1
|
Li Y, Li H, Jiang C, Su Y, Jiang S, Zhang G. Advancements in virtual reality for performance enhancement in combat sports: a mini-review and perspective. Front Psychol 2025; 16:1563212. [PMID: 40110089 PMCID: PMC11920182 DOI: 10.3389/fpsyg.2025.1563212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
This mini-review examines the role of Virtual Reality (VR) in enhancing athletes' performance and reaction abilities in combat sports, aiming to highlight the advantages and potential benefits of VR technology for improving outcomes in various combat disciplines. We identified 13 relevant studies from the Web of Science and Scopus databases, encompassing disciplines such as fencing, taekwondo, karate, judo, and wrestling. The findings indicate that VR training can enhance athletes' sports skills and physical fitness, correct improper movements, provide training feedback, and, in some cases, surpass the effectiveness of traditional training methods. It also significantly enhances athletes' reaction capabilities. Even with these benefits, VR usage in combat training is still quite limited. Future research should focus on how to better leverage the advantages of VR technology in practical combat training for athletes, addressing the lack of tactile feedback, aiding athletes adapt to competition pressure caused by spectators, and examining whether there are gender differences in the use of this technology for training.
Collapse
Affiliation(s)
- Yike Li
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
| | - Hansen Li
- School of Physical Education, Sichuan Agricultural University, Ya'an, China
| | - Chun Jiang
- Department of Police Tactics, Chongqing Police College, Chongqing, China
| | - Yuqin Su
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
| | - Sijia Jiang
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
- College of Physical Education, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Guodong Zhang
- Institute of Sport Science, College of Physical Education, Southwest University, Chongqing, China
- International College, Krirk University, Bangkok, Thailand
| |
Collapse
|
2
|
Hack L, Singh B, Binkofski F, Helmich I. Repetitive Subconcussive Head Impacts in Sports and Their Impact on Brain Anatomy and Function: A Systematic Review. Int J Sports Med 2024; 45:871-883. [PMID: 38857880 DOI: 10.1055/a-2342-3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Repetitive subconcussive head impacts occur regularly in sports. However, the exact relationship between their biomechanical properties and their consequences on brain structure and function has not been clarified yet. We therefore reviewed prospective cohort studies that objectively reported the biomechanical characteristics of repetitive subconcussive head impacts and their impact on brain anatomy and function. Only studies with a pre- to post-measurement design were included. Twenty-four studies met the inclusion criteria. Structural white matter alterations, such as reduced fractional anisotropy and an increase in mean diffusivity values, seem to be evident in athletes exposed to repetitive subconcussive head impacts exceeding 10 g. Such changes are observable after only one season of play. Furthermore, a dose-response relationship exists between white matter abnormalities and the total number of subconcussive head impacts. However, functional changes after repetitive subconcussive head impacts remain inconclusive. We therefore conclude that repetitive subconcussive head impacts induce structural changes, but thus far without overt functional changes.
Collapse
Affiliation(s)
- Lukas Hack
- Department of Motor Behavior in Sports, German Sport University Cologne, Koln, Germany
- Department of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Bhagyashree Singh
- Department of Motor Behavior in Sports, German Sport University Cologne, Koln, Germany
| | - Ferdinand Binkofski
- Clinical Cognitive Sciences, University Hospital RWTH Aachen, Aachen , Germany
| | - Ingo Helmich
- Department of Motor Behavior in Sports, German Sport University Cologne, Koln, Germany
- Department of Exercise and Sport Studies, Smith College, Northampton, United States
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University Cologne, Koln, Germany
| |
Collapse
|
3
|
Krch D, Lequerica AH, Arango-Lasprilla JC, Corrigan JD. Neurobehavioral Symptoms in Spanish-Speaking Individuals With Subconcussive Injuries. J Head Trauma Rehabil 2024; 39:E399-E406. [PMID: 38456793 DOI: 10.1097/htr.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
