avenues for fast sampling-rate auditory EEG recordings that can be used in hearing diagnostics, damage prevention and treatment follow up.
Collapse
|
27
|
López-Larraz E, Escolano C, Robledo-Menéndez A, Morlas L, Alda A, Minguez J. A garment that measures brain activity: proof of concept of an EEG sensor layer fully implemented with smart textiles. Front Hum Neurosci 2023; 17:1135153. [PMID: 37305362 PMCID: PMC10250743 DOI: 10.3389/fnhum.2023.1135153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
This paper presents the first garment capable of measuring brain activity with accuracy comparable to that of state-of-the art dry electroencephalogram (EEG) systems. The main innovation is an EEG sensor layer (i.e., the electrodes, the signal transmission, and the cap support) made entirely of threads, fabrics, and smart textiles, eliminating the need for metal or plastic materials. The garment is connected to a mobile EEG amplifier to complete the measurement system. As a first proof of concept, the new EEG system (Garment-EEG) was characterized with respect to a state-of-the-art Ag/AgCl dry-EEG system (Dry-EEG) over the forehead area of healthy participants in terms of: (1) skin-electrode impedance; (2) EEG activity; (3) artifacts; and (4) user ergonomics and comfort. The results show that the Garment-EEG system provides comparable recordings to Dry-EEG, but it is more susceptible to artifacts under adverse recording conditions due to poorer contact impedances. The textile-based sensor layer offers superior ergonomics and comfort compared to its metal-based counterpart. We provide the datasets recorded with Garment-EEG and Dry-EEG systems, making available the first open-access dataset of an EEG sensor layer built exclusively with textile materials. Achieving user acceptance is an obstacle in the field of neurotechnology. The introduction of EEG systems encapsulated in wearables has the potential to democratize neurotechnology and non-invasive brain-computer interfaces, as they are naturally accepted by people in their daily lives. Furthermore, supporting the EEG implementation in the textile industry may result in lower cost and less-polluting manufacturing processes compared to metal and plastic industries.
Collapse
|
28
|
Knierim MT, Bleichner MG, Reali P. A Systematic Comparison of High-End and Low-Cost EEG Amplifiers for Concealed, Around-the-Ear EEG Recordings. SENSORS (BASEL, SWITZERLAND) 2023; 23:4559. [PMID: 37177761 PMCID: PMC10181552 DOI: 10.3390/s23094559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Wearable electroencephalography (EEG) has the potential to improve everyday life through brain-computer interfaces (BCI) for applications such as sleep improvement, adaptive hearing aids, or thought-based digital device control. To make these innovations more practical for everyday use, researchers are looking to miniaturized, concealed EEG systems that can still collect neural activity precisely. For example, researchers are using flexible EEG electrode arrays that can be attached around the ear (cEEGrids) to study neural activations in everyday life situations. However, the use of such concealed EEG approaches is limited by measurement challenges such as reduced signal amplitudes and high recording system costs. In this article, we compare the performance of a lower-cost open-source amplification system, the OpenBCI Cyton+Daisy boards, with a benchmark amplifier, the MBrainTrain Smarting Mobi. Our results show that the OpenBCI system is a viable alternative for concealed EEG research, with highly similar noise performance, but slightly lower timing precision. This system can be a great option for researchers with a smaller budget and can, therefore, contribute significantly to advancing concealed EEG research.
Collapse
Affiliation(s)
- Michael Thomas Knierim
- Institute of Information Systems & Marketing, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Martin Georg Bleichner
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, 26129 Oldenburg, Germany;
- Research Center for Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Pierluigi Reali
- Department of Electronics Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| |
Collapse
|
29
|
Wascher E, Reiser J, Rinkenauer G, Larrá M, Dreger FA, Schneider D, Karthaus M, Getzmann S, Gutberlet M, Arnau S. Neuroergonomics on the Go: An Evaluation of the Potential of Mobile EEG for Workplace Assessment and Design. HUMAN FACTORS 2023; 65:86-106. [PMID: 33861182 PMCID: PMC9846382 DOI: 10.1177/00187208211007707] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We demonstrate and discuss the use of mobile electroencephalogram (EEG) for neuroergonomics. Both technical state of the art as well as measures and cognitive concepts are systematically addressed. BACKGROUND Modern work is increasingly characterized by information processing. Therefore, the examination of mental states, mental load, or cognitive processing during work is becoming increasingly important for ergonomics. RESULTS Mobile EEG allows to measure mental states and processes under real live conditions. It can be used for various research questions in cognitive neuroergonomics. Besides measures in the frequency domain that have a long tradition in the investigation of mental fatigue, task load, and task engagement, new approaches-like blink-evoked potentials-render event-related analyses of the EEG possible also during unrestricted behavior. CONCLUSION Mobile EEG has become a valuable tool for evaluating mental states and mental processes on a highly objective level during work. The main advantage of this technique is that working environments don't have to be changed while systematically measuring brain functions at work. Moreover, the workflow is unaffected by such neuroergonomic approaches.
