1
|
Guidetti M, Ferrara R, Montemagno K, Maiorana NV, Bocci T, Marceglia S, Oliveri S, Bianchi AM, Priori A. The "Cocombola Study": A Physical Phantom Model for tDCS-Induced Electric Field Distribution. Bioengineering (Basel) 2025; 12:346. [PMID: 40281706 PMCID: PMC12024709 DOI: 10.3390/bioengineering12040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS)-induced electric fields (EFs) acting on brain tissues are hardly controllable. Among physical models used in neuroscience research, watermelons are known as head-like phantoms for their dielectric properties. In this study, we aimed to define an inexpensive and reliable method to qualitatively define the spatial distribution of tDCS-induced EFs based on the use of watermelons. METHODS After creating the eight cranial foramina and identifying the location of the 21 EEG scalp electrodes on the peel of a watermelon, voltage differences during stimulation were recorded in each of the 21 scalp electrode positions, one at a time, at four different depths. The recordings were graphically represented by using polar coordinates with the watermelon approximated to a perfect sphere. RESULTS To validate the model, we performed three experiments in well-known montages. The results obtained were in line with the expected behavior of the EFs. CONCLUSIONS Watermelon might be a cheap and feasible phantom head model to characterize the EFs induced by tDCS and, potentially, even other non-invasive brain stimulation techniques.
Collapse
Affiliation(s)
- Matteo Guidetti
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Rosanna Ferrara
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
| | - Kora Montemagno
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
| | - Natale Vincenzo Maiorana
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
| | - Tommaso Bocci
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Sara Marceglia
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
| | - Serena Oliveri
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Alberto Priori
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (R.F.); (K.M.); (N.V.M.); (T.B.); (S.M.); (S.O.); (A.P.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| |
Collapse
|
2
|
Wang Y, Li Z, Ye Y, Li Y, Wei R, Gan K, Qian Y, Xu L, Kong Y, Guan L, Fang H, Jiao G, Ke X. HD-tDCS effects on social impairment in autism spectrum disorder with sensory processing abnormalities: a randomized controlled trial. Sci Rep 2025; 15:9772. [PMID: 40118999 PMCID: PMC11928555 DOI: 10.1038/s41598-025-93631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
This study examined the effects of high-definition transcranial direct current stimulation (HD-tDCS) on social impairment in children with autism spectrum disorder (ASD), focusing on those with and without sensory processing abnormalities. A randomized double-blind sham-controlled trial involved 72 children with ASD, divided into three groups based on sensory integration status. A post-hoc analysis of 51 children aged 4-8 years who received true HD-tDCS was conducted, categorizing them into hypo-tactile, hyper-tactile, and typical tactile sensitivity groups. Therapeutic efficacy was compared across these groups. (1) The randomized cntrolled Trial: The typical sensory integration group showed significant improvements in social awareness (t = 5.032, p < 0.000) and autistic mannerisms (t = 3.085, p = 0.004) compared to the sensory integration dysfunction group. (2)The result of the post-hoc analysis: The hypo-tactile and typical tactile sensitivity groups exhibited notable improvements in social awareness, cognition, communication, autistic mannerisms, and total SRS scores. In contrast, the hyper-tactile group only had a significant reduction in social communication (t = 2.385, p = 0.022) post-intervention. HD-tDCS effectively improved social impairment symptoms in children with ASD, particularly those with typical sensory integration and either typical or hypo-tactile responsiveness.
Collapse
Affiliation(s)
- Yonglu Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhijia Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China
| | - Yupei Ye
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yun Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ran Wei
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Child Health Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, Jiangsu, China
| | - Kaiyan Gan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingxi Xu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Kong
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Luyang Guan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Fang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Gongkai Jiao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Hilderley AJ, Dunbar M, Andersen J, Fehlings D, Metzler M, Carlson HL, Zewdie E, Hodge J, O’Grady K, Carsolio L, Dlamini N, Giuffre A, Cole L, Kuo HC, Bourgeois A, Hollis A, Maiani M, Ciechanski P, Jadavji Z, Craig B, Kelly D, Keough J, Wrightson J, Fay L, Switzer L, Pajevic M, Ramsay A, Sametz M, Brooks BL, Yaskina M, Batara J, Hill MD, Kirton A. Neuromodulation for Children With Hemiparesis and Perinatal Stroke: A Randomized Clinical Trial. JAMA Neurol 2025; 82:267-275. [PMID: 39899326 PMCID: PMC11791770 DOI: 10.1001/jamaneurol.2024.4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/22/2024] [Indexed: 02/04/2025]
Abstract
Importance Current upper-extremity therapies provide inconsistent outcomes for children with unilateral cerebral palsy. Noninvasive brain stimulation, specifically transcranial direct current stimulation, may enhance motor gains when combined with therapy. Objective To determine whether the addition of neurostimulation to upper-extremity therapy enhances motor function in children with perinatal stroke and unilateral cerebral palsy. Design, Setting, and Participants This multicenter, randomized, sham-controlled phase 3 trial was conducted from July 2017 through March 2023. Investigators, treating therapists, outcome assessors, parents, and participants were blinded to intervention allocation. The study took place at 3 tertiary care Canadian pediatric rehabilitation hospitals. From a population-based sample of children 6 to 18 years old with perinatal stroke and disabling unilateral cerebral palsy, 196 children were approached and 107 were excluded. Intervention Participants were randomly assigned in permuted blocks of 2 (1:1) to receive daily sham or cathodal stimulation to the contralesional motor cortex during 10 days of high-dose, child-centered intensive upper-extremity therapy. Main Outcomes and Measures The primary end points were changes from baseline to 6 months posttherapy in affected hand function and attainment of child-identified functional goals assessed by the Assisting Hand Assessment and Canadian Occupational Performance Measure. Safety was assessed, including any decrease in the function of either hand. Analysis was intention to treat. Results Eighty-nine children were enrolled with 45 randomized to sham (62% male, 38% female; mean [SD] age, 10.7 [2.8] years) and 44 to stimulation (52% male, 48% female; mean [SD] age, 10.7 [2.1] years). Eighty-three participants had complete outcome data (42 sham, 41 stimulation). High proportions of children in both groups demonstrated significant functional gains sustained at 6 months (P < .001) with large effect size (Cohen d > 1). There were no differences between groups for mean (SD) change in hand function (5.2 [5.3] vs 4.6 [5.7]; P = .63) or goal attainment (3.0 [2.0] vs 3.6 [2.3]; P = .25). Procedures were safe and well tolerated with no serious adverse events. Conclusions and Relevance In this study, results showed that patient-centered intensive motor learning programs could produce marked and sustained improvements in upper-extremity function in children with perinatal stroke and unilateral cerebral palsy. The addition of 1 milliampere contralesional motor cortex transcranial direct current stimulation did not improve outcomes compared with sham stimulation. Trial Registration ClinicalTrials.gov Identifier: NCT03216837.
Collapse
Affiliation(s)
- Alicia J. Hilderley
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Canada
| | - Mary Dunbar
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Canada
| | - John Andersen
- Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Darcy Fehlings
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto
| | | | - Helen L. Carlson
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Canada
| | - Ephrem Zewdie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Canada
| | - Jacquie Hodge
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Nomazulu Dlamini
- The Hospital for Sick Children, Toronto, Ontario, Canada
- University of Toronto, Canada
| | - Adrianna Giuffre
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Canada
| | - Lauran Cole
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hsing-Ching Kuo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Bourgeois
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Asha Hollis
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Meghan Maiani
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Patrick Ciechanski
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zeanna Jadavji
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Brandon Craig
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dion Kelly
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joanna Keough
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - James Wrightson
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Linda Fay
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Lauren Switzer
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Maya Pajevic
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alana Ramsay
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael Sametz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Brian L. Brooks
- Alberta Children’s Hospital Research Institute, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Maryna Yaskina
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jesse Batara
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Michael D. Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Brehme H, Utke J, Berger C, Kölch M, Buchmann J. Transcranial direct current stimulation (tDCS) in psychiatric disorders in early childhood (aged under 10 years): a systematic review. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-024-02635-z. [PMID: 39792266 DOI: 10.1007/s00787-024-02635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Transcranial direct current stimulation (tDCS) remains experimental for many psychiatric disorders in adults. Particularly in childhood, there is limited research on the evidence for the efficacy and mechanisms of action of tDCS on the developing brain. The objective of this review is to identify published experimental studies to examine the efficacy and mechanisms of tDCS in children with psychiatric or developmental disorders in early (prepubertal) childhood (aged under 10 years). Included Studies should meet the following criteria: (1) experimental studies (no reviews, no case reports), (2) studies published in international peer-reviewed journals, (3) written in English, (4) conducted on children under 10 under years of age, (5) at enrolment with a psychiatric or developmental disorder.Eight studies were identified that fulfilled the specified criteria. All studies investigated effect on children with autism-spectrum-disorder (ASD). Anodal tDCS, mainly targeting the left dorsolateral prefrontal cortex (dlPFC), showed positive effects on the reduction of ASD symptoms. There has also been evidence that these stimulations are feasible, have good tolerability and are safe. tDCS was found to be safe and partially effective, but a long-term effect of tDCS and changes in connectivity during tDCS in autism has not been proven. Other developmental or psychiatric diseases were not investigated. This results in a lack of knowledge regarding the reactivity of the brain during the prepubertal period, which is a critical phase in the pathogenesis of neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD), ASD, Tourette's syndrome or dyslexia.
Collapse
Affiliation(s)
- Hannes Brehme
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany.
- German Center for Child and Adolescent Health (DZKJ), Site Greifswald/Rostock, Germany.
| | - Josefin Utke
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
| | - Christoph Berger
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
- German Center for Child and Adolescent Health (DZKJ), Site Greifswald/Rostock, Germany
| | - Michael Kölch
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
- German Center for Child and Adolescent Health (DZKJ), Site Greifswald/Rostock, Germany
| | - Johannes Buchmann
- Department of Psychiatry, Neurology, Psychotherapy and Psychosomatics in Childhood and Adolescence, Rostock University Medical Center, Gehlsheimer Straße 20, 18147, Rostock, Germany
| |
Collapse
|
5
|
Ma W, Wang F, Yi Y, Huang Y, Li X, Liu Y, Tu Y. Mapping the electric field of high-definition transcranial electrical stimulation across the lifespan. Sci Bull (Beijing) 2024; 69:3876-3888. [PMID: 39424454 DOI: 10.1016/j.scib.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Transcranial electrical stimulation (tES) is a non-invasive technique widely used in modulating brain activity and behavior, but its effects differ across individuals and are influenced by head anatomy. In this study, we investigated how the electric field (EF) generated by high-definition tES varies across the lifespan among different demographic groups and its relationship with neural responses measured by functional magnetic resonance imaging (fMRI). We employed an MRI-guided finite element method to simulate the EF for the two most common tES montages (i.e., targeting the dorsolateral prefrontal cortex and motor cortex, respectively) in two large cohorts of white and Asian participants aged 12 to 100 years. We found that the EF intensity decreased with age, particularly in individuals under 25 years of age, and was influenced by gender and ethnicity. We identified skull thickness, scalp thickness, and epidural cerebrospinal fluid thickness, as the primary anatomical factors accounting for the inter-individual EF variability. Using a concurrent tES-fMRI approach, we observed a spatial consistency between the simulated EF and the brain activity changes induced by tES in the target region. Finally, we developed an open-source toolbox incorporating age-stratified head models to facilitate efficient EF calculations. These findings characterize and quantify the individual differences in tES-induced EF, offering a reference for implementing personalized neuromodulation strategies.