OBJECTIVE To examine whether exposure to high-risk events causing injury to the head or neck has an effect on neurobehavioral symptoms in the absence of an alteration of consciousness in Spanish-speakers. SETTING Web-based survey. PARTICIPANTS Seven hundred forty-eight individuals from Spain and Latin America, aged 18 to 65 years, with 10 years or more of education. Thirty-nine participants failed quality checks and were excluded. Seven hundred nine participants were included in the analyses. DESIGN Cross-sectional study. Subconcussive exposure was defined as endorsing exposure to one or more high-risk scenarios in the absence of any alteration of consciousness. Three injury groups were derived: No Head Injury, Subconcussive Exposure, and traumatic brain injury (TBI). The Subconcussive Exposure group was further divided into Single and Multiple Exposures. Two analyses were conducted: the effect of lifetime exposure to injury (No Head Injury, Subconcussive Exposure, TBI) on neurobehavioral symptoms; the effect of Subconcussive Exposure Frequency (No Head Injury, Single Exposure, Multiple Exposures) on neurobehavioral symptoms. MAIN MEASURES Spanish Ohio State University Traumatic Brain Injury Identification Method Self-Administered-Brief (OSU TBI-ID SAB); Neurobehavioral Symptom Inventory (NSI). RESULTS There was a significant effect for Injury group on the NSI partial eta-squared (η p2 = 0.053) and a significant effect of Exposure Frequency group on the NSI (η p2 = 0.40). Individuals with subconcussive exposures reported significantly more neurobehavioral symptoms than those with no history of head injury and significantly less symptoms than those with TBI. Individuals with multiple subconcussive exposures reported significantly more neurobehavioral symptoms than those with single and no exposure. CONCLUSION This research expands the utility of the OSU-TBI-ID SAB as a lifetime TBI history assessment tool to one capable of evaluating subconcussive exposure dosing effects in Spanish-speakers. Such an index may facilitate establishment of subconcussive exposure prevalence rates worldwide, leading to improved understanding of the chronic effects of high-risk exposures.
Collapse
Affiliation(s)
- Denise Krch
- Author Affiliations: Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, and Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, New Jersey (Drs Krch and Lequerica); Department of Psychology, Virginia Commonwealth University, Richmond, Virginia (Dr Arango-Lasprilla); and Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio (Dr Corrigan)
| | | | | | | |
Collapse
|
4
|
Hamel R, Waltzing BM, Massey T, Blenkinsop J, McConnell L, Osborne K, Sesay K, Stoneman F, Carter A, Maaroufi H, Jenkinson N. Sub-concussive head impacts from heading footballs do not acutely alter brain excitability as compared to a control group. PLoS One 2024; 19:e0306560. [PMID: 39088385 PMCID: PMC11293750 DOI: 10.1371/journal.pone.0306560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Repeated sub-concussive head impacts are a growing brain health concern, but their possible biomarkers remain elusive. One impediment is the lack of a randomised controlled human experimental model to study their effects on the human brain. OBJECTIVES This work had two objectives. The first one was to provide a randomised controlled human experimental model to study the acute effects of head impacts on brain functions. To achieve this, this work's second objective was to investigate if head impacts from heading footballs acutely alter brain excitability by increasing corticospinal inhibition as compared to a control group. METHODS In practised and unpractised young healthy adults, transcranial magnetic stimulation was used to assess corticospinal silent period (CSP) duration and corticospinal excitability (CSE) before and immediately after performing headings by returning 20 hand-thrown balls directed to the head (Headings; n = 30) or the dominant foot (Control; n = 30). Moreover, the Rivermead Post-Concussion Questionnaire (RPQ) was used to assess the symptoms of head impacts. Head acceleration was also assessed in subgroups of participants. RESULTS The intervention lengthened CSP duration in both the Headings (6.4 ± 7.5%) and Control groups (4.6 ± 2.6%), with no difference in lengthening between the two groups. Moreover, CSE was not altered by the intervention and did not differ between groups. However, performing headings increased headaches and dizziness symptoms and resulted in greater head acceleration upon each football throw (12.5 ± 1.9g) as compared to the control intervention (5.5 ± 1.3g). CONCLUSIONS The results suggest that head impacts from football headings do not acutely alter brain excitability as compared to a control intervention. However, the results also suggest that the present protocol can be used as an experimental model to investigate the acute effects of head impacts on the human brain.