Collapse
Affiliation(s)
- Edmund Wascher
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Julian Reiser
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Gerhard Rinkenauer
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Mauro Larrá
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Felix A. Dreger
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Daniel Schneider
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Melanie Karthaus
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Stephan Getzmann
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | | | - Stefan Arnau
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| |
Collapse
|
30
|
Tabar YR, Mikkelsen KB, Shenton N, Kappel SL, Bertelsen AR, Nikbakht R, Toft HO, Henriksen CH, Hemmsen MC, Rank ML, Otto M, Kidmose P. At-home sleep monitoring using generic ear-EEG. Front Neurosci 2023; 17:987578. [PMID: 36816118 PMCID: PMC9928964 DOI: 10.3389/fnins.2023.987578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction A device comprising two generic earpieces with embedded dry electrodes for ear-centered electroencephalography (ear-EEG) was developed. The objective was to provide ear-EEG based sleep monitoring to a wide range of the population without tailoring the device to the individual. Methods To validate the device ten healthy subjects were recruited for a 12-night sleep study. The study was divided into two parts; part A comprised two nights with both ear-EEG and polysomnography (PSG), and part B comprised 10 nights using only ear-EEG. In addition to the electrophysiological measurements, subjects filled out a questionnaire after each night of sleep. Results The subjects reported that the ear-EEG system was easy to use, and that the comfort was better in part B. The performance of the system was validated by comparing automatic sleep scoring based on ear-EEG with PSG-based sleep scoring performed by a professional trained sleep scorer. Cohen's kappa was used to assess the agreement between the manual and automatic sleep scorings, and the study showed an average kappa value of 0.71. The majority of the 20 recordings from part A yielded a kappa value above 0.7. The study was compared to a companioned study conducted with individualized earpieces. To compare the sleep across the two studies and two parts, 7 different sleeps metrics were calculated based on the automatic sleep scorings. The ear-EEG nights were validated through linear mixed model analysis in which the effects of equipment (individualized vs. generic earpieces), part (PSG and ear-EEG vs. only ear-EEG) and subject were investigated. We found that the subject effect was significant for all computed sleep metrics. Furthermore, the equipment did not show any statistical significant effect on any of the sleep metrics. Discussion These results corroborate that generic ear-EEG is a promising alternative to the gold standard PSG for sleep stage monitoring. This will allow sleep stage monitoring to be performed in a less obtrusive way and over longer periods of time, thereby enabling diagnosis and treatment of diseases with associated sleep disorders.
Collapse
Affiliation(s)
- Yousef R. Tabar
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Kaare B. Mikkelsen
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | | | - Simon L. Kappel
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Preben Kidmose
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark,*Correspondence: Preben Kidmose,
| |
Collapse
|
31
|
Mascia A, Collu R, Spanu A, Fraschini M, Barbaro M, Cosseddu P. Wearable System Based on Ultra-Thin Parylene C Tattoo Electrodes for EEG Recording. SENSORS (BASEL, SWITZERLAND) 2023; 23:766. [PMID: 36679563 PMCID: PMC9861766 DOI: 10.3390/s23020766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In an increasingly interconnected world, where electronic devices permeate every aspect of our lives, wearable systems aimed at monitoring physiological signals are rapidly taking over the sport and fitness domain, as well as biomedical fields such as rehabilitation and prosthetics. With the intent of providing a novel approach to the field, in this paper we discuss the development of a wearable system for the acquisition of EEG signals based on a portable, low-power custom PCB specifically designed to be used in combination with non-conventional ultra-conformable and imperceptible Parylene-C tattoo electrodes. The proposed system has been tested in a standard rest-state experiment, and its performance in terms of discrimination of two different states has been compared to that of a commercial wearable device for EEG signal acquisition (i.e., the Muse headset), showing comparable results. This first preliminary validation demonstrates the possibility of conveniently employing ultra-conformable tattoo-electrodes integrated portable systems for the unobtrusive acquisition of brain activity.