Collapse
Affiliation(s)
- Weiwei Ma
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feixue Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Yi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Huang
- Research & Development, Soterix Medical Inc., Woodbridge, NJ 07095, USA
| | - Xinying Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya'ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Beijing 100070, China.
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Hoare DJ, Shorter GW, Shekhawat GS, El Refaie A, Labree B, Sereda M. Neuromodulation Treatments Targeting Pathological Synchrony for Tinnitus in Adults: A Systematic Review. Brain Sci 2024; 14:748. [PMID: 39199443 PMCID: PMC11352582 DOI: 10.3390/brainsci14080748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: Tinnitus involves the conscious awareness of a tonal or composite noise for which there is no identifiable corresponding external acoustic source. For many people, tinnitus is a disorder associated with symptoms of emotional distress, cognitive dysfunction, autonomic arousal, behavioural changes, and functional disability. Many symptoms can be addressed effectively using education or cognitive behavioural therapy. However, there is no treatment that effectively reduces or alters tinnitus-related neurophysiological activity and thus the tinnitus percept. In this systematic review, we evaluated the effectiveness of neuromodulation therapies for tinnitus that explicitly target pathological synchronous neural activity. (2) Methods: Multiple databases were searched for randomised controlled trials of neuromodulation interventions for tinnitus in adults, with 24 trials included. The risk of bias was assessed, and where appropriate, meta-analyses were performed. (3) Results: Few trials used acoustic, vagal nerve, or transcranial alternating current stimulation, or bimodal stimulation techniques, with limited evidence of neuromodulation or clinical effectiveness. Multiple trials of transcranial direct current stimulation (tDCS) were identified, and a synthesis demonstrated a significant improvement in tinnitus symptom severity in favour of tDCS versus control, although heterogeneity was high. (4) Discussion: Neuromodulation for tinnitus is an emerging but promising field. Electrical stimulation techniques are particularly interesting, given recent advances in current flow modelling that can be applied to future studies.
Collapse
Affiliation(s)
- Derek J. Hoare
- NIHR Nottingham Biomedical Research Centre, Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK; (B.L.); (M.S.)
- Department of Speech and Hearing Sciences, University College Cork, T12 EK59 Cork, Ireland;
| | - Gillian W. Shorter
- Drug and Alcohol Research Network, School of Psychology, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Giriraj S. Shekhawat
- College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA 5001, Australia;
- Tinnitus Research Initiative, Universitätsstrasse 84, 93053 Regensburg, Germany
| | - Amr El Refaie
- Department of Speech and Hearing Sciences, University College Cork, T12 EK59 Cork, Ireland;
| | - Bas Labree
- NIHR Nottingham Biomedical Research Centre, Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK; (B.L.); (M.S.)
| | - Magdalena Sereda
- NIHR Nottingham Biomedical Research Centre, Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK; (B.L.); (M.S.)
| |
Collapse
|
7
|
Shaner S, Lu H, Lenz M, Garg S, Vlachos A, Asplund M. Brain stimulation-on-a-chip: a neuromodulation platform for brain slices. LAB ON A CHIP 2023; 23:4967-4985. [PMID: 37909911 PMCID: PMC10661668 DOI: 10.1039/d3lc00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
| | - Han Lu
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Shreyash Garg
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- MSc Neuroscience Program, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Andreas Vlachos
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 41258 Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 79187 Luleå, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
9
|
牛 瑞, 张 丞, 吴 昌, 林 华, 张 广, 霍 小. [The influence of tissue conductivity on the calculation of electric field in the transcranial magnetic stimulation head model]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:401-408. [PMID: 37380377 PMCID: PMC10307604 DOI: 10.7507/1001-5515.202211070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/15/2023] [Indexed: 06/30/2023]
Abstract
In transcranial magnetic stimulation (TMS), the conductivity of brain tissue is obtained by using diffusion tensor imaging (DTI) data processing. However, the specific impact of different processing methods on the induced electric field in the tissue has not been thoroughly studied. In this paper, we first used magnetic resonance image (MRI) data to create a three-dimensional head model, and then estimated the conductivity of gray matter (GM) and white matter (WM) using four conductivity models, namely scalar (SC), direct mapping (DM), volume normalization (VN) and average conductivity (MC), respectively. Isotropic empirical conductivity values were used for the conductivity of other tissues such as the scalp, skull, and cerebrospinal fluid (CSF), and then the TMS simulations were performed when the coil was parallel and perpendicular to the gyrus of the target. When the coil was perpendicular to the gyrus where the target was located, it was easy to get the maximum electric field in the head model. The maximum electric field in the DM model was 45.66% higher than that in the SC model. The results showed that the conductivity component along the electric field direction of which conductivity model was smaller in TMS, the induced electric field in the corresponding domain corresponding to the conductivity model was larger. This study has guiding significance for TMS precise stimulation.
Collapse
Affiliation(s)
- 瑞奇 牛
- 中国科学院电工研究所 生物电磁学北京市重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100049)School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - 丞 张
- 中国科学院电工研究所 生物电磁学北京市重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100049)School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - 昌哲 吴
- 中国科学院电工研究所 生物电磁学北京市重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100049)School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - 华 林
- 中国科学院电工研究所 生物电磁学北京市重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - 广浩 张
- 中国科学院电工研究所 生物电磁学北京市重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100049)School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - 小林 霍
- 中国科学院电工研究所 生物电磁学北京市重点实验室(北京 100190)Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- 中国科学院大学 电子电气与通信工程学院(北京 100049)School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Hausman HK, Alexander GE, Cohen R, Marsiske M, DeKosky ST, Hishaw GA, O'Shea A, Kraft JN, Dai Y, Wu S, Woods AJ. Primary outcome from the augmenting cognitive training in older adults study (ACT): A tDCS and cognitive training randomized clinical trial. Brain Stimul 2023; 16:904-917. [PMID: 37245842 PMCID: PMC10436327 DOI: 10.1016/j.brs.2023.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND There is a need for effective interventions to stave off cognitive decline in older adults. Cognitive training has variably produced gains in untrained tasks and daily functioning. Combining cognitive training with transcranial direct current stimulation (tDCS) may augment cognitive training effects; however, this approach has yet to be tested on a large-scale. OBJECTIVE This paper will present the primary findings of the Augmenting Cognitive Training in Older Adults (ACT) clinical trial. We hypothesize that receiving active stimulation with cognitive training will result in greater improvements on an untrained fluid cognition composite compared to sham following intervention. METHODS 379 older adults were randomized, and 334 were included in intent-to-treat analyses for a 12-week multidomain cognitive training and tDCS intervention. Active or sham tDCS was administered at F3/F4 during cognitive training daily for two weeks then weekly for 10 weeks. To assess the tDCS effect, we fitted regression models for changes in NIH Toolbox Fluid Cognition Composite scores immediately following intervention and one year from baseline controlling for covariates and baseline scores. RESULTS Across the entire sample, there were improvements in NIH Toolbox Fluid Cognition Composite scores immediately post-intervention and one year following baseline; however, there were no significant tDCS group effects at either timepoint. CONCLUSIONS The ACT study models rigorous, safe administration of a combined tDCS and cognitive training intervention in a large sample of older adults. Despite potential evidence of near-transfer effects, we failed to demonstrate an additive benefit of active stimulation. Future analyses will continue to assess the intervention's efficacy by examining additional measures of cognition, functioning, mood, and neural markers.
Collapse
Affiliation(s)
- Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA; Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Hunold A, Haueisen J, Nees F, Moliadze V. Review of individualized current flow modeling studies for transcranial electrical stimulation. J Neurosci Res 2023; 101:405-423. [PMID: 36537991 DOI: 10.1002/jnr.25154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.
Collapse
Affiliation(s)
- Alexander Hunold
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
12
|
Alawi M, Lee PF, Deng ZD, Goh YK, Croarkin PE. Modelling the differential effects of age on transcranial magnetic stimulation induced electric fields. J Neural Eng 2023; 20. [PMID: 36240726 DOI: 10.1088/1741-2552/ac9a76] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Objective. The therapeutic application of noninvasive brain stimulation modalities such as transcranial magnetic stimulation (TMS) has expanded in terms of indications and patient populations. Often neurodevelopmental and neurodegenerative changes are not considered in research studies and clinical applications. This study sought to examine TMS dosing across time points in the life cycle.Approach. TMS induced electric fields with a figure-of-eight coil was simulated at left dorsolateral prefrontal cortex regions and taken in vertex as a control region. Realistic magnetic resonance imaging-based head models (N= 48) were concurrently examined in a cross-sectional study of three different age groups (children, adults, and elderlies).Main results. Age had a negative correlation with electric field peaks in white matter, grey matter and cerebrospinal fluid (P< 0.001). Notably, the electric field map in children displayed the widest cortical surface spread of TMS induced electric fields.Significance. Age-related anatomical geometry beneath the coil stimulation site had a significant impact on the TMS induced electric fields for different age groups. Safety considerations for TMS applications and protocols in children are warranted based on the present electric field findings.