Collapse
Affiliation(s)
- Raphael Hamel
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Tom Massey
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Blenkinsop
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leah McConnell
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kieran Osborne
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karamo Sesay
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Finn Stoneman
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adam Carter
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hajar Maaroufi
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ned Jenkinson
- School of Sports, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Johnson PK, Fino PC, Wilde EA, Hovenden ES, Russell HA, Velez C, Pelo R, Morris AJ, Kreter N, Read EN, Keleher F, Esopenko C, Lindsey HM, Newsome MR, Thayn D, McCabe C, Mullen CM, Davidson LE, Liebel SW, Carr L, Tate DF. The Effect of Intranasal Plus Transcranial Photobiomodulation on Neuromuscular Control in Individuals with Repetitive Head Acceleration Events. Photobiomodul Photomed Laser Surg 2024; 42:404-413. [PMID: 38848287 PMCID: PMC11587703 DOI: 10.1089/pho.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 06/09/2024] Open
Abstract
Objective: This proof-of-concept study was to investigate the relationship between photobiomodulation (PBM) and neuromuscular control. Background: The effects of concussion and repetitive head acceleration events (RHAEs) are associated with decreased motor control and balance. Simultaneous intranasal and transcranial PBM (itPBM) is emerging as a possible treatment for cognitive and psychological sequelae of brain injury with evidence of remote effects on other body systems. Methods: In total, 43 (39 male) participants, age 18-69 years (mean, 49.5; SD, 14.45), with a self-reported history of concussive and/or RHAE and complaints of their related effects (e.g., mood dysregulation, impaired cognition, and poor sleep quality), completed baseline and posttreatment motor assessments including clinical reaction time, grip strength, grooved pegboard, and the Mini Balance Evaluation Systems Test (MiniBEST). In the 8-week interim, participants self-administered itPBM treatments by wearing a headset comprising four near-infrared light-emitting diodes (LED) and a near-infrared LED nasal clip. Results: Posttreatment group averages in reaction time, MiniBEST reactive control subscores, and bilateral grip strength significantly improved with effect sizes of g = 0.75, g = 0.63, g = 0.22 (dominant hand), and g = 0.34 (nondominant hand), respectively. Conclusion: This study provides a framework for more robust studies and suggests that itPBM may serve as a noninvasive solution for improved neuromuscular health.
Collapse
Affiliation(s)
- Paula K. Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
- Office of Research, Rocky Mountain University of Health Professions, Provo, Utah, USA
| | - Peter C. Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, USA
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Elizabeth S. Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Hilary A. Russell
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Ryan Pelo
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Amanda J. Morris
- Department of Kinesiology, Sacramento State University, Sacramento, California, USA
| | - Nicholas Kreter
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, USA
| | - Emma N. Read
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Finian Keleher
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Carrie Esopenko
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Hannah M. Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Mary R. Newsome
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | - Dayna Thayn
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Courtney McCabe
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Christine M. Mullen
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, Utah, USA
| | - Lance E. Davidson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA
| | - Spencer W. Liebel
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Lawrence Carr
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David F. Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
McPherson AL, Anderson T, Finnoff JT, Adams WM. Head Kinematics and Injury Analysis in Elite Bobsleigh Athletes Throughout a World Cup Tour. J Athl Train 2024; 59:584-593. [PMID: 37648215 PMCID: PMC11220765 DOI: 10.4085/1062-6050-0014.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