Collapse
Affiliation(s)
- Antonello Mascia
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Riccardo Collu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Andrea Spanu
- Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Matteo Fraschini
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Massimo Barbaro
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Piero Cosseddu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| |
Collapse
|
32
|
Musaeus CS, Waldemar G, Andersen BB, Høgh P, Kidmose P, Hemmsen MC, Rank ML, Kjær TW, Frederiksen KS. Long-Term EEG Monitoring in Patients with Alzheimer's Disease Using Ear-EEG: A Feasibility Study. J Alzheimers Dis 2022; 90:1713-1723. [PMID: 36336927 DOI: 10.3233/jad-220491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous studies have reported that epileptiform activity may be detectible in nearly half of patients with Alzheimer's disease (AD) on long-term electroencephalographic (EEG) recordings. However, such recordings can be uncomfortable, expensive, and difficult. Ear-EEG has shown promising results for long-term EEG monitoring, but it has not been used in patients with AD. OBJECTIVE To investigate if ear-EEG is a feasible method for long-term EEG monitoring in patients with AD. METHODS In this longitudinal, single-group feasibility study, ten patients with mild to moderate AD were recruited. A total of three ear-EEG recordings of up to 48 hours three months apart for six months were planned. RESULTS All patients managed to wear the ear-EEG for at least 24 hours and at least one full night. A total of 19 ear-EEG recordings were performed (self-reported recording, mean: 37.15 hours (SD: 8.96 hours)). After automatic pre-processing, a mean of 27.37 hours (SD: 7.19 hours) of data with acceptable quality in at least one electrode in each ear was found. Seven out of ten participants experienced mild adverse events. Six of the patients did not complete the study with three patients not wanting to wear the ear-EEG anymore due to adverse events. CONCLUSION It is feasible and safe to use ear-EEG for long-term EEG monitoring in patients with AD. Minor adjustments to the equipment may improve the comfort for the participants.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Birgitte Bo Andersen
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Preben Kidmose
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus N, Denmark
| | | | | | - Troels Wesenberg Kjær
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
33
|
Zambrana-Vinaroz D, Vicente-Samper JM, Manrique-Cordoba J, Sabater-Navarro JM. Wearable Epileptic Seizure Prediction System Based on Machine Learning Techniques Using ECG, PPG and EEG Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:9372. [PMID: 36502071 PMCID: PMC9736525 DOI: 10.3390/s22239372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Epileptic seizures have a great impact on the quality of life of people who suffer from them and further limit their independence. For this reason, a device that would be able to monitor patients' health status and warn them for a possible epileptic seizure would improve their quality of life. With this aim, this article proposes the first seizure predictive model based on Ear EEG, ECG and PPG signals obtained by means of a device that can be used in a static and outpatient setting. This device has been tested with epileptic people in a clinical environment. By processing these data and using supervised machine learning techniques, different predictive models capable of classifying the state of the epileptic person into normal, pre-seizure and seizure have been developed. Subsequently, a reduced model based on Boosted Trees has been validated, obtaining a prediction accuracy of 91.5% and a sensitivity of 85.4%. Thus, based on the accuracy of the predictive model obtained, it can potentially serve as a support tool to determine the status epilepticus and prevent a seizure, thereby improving the quality of life of these people.
Collapse
Affiliation(s)
- David Zambrana-Vinaroz
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Jose Maria Vicente-Samper
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Juliana Manrique-Cordoba
- Neuroengineering Biomedical Research Group, Miguel Hernández University of Elche, 03202 Elche, Spain
| | | |
Collapse
|
34
|
Fox EL, Ugolini M, Houpt JW. Predictions of task using neural modeling. FRONTIERS IN NEUROERGONOMICS 2022; 3:1007673. [PMID: 38235464 PMCID: PMC10790939 DOI: 10.3389/fnrgo.2022.1007673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2024]
Abstract
Introduction A well-designed brain-computer interface (BCI) can make accurate and reliable predictions of a user's state through the passive assessment of their brain activity; in turn, BCI can inform an adaptive system (such as artificial intelligence, or AI) to intelligently and optimally aid the user to maximize the human-machine team (HMT) performance. Various groupings of spectro-temporal neural features have shown to predict the same underlying cognitive state (e.g., workload) but vary in their accuracy to generalize across contexts, experimental manipulations, and beyond a single session. In our work we address an outstanding challenge in neuroergonomic research: we quantify if (how) identified neural features and a chosen modeling approach will generalize to various manipulations defined by the same underlying psychological construct, (multi)task cognitive workload. Methods To do this, we train and test 20 different support vector machine (SVM) models, each given a subset of neural features as recommended from previous research or matching the capabilities of commercial devices. We compute each model's accuracy to predict which (monitoring, communications, tracking) and how many (one, two, or three) task(s) were completed simultaneously. Additionally, we investigate machine learning model accuracy to predict task(s) within- vs. between-sessions, all at the individual-level. Results Our results indicate gamma activity across all recording locations consistently outperformed all other subsets from the full model. Our work demonstrates that modelers must consider multiple types of manipulations which may each influence a common underlying psychological construct. Discussion We offer a novel and practical modeling solution for system designers to predict task through brain activity and suggest next steps in expanding our framework to further contribute to research and development in the neuroergonomics community. Further, we quantified the cost in model accuracy should one choose to deploy our BCI approach using a mobile EEG-systems with fewer electrodes-a practical recommendation from our work.
Collapse
Affiliation(s)
- Elizabeth L. Fox
- Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, United States
| | | | - Joseph W. Houpt
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
35
|
Choi JY, Jeon S, Kim H, Ha J, Jeon GS, Lee J, Cho SI. Health-Related Indicators Measured Using Earable Devices: Systematic Review. JMIR Mhealth Uhealth 2022; 10:e36696. [PMID: 36239201 PMCID: PMC9709679 DOI: 10.2196/36696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Earable devices are novel, wearable Internet of Things devices that are user-friendly and have potential applications in mobile health care. The position of the ear is advantageous for assessing vital status and detecting diseases through reliable and comfortable sensing devices. OBJECTIVE Our study aimed to review the utility of health-related indicators derived from earable devices and propose an improved definition of disease prevention. We also proposed future directions for research on the health care applications of earable devices. METHODS A systematic review was conducted of the PubMed, Embase, and Web of Science databases. Keywords were used to identify studies on earable devices published between 2015 and 2020. The earable devices were described in terms of target health outcomes, biomarkers, sensor types and positions, and their utility for disease prevention. RESULTS A total of 51 articles met the inclusion criteria and were reviewed, and the frequency of 5 health-related characteristics of earable devices was described. The most frequent target health outcomes were diet-related outcomes (9/51, 18%), brain status (7/51, 14%), and cardiovascular disease (CVD) and central nervous system disease (5/51, 10% each). The most frequent biomarkers were electroencephalography (11/51, 22%), body movements (6/51, 12%), and body temperature (5/51, 10%). As for sensor types and sensor positions, electrical sensors (19/51, 37%) and the ear canal (26/51, 51%) were the most common, respectively. Moreover, the most frequent prevention stages were secondary prevention (35/51, 69%), primary prevention (12/51, 24%), and tertiary prevention (4/51, 8%). Combinations of ≥2 target health outcomes were the most frequent in secondary prevention (8/35, 23%) followed by brain status and CVD (5/35, 14% each) and by central nervous system disease and head injury (4/35, 11% each). CONCLUSIONS Earable devices can provide biomarkers for various health outcomes. Brain status, healthy diet status, and CVDs were the most frequently targeted outcomes among the studies. Earable devices were mostly used for secondary prevention via monitoring of health or disease status. The potential utility of earable devices for primary and tertiary prevention needs to be investigated further. Earable devices connected to smartphones or tablets through cloud servers will guarantee user access to personal health information and facilitate comfortable wearing.