Collapse
Affiliation(s)
- Mansour Alawi
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Poh Foong Lee
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, NIH, Bethesda, MD, United States of America
| | - Yong Kheng Goh
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Kajang, Malaysia
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Minnesota, MN, United States of America
| |
Collapse
|
13
|
Nemanich ST, Lench DH, Sutter EN, Kowalski JL, Francis SM, Meekins GD, Krach LE, Feyma T, Gillick BT. Safety and feasibility of transcranial direct current stimulation stratified by corticospinal organization in children with hemiparesis. Eur J Paediatr Neurol 2023; 43:27-35. [PMID: 36878110 PMCID: PMC10117060 DOI: 10.1016/j.ejpn.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Children with hemiparesis (CWH) due to stroke early in life face lifelong impairments in motor function. Transcranial direct current stimulation (tDCS) may be a safe and feasible adjuvant therapy to augment rehabilitation. Given the variability in outcomes following tDCS, tailored protocols of tDCS are required. We evaluated the safety, feasibility, and preliminary effects of a single session of targeted anodal tDCS based on individual corticospinal tract organization on corticospinal excitability. Fourteen CWH (age = 13.8 ± 3.63) were stratified into two corticospinal organization subgroups based on transcranial magnetic stimulation (TMS)-confirmed motor evoked potentials (MEP): ipsilesional MEP presence (MEPIL+) or absence (MEPIL-). Subgroups were randomized to real anodal or sham tDCS (1.5 mA, 20 min) applied to the ipsilesional (MEPIL + group) or contralesional (MEPIL- group) hemisphere combined with hand training. Safety was assessed with questionnaires and motor function evaluation, and corticospinal excitability was assessed at baseline and every 15 min for 1 h after tDCS. No serious adverse events occurred and anticipated minor side effects were reported and were self-limiting. Six of 14 participants had consistent ipsilesional MEPs (MEPIL + group). Paretic hand MEP amplitude increased in 5/8 participants who received real anodal tDCS to either the ipsilesional or contralesional hemisphere (+80% change). Application of tDCS based on individual corticospinal organization was safe and feasible with expected effects on excitability, indicating the potential for tailored tDCS protocols for CWH. Additional research involving expanded experimental designs is needed to confirm these effects and to determine if this approach can be translated into a clinically relevant intervention.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Department of Occupational Therapy, Marquette University, 1700 West Wells St., Room 140, Milwaukee, WI, 53201, USA.
| | - Daniel H Lench
- Department of Neurology, Medical University of South Carolina, 208B Rutledge Avenue, Charleston, SC, 29425, USA
| | - Ellen N Sutter
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA
| | - Jesse L Kowalski
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 79/96 13th Street, Charlestown, MA, United States
| | - Sunday M Francis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 2312 S. 6th St.Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Gregg D Meekins
- Department of Neurology, University of Minnesota, 420 Delaware St SE, MMC 295, Minneapolis, MN, 55455, USA
| | - Linda E Krach
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA; Rehabilitation Medicine, Gillette Children's Specialty Healthcare, 200 University Ave E, St Paul, MN, 55101, USA
| | - Tim Feyma
- Neurology, Gillette Children's Specialty Healthcare, 200 University Ave E, St Paul, MN, 55101, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, 420 Delaware St SE, MMC 388, Minneapolis, MN, 55455, USA; Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
14
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|
15
|
Carlson HL, Giuffre A, Ciechanski P, Kirton A. Electric field simulations of transcranial direct current stimulation in children with perinatal stroke. Front Hum Neurosci 2023; 17:1075741. [PMID: 36816507 PMCID: PMC9932338 DOI: 10.3389/fnhum.2023.1075741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Perinatal stroke (PS) is a focal vascular brain injury and the leading cause of hemiparetic cerebral palsy. Motor impairments last a lifetime but treatments are limited. Transcranial direct-current stimulation (tDCS) may enhance motor learning in adults but tDCS effects on motor learning are less studied in children. Imaging-based simulations of tDCS-induced electric fields (EF) suggest differences in the developing brain compared to adults but have not been applied to common pediatric disease states. We created estimates of tDCS-induced EF strength using five tDCS montages targeting the motor system in children with PS [arterial ischemic stroke (AIS) or periventricular infarction (PVI)] and typically developing controls (TDC) aged 6-19 years to explore associates between simulation values and underlying anatomy. Methods Simulations were performed using SimNIBS https://simnibs.github.io/simnibs/build/html/index.html using T1, T2, and diffusion-weighted images. After tissue segmentation and tetrahedral mesh generation, tDCS-induced EF was estimated based on the finite element model (FEM). Five 1mA tDCS montages targeting motor function in the paretic (non-dominant) hand were simulated. Estimates of peak EF strength, EF angle, field focality, and mean EF in motor cortex (M1) were extracted for each montage and compared between groups. Results Simulations for eighty-three children were successfully completed (21 AIS, 30 PVI, 32 TDC). Conventional tDCS montages utilizing anodes over lesioned cortex had higher peak EF strength values for the AIS group compared to TDC. These montages showed lower mean EF strength within target M1 regions suggesting that peaks were not necessarily localized to motor network-related targets. EF angle was lower for TDC compared to PS groups for a subset of montages. Montages using anodes over lesioned cortex were more sensitive to variations in underlying anatomy (lesion and tissue volumes) than those using cathodes over non-lesioned cortex. Discussion Individualized patient-centered tDCS EF simulations are prudent for clinical trial planning and may provide insight into the efficacy of tDCS interventions in children with PS.
Collapse
Affiliation(s)
- Helen L. Carlson
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada,*Correspondence: Helen L. Carlson,
| | - Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Patrick Ciechanski
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada,Department of Clinical Neuroscience and Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Jwa AS, Goodman JS, Glover GH. Inconsistencies in mapping current distribution in transcranial direct current stimulation. FRONTIERS IN NEUROIMAGING 2023; 1:1069500. [PMID: 37555148 PMCID: PMC10406311 DOI: 10.3389/fnimg.2022.1069500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 08/10/2023]
Abstract
INTRODUCTION tDCS is a non-invasive neuromodulation technique that has been widely studied both as a therapy for neuropsychiatric diseases and for cognitive enhancement. However, recent meta-analyses have reported significant inconsistencies amongst tDCS studies. Enhancing empirical understanding of current flow in the brain may help elucidate some of these inconsistencies. METHODS We investigated tDCS-induced current distribution by injecting a low frequency current waveform in a phantom and in vivo. MR phase images were collected during the stimulation and a time-series analysis was used to reconstruct the magnetic field. A current distribution map was derived from the field map using Ampere's law. RESULTS The current distribution map in the phantom showed a clear path of current flow between the two electrodes, with more than 75% of the injected current accounted for. However, in brain, the results did evidence a current path between the two target electrodes but only some portion ( 25%) of injected current reached the cortex demonstrating that a significant fraction of the current is bypassing the brain and traveling from one electrode to the other external to the brain, probably due to conductivity differences in brain tissue types. Substantial inter-subject and intra-subject (across consecutive scans) variability in current distribution maps were also observed in human but not in phantom scans. DISCUSSIONS An in-vivo current mapping technique proposed in this study demonstrated that much of the injected current in tDCS was not accounted for in human brain and deviated to the edge of the brain. These findings would have ramifications in the use of tDCS as a neuromodulator and may help explain some of the inconsistencies reported in other studies.
Collapse
Affiliation(s)
- Anita S. Jwa
- Stanford University Law School, Stanford, CA, United States
| | - Jonathan S. Goodman
- Program in Biophysics, Stanford School of Medicine, Stanford, CA, United States
| | - Gary H. Glover
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
17
|
Guidetti M, Arlotti M, Bocci T, Bianchi AM, Parazzini M, Ferrucci R, Priori A. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings. Biomedicines 2022; 10:biomedicines10102333. [PMID: 36289595 PMCID: PMC9598743 DOI: 10.3390/biomedicines10102333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023] Open
Abstract
Transcranial electrical stimulation (tES) techniques, such as direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), cause neurophysiological and behavioral modifications as responses to the electric field are induced in the brain. Estimations of such electric fields are based mainly on computational studies, and in vivo measurements have been used to expand the current knowledge. Here, we review the current tDCS- and tACS-induced electric fields estimations as they are recorded in humans and non-human primates using intracerebral electrodes. Direct currents and alternating currents were applied with heterogeneous protocols, and the recording procedures were characterized by a tentative methodology. However, for the clinical stimulation protocols, an injected current seems to reach the brain, even at deep structures. The stimulation parameters (e.g., intensity, frequency and phase), the electrodes’ positions and personal anatomy determine whether the intensities might be high enough to affect both neuronal and non-neuronal cell activity, also deep brain structures.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
- Correspondence:
| |
Collapse
|
18
|
Aneksan B, Sawatdipan M, Bovonsunthonchai S, Tretriluxana J, Vachalathiti R, Auvichayapat P, Pheungphrarattanatrai A, Piriyaprasarth P, Klomjai W. Five-Session Dual-Transcranial Direct Current Stimulation With Task-Specific Training Does Not Improve Gait and Lower Limb Performance Over Training Alone in Subacute Stroke: A Pilot Randomized Controlled Trial. Neuromodulation 2022; 25:558-568. [PMID: 35667771 DOI: 10.1111/ner.13526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the effect of five-session dual-transcranial direct current stimulation (dual-tDCS) combined with task-specific training on gait and lower limb motor performance in individuals with subacute stroke. MATERIALS AND METHODS Twenty-five participants who had a stroke in the subacute phase with mild motor impairment were recruited, randomized, and allocated into two groups. The active group (n = 13) received dual-tDCS with anodal over the lesioned hemisphere M1 and cathodal over the nonlesioned hemisphere, at 2 mA for 20 min before training for five consecutive days, while the sham group (n = 12) received sham mode before training. Gait speed as a primary outcome, temporospatial gait variables, lower-limb functional tasks (sit-to-stand and walking mobility), and muscle strength as secondary outcomes were collected at preintervention and postintervention (day 5), one-week follow-up, and one-month follow-up. RESULTS The primary outcome and most of the secondary outcomes were improved in both groups, with no significant difference between the two groups, and most of the results indicated small to moderate effect sizes of active tDCS compared to sham tDCS. CONCLUSION The combined intervention showed no benefit over training alone in improving gait variables and lower-limb performance. However, some performances were saturated at some point, as moderate to high function participants were recruited in the present study. Future studies should consider recruiting participants with more varied motor impairment levels and may need to determine the optimal stimulation protocols and parameters to improve gait and lower-limb performance.
Collapse
Affiliation(s)
- Benchaporn Aneksan
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Montawan Sawatdipan
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Sunee Bovonsunthonchai
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Jarugool Tretriluxana
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Roongtiwa Vachalathiti
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Paradee Auvichayapat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Pagamas Piriyaprasarth
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Wanalee Klomjai
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand.
| |
Collapse
|
19
|
Khajehpour H, Parvaz MA, Kouti M, Hosseini Rafsanjani T, Ekhtiari H, Bakht S, Noroozi A, Makkiabadi B, Mahmoodi M. Effects of Transcranial Direct Current Stimulation on Attentional Bias to Methamphetamine Cues and Its Association With EEG-Derived Functional Brain Network Topology. Int J Neuropsychopharmacol 2022; 25:631-644. [PMID: 35380672 PMCID: PMC9380716 DOI: 10.1093/ijnp/pyac018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although transcranial direct current stimulation (tDCS) has shown to potentially mitigate drug craving and attentional bias to drug-related stimuli, individual differences in such modulatory effects of tDCS are less understood. In this study, we aimed to investigate a source of the inter-subject variability in the tDCS effects that can be useful for tDCS-based treatments of individuals with methamphetamine (MA) use disorder (IMUD). METHODS Forty-two IMUD (all male) were randomly assigned to receive a single-session of either sham or real bilateral tDCS (anodal right/cathodal left) over the dorsolateral prefrontal cortex. The tDCS effect on MA craving and biased attention to drug stimuli were investigated by quantifying EEG-derived P3 (a measure of initial attentional bias) and late positive potential (LPP; a measure of sustained motivated attention) elicited by these stimuli. To assess the association of changes in P3 and LPP with brain connectivity network (BCN) topology, the correlation between topology metrics, specifically those related to the efficiency of information processing, and the tDCS effect was investigated. RESULTS The P3 amplitude significantly decreased following the tDCS session, whereas the amplitudes increased in the sham group. The changes in P3 amplitudes were significantly correlated with communication efficiency measured by BCN topology metrics (r = -0.47, P = .03; r = -0.49, P = .02). There was no significant change in LPP amplitude due to the tDCS application. CONCLUSIONS These findings validate that tDCS mitigates initial attentional bias, but not the sustained motivated attention, to MA stimuli. Importantly, however, results also show that the individual differences in the effects of tDCS may be underpinned by communication efficiency of the BCN topology, and therefore, these BCN topology metrics may have the potential to robustly predict the effectiveness of tDCS-based interventions on MA craving and attentional bias to MA stimuli among IMUD.