CONTEXT The neurocognitive health effects of repetitive head impacts have been examined in many sports. However, characterizations of head impacts for sliding-sport athletes are lacking. OBJECTIVE To describe head impact kinematics and injury epidemiology in elite athletes during the 2021-2022 Bobsleigh World Cup season. DESIGN Cross-sectional study. SETTING On-track training and competitions during the Bobsleigh World Cup season. PATIENTS OR OTHER PARTICIPANTS Twelve elite bobsleigh athletes (3 pilots [1 female], 9 push athletes [5 females]; age = 30 ± 5 years; female height and weight = 173 ± 8 cm and 75 ± 5 kg, respectively; male height and weight = 183 ± 5 cm and 101 ± 5 kg, respectively). MAIN OUTCOME MEASURE(S) Athletes wore an accelerometer-enabled mouthguard to quantify 6-degrees-of-freedom head impact kinematics. Isometric absolute and relative neck strength, number of head acceleration events (HAEs), workload (J), peak linear velocity (m·s-1), peak angular velocity (rad·s-1), peak linear acceleration (g), and peak angular acceleration (rad·s-2) were derived from mouthguard manufacturer algorithms. Linear mixed-effect models tested the effects of sex (male versus female), setting (training versus competition), and position (pilot versus push athlete) on the kinematic variables. RESULTS A total of 1900 HAEs were recorded over 48 training and 53 competition days. No differences were found between the number of HAEs per run per athlete by sex (incidence rate ratio [IRR] = 0.82, P = .741), setting (IRR = 0.94, P = .325), or position (IRR = 1.64, P = .463). No sex differences were observed for workload (mean ± SD: males = 3.3 ± 2.2 J, females = 3.1 ± 1.9 J; P = .646), peak linear velocity (males = 1.1 ± 0.3 m·s-1, females = 1.1 ± 0.3 m·s-1; P = .706), peak angular velocity (males = 4.2 ± 2.1 rad·s-1, females = 4.7 ± 2.5 rad·s-1; P = .220), peak linear acceleration (male = 12.4 ± 3.9g, females = 11.9 ± 3.5g; P = .772), or peak angular acceleration (males = 610 ± 353 rad·s-2, females = 680 ± 423 rad·s-2; P = .547). Also, no effects of setting or position on any kinematic variables were seen. Male athletes had greater peak neck strength than female athletes for all neck movements, aside from right-side flexion (P = .085), but no sex differences were noted in relative neck strength. CONCLUSIONS We provide a foundational understanding of the repetitive HAEs that occur in bobsleigh athletes. Future authors should determine the effects of repetitive head impacts on neurocognitive function and mental health.
Collapse
Affiliation(s)
- April L. McPherson
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
| | - Travis Anderson
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
| | - Jonathan T. Finnoff
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Denver
| | - William M. Adams
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
- Department of Kinesiology, University of North Carolina-Greensboro
- School of Sport, Exercise and Health Sciences, Loughborough University, National Centre for Sport and Exercise Medicine (NCSEM), UK
| |
Collapse
|
7
|
McLean C, Lavender AP, Pereira E, Peek K, Davey P, Ma’ayah F, Morris S, Georgieva J. The Acute Effects of Ball Pressure on Anticipation Timing Following a Series of Purposeful Headers in Adult Football (Soccer) Players. Sports (Basel) 2024; 12:102. [PMID: 38668570 PMCID: PMC11053744 DOI: 10.3390/sports12040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
The purpose of this study is to investigate the acute effects of ball pressure on anticipation timing following a series of purposeful headers in adult football (soccer) players. There is evidence to suggest acute neurophysiological changes to the brain following purposeful heading; this may lead to altered anticipation timing as a result, potentially having future safety implications for players. A repeated measures crossover design was used. Seventeen participants aged between 20 and 30 years performed (i) 20 rotational headers with a lower-pressure match ball (58.6 kPa; 8.5 psi), (ii) 20 rotational headers with a higher-pressure match ball (103.4 kPa; 15 psi), or (iii) 20 non-headers (kicks) as a control each on separate days. The effect of ball pressure on anticipation timing accuracy, measured as absolute, constant, and variable errors, was assessed before and immediately after each intervention session using an anticipation timing task. Differences between group means were compared using repeated measures ANOVA and linear mixed effects models, with p-values of <0.05 considered statistically significant. No significant differences in anticipation timing accuracy across interventions were detected between control, occluded, and non-occluded trials. This finding differs from the previous literature regarding the measurable, acute effects of purposeful heading. The anticipation timing task may lack sensitivity for detecting the effects of repeated heading on brain function.