Collapse
Affiliation(s)
- Jin-Young Choi
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seonghee Jeon
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hana Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jaeyoung Ha
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gyeong-Suk Jeon
- Department of Nursing, College of Natural Science, Mokpo National University, Mokpo, Republic of Korea
| | - Jeong Lee
- Department of Nursing, College of Health and Medical Science, Chodang University, Muan, Republic of Korea
| | - Sung-Il Cho
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Jacobsen NSJ, Blum S, Scanlon JEM, Witt K, Debener S. Mobile electroencephalography captures differences of walking over even and uneven terrain but not of single and dual-task gait. Front Sports Act Living 2022; 4:945341. [PMID: 36275441 PMCID: PMC9582531 DOI: 10.3389/fspor.2022.945341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Walking on natural terrain while performing a dual-task, such as typing on a smartphone is a common behavior. Since dual-tasking and terrain change gait characteristics, it is of interest to understand how altered gait is reflected by changes in gait-associated neural signatures. A study was performed with 64-channel electroencephalography (EEG) of healthy volunteers, which was recorded while they walked over uneven and even terrain outdoors with and without performing a concurrent task (self-paced button pressing with both thumbs). Data from n = 19 participants (M = 24 years, 13 females) were analyzed regarding gait-phase related power modulations (GPM) and gait performance (stride time and stride time-variability). GPMs changed significantly with terrain, but not with the task. Descriptively, a greater beta power decrease following right-heel strikes was observed on uneven compared to even terrain. No evidence of an interaction was observed. Beta band power reduction following the initial contact of the right foot was more pronounced on uneven than on even terrain. Stride times were longer on uneven compared to even terrain and during dual- compared to single-task gait, but no significant interaction was observed. Stride time variability increased on uneven terrain compared to even terrain but not during single- compared to dual-tasking. The results reflect that as the terrain difficulty increases, the strides become slower and more irregular, whereas a secondary task slows stride duration only. Mobile EEG captures GPM differences linked to terrain changes, suggesting that the altered gait control demands and associated cortical processes can be identified. This and further studies may help to lay the foundation for protocols assessing the cognitive demand of natural gait on the motor system.
Collapse
Affiliation(s)
- Nadine Svenja Josée Jacobsen
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,*Correspondence: Nadine Svenja Josée Jacobsen
| | - Sarah Blum
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,Hörzentrum Oldenburg GmbH, Oldenburg, Germany,Cluster of Excellence Hearing4all, Oldenburg, Germany
| | - Joanna Elizabeth Mary Scanlon
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,Branch for Hearing, Speech and Audio Technology HSA, Fraunhofer Institute for Digital Media Technology IDMT, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology and Research Center Neurosensory Science, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany,Cluster of Excellence Hearing4all, Oldenburg, Germany
| |
Collapse
|
37
|
Knierim MT, Schemmer M, Bauer N. A simplified design of a cEEGrid ear-electrode adapter for the OpenBCI biosensing platform. HARDWAREX 2022; 12:e00357. [PMID: 36204424 PMCID: PMC9529594 DOI: 10.1016/j.ohx.2022.e00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 05/27/2023]
Abstract
We present a simplified design of an ear-centered sensing system built around the OpenBCI Cyton & Daisy biosignal amplifiers and the flex-printed cEEGrid ear-EEG electrodes. This design reduces the number of components that need to be sourced, reduces mechanical artefacts on the recording data through better cable placement, and simplifies the assembly. Besides describing how to replicate and use the system, we highlight promising application scenarios, particularly the observation of large-amplitude activity patterns (e.g., facial muscle activities) and frequency-band neural activity (e.g., alpha and beta band power modulations for mental workload detection). Further, examples for common measurement artefacts and methods for removing them are provided, introducing a prototypical application of adaptive filters to this system. Lastly, as a promising use case, we present findings from a single-user study that highlights the system's capability of detecting jaw clenching events robustly when contrasted with 26 other facial activities. Thereby, the system could, for instance, be used to devise applications that reduce pathological jaw clenching and teeth grinding (bruxism). These findings underline that the system represents a valuable prototyping platform for advancing ear-based electrophysiological sensing systems and a low-cost alternative to current commercial alternatives.