Collapse
Affiliation(s)
- Hassan Khajehpour
- Correspondence: Hassan Khajehpour, PhD, Department of Physics, Concordia University, Richard J. Renaud Science Complex, Loyola Campus, 7141 Sherbrooke St. W., Montreal, H4B 1R6, Quebec, Canada ()
| | - Muhammad A Parvaz
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, USA,Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Mayadeh Kouti
- Department of Electrical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Bakht
- Department of Cognitive Psychology, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Alireza Noroozi
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran (Dr Noroozi)
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran,Iran,Research Center for Biomedical Technology and Robotics, Institute of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran,Iran
| | - Maryam Mahmoodi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran,Iran,Research Center for Biomedical Technology and Robotics, Institute of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran,Iran
| |
Collapse
|
20
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
21
|
Wang M, Feng T, Jiang H, Zhu J, Feng W, Chhatbar PY, Zhang J, Zhang S. In vivo Measurements of Electric Fields During Cranial Electrical Stimulation in the Human Brain. Front Hum Neurosci 2022; 16:829745. [PMID: 35250520 PMCID: PMC8895368 DOI: 10.3389/fnhum.2022.829745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Cranial electrical stimulation (CES) has been applied at various current levels in both adults and children with neurological conditions with seemingly promising but somewhat inconsistent results. Stimulation-induced spatial electric fields (EFs) within a specific brain region are likely a significant contributing factor for the biological effects. Although several simulation models have been used to predict EF distributions in the brain, these models actually have not been validated by in vivo CES-induced EF measurements in the live human brain. This study directly measured the CES-induced voltage changes with implanted stereotactic-electroencephalographic (sEEG) electrodes in twenty-one epilepsy participants (16 adults and 5 children) and then compared these measured values with the simulated ones obtained from the personalized models. In addition, we further investigated the influence of stimulation frequency, intensity, electrode montage and age on EFs in parts of participants. We found both measured voltages and EFs obtained in vivo are highly correlated with the predicted ones in our cohort (Voltages: r = 0.93, p < 0.001; EFs: r = 0.73, p < 0.001). In white matter and gray matter, the measured voltages linearly increased when the stimulation intensity increased from 5 to 500 μA but showed no significant changes (averaged coefficient of variation <4.10%) with changing stimulation frequency from 0.5 to 200 Hz. Electrode montage, but not age, significantly affects the distribution of the EFs (n = 5, p < 0.01). Our in vivo measurements demonstrate that the individualized simulation model can reliably predict the CES-induced EFs in both adults and children. It also confirms that the CES-induced EFs highly depend on the electrode montages and individual anatomical features.
Collapse
Affiliation(s)
- Minmin Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Tao Feng
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Pratik Y. Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jianmin Zhang,
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Shaomin Zhang,
| |
Collapse
|
22
|
Mercadal B, Salvador R, Biagi MC, Bartolomei F, Wendling F, Ruffini G. Modeling implanted metals in electrical stimulation applications. J Neural Eng 2022; 19. [PMID: 35172293 DOI: 10.1088/1741-2552/ac55ae] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Metal implants impact the dosimetry assessment in electrical stimulation techniques. Therefore, they need to be included in numerical models. While currents in the body are ionic, metals only allow electron transport. In fact, charge transfer between tissues and metals requires electric fields to drive electrochemical reactions at the interface. Thus, metal implants may act as insulators or as conductors depending on the scenario. The aim of this paper is to provide a theoretical argument that guides the choice of the correct representation of metal implants in electrical models while considering the electrochemical nature of the problem Approach: We built a simple model of a metal implant exposed to a homogeneous electric field of various magnitudes. The same geometry was solved using two different models: a purely electric one (with different conductivities for the implant), and an electrochemical one. As an example of application, we also modeled a transcranial electrical stimulation (tES) treatment in a realistic head model with a skull plate using a high and low conductivity value for the plate. MAIN RESULTS Metal implants generally act as electric insulators when exposed to electric fields up to around 100 V/m and they only resemble a perfect conductor for fields in the order of 1000 V/m and above. The results are independent of the implant's metal, but they depend on its geometry. tES modeling with implants incorrectly treated as conductors can lead to errors of 50% or more in the estimation of the induced fields Significance: Metal implants can be accurately represented by a simple electrical model of constant conductivity, but an incorrect model choice can lead to large errors in the dosimetry assessment. Our results can be used to guide the selection of the most appropriate model in each scenario.
Collapse
Affiliation(s)
- Borja Mercadal
- Neuroelectrics Barcelona SL, Av. del Tibidabo, 47B, Barcelona, Catalunya, 08035, SPAIN
| | - Ricardo Salvador
- Neuroelectrics Barcelona SL, Av. del Tibidabo, 47B, Barcelona, Catalunya, 08035, SPAIN
| | - Maria Chiara Biagi
- Neuroelectrics Barcelona SL, Av. del Tibidabo, 47B, Barcelona, Catalunya, 08035, SPAIN
| | - Fabrice Bartolomei
- INS, Institut de Neurosciences des Systèmes, Aix-Marseille Universite, 27, Boulevard Jean Moulin, Marseille, Provence-Alpes-Côte d'Azu, 13284, FRANCE
| | - Fabrice Wendling
- INSERM, LTSI (Laboratoire de Traitement du Signal et de l'Image) U1099, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Giulio Ruffini
- Neuroelectrics Barcelona SL, Av. del Tibidabo, 47B, Barcelona, Catalunya, 08035, SPAIN
| |
Collapse
|
23
|
Soleimani G, Kupliki R, Bodurka J, Paulus M, Ekhtiari H. How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications. Brain Stimul 2022; 15:337-351. [PMID: 35042056 DOI: 10.1016/j.brs.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Abnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI. METHODS Sixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10-20), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity. RESULTS Compared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = -0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between sites. CONCLUSION This study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Rayus Kupliki
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, OK, United States.
| |
Collapse
|
24
|
Konicar L, Prillinger K, Klöbl M, Lanzenberger R, Antal A, Plener PL. Brain Stimulation for Emotion Regulation in Adolescents With Psychiatric Disorders: Study Protocol for a Clinical-Transdiagnostical, Randomized, Triple-Blinded and Sham-Controlled Neurotherapeutic Trial. Front Psychiatry 2022; 13:840836. [PMID: 35546931 PMCID: PMC9082670 DOI: 10.3389/fpsyt.2022.840836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Anxiety, conduct and depressive disorders represent three highly prevalent psychiatric conditions in adolescents. A shared underpinning of these disorders is a shortcoming in emotion regulation, connected to the functioning of the ventromedial prefrontal cortex. Thus, an intervention able to target the suggested neural correlate seems to be highly desirable, aiming to hinder a maladaptive development of emotion regulation abilities and chronification of associated psychiatric disorders. As transcranial direct current stimulation (tDCS) was repeatedly demonstrated as a safe and non-invasive method to modulate specific brain activity, research is in demand to evaluate neurotherapeutic applications in adolescents with psychiatric disorders. METHOD This transdiagnostic, randomized, triple-blind and sham-controlled clinical neurostimulation trial primary aims to investigate if emotion regulation abilities are increased after tDCS in adolescents with psychiatric disorders. Secondly, disorder-specific changes in the anxiety, depression or conduct disorder will be investigated, as well as changes in quality of life, and cognitive and emotional functioning after tDCS intervention. We will include 108 adolescents with psychiatric disorders, displaying a substantial deficit in emotion regulation. Of these, one third each has to be primarily diagnosed with a depressive, anxiety or conduct disorder, respectively. Participants will be randomized to the experimental group (n = 54) receiving real anodal tDCS, or to the control group (n = 54) receiving sham tDCS. Brain stimulation will be applied for 20 min on five consecutive days twice targeting the ventromedial prefrontal cortex (vmPFC). Changes in emotion regulation, together with changes in disorder-specific clinical symptoms will be recorded by multi-informant psychological ratings. To inspect changes in behavior and gaze, computerized tasks and an eye tracker system will be used. Changes in brain responses to emotional and cognitive stimuli will be examined with three functional magnetic resonance imaging (fMRI) paradigms. In addition, a resting state MRI will be acquired to investigate possible changes in brain connectivity. DISCUSSION By investigating "emotion regulation" as transdiagnostic treatment target, this project is oriented toward the Research Domain Criteria framework with a dimensional view on mental illness. The study aims at investigating the potential of tDCS as non-invasive intervention for depressive, anxiety and conduct disorders in adolescents and broadening the scientific foundation for its clinical application. CLINICAL TRIAL REGISTRATION The study is ongoing and has been registered in the German Registry of Clinical Trials (DRKS-ID: DRKS00025601X) on the 28.06.2021.
Collapse
Affiliation(s)
- Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul L Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria.,Department of Child and Adolescents Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| |
Collapse
|
25
|
Molero-Chamizo A, Nitsche MA, Gutiérrez Lérida C, Salas Sánchez Á, Martín Riquel R, Andújar Barroso RT, Alameda Bailén JR, García Palomeque JC, Rivera-Urbina GN. Standard Non-Personalized Electric Field Modeling of Twenty Typical tDCS Electrode Configurations via the Computational Finite Element Method: Contributions and Limitations of Two Different Approaches. BIOLOGY 2021; 10:1230. [PMID: 34943145 PMCID: PMC8698402 DOI: 10.3390/biology10121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation procedure to modulate cortical excitability and related brain functions. tDCS can effectively alter multiple brain functions in healthy humans and is suggested as a therapeutic tool in several neurological and psychiatric diseases. However, variability of results is an important limitation of this method. This variability may be due to multiple factors, including age, head and brain anatomy (including skull, skin, CSF and meninges), cognitive reserve and baseline performance level, specific task demands, as well as comorbidities in clinical settings. Different electrode montages are a further source of variability between tDCS studies. A procedure to estimate the electric field generated by specific tDCS electrode configurations, which can be helpful to adapt stimulation protocols, is the computational finite element method. This approach is useful to provide a priori modeling of the current spread and electric field intensity that will be generated according to the implemented electrode montage. Here, we present standard, non-personalized model-based electric field simulations for motor, dorsolateral prefrontal, and posterior parietal cortex stimulation according to twenty typical tDCS electrode configurations using two different current flow modeling software packages. The resulting simulated maximum intensity of the electric field, focality, and current spread were similar, but not identical, between models. The advantages and limitations of both mathematical simulations of the electric field are presented and discussed systematically, including aspects that, at present, prevent more widespread application of respective simulation approaches in the field of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany;
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany
| | | | - Ángeles Salas Sánchez
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Raquel Martín Riquel
- Department of Psychology, University of Córdoba, 14071 Córdoba, Spain; (C.G.L.); (R.M.R.)