Collapse
Affiliation(s)
- Chad McLean
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| | - Andrew P. Lavender
- Institute of Health and Wellbeing, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ethan Pereira
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| | - Kerry Peek
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Lidcombe, NSW 2006, Australia;
| | - Paul Davey
- Curtin School of Nursing, Curtin University, Bentley, WA 6102, Australia;
| | - Fadi Ma’ayah
- School of Education, Curtin University, Bentley, WA 6102, Australia;
| | - Susan Morris
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| | - Julia Georgieva
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia (S.M.); (J.G.)
| |
Collapse
|
8
|
Da Broi M, Al Awadhi A, Voruz P, Nouri A, Schaller K. The spectrum of acute and chronic consequences of neurotrauma in professional and amateur boxing - A call to action is advocated to better understand and prevent this phenomenon. BRAIN & SPINE 2023; 4:102743. [PMID: 38510617 PMCID: PMC10951782 DOI: 10.1016/j.bas.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 03/22/2024]
Abstract
Introduction Despite changes in regulations, boxing-related injuries and fatalities are still occurring. The numbers available in the literature regarding mortality and long-term consequences may not accurately represent the actual situation. Indeed, the real extent of this phenomenon remains poorly known. Research question Delineating the spectrum of acute and chronic consequences of boxing-related traumatic brain injuries (TBI). Material and methods Narrative review of the literature concerning acute and chronic boxing-related TBI. Keywords such as mortality, boxing, subdural hematoma were used to search in PubMed and Google scholar. An updated analysis of the Velazquez fatalities collection in boxing was undertaken. Results The Velazquez collection includes 2076 fatalities from 1720 to the present with a death rate of 10 athletes per year. More than half of the deaths (N = 1354, 65.2%) occurred after a knock-out, and nearly 75% happened during professional bouts. In Australia, from 1832 to 2020, 163 fatalities were recorded (75% professional). In Japan, from 1952 to 2016, 38 deaths were recorded with a mean age of 23.9 years. Up to 40% of retired professional boxers in the United States were diagnosed with symptoms of chronic brain injury. Clinical dementia is far more prevalent among professional boxers than in amateurs with an incidence of 20%. Discussion and conclusions A concerted effort to raise awareness and shed light on boxing-related neuro-trauma is required. Similar considerations can be made for other combat sports or contact sports. A call to action to address this knowledge gap, decrease and prevent this phenomenon is advocated.
Collapse
Affiliation(s)
- Michele Da Broi
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Abdullah Al Awadhi
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Voruz
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
| | - Aria Nouri
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Hoogenboom WS, Rubin TG, Ambadipudi K, Cui MH, Ye K, Foster H, Elkouby E, Liu J, Branch CA, Lipton ML. Evolving brain and behaviour changes in rats following repetitive subconcussive head impacts. Brain Commun 2023; 5:fcad316. [PMID: 38046094 PMCID: PMC10691880 DOI: 10.1093/braincomms/fcad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/26/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
There is growing concern that repetitive subconcussive head impacts, independent of concussion, alter brain structure and function, and may disproportionately affect the developing brain. Animal studies of repetitive subconcussive head impacts are needed to begin to characterize the pathological basis and mechanisms underlying imaging and functional effects of repetitive subconcussive head impacts seen in humans. Since repetitive subconcussive head impacts have been largely unexplored in animals, we aimed to characterize the evolution of imaging, behavioural and pathological effects of repetitive subconcussive head impacts in awake adolescent rodents. Awake male and female Sprague Dawley rats (postnatal Day 35) received 140 closed-head impacts over the course of a week. Impacted and sham-impacted animals were restrained in a plastic cone, and unrestrained control animals were included to account for effects of restraint and normal development. Animals (n = 43) underwent repeated diffusion tensor imaging prior to and over 1 month following the final impact. A separate cohort (n = 53) was assessed behaviourally for fine motor control, emotional-affective behaviour and memory at acute and chronic time points. Histological and immunohistochemical analyses, which were exploratory in nature due to smaller sample sizes, were