Collapse
|
38
|
Kaongoen N, Choi J, Jo S. A novel online BCI system using speech imagery and ear-EEG for home appliances control. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107022. [PMID: 35863124 DOI: 10.1016/j.cmpb.2022.107022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE This paper investigates a novel way to interact with home appliances via a brain-computer interface (BCI), using electroencephalograph (EEG) signals acquired from around the user's ears with a custom-made wearable BCI headphone. METHODS The users engage in speech imagery (SI), a type of mental task where they imagine speaking out a specific word without producing any sound, to control an interactive simulated home appliance. In this work, multiple models are employed to improve the performance of the system. Temporally-stacked multi-band covariance matrix (TSMBC) method is used to represent the neural activities during SI tasks with spatial, temporal, and spectral information included. To further increase the usability of our proposed system in daily life, a calibration session, where the pre-trained models are fine-tuned, is added to maintain performance over time with minimal training. Eleven participants were recruited to evaluate our method over three different sessions: a training session, a calibration session, and an online session where users were given the freedom to achieve a given goal on their own. RESULTS In the offline experiment, all participants were able to achieve a classification accuracy significantly higher than the chance level. In the online experiments, a few participants were able to use the proposed system to freely control the home appliance with high accuracy and relatively fast command delivery speed. The best participant achieved an average true positive rate and command delivery time of 0.85 and 3.79 s/command, respectively. CONCLUSION Based on the positive experimental results and user surveys, the novel ear-EEG-SI-based BCI paradigm is a promising approach for the wearable BCI system for daily life.
Collapse
Affiliation(s)
- Netiwit Kaongoen
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Choi
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sungho Jo
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
39
|
Dasenbrock S, Blum S, Maanen P, Debener S, Hohmann V, Kayser H. Synchronization of ear-EEG and audio streams in a portable research hearing device. Front Neurosci 2022; 16:904003. [PMID: 36117630 PMCID: PMC9475108 DOI: 10.3389/fnins.2022.904003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Recent advancements in neuroscientific research and miniaturized ear-electroencephalography (EEG) technologies have led to the idea of employing brain signals as additional input to hearing aid algorithms. The information acquired through EEG could potentially be used to control the audio signal processing of the hearing aid or to monitor communication-related physiological factors. In previous work, we implemented a research platform to develop methods that utilize EEG in combination with a hearing device. The setup combines currently available mobile EEG hardware and the so-called Portable Hearing Laboratory (PHL), which can fully replicate a complete hearing aid. Audio and EEG data are synchronized using the Lab Streaming Layer (LSL) framework. In this study, we evaluated the setup in three scenarios focusing particularly on the alignment of audio and EEG data. In Scenario I, we measured the latency between software event markers and actual audio playback of the PHL. In Scenario II, we measured the latency between an analog input signal and the sampled data stream of the EEG system. In Scenario III, we measured the latency in the whole setup as it would be used in a real EEG experiment. The results of Scenario I showed a jitter (standard deviation of trial latencies) of below 0.1 ms. The jitter in Scenarios II and III was around 3 ms in both cases. The results suggest that the increased jitter compared to Scenario I can be attributed to the EEG system. Overall, the findings show that the measurement setup can time-accurately present acoustic stimuli while generating LSL data streams over multiple hours of playback. Further, the setup can capture the audio and EEG LSL streams with sufficient temporal accuracy to extract event-related potentials from EEG signals. We conclude that our setup is suitable for studying closed-loop EEG & audio applications for future hearing aids.
Collapse
Affiliation(s)
- Steffen Dasenbrock
- Auditory Signal Processing and Hearing Devices, Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| | - Sarah Blum
- Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Paul Maanen
- Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Volker Hohmann
- Auditory Signal Processing and Hearing Devices, Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| | - Hendrik Kayser
- Auditory Signal Processing and Hearing Devices, Department of Medical Physics and Acoustics, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
40
|
Jeong JH, Cho JH, Lee YE, Lee SH, Shin GH, Kweon YS, Millán JDR, Müller KR, Lee SW. 2020 International brain-computer interface competition: A review. Front Hum Neurosci 2022; 16:898300. [PMID: 35937679 PMCID: PMC9354666 DOI: 10.3389/fnhum.2022.898300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The brain-computer interface (BCI) has been investigated as a form of communication tool between the brain and external devices. BCIs have been extended beyond communication and control over the years. The 2020 international BCI competition aimed to provide high-quality neuroscientific data for open access that could be used to evaluate the current degree of technical advances in BCI. Although there are a variety of remaining challenges for future BCI advances, we discuss some of more recent application directions: (i) few-shot EEG learning, (ii) micro-sleep detection (iii) imagined speech decoding, (iv) cross-session classification, and (v) EEG(+ear-EEG) detection in an ambulatory environment. Not only did scientists from the BCI field compete, but scholars with a broad variety of backgrounds and nationalities participated in the competition to address these challenges. Each dataset was prepared and separated into three data that were released to the competitors in the form of training and validation sets followed by a test set. Remarkable BCI advances were identified through the 2020 competition and indicated some trends of interest to BCI researchers.