| | - Rafael Tomás Andújar Barroso
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - José Ramón Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (Á.S.S.); (R.T.A.B.); (J.R.A.B.)
| | - Jesús Carlos García Palomeque
- Histology Department, School of Medicine, Cadiz University and District Jerez Costa-N., Andalusian Health Service, 11003 Cádiz, Spain;
| | | |
Collapse
|
26
|
Giuffre A, Zewdie E, Wrightson JG, Cole L, Carlson HL, Kuo HC, Babwani A, Kirton A. Effects of Transcranial Direct Current Stimulation and High-Definition Transcranial Direct Current Stimulation Enhanced Motor Learning on Robotic Transcranial Magnetic Stimulation Motor Maps in Children. Front Hum Neurosci 2021; 15:747840. [PMID: 34690726 PMCID: PMC8526891 DOI: 10.3389/fnhum.2021.747840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Conventional transcranial direct current stimulation (tDCS) and high-definition tDCS (HD-tDCS) may improve motor learning in children. Mechanisms are not understood. Neuronavigated robotic transcranial magnetic stimulation (TMS) can produce individualised maps of primary motor cortex (M1) topography. We aimed to determine the effects of tDCS- and HD-tDCS-enhanced motor learning on motor maps. Methods: Typically developing children aged 12-18 years were randomised to right M1 anodal tDCS, HD-tDCS, or Sham during training of their left-hand on the Purdue Pegboard Task (PPT) over 5 days. Bilateral motor mapping was performed at baseline (pre), day 5 (post), and 6-weeks retention time (RT). Primary muscle was the first dorsal interosseous (FDI) with secondary muscles of abductor pollicis brevis (APB) and adductor digiti minimi (ADM). Primary mapping outcomes were volume (mm2/mV) and area (mm2). Secondary outcomes were centre of gravity (COG, mm) and hotspot magnitude (mV). Linear mixed-effects modelling was employed to investigate effects of time and stimulation type (tDCS, HD-tDCS, Sham) on motor map characteristics. Results: Twenty-four right-handed participants (median age 15.5 years, 52% female) completed the study with no serious adverse events or dropouts. Quality maps could not be obtained in two participants. No effect of time or group were observed on map area or volume. LFDI COG (mm) differed in the medial-lateral plane (x-axis) between tDCS and Sham (p = 0.038) from pre-to-post mapping sessions. Shifts in map COG were also observed for secondary left-hand muscles. Map metrics did not correlate with behavioural changes. Conclusion: Robotic TMS mapping can safely assess motor cortex neurophysiology in children undergoing motor learning and neuromodulation interventions. Large effects on map area and volume were not observed while changes in COG may occur. Larger controlled studies are required to understand the role of motor maps in interventional neuroplasticity in children.
Collapse
Affiliation(s)
- Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - James G Wrightson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lauran Cole
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hsing-Ching Kuo
- Department of Physical Medicine & Rehabilitation, University of California, Davis, Sacramento, CA, United States
| | - Ali Babwani
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Perinatal stroke: mapping and modulating developmental plasticity. Nat Rev Neurol 2021; 17:415-432. [PMID: 34127850 DOI: 10.1038/s41582-021-00503-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Most cases of hemiparetic cerebral palsy are caused by perinatal stroke, resulting in lifelong disability for millions of people. However, our understanding of how the motor system develops following such early unilateral brain injury is increasing. Tools such as neuroimaging and brain stimulation are generating informed maps of the unique motor networks that emerge following perinatal stroke. As a focal injury of defined timing in an otherwise healthy brain, perinatal stroke represents an ideal human model of developmental plasticity. Here, we provide an introduction to perinatal stroke epidemiology and outcomes, before reviewing models of developmental plasticity after perinatal stroke. We then examine existing therapeutic approaches, including constraint, bimanual and other occupational therapies, and their potential synergy with non-invasive neurostimulation. We end by discussing the promise of exciting new therapies, including novel neurostimulation, brain-computer interfaces and robotics, all focused on improving outcomes after perinatal stroke.
Collapse
|
28
|
McCann H, Beltrachini L. Does participant's age impact on tDCS induced fields? Insights from computational simulations. Biomed Phys Eng Express 2021; 7. [PMID: 34038881 DOI: 10.1088/2057-1976/ac0547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Objective: Understanding the induced current flow from transcranial direct current stimulation (tDCS) is essential for determining the optimal dose and treatment. Head tissue conductivities play a key role in the resulting electromagnetic fields. However, there exists a complicated relationship between skull conductivity and participant age, that remains unclear. We explored how variations in skull electrical conductivities, particularly as a suggested function of age, affected tDCS induced electric fields.Approach: Simulations were employed to compare tDCS outcomes for different intensities across head atlases of varying age. Three databases were chosen to demonstrate differing variability in skull conductivity with age and how this may affect induced fields. Differences in tDCS electric fields due to proposed age-dependent skull conductivity variation, as well as deviations in grey matter, white matter and scalp, were compared and the most influential tissues determined.Main results: tDCS induced peak electric fields significantly negatively correlated with age, exacerbated by employing proposed age-appropriate skull conductivity (according to all three datasets). Uncertainty in skull conductivity was the most sensitive to changes in peak fields with increasing age. These results were revealed to be directly due to changing skull conductivity, rather than head geometry alone. There was no correlation between tDCS focality and age.Significance: Accurate and individualised head anatomy andin vivoskull conductivity measurements are essential for modelling tDCS induced fields. In particular, age should be taken into account when considering stimulation dose to precisely predict outcomes.
Collapse
Affiliation(s)
- Hannah McCann
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
| | - Leandro Beltrachini
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
| |
Collapse
|
29
|
Bhalerao GV, Sreeraj VS, Bose A, Narayanaswamy JC, Venkatasubramanian G. Comparison of electric field modeling pipelines for transcranial direct current stimulation. Neurophysiol Clin 2021; 51:303-318. [PMID: 34023189 DOI: 10.1016/j.neucli.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Electric field modeling utilizes structural brain magnetic resonance images (MRI) to model the electric field induced by non-invasive transcranial direct current stimulation (tDCS) in a given individual. Electric field modeling is being integrated with clinical outcomes to improve understanding of inter-individual variability in tDCS effects and to optimize tDCS parameters, thereby enhancing the predictability of clinical effects. The successful integration of modeling in clinical use will primarily be driven by choice of tools and procedures implemented in computational modeling. Thus, the electric field predictions from different modeling pipelines need to be investigated to ensure the validity and reproducibility of tDCS modeling results across clinical or translational studies. METHODS We used T1w structural MRI from 32 healthy volunteer subjects and modeled the electric field distribution for a fronto-temporal tDCS montage. For five different computational modeling pipelines, we quantitatively compared brain tissue segmentation and electric field predicted in whole-brain, brain tissues and target brain regions between the modeling pipelines. RESULTS Our comparisons at various levels did not reveal any systematic trend with regards to similarity or dissimilarity of electric field predicted in brain tissues and target brain regions. The inconsistent trends in the predicted electric field indicate variation in the procedures, routines and algorithms used within and across the modeling pipelines. CONCLUSION Our results suggest that studies integrating electric field modeling and clinical outcomes of tDCS will highly depend upon the choice of the modeling pipelines and procedures. We propose that using these pipelines for further research and clinical applications should be subject to careful consideration, and indicate general recommendations.
Collapse
Affiliation(s)
- Gaurav V Bhalerao
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India.
| | - Vanteemar S Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Anushree Bose
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| |
Collapse
|
30
|
Sun W, Dong X, Yu G, Shuai L, Yuan Y, Ma C. Transcranial direct current stimulation in patients after decompressive craniectomy: a finite element model to investigate factors affecting the cortical electric field. J Int Med Res 2021; 49:300060520942112. [PMID: 33788619 PMCID: PMC8020252 DOI: 10.1177/0300060520942112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To simulate the process of transcranial direct current stimulation (tDCS) on
patients after decompressive craniectomy (DC), and to model cortical
electric field distributions under different electrode montages, we
constructed a finite element model that represented the human head at high
resolution. Methods Using computed tomography images, we constructed a human head model with high
geometrical similarity. The removed bone flap was simplified to be circular
with a diameter of 12 cm. We then constructed finite element models
according to bioelectrical parameters. Finally, we simulated tDCS on the
finite element models under different electrode montages. Results Inward current had a linear relationship with peak electric field value, but
almost no effect on electric field distribution. If the anode was not over
the skull hole (configuration 2), there was almost no difference in electric
field magnitude and focality between the circular and square electrodes.
However, if the anode was right over the hole (configuration 1), the
circular electrodes led to higher peak electric field values and worse
focality. In addition, configuration 1 significantly decreased focality
compared with configuration 2. Conclusion Our results might serve as guidelines for selecting current and electrode
montage settings when performing tDCS on patients after DC.
Collapse
Affiliation(s)
- Weiming Sun
- Institute of Life Science, Nanchang University, Nanchang,
Jiangxi Province, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi
Province, China
- Department of Rehabilitation Medicine, The First Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Yefeng Yuan, Department of Psychosomatic
Medicine, The First Affiliated Hospital of Nanchang University, No.17,
yongwaizheng street, Donghu District, Nanchang , Jiangxi Province 330006, China.
Chaolin Ma, Institute of Life Science,
Nanchang University, No. 999, xuefu road, Honggutan District, Nanchang, Jiangxi
Province 33003, China.
| | - Xiangli Dong
- Department of Psychosomatic Medicine, The Second Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Guohua Yu
- Department of Rehabilitation Medicine, The First Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lang Shuai
- Department of Rehabilitation Medicine, The First Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yefeng Yuan
- Department of Psychosomatic Medicine, The First Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chaolin Ma
- Institute of Life Science, Nanchang University, Nanchang,
Jiangxi Province, China
- School of Life Science, Nanchang University, Nanchang, Jiangxi
Province, China
| |
Collapse
|
31
|
Ko MH. Safety of Transcranial Direct Current Stimulation in Neurorehabilitation. BRAIN & NEUROREHABILITATION 2021; 14:e9. [PMID: 36742105 PMCID: PMC9879413 DOI: 10.12786/bn.2021.14.e9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has considerable potential as a useful method in the field of neurorehabilitation. However, the safety of tDCS for the human is primarily based on theoretical evidence related to electricity, and the safety information of applying tDCS to the human is only available from researcher's reporting. Based on tDCS studies with human and animal subjects and simulation-based studies of the safety of current stimulation in the past 20 years, this review investigated the safety of tDCS application to the human body. No severe complications have been reported in either adults or children for tDCS at an intensity of 4 mA or less, within a period of 60 minutes per day, using commonly applied 25 or 35 cm2 electrodes. According to animal studies, the amount of electricity used for tDCS is less than 5% of the amount that permanently changes brain tissue, thereby ensuring safety to a certain extent. In order to increase the efficacy of tDCS for neurorehabilitation and to minimize even trivial complications in the human screening of exclusion criteria should be conducted with detailed observations of complications.