completed at 1 month following the final impact. All animals tolerated the protocol with no overt changes in behaviour or stigmata of traumatic brain injury, such as alteration of consciousness, intracranial haemorrhage or skull fracture. We detected longitudinal, sex-dependent diffusion tensor imaging changes (fractional anisotropy and axial diffusivity decline) in corpus callosum and external capsule of repetitive subconcussive head impact animals, which diverged from both sham and control. Compared to sham animals, repetitive subconcussive head impact animals exhibited acute but transient mild motor deficits. Repetitive subconcussive head impact animals also exhibited chronic anxiety and spatial memory impairment that differed from the control animals, but these effects were not different from those seen in the sham condition. We observed trends in the data for thinning of the corpus callosum as well as regions with elevated Iba-1 in the corpus callosum and cerebral white matter among repetitive subconcussive head impact animals. While replication with larger study samples is needed, our findings suggest that subconcussive head impacts cause microstructural tissue changes in the developing rat brain, which are detectable with diffusion tensor imaging, with suggestion of correlates in tissue pathology and behaviour. The results point to potential mechanisms underpinning consequences of subconcussive head impacts that have been described in humans. The congruence of our imaging findings with human subconcussive head impacts suggests that neuroimaging could serve as a translational bridge to advance study of injury mechanisms and development of interventions.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Todd G Rubin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Kamalakar Ambadipudi
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Min-Hui Cui
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kenny Ye
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Henry Foster
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Esther Elkouby
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Jinyuan Liu
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA
- Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, NewYork, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, NewYork, NY 10032, USA
| |
Collapse
|
10
|
Grijalva C, Hale D, Wu L, Toosizadeh N, Laksari K. Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics. Front Hum Neurosci 2023; 17:1191284. [PMID: 37780960 PMCID: PMC10538631 DOI: 10.3389/fnhum.2023.1191284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Sub-concussive head impacts in soccer are drawing increasing research attention regarding their acute and long-term effects as players may experience thousands of headers in a single season. During these impacts, the head experiences rapid acceleration similar to what occurs during a concussion, but without the clinical implications. The physical mechanism and response to repetitive impacts are not completely understood. The objective of this work was to examine the immediate functional outcomes of sub-concussive level impacts from soccer heading in a natural, non-laboratory environment. Methods Twenty university level soccer athletes were instrumented with sensor-mounted bite bars to record impacts from 10 consecutive soccer headers. Pre- and post-header measurements were collected to determine hyper-acute changes, i.e., within minutes after exposure. This included measuring blood flow velocity using transcranial Doppler (TCD) ultrasound, oxyhemoglobin concentration using functional near infrared spectroscopy imaging (fNIRS), and upper extremity dual-task (UEF) neurocognitive testing. Results On average, the athletes experienced 30.7 ± 8.9 g peak linear acceleration and 7.2 ± 3.1 rad/s peak angular velocity, respectively. Results from fNIRS measurements showed an increase in the brain oxygenation for the left prefrontal cortex (PC) (p = 0.002), and the left motor cortex (MC) (p = 0.007) following the soccer headers. Additional analysis of the fNIRS time series demonstrates increased sample entropy of the signal after the headers in the right PC (p = 0.02), right MC (p = 0.004), and left MC (p = 0.04). Discussion These combined results reveal some variations in brain oxygenation immediately detected after repetitive headers. Significant changes in balance and neurocognitive function were not observed in this study, indicating a mild level of head impacts. This is the first study to observe hemodynamic changes immediately after sub-concussive impacts using non-invasive portable imaging technology. In combination with head kinematic measurements, this information can give new insights and a framework for immediate monitoring of sub-concussive impacts on the head.