Collapse
Affiliation(s)
- Ji-Hoon Jeong
- School of Computer Science, Chungbuk National University, Cheongju, South Korea
| | - Jeong-Hyun Cho
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Young-Eun Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Seo-Hyun Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Gi-Hwan Shin
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Young-Seok Kweon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - José del R. Millán
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States
| | - Klaus-Robert Müller
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Machine Learning Group, Department of Computer Science, Berlin Institute of Technology, Berlin, Germany
- Max Planck Institute for Informatics, Saarbrucken, Germany
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
41
|
Haneef Z, Yang K, Sheth SA, Aloor FZ, Aazhang B, Krishnan V, Karakas C. Sub-scalp electroencephalography: A next-generation technique to study human neurophysiology. Clin Neurophysiol 2022; 141:77-87. [PMID: 35907381 DOI: 10.1016/j.clinph.2022.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022]
Abstract
Sub-scalp electroencephalography (ssEEG) is emerging as a promising technology in ultra-long-term electroencephalography (EEG) recordings. Given the diversity of devices available in this nascent field, uncertainty persists about its utility in epilepsy evaluation. This review critically dissects the many proposed utilities of ssEEG devices including (1) seizure quantification, (2) seizure characterization, (3) seizure lateralization, (4) seizure localization, (5) seizure alarms, (6) seizure forecasting, (7) biomarker discovery, (8) sleep medicine, and (9) responsive stimulation. The different ssEEG devices in development have individual design philosophies with unique strengths and limitations. There are devices offering primarily unilateral recordings (24/7 EEGTM SubQ, NeuroviewTM, Soenia® UltimateEEG™), bilateral recordings (Minder™, Epios™), and even those with responsive stimulation capability (EASEE®). We synthesize the current knowledge of these ssEEG systems. We review the (1) ssEEG devices, (2) use case scenarios, (3) challenges and (4) suggest a roadmap for ideal ssEEG designs.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuad Z Aloor
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, University of Louisville, Louisville, KY 40202, USA; Norton Children's Neuroscience Institute, Louisville, KY 40241, USA
| |
Collapse
|
42
|
Das A, Basu S, A A, Gubbi J, Muralidharan K, S M, S M, Biradar A, Pradhan U, Chakravarty T, Ramakrishnan RK, Pal A. Surface Potential Simulation and Electrode Design for in-Ear EEG Measurement. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:937-940. [PMID: 36086437 DOI: 10.1109/embc48229.2022.9871926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The need for everyday-real-time EEG sensing has resulted in the development of minimalistic and discreet wearable EEG measuring devices. A front runner in this race is in-ear worn device. However, the position of the ear as well as its restricted accessibility poses certain challenges in the design of such devices - from the type of materials used to the placement of electrodes. These choices are important as they will determine the quality of the EEG signal available and in turn the accuracy of the application. We therefore create a simulation model of the human ear, allowing us to understand the impact of these choices on our design of an In-Ear EEG wearable. We first study the signal acquisition characteristics of a proposed gold-plated electrode against two other state-of-the-art electrode materials for in-ear EEG data collection. We further validate this electrode choice by fabricating a personalized silicone-based earpiece and collecting in-situ EEG data. This work explores the properties of using gold plated electrodes in capturing in-ear EEG signals enabling unobtrusive collection of the brain physiology data in real world setting.
Collapse
|
43
|
Hsieh JC, Li Y, Wang H, Perz M, Tang Q, Tang KWK, Pyatnitskiy I, Reyes R, Ding H, Wang H. Design of hydrogel-based wearable EEG electrodes for medical applications. J Mater Chem B 2022; 10:7260-7280. [PMID: 35678148 DOI: 10.1039/d2tb00618a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electroencephalogram (EEG) is considered to be a promising method for studying brain disorders. Because of its non-invasive nature, subjects take a lower risk compared to some other invasive methods, while the systems record the brain signal. With the technological advancement of neural and material engineering, we are in the process of achieving continuous monitoring of neural activity through wearable EEG. In this article, we first give a brief introduction to EEG bands, circuits, wired/wireless EEG systems, and analysis algorithms. Then, we review the most recent advances in the interfaces used for EEG recordings, focusing on hydrogel-based EEG electrodes. Specifically, the advances for important figures of merit for EEG electrodes are reviewed. Finally, we summarize the potential medical application of wearable EEG systems.
Collapse
Affiliation(s)
- Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yang Li
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C3J7, Canada
| | - Huiqian Wang
- Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Matt Perz
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Qiong Tang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ilya Pyatnitskiy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Raymond Reyes
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Hong Ding
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
44
|
Israsena P, Pan-Ngum S. A CNN-Based Deep Learning Approach for SSVEP Detection Targeting Binaural Ear-EEG. Front Comput Neurosci 2022; 16:868642. [PMID: 35664916 PMCID: PMC9160186 DOI: 10.3389/fncom.2022.868642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
This paper discusses a machine learning approach for detecting SSVEP at both ears with minimal channels. SSVEP is a robust EEG signal suitable for many BCI applications. It is strong at the visual cortex around the occipital area, but the SNR gets worse when detected from other areas of the head. To make use of SSVEP measured around the ears following the ear-EEG concept, especially for practical binaural implementation, we propose a CNN structure coupled with regressed softmax outputs to improve accuracy. Evaluating on a public dataset, we studied classification performance for both subject-dependent and subject-independent trainings. It was found that with the proposed structure using a group training approach, a 69.21% accuracy was achievable. An ITR of 6.42 bit/min given 63.49 % accuracy was recorded while only monitoring data from T7 and T8. This represents a 12.47% improvement from a single ear implementation and illustrates potential of the approach to enhance performance for practical implementation of wearable EEG.