Collapse
Affiliation(s)
- Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
32
|
Callejón A, Miranda PC. A comprehensive analysis of the impact of head model extent on electric field predictions in transcranial current stimulation. J Neural Eng 2021; 18. [PMID: 33647895 DOI: 10.1088/1741-2552/abeab7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE MRI-based head models are used to predict the electric field (E-field) in the brain in Transcranial Current Stimulation (tCS). The standard field of view (FOV) of clinical MRI often only covers the head down to the skull base, which has usually lead to models truncated at the nose. Although recent pipelines can artificially extend the head model to the neck, the need for implementing full head models preserving skull holes such as the foramen magnum remains controversial. The objective is to analyze the impact of head model extent on E-field accuracy, with emphasis on specific electrode montages. APPROACH A full head model containing an open foramen magnum and a cut head model with closed skull were compared in terms of predicted E-field. Several electrode montages, including fronto-occipital montages used in validation studies, were simulated. Local and global metrics were used to evaluate the error for both E-field magnitude and distribution, along with tangential and normal components over different cortical areas. The percentage of current flowing through the truncation level was also computed. RESULTS Regarding E-field magnitude, small relative differences below 7% were found in gray matter for classical montages. Although considerably higher relative differences near 50% were found for fronto-occipital montages, absolute errors of 0.1 V/m were only found in non-targeted regions such as the cerebellum. Differences in tangential and normal E-fields were similar and followed the trend observed for E-field magnitude. Our results also showed a high correlation between the percentage of current shunted through the truncation level and the absolute E-field differences. SIGNIFICANCE The influence of head model extent on E-field accuracy depends on electrode montage. Standard cut head models provide sufficiently accurate predictions for both E-field magnitude and distribution in targeted brain areas. Fronto-occipital montages exhibited larger errors, which might be considered in further validation studies.
Collapse
Affiliation(s)
- Amparo Callejón
- Teoría de la Señal y Comunicaciones, Biomedical Engineering Group, Avda. de los Descubrimientos s/n, Seville, 41092, SPAIN
| | - Pedro C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal, Campo Grande, 1749-016, Lisboa, Portugal, Lisbon, 1749-016, PORTUGAL
| |
Collapse
|
33
|
Lang ST, Gan LS, McLennan C, Monchi O, Kelly JJP. Impact of Peritumoral Edema During Tumor Treatment Field Therapy: A Computational Modelling Study. IEEE Trans Biomed Eng 2020; 67:3327-3338. [PMID: 32286953 DOI: 10.1109/tbme.2020.2983653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tumor treatment fields (TTFie-lds) are an approved adjuvant therapy for glioblastoma (GBM). The magnitude of applied electrical field has been shown to be related to the anti-tumoral response. However, peritumoral edema may result in shunting of electrical current around the tumor, thereby reducing the intra-tumoral electric field. In this study, we systematically address this issue with computational simulations. METHODS Finite element models are created of a human head with varying amounts of peritumoral edema surrounding a virtual tumor. The electric field distribution was simulated using the standard TTFields electrode montage. Electric field magnitude was extracted from the tumor and related to edema thickness. Two patient specific models were created to confirm these results. RESULTS The inclusion of peritumoral edema decreased the average magnitude of the electric field within the tumor. In the model considering a frontal tumor and an anterior-posterior electrode configuration, ≥6 mm of peritumoral edema decreased the electric field by 52%. In the patient specific models, peritumoral edema decreased the electric field magnitude within the tumor by an average of 26%. The effect of peritumoral edema on the electric field distribution was spatially heterogenous, being most significant at the tissue interface between edema and tumor. CONCLUSIONS The inclusion of peritumoral edema during TTFields modelling may have a dramatic effect on the predicted electric field magnitude within the tumor. Given the importance of electric field magnitude for the anti-tumoral effects of TTFields, the presence of edema should be considered both in future modelling studies and when planning TTField therapy.
Collapse
|
34
|
Imaging Developmental and Interventional Plasticity Following Perinatal Stroke. Can J Neurol Sci 2020; 48:157-171. [DOI: 10.1017/cjn.2020.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT:Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.
Collapse
|
35
|
Unal G, Ficek B, Webster K, Shahabuddin S, Truong D, Hampstead B, Bikson M, Tsapkini K. Impact of brain atrophy on tDCS and HD-tDCS current flow: a modeling study in three variants of primary progressive aphasia. Neurol Sci 2020; 41:1781-1789. [PMID: 32040791 PMCID: PMC7363529 DOI: 10.1007/s10072-019-04229-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND During transcranial direct current stimulation (tDCS), the amount and distribution of current that reaches the brain depends on individual anatomy. Many progressive neurodegenerative diseases are associated with cortical atrophy, but the importance of individual brain atrophy during tDCS in patients with progressive atrophy, including primary progressive aphasia (PPA), remains unclear. OBJECTIVE In the present study, we addressed the question whether brain anatomy in patients with distinct cortical atrophy patterns would impact brain current intensity and distribution during tDCS over the left IFG. METHOD We developed state-of-the-art, gyri-precise models of three subjects, each representing a variant of primary progressive aphasia: non-fluent variant PPA (nfvPPA), semantic variant PPA (svPPA), and logopenic variant PPA (lvPPA). We considered two exemplary montages over the left inferior frontal gyrus (IFG): a conventional pad montage (anode over F7, cathode over the right cheek) and a 4 × 1 high-definition tDCS montage. We further considered whether local anatomical features, specifically distance of the cortex to skull, can directly predict local electric field intensity. RESULTS We found that the differences in brain current flow across the three PPA variants fall within the distribution of anatomically typical adults. While clustering of electric fields was often around individual gyri or sulci, the minimal distance from the gyri/sulci to skull was not correlated with electric field intensity. CONCLUSION Limited to the conditions and assumptions considered here, this argues against a specific need to adjust the tDCS montage for these patients any more than might be considered useful in anatomically typical adults. Therefore, local atrophy does not, in isolation, reliably predict local electric field. Rather, our results are consistent with holistic head anatomy influencing brain current flow, with tDCS producing diffuse and individualized brain current flow patterns and HD-tDCS producing targeted brain current flow across individuals.
Collapse
Affiliation(s)
- Gozde Unal
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Bronte Ficek
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA
| | - Kimberly Webster
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA
- Department of Otolaryngology, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Syed Shahabuddin
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Dennis Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Benjamin Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Kyrana Tsapkini
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA.
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, 21218, USA.
| |
Collapse
|
36
|
Seidel-Marzi O, Ragert P. Anodal transcranial direct current stimulation reduces motor slowing in athletes and non-athletes. BMC Neurosci 2020; 21:26. [PMID: 32487077 PMCID: PMC7268396 DOI: 10.1186/s12868-020-00573-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Background Motor fatigability describes a phenomenon that occurs when exhaustive exercise or physically demanding tasks are executed over an extended period of time. Concerning fast repetitive movements, it is noticeable by a reduction in movement speed (motor slowing, MoSlo) and occurs due to both central and peripheral factors. The aim of the present study was to examine the presence of MoSlo during hand- (HTT) and foot-tapping tasks (FTT) comparing trained football (FB) and handball players (HB) and non-athletes (NA). Furthermore, we were interested in how far anodal transcranial direct current stimulation (tDCS) might be capable of modulating MoSlo as compared to sham. Methods A total number of 46 participants were enrolled in a sham-controlled, double-blinded, cross-over study. HTT and FTT were performed before, during, after as well as 30 min after 20 min of tDCS over the leg area of the primary motor cortex (M1). Results We could demonstrate that MoSlo during HTT and FTT is a general phenomenon that is observed independent of the type of sports and/or training status. Furthermore, we were able to show a tDCS-induced reduction in MoSlo specifically during FTT in both trained athletes and NA. No such effects could be observed for HTT, indicating local specificity of tDCS-induced effects on a behavioral level. Conclusion We could demonstrate that tDCS is capable of reducing motor fatigability during fast repetitive movements. These findings are of pivotal interest for many sports where fatigability resistance is a limiting factor in maintaining repetitive movement patterns.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
37
|
Hollis A, Zewdie E, Nettel-Aguirre A, Hilderley A, Kuo HC, Carlson HL, Kirton A. Transcranial Static Magnetic Field Stimulation of the Motor Cortex in Children. Front Neurosci 2020; 14:464. [PMID: 32508570 PMCID: PMC7248312 DOI: 10.3389/fnins.2020.00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-invasive neuromodulation is an emerging therapy for children with early brain injury but is difficult to apply to preschoolers when windows of developmental plasticity are optimal. Transcranial static magnetic field stimulation (tSMS) decreases primary motor cortex (M1) excitability in adults but effects on the developing brain are unstudied. OBJECTIVE/HYPOTHESIS We aimed to determine the effects of tSMS on cortical excitability and motor learning in healthy children. We hypothesized that tSMS over right M1 would reduce cortical excitability and inhibit contralateral motor learning. METHODS This randomized, sham-controlled, double-blinded, three-arm, cross-over trial enrolled 24 healthy children aged 10-18 years. Transcranial Magnetic Stimulation (TMS) assessed cortical excitability via motor-evoked potential (MEP) amplitude and paired pulse measures. Motor learning was assessed via the Purdue Pegboard Test (PPT). A tSMS magnet (677 Newtons) or sham was held over left or right M1 for 30 min while participants trained the non-dominant hand. A linear mixed effect model was used to examine intervention effects. RESULTS All 72 tSMS sessions were well tolerated without serious adverse effects. Neither cortical excitability as measured by MEPs nor paired-pulse intracortical neurophysiology was altered by tSMS. Possible behavioral effects included contralateral tSMS inhibiting early motor learning (p < 0.01) and ipsilateral tSMS facilitating later stages of motor learning (p < 0.01) in the trained non-dominant hand. CONCLUSION tSMS is feasible in pediatric populations. Unlike adults, tSMS did not produce measurable changes in MEP amplitude. Possible effects of M1 tSMS on motor learning require further study. Our findings support further exploration of tSMS neuromodulation in young children with cerebral palsy.