Collapse
Affiliation(s)
- Carissa Grijalva
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Dallin Hale
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Arizona Center for Aging, Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Loiseau Taupin M, Romeas T, Juste L, Labbé DR. Exploring the effects of 3D-360°VR and 2D viewing modes on gaze behavior, head excursion, and workload during a boxing specific anticipation task. Front Psychol 2023; 14:1235984. [PMID: 37680243 PMCID: PMC10481868 DOI: 10.3389/fpsyg.2023.1235984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Recent evidence has started to demonstrate that 360°VR, a type of VR that immerses a user within a 360° video, has advantages over two-dimensional (2D) video displays in the context of perceptual-cognitive evaluation and training. However, there is currently a lack of empirical evidence to explain how perceptual-cognitive strategies differ between these two paradigms when performing sports-related tasks. Thus, the objective of this study was to examine and compare the impact of different viewing conditions (e.g., 3D-360°VR and 2D video displays), on gaze behavior and head excursions in a boxing-specific anticipatory task. A secondary objective was to assess the workload associated with each viewing mode, including the level of presence experienced. Thirdly, an exploratory analysis was conducted to evaluate any potential sex differences. Methods Thirty-two novice participants (16 females) were recruited for this study. A total of 24 single-punch sequences were randomly presented using a standalone VR headset (Pico Neo 3 Pro Eye), with two different viewing modes: 3D-360°VR and 2D. Participants were instructed to respond to the punches with appropriate motor actions, aiming to avoid punches. Gaze behavior was recorded using a Tobii eyetracker embedded in the VR headset. Workload and presence were measured with the SIM-TLX questionnaire. Fixation duration, number of fixations, saccades, search rate and head excursions (roll, pitch, yaw) were analyzed using linear mixed models. Results The results revealed significant shorter fixation durations and more head excursions (roll, pitch) in 3D-360°VR, compared to the 2D viewing mode (ps < 0.05). The sense of presence was found to be much higher in the 3D-360°VR viewing mode (p < 0.05). No sex differences were observed. These results demonstrate that 360°VR elicited shorter fixation durations but mostly greater head excursions and immersion compared to a 2D projection in the context of a boxing-specific task. Discussion These findings contribute to the understanding of previous evidence supporting the possible advantages of using 360°VR over 2D for perceptual-cognitive evaluation and training purposes. Further validation studies that compare behaviors and performance in 360°VR with those in the real-world will be needed.
Collapse
Affiliation(s)
- Mildred Loiseau Taupin
- Laboratoire de recherche en imagerie et orthopédie, École de technologie supérieure, Montréal, QC, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Institut national du sport du Québec, Montréal, QC, Canada
| | - Thomas Romeas
- Institut national du sport du Québec, Montréal, QC, Canada
- École d’optométrie, Université de Montréal, Montréal, QC, Canada
| | - Lauryn Juste
- Laboratoire de recherche en imagerie et orthopédie, École de technologie supérieure, Montréal, QC, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - David R. Labbé
- Laboratoire de recherche en imagerie et orthopédie, École de technologie supérieure, Montréal, QC, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Kirk C, Childs C. Combat Sports as a Model for Measuring the Effects of Repeated Head Impacts on Autonomic Brain Function: A Brief Report of Pilot Data. Vision (Basel) 2023; 7:vision7020039. [PMID: 37218957 DOI: 10.3390/vision7020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Automated pupil light reflex (PLR) is a valid indicator of dysfunctional autonomic brain function following traumatic brain injury. PLR's use in identifying disturbed autonomic brain function following repeated head impacts without outwardly visible symptoms has not yet been examined. As a combat sport featuring repeated 'sub-concussive' head impacts, mixed martial arts (MMA) sparring may provide a model to understand such changes. The aim of this pilot study was to explore which, if any, PLR variables are affected by MMA sparring. A cohort of n = 7 MMA athletes (age = 24 ± 3 years; mass = 76.5 ± 9 kg; stature = 176.4 ± 8.5 cm) took part in their regular sparring sessions (eight rounds × 3 min: 1 min recovery). PLR of both eyes was measured immediately pre- and post-sparring using a Neuroptic NPi-200. Bayesian paired samples t-tests (BF10 ≥ 3) revealed decreased maximum pupil size (BF10 = 3), decreased minimum pupil size (BF10 = 4) and reduced PLR latency (BF10 = 3) post-sparring. Anisocoria was present prior to sparring and increased post-sparring, with both eyes having different minimum and maximum pupil sizes (BF10 = 3-4) and constriction velocities post-sparring (BF10 = 3). These pilot data suggest repeated head impacts may cause disturbances to autonomic brain function in the absence of outwardly visible symptoms. These results provide direction for cohort-controlled studies to formally investigate the potential changes observed.