Collapse
Affiliation(s)
- Pasin Israsena
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- *Correspondence: Pasin Israsena
| | - Setha Pan-Ngum
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
45
|
Holtze B, Rosenkranz M, Jaeger M, Debener S, Mirkovic B. Ear-EEG Measures of Auditory Attention to Continuous Speech. Front Neurosci 2022; 16:869426. [PMID: 35592265 PMCID: PMC9111016 DOI: 10.3389/fnins.2022.869426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Auditory attention is an important cognitive function used to separate relevant from irrelevant auditory information. However, most findings on attentional selection have been obtained in highly controlled laboratory settings using bulky recording setups and unnaturalistic stimuli. Recent advances in electroencephalography (EEG) facilitate the measurement of brain activity outside the laboratory, and around-the-ear sensors such as the cEEGrid promise unobtrusive acquisition. In parallel, methods such as speech envelope tracking, intersubject correlations and spectral entropy measures emerged which allow us to study attentional effects in the neural processing of natural, continuous auditory scenes. In the current study, we investigated whether these three attentional measures can be reliably obtained when using around-the-ear EEG. To this end, we analyzed the cEEGrid data of 36 participants who attended to one of two simultaneously presented speech streams. Speech envelope tracking results confirmed a reliable identification of the attended speaker from cEEGrid data. The accuracies in identifying the attended speaker increased when fitting the classification model to the individual. Artifact correction of the cEEGrid data with artifact subspace reconstruction did not increase the classification accuracy. Intersubject correlations were higher for those participants attending to the same speech stream than for those attending to different speech streams, replicating previously obtained results with high-density cap-EEG. We also found that spectral entropy decreased over time, possibly reflecting the decrease in the listener's level of attention. Overall, these results support the idea of using ear-EEG measurements to unobtrusively monitor auditory attention to continuous speech. This knowledge may help to develop assistive devices that support listeners separating relevant from irrelevant information in complex auditory environments.
Collapse
Affiliation(s)
- Björn Holtze
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Marc Rosenkranz
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Manuela Jaeger
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Division Hearing, Speech and Audio Technology, Fraunhofer Institute for Digital Media Technology IDMT, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Bojana Mirkovic
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
46
|
Biondi A, Santoro V, Viana PF, Laiou P, Pal DK, Bruno E, Richardson MP. Noninvasive mobile EEG as a tool for seizure monitoring and management: A systematic review. Epilepsia 2022; 63:1041-1063. [PMID: 35271736 PMCID: PMC9311406 DOI: 10.1111/epi.17220] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
In the last two decades new noninvasive mobile electroencephalography (EEG) solutions have been developed to overcome limitations of conventional clinical EEG and to improve monitoring of patients with long-term conditions. Despite the availability of mobile innovations, their adoption is still very limited. The aim of this study is to review the current state-of-the-art and highlight the main advantages of adopting noninvasive mobile EEG solutions in clinical trials and research studies of people with epilepsy or suspected seizures. Device characteristics are described, and their evaluation is presented. Two authors independently performed a literature review in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of different digital libraries was used (Embase, MEDLINE, Global Health, PsycINFO and https://clinicaltrials.gov/). Twenty-three full-text, six conference abstracts, and eight webpages were included, where a total of 14 noninvasive mobile solutions were identified. Published studies demonstrated at different levels how EEG recorded via mobile EEG can be used for visual detection of EEG abnormalities and for the application of automatic-detection algorithms with acceptable specificity and sensitivity. When the quality of the signal was compared with scalp EEG, many similarities were found in the background activities and power spectrum. Several studies indicated that the experience of patients and health care providers using mobile EEG was positive in different settings. Ongoing trials are focused mostly on improving seizure-detection accuracy and also on testing and assessing feasibility and acceptability of noninvasive devices in the hospital and at home. This review supports the potential clinical value of noninvasive mobile EEG systems and their advantages in terms of time, technical support, cost, usability, and reliability when applied to seizure detection and management. On the other hand, the limitations of the studies confirmed that future research is needed to provide more evidence regarding feasibility and acceptability in different settings, as well as the data quality and detection accuracy of new noninvasive mobile EEG solutions.