Collapse
Affiliation(s)
- Asha Hollis
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alberto Nettel-Aguirre
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alicia Hilderley
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hsing-Ching Kuo
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen L. Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Enhancing Stroke Recovery Across the Life Span With Noninvasive Neurostimulation. J Clin Neurophysiol 2020; 37:150-163. [DOI: 10.1097/wnp.0000000000000543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
39
|
Nwaroh C, Giuffre A, Cole L, Bell T, Carlson HL, MacMaster FP, Kirton A, Harris AD. Effects of Transcranial Direct Current Stimulation on GABA and Glx in Children: A pilot study. PLoS One 2020; 15:e0222620. [PMID: 31910218 PMCID: PMC6946135 DOI: 10.1371/journal.pone.0222620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/11/2019] [Indexed: 01/30/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that safely modulates brain excitability and has therapeutic potential for many conditions. Several studies have shown that anodal tDCS of the primary motor cortex (M1) facilitates motor learning and plasticity, but there is little information about the underlying mechanisms. Using magnetic resonance spectroscopy (MRS), it has been shown that tDCS can affect local levels of γ-aminobutyric acid (GABA) and Glx (a measure of glutamate and glutamine combined) in adults, both of which are known to be associated with skill acquisition and plasticity; however this has yet to be studied in children and adolescents. This study examined GABA and Glx in response to conventional anodal tDCS (a-tDCS) and high definition tDCS (HD-tDCS) targeting the M1 in a pediatric population. Twenty-four typically developing, right-handed children ages 12-18 years participated in five consecutive days of tDCS intervention (sham, a-tDCS or HD-tDCS) targeting the right M1 while training in a fine motor task (Purdue Pegboard Task) with their left hand. Glx and GABA were measured before and after the protocol (at day 5 and 6 weeks) using a PRESS and GABA-edited MEGA-PRESS MRS sequence in the sensorimotor cortices. Glx measured in the left sensorimotor cortex was higher in the HD-tDCS group compared to a-tDCS and sham at 6 weeks (p = 0.001). No changes in GABA were observed in either sensorimotor cortex at any time. These results suggest that neither a-tDCS or HD-tDCS locally affect GABA and Glx in the developing brain and therefore it may demonstrate different responses in adults.
Collapse
Affiliation(s)
- Chidera Nwaroh
- Department of Radiology, University of Calgary, Calgary AB, Canada
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Adrianna Giuffre
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Lauran Cole
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Neuroscience, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Tiffany Bell
- Department of Radiology, University of Calgary, Calgary AB, Canada
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Helen L. Carlson
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Frank P. MacMaster
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Addictions and Mental Health Strategic Clinical Network, Calgary, AB, Canada
| | - Adam Kirton
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary AB, Canada
- Alberta Children’s Hospital (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| |
Collapse
|
40
|
Evans C, Bachmann C, Lee JSA, Gregoriou E, Ward N, Bestmann S. Dose-controlled tDCS reduces electric field intensity variability at a cortical target site. Brain Stimul 2020; 13:125-136. [PMID: 31653475 DOI: 10.1016/j.brs.2019.10.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/26/2019] [Accepted: 10/03/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Variable effects limit the efficacy of transcranial direct current stimulation (tDCS) as a research and therapeutic tool. Conventional application of a fixed-dose of tDCS does not account for inter-individual differences in anatomy (e.g. skull thickness), which varies the amount of current reaching the brain. Individualised dose-control may reduce the variable effects of tDCS by reducing variability in electric field (E-field) intensities at a cortical target site. OBJECTIVE To characterise the variability in E-field intensity at a cortical site (left primary motor cortex; M1) and throughout the brain for conventional fixed-dose tDCS, and individualised dose-controlled tDCS. METHODS The intensity and distribution of the E-field during tDCS was estimated using Realistic Volumetric Approach to Simulate Transcranial Electric Stimulation (ROAST) in 50 individual brain scans taken from the Human Connectome Project, for fixed-dose tDCS (1 mA & 2 mA) and individualised dose-controlled tDCS targeting left M1. RESULTS With a fixed-dose (1 mA & 2 mA), E-field intensity in left M1 varied by more than 100% across individuals, with substantial variation observed throughout the brain as well. Individualised dose-control ensured the same E-field intensity was delivered to left M1 in all individuals. Its variance in other regions of interest (right M1 and area underneath the electrodes) was comparable with fixed- and individualised-dose. CONCLUSIONS Individualised dose-control can eliminate the variance in E-field intensities at a cortical target site. Assuming that the current delivered to the brain directly determines its physiological and behavioural consequences, this approach may allow for reducing the known variability of tDCS effects.
Collapse
Affiliation(s)
- Carys Evans
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, UK.
| | - Clarissa Bachmann
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, UK
| | - Jenny S A Lee
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, UK
| | - Evridiki Gregoriou
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, UK
| | - Nick Ward
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, UK
| | - Sven Bestmann
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UK
| |
Collapse
|
41
|
Zewdie E, Ciechanski P, Kuo HC, Giuffre A, Kahl C, King R, Cole L, Godfrey H, Seeger T, Swansburg R, Damji O, Rajapakse T, Hodge J, Nelson S, Selby B, Gan L, Jadavji Z, Larson JR, MacMaster F, Yang JF, Barlow K, Gorassini M, Brunton K, Kirton A. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimul 2019; 13:565-575. [PMID: 32289678 DOI: 10.1016/j.brs.2019.12.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-invasive brain stimulation is being increasingly used to interrogate neurophysiology and modulate brain function. Despite the high scientific and therapeutic potential of non-invasive brain stimulation, experience in the developing brain has been limited. OBJECTIVE To determine the safety and tolerability of non-invasive neurostimulation in children across diverse modalities of stimulation and pediatric populations. METHODS A non-invasive brain stimulation program was established in 2008 at our pediatric, academic institution. Multi-disciplinary neurophysiological studies included single- and paired-pulse Transcranial Magnetic Stimulation (TMS) methods. Motor mapping employed robotic TMS. Interventional trials included repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS). Standardized safety and tolerability measures were completed prospectively by all participants. RESULTS Over 10 years, 384 children underwent brain stimulation (median 13 years, range 0.8-18.0). Populations included typical development (n = 118), perinatal stroke/cerebral palsy (n = 101), mild traumatic brain injury (n = 121) neuropsychiatric disorders (n = 37), and other (n = 7). No serious adverse events occurred. Drop-outs were rare (<1%). No seizures were reported despite >100 participants having brain injuries and/or epilepsy. Tolerability between single and paired-pulse TMS (542340 stimulations) and rTMS (3.0 million stimulations) was comparable and favourable. TMS-related headache was more common in perinatal stroke (40%) than healthy participants (13%) but was mild and self-limiting. Tolerability improved over time with side-effect frequency decreasing by >50%. Robotic TMS motor mapping was well-tolerated though neck pain was more common than with manual TMS (33% vs 3%). Across 612 tDCS sessions including 92 children, tolerability was favourable with mild itching/tingling reported in 37%. CONCLUSIONS Standard non-invasive brain stimulation paradigms are safe and well-tolerated in children and should be considered minimal risk. Advancement of applications in the developing brain are warranted. A new and improved pediatric NIBS safety and tolerability form is included.
Collapse
Affiliation(s)
- E Zewdie
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - P Ciechanski
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - H C Kuo
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A Giuffre
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - C Kahl
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - R King
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - L Cole
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - H Godfrey
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Seeger
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - R Swansburg
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - O Damji
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Rajapakse
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J Hodge
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S Nelson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - B Selby
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - L Gan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Z Jadavji
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J R Larson
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - F MacMaster
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J F Yang
- Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - K Barlow
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - K Brunton
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - A Kirton
- Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
42
|
Chen L, Zou X, Tang R, Ke A, He J. Effect of electrode-electrolyte spatial mismatch on transcranial direct current stimulation: a finite element modeling study. J Neural Eng 2019; 16:056012. [DOI: 10.1088/1741-2552/ab29c5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Nemanich ST, Rich TL, Chen CY, Menk J, Rudser K, Chen M, Meekins G, Gillick BT. Influence of Combined Transcranial Direct Current Stimulation and Motor Training on Corticospinal Excitability in Children With Unilateral Cerebral Palsy. Front Hum Neurosci 2019; 13:137. [PMID: 31105541 PMCID: PMC6492624 DOI: 10.3389/fnhum.2019.00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Combined non-invasive brain stimulation (NIBS) and rehabilitation interventions have the potential to improve function in children with unilateral cerebral palsy (UCP), however their effects on developing brain function are not well understood. In a proof-of-principle study, we used single-pulse transcranial magnetic stimulation (TMS) to measure changes in corticospinal excitability and relationships to motor performance following a randomized controlled trial consisting of 10 days of combined constraint-induced movement therapy (CIMT) and cathodal transcranial direct current stimulation (tDCS) applied to the contralesional motor cortex. Twenty children and young adults (mean age = 12 years, 9 months, range = 7 years, 7 months, 21 years, 7 months) with UCP participated. TMS testing was performed before, after, and 6 months after the intervention to measure motor evoked potential (MEP) amplitude and cortical silent period (CSP) duration. The association between neurophysiologic and motor outcomes and differences in excitability between hemispheres were examined. Contralesional MEP amplitude decreased as hypothesized in five of five participants receiving active tDCS immediately after and 6 months after the intervention, however no statistically significant differences between intervention groups were noted for MEP amplitude [mean difference = −323.9 μV, 95% CI = (−989, 341), p = 0.34] or CSP duration [mean difference = 3.9 ms, 95% CI = (−7.7, 15.5), p = 0.51]. Changes in corticospinal excitability were not statistically associated with improvements in hand function after the intervention. Across all participants, MEP amplitudes measured in the more-affected hand from both contralesional (mean difference = −474.5 μV) and ipsilesional hemispheres (−624.5 μV) were smaller compared to the less-affected hand. Assessing neurophysiologic changes after tDCS in children with UCP provides an understanding of long-term effects on brain excitability to help determine its potential as a therapeutic intervention. Additional investigation into the neurophysiologic effects of tDCS in larger samples of children with UCP are needed to confirm these findings.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Tonya L Rich
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Chao-Ying Chen
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jeremiah Menk
- Clinical and Translational Science Institute, Biostatistics, Design, and Analysis Center, University of Minnesota, Minneapolis, MN, United States
| | - Kyle Rudser
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Mo Chen
- Non-invasive Neuromodulation Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Gregg Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bernadette T Gillick
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
44
|
Rich TL, Gillick BT. Electrode Placement in Transcranial Direct Current Stimulation-How Reliable Is the Determination of C3/C4? Brain Sci 2019; 9:brainsci9030069. [PMID: 30909374 PMCID: PMC6468365 DOI: 10.3390/brainsci9030069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
The 10/20 electroencephalogram (EEG) measurements system often guides electrode placement for transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation. One targeted region of the brain is the primary motor cortex (M1) for motor recovery after stroke, among other clinical indications. M1 is identified by C3 and C4 of the 10/20 EEG system yet the reliability of 10/20 EEG measurements by novice research raters is unknown. We investigated the reliability of the 10/20 EEG measurements for C3 and C4 in 25 adult participants. Two novice raters were assessed for inter-rater reliability. Both raters received two hours of instruction from a registered neurodiagnostic technician. One of the raters completed the measurements across two testing days for intra-rater reliability. Relative reliability was determined using the intraclass coefficient (ICC) and absolute reliability. We observed a low to fair inter and intra-rater ICC for motor cortex measurements. The absolute reliability was <1.0 cm by different novice raters and on different days. Although a low error was observed, consideration of the integrity of the targeted region of the brain is critical when designing tDCS interventions in clinical populations who may have compromised brain structure, due to a lesion or altered anatomy.
Collapse
Affiliation(s)
- Tonya L Rich
- Department of Rehabilitation Medicine, Division of Rehabilitation Science, University of Minnesota, 420 Delaware Street SE, MMC 388, Minneapolis, MN 55455, USA.