Collapse
Affiliation(s)
- Andrea Biondi
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Viviana Santoro
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Pedro F. Viana
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK,Faculty of MedicineUniversity of LisbonLisbonPortugal
| | - Petroula Laiou
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Deb K. Pal
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Elisa Bruno
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Mark P. Richardson
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
47
|
Validation of Continuous Monitoring System for Epileptic Users in Outpatient Settings. SENSORS 2022; 22:s22082900. [PMID: 35458883 PMCID: PMC9025176 DOI: 10.3390/s22082900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022]
Abstract
Epilepsy is a chronic disease with a significant social impact, given that the patients and their families often live conditioned by the possibility of an epileptic seizure and its possible consequences, such as accidents, injuries, or even sudden unexplained death. In this context, ambulatory monitoring allows the collection of biomedical data about the patients’ health, thus gaining more knowledge about the physiological state and daily activities of each patient in a more personalized manner. For this reason, this article proposes a novel monitoring system composed of different sensors capable of synchronously recording electrocardiogram (ECG), photoplethysmogram (PPG), and ear electroencephalogram (EEG) signals and storing them for further processing and analysis in a microSD card. This system can be used in a static and/or ambulatory way, providing information about the health state through features extracted from the ear EEG signal and the calculation of the heart rate variability (HRV) and pulse travel time (PTT). The different applied processing techniques to improve the quality of these signals are described in this work. A novel algorithm used to compute HRV and PTT robustly and accurately in ambulatory settings is also described. The developed device has also been validated and compared with other commercial systems obtaining similar results. In this way, based on the quality of the obtained signals and the low variability of the computed parameters, even in ambulatory conditions, the developed device can potentially serve as a support tool for clinical decision-taking stages.
Collapse
|
48
|
Choi SI, Lee JY, Lim KM, Hwang HJ. Evaluation of Real-Time Endogenous Brain-Computer Interface Developed Using Ear-Electroencephalography. Front Neurosci 2022; 16:842635. [PMID: 35401092 PMCID: PMC8987155 DOI: 10.3389/fnins.2022.842635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
While previous studies have demonstrated the feasibility of using ear-electroencephalography (ear-EEG) for the development of brain-computer interfaces (BCIs), most of them have been performed using exogenous paradigms in offline environments. To verify the reliable feasibility of constructing ear-EEG-based BCIs, the feasibility of using ear-EEG should be further demonstrated using another BCI paradigm, namely the endogenous paradigm, in real-time online environments. Exogenous and endogenous BCIs are to use the EEG evoked by external stimuli and induced by self-modulation, respectively. In this study, we investigated whether an endogenous ear-EEG-based BCI with reasonable performance can be implemented in online environments that mimic real-world scenarios. To this end, we used three different mental tasks, i.e., mental arithmetic, word association, and mental singing, and performed BCI experiments with fourteen subjects on three different days to investigate not only the reliability of a real-time endogenous ear-EEG-based BCI, but also its test-retest reliability. The mean online classification accuracy was almost 70%, which was equivalent to a marginal accuracy for a practical two-class BCI (70%), demonstrating the feasibility of using ear-EEG for the development of real-time endogenous BCIs, but further studies should follow to improve its performance enough to be used for practical ear-EEG-based BCI applications.
Collapse
Affiliation(s)
- Soo-In Choi
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si, South Korea
| | - Ji-Yoon Lee
- Department of Electronics and Information Engineering, Korea University, Sejong City, South Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong City, South Korea
| | - Ki Moo Lim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si, South Korea
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si, South Korea
| | - Han-Jeong Hwang
- Department of Electronics and Information Engineering, Korea University, Sejong City, South Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong City, South Korea
- *Correspondence: Han-Jeong Hwang,
| |
Collapse
|
49
|
Meiser A, Bleichner MG. Ear-EEG compares well to cap-EEG in recording auditory ERPs: a quantification of signal loss. J Neural Eng 2022; 19. [PMID: 35316801 DOI: 10.1088/1741-2552/ac5fcb] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 11/11/2022]
Abstract
Objective:Ear-EEG (Electroencephalography) allows to record brain activity using only a few electrodes located close to the ear. Ear-EEG is comfortable and easy to apply, facilitating beyond-the-lab EEG recordings in everyday life. With the unobtrusive setup, a person wearing it can blend in, allowing unhindered EEG recordings in social situations. However, compared to classical cap-EEG, only a small part of the head is covered with electrodes. Most scalp positions that are known from established EEG research are not covered by ear-EEG electrodes, making the comparison between the two approaches difficult and might hinder the transition from cap-based lab studies to ear-based beyond-the-lab studies.Approach:We here provide a reference data-set comparing ear-EEG and cap-EEG directly for four different auditory event-related potentials (ERPs): N100, MMN, P300 and N400. We show how the ERPs are reflected when using only electrodes around the ears.Main results:We find that significant condition differences for all ERP-components could be recorded using only ear-electrodes. The effect sizes were moderate to high on the single subject level. Morphology and temporal evolution of signals recorded from around-the-ear resemble highly those from standard scalp-EEG positions. We found a reduction in effect size (signal loss) for the ear-EEG electrodes compared to cap-EEG of 21-44%. The amount of signal loss depended on the ERP-component; we observed the lowest percentage signal loss for the N400 and the highest percentage signal loss for the N100. Our analysis further shows that no single channel position around the ear is optimal for recording all ERP-components or all participants, speaking in favor of multi-channel ear-EEG solutions.Significance:Our study provides reference results for future studies employing ear-EEG.
Collapse
Affiliation(s)
- Arnd Meiser
- Department of Psychology, University of Oldenburg, Ammerländer Heerstraße 112-114, Oldenburg, 26129, GERMANY
| | - Martin Georg Bleichner
- Department of Psychology, University of Oldenburg, Ammerländer Heerstraße 112-114, Oldenburg, 26129, GERMANY
| |
Collapse
|
50
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|