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, Division of Rehabilitation Science, University of Minnesota, 420 Delaware Street SE, MMC 388, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Bourdillon P, Hermann B, Sitt JD, Naccache L. Electromagnetic Brain Stimulation in Patients With Disorders of Consciousness. Front Neurosci 2019; 13:223. [PMID: 30936822 PMCID: PMC6432925 DOI: 10.3389/fnins.2019.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Severe brain injury is a common cause of coma. In some cases, despite vigilance improvement, disorders of consciousness (DoC) persist. Several states of impaired consciousness have been defined, according to whether the patient exhibits only reflexive behaviors as in the vegetative state/unresponsive wakefulness syndrome (VS/UWS) or purposeful behaviors distinct from reflexes as in the minimally conscious state (MCS). Recently, this clinical distinction has been enriched by electrophysiological and neuroimaging data resulting from a better understanding of the physiopathology of DoC. However, therapeutic options, especially pharmacological ones, remain very limited. In this context, electroceuticals, a new category of therapeutic agents which act by targeting the neural circuits with electromagnetic stimulations, started to develop in the field of DoC. We performed a systematic review of the studies evaluating therapeutics relying on the direct or indirect electro-magnetic stimulation of the brain in DoC patients. Current evidence seems to support the efficacy of deep brain stimulation (DBS) and non-invasive brain stimulation (NIBS) on consciousness in some of these patients. However, while the latter is non-invasive and well tolerated, the former is associated with potential major side effects. We propose that all chronic DoC patients should be given the possibility to benefit from NIBS, and that transcranial direct current stimulation (tDCS) should be preferred over repetitive transcranial magnetic stimulation (rTMS), based on the literature and its simple use. Surgical techniques less invasive than DBS, such as vagus nerve stimulation (VNS) might represent a good compromise between efficacy and invasiveness but still need to be further investigated.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurosurgery, Adolphe de Rothschild Foundation, Paris, France
- Sorbonne Université, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Bertrand Hermann
- Sorbonne Université, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Department of Neurology, Neuro ICU, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jacobo D. Sitt
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Faculté de Médecine Pitié-Salpêtrière, Paris, France
- Institut du Cerveau et de la Moelle Épinière, ICM, PICNIC Lab, Paris, France
- Inserm U 1127, Paris, France
- CNRS, UMR 7225, Paris, France
- Department of Neurophysiology, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
46
|
Yang D, Du Q, Huang Z, Li L, Zhang Z, Zhang L, Zhao X, Zhao X, Li T, Lin Y, Wang Y. Transcranial Direct Current Stimulation for Patients With Pharmacoresistant Epileptic Spasms: A Pilot Study. Front Neurol 2019; 10:50. [PMID: 30804872 PMCID: PMC6370643 DOI: 10.3389/fneur.2019.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/15/2019] [Indexed: 01/29/2023] Open
Abstract
Background: Epileptic spasms (ES) is a severe seizure type and lack of adequate methods for controlling of clinical attacks. Previous studies have indicated that cathodal transcranial direct current stimulation (tDCS) reduces seizure frequency for patients with epilepsy. ES are proposed to have a focal cortical origin. We hypothesized that patients with ES exhibit hyperactive network hubs in the parietal lobe, and that cathodal tDCS targeting the bilateral parietal region can reduce seizure frequency in patients with pharmacoresistant ES. Materials and Methods: The present study consisted of three basic phases: (a) a pre-treatment monitoring period for 14 days; (b) a consecutive 14-day treatment period during which patients were treated with 1 or 2 mA cathode tDCS for 40 min once per day; (c) and a follow-up period for at least 28 days. During the first 20 min of treatment, the cathode was placed over the right parietal lobe (P4) with the reference electrode over the contralateral supra-orbital area. In the second 20 min, the cathode was placed over the left parietal lobe (P3), with the reference electrode over the contralateral supra-orbital area. All patients received active tDCS treatment, and some patients underwent more than one treatment block. Patients maintained a seizure diary throughout the study. Antiepileptic drug therapy remained unchanged throughout the study. K-related samples Friedman tests and two-related samples tests were used to analyze data from all patients. Results: Seven patients with pharmacoresistant ES were included, receiving a total of eighteen 14-day blocks of tDCS treatment. We observed a significant difference in seizure frequency at the second month (p = 0.028, unadjusted), as well as a trend toward decreased seizure frequency at the fourth month (p = 0.068, unadjusted) of the first follow-up, relative to baseline. Three of seven patients (42.9%) exhibited sustained seizure reduction, while one (14.3%) experienced a short-term reduction in seizure frequency following cathodal tDCS treatment. Treatment was well tolerated in all patients. Conclusions: Repeated tDCS with the cathode placed over the bilateral parietal region is safe and may be effective for reducing seizure frequency in a subgroup of patients with pharmacoresistant ES.
Collapse
Affiliation(s)
- Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Qiaoyi Du
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Liping Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Zhang Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Liping Zhang
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Xuan Zhao
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Department of Pediatric, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
The Therapeutic Potential of Non-invasive Neurostimulation for Motor Skill Learning in Children with Neurodevelopmental Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-0155-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Sensorimotor Robotic Measures of tDCS- and HD-tDCS-Enhanced Motor Learning in Children. Neural Plast 2018; 2018:5317405. [PMID: 30662456 PMCID: PMC6312578 DOI: 10.1155/2018/5317405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify complex sensorimotor functions to better understand mechanisms of motor learning. We aimed to characterize changes in sensorimotor function induced by tDCS and HD-tDCS paired motor learning in children within an interventional trial. Healthy, right-handed children (12–18 y) were randomized to anodal tDCS, HD-tDCS, or sham targeting the right primary motor cortex during left-hand Purdue pegboard test (PPT) training over five consecutive days. A KINARM robotic protocol quantifying proprioception, kinesthesia, visually guided reaching, and an object hit task was completed at baseline, posttraining, and six weeks later. Effects of the treatment group and training on changes in sensorimotor parameters were explored. Twenty-four children (median 15.5 years, 52% female) completed all measures. Compared to sham, both tDCS and HD-tDCS demonstrated enhanced motor learning with medium effect sizes. At baseline, multiple KINARM measures correlated with PPT performance. Following training, visually guided reaching in all groups was faster and required less corrective movements in the trained arm (H(2) = 9.250, p = 0.010). Aspects of kinesthesia including initial direction error improved across groups with sustained effects at follow-up (H(2) = 9.000, p = 0.011). No changes with training or stimulation were observed for position sense. For the object hit task, the HD-tDCS group moved more quickly with the right hand compared to sham at posttraining (χ2(2) = 6.255, p = 0.044). Robotics can quantify complex sensorimotor function within neuromodulator motor learning trials in children. Correlations with PPT performance suggest that KINARM metrics can assess motor learning effects. Understanding how tDCS and HD-tDCS enhance motor learning may be improved with robotic outcomes though specific mechanisms remain to be defined. Exploring mechanisms of neuromodulation may advance therapeutic approaches in children with cerebral palsy and other disabilities.
Collapse
|
49
|
Transcranial Direct Current Stimulation in Pediatric Motor Disorders: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2018; 100:724-738. [PMID: 30414398 DOI: 10.1016/j.apmr.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To systematically examine the safety and effectiveness of transcranial direct current stimulation (tDCS) interventions in pediatric motor disorders. DATA SOURCES PubMed, EMBASE, Cochrane, CINAHL, Web of Science, and ProQuest databases were searched from inception to August 2018. STUDY SELECTION tDCS randomized controlled trials (RCTs), observational studies, conference proceedings, and dissertations in pediatric motor disorders were included. Two authors independently screened articles based on predefined inclusion criteria. DATA EXTRACTION Data related to participant demographics, intervention, and outcomes were extracted by 2 authors. Quality assessment was independently performed by 2 authors. DATA SYNTHESIS A total of 23 studies involving a total of 391 participants were included. There was no difference in dropout rates between active (1 of 144) and sham (1 of 144) tDCS groups, risk difference 0.0, 95% confidence interval (-.05 to .04). Across studies, the most common adverse effects in the active group were tingling (17.2%), discomfort (8.02%), itching (6.79%), and skin redness (4%). Across 3 studies in children with cerebral palsy, tDCS significantly improved gait velocity (MD=.23; 95% confidence interval [0.13-0.34]; P<.0005), stride length (MD=0.10; 95% confidence interval [0.05-0.15]; P<.0005), and cadence (MD=15.7; 95% confidence interval [9.72-21.68]; P<.0005). Mixed effects were found on balance, upper extremity function, and overflow movements in dystonia. CONCLUSION Based on the studies reviewed, tDCS is a safe technique in pediatric motor disorders and may improve some gait measures and involuntary movements. Research to date in pediatric motor disorders shows limited effectiveness in improving balance and upper extremity function. tDCS may serve as a potential adjunct to pediatric rehabilitation; to better understand if tDCS is beneficial for pediatric motor disorders, more well-designed RCTs are needed.
Collapse
|
50
|
Cole L, Giuffre A, Ciechanski P, Carlson HL, Zewdie E, Kuo HC, Kirton A. Effects of High-Definition and Conventional Transcranial Direct-Current Stimulation on Motor Learning in Children. Front Neurosci 2018; 12:787. [PMID: 30429768 PMCID: PMC6220373 DOI: 10.3389/fnins.2018.00787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) can improve motor learning in children. High-definition approaches (HD-tDCS) have not been examined in children. Objectives/Hypothesis: We hypothesized that primary motor cortex HD-tDCS would enhance motor learning but be inferior to tDCS in children. Methods: Twenty-four children were recruited for a randomized, sham-controlled, double-blinded interventional trial (NCT03193580, clinicaltrials.gov/ct2/show/NCT03193580) to receive (1) right hemisphere (contralateral) primary motor cortex (M1) 1 mA anodal conventional 1 × 1 tDCS (tDCS), (2) right M1 1 mA anodal 4 × 1 HD-tDCS (HD-tDCS), or (3) sham. Over five consecutive days, participants trained their left hand using the Purdue Pegboard Test (PPTL). The Jebsen-Taylor Test, Serial Reaction Time Task, and right hand and bimanual PPT were also tested at baseline, post-training, and 6-week retention time (RT). Results: Both the tDCS and HD-tDCS groups demonstrated enhanced motor learning compared to sham with effects maintained at 6 weeks. Effect sizes were moderate-to-large for tDCS and HD-tDCS groups at the end of day 4 (Cohen's d tDCS = 0.960, HD-tDCS = 0.766) and day 5 (tDCS = 0.655, HD-tDCS = 0.851). Enhanced motor learning effects were also seen in the untrained hand. HD-tDCS was well tolerated and safe with no adverse effects. Conclusion: HD-tDCS and tDCS can enhance motor learning in children. Further exploration is indicated to advance rehabilitation therapies for children with motor disabilities such as cerebral palsy. Clinical Trial Registration: clinicaltrials.gov, identifier NCT03193580.
Collapse
Affiliation(s)
- Lauran Cole
- Department of Neurosciences, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Adrianna Giuffre
- Department of Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | - Helen L. Carlson
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Hsing-Ching Kuo
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|