Collapse
Affiliation(s)
- Christopher Kirk
- Health Research Institute, Sheffield Hallam University, Sheffield S10 2NA, UK
| | - Charmaine Childs
- Health Research Institute, Sheffield Hallam University, Sheffield S10 2NA, UK
| |
Collapse
|
13
|
Wilson RJ, Bell MR, Giordano KR, Seyburn S, Kozlowski DA. Repeat subconcussion in the adult rat gives rise to behavioral deficits similar to a single concussion but different depending upon sex. Behav Brain Res 2023; 438:114206. [PMID: 36356721 DOI: 10.1016/j.bbr.2022.114206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Although concussions are a popular focus of neurotrauma research, subconcussions occur with higher frequency but are less well-studied. A subconcussion is an impact to the head that does not result in immediately diagnosable concussion but can result in later neurological consequences. Repeat subconcussions can produce behavioral impairments and neuropathology that is similar to or worse than those seen following a single concussion. The current study modified a previously established closed head injury model of concussion to create a subconcussion model and examines sex differences in behavioral responses to repeated subconcussion in the adult rat. Rats received a single concussion, single or repeat subconcussions, or no impact and behavior was monitored from 2 h through 31 days post-injury. A single concussion or repeat subconcussion resulted in deficits in locomotion, righting reflexes, and recognition memory. The degree of deficit induced by repeat subconcussions were either similar (righting reflexes) or greater/more persistent (locomotor deficits and recognition memory) than that of a concussion. Single subconcussion resulted in acute deficits that were mild and limited to righting reflexes and locomotion. Sex differences were observed in responses to repeat subconcussion: females showed greater deficits in righting reflexes, locomotion, and vestibular function, while males showed greater alterations in anxiety and depressive-like behavior. This study established a model of subconcussive impact where a single subconcussive impact resulted in minimal behavioral deficits but repeat subconcussions resulted in deficits similar to or worse than a single concussion. Our data also suggest sex differences in behavioral responses to both concussive and subconcussive impacts.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Margaret R Bell
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Department of Health Sciences, DePaul University, 1110 W. Belden, Chicago, IL, USA.
| | - Katherine R Giordano
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Serena Seyburn
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Dorothy A Kozlowski
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Neuroscience Program, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| |
Collapse
|
14
|
Shamloo F, Kon M, Ritter E, Sereno AB. Quantifying the Magnitude and Longevity of the Effect of Repetitive Head Impacts in Adolescent Soccer Players: Deleterious Effect of Long Headers Extend Beyond a Month. Neurotrauma Rep 2023; 4:267-275. [PMID: 37095854 PMCID: PMC10122256 DOI: 10.1089/neur.2022.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
There is growing interest in the effects of sports-related repetitive head impacts (RHIs) on athletes' cognitive capabilities. This study examines the effect of RHIs in data collected from adolescent athletes to estimate the magnitude and longevity of RHIs on sensorimotor and cognitive performance. A non-linear regression model estimated the longevity of RHI effects by adding a half-life parameter embedded in an exponential decay function. A model estimate of this parameter allows the possibility of RHI effects to attenuate over time and introduces a mechanism to study the cumulative effect of RHIs. The posterior distribution of the half-life parameter associated with short-distance headers (<30 m) is centered around 6 days, whereas the posterior distribution of the half-life parameter associated with long-distance headers extends beyond a month. Additionally, the magnitude of the effect of each short header is around 3 times smaller than that of a long header. The results indicate that, on both tasks, response time (RT) changes after long headers are bigger in magnitude and last longer compared to the effects of short headers. Most important, we demonstrate that deleterious effects of long headers extend beyond 1 month. Although estimates are based on data from a relatively short-duration study with a relatively small sample size, the proposed model provides a mechanism to estimate long-term behavioral slowing from RHIs, which may be helpful to reduce the risk of additional injury. Finally, differences in the longevity of the effects of short and long RHIs may help to explain the large variance found between biomechanical input and clinical outcome in studies of concussion tolerance.
Collapse
Affiliation(s)
- Farzin Shamloo
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Maria Kon
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
- Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC, USA
- Address correspondence to: Maria Kon, PhD, Department of Psychological Sciences, Purdue University, 703 3rd Street, West Lafayette, IN 47907, USA.
| | - Elizabeth Ritter
- University of North Carolina Health, Chapel Hill, North Carolina, USA
| | - Anne B. Sereno
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
15
|
Di Virgilio TG, Ietswaart M, Selvamoorthy R, Hunter AM. The Reliability of Transcranial Magnetic Stimulation-Derived Corticomotor Inhibition as a Brain Health Evaluation Tool in Soccer Players. SPORTS MEDICINE - OPEN 2022; 8:7. [PMID: 35029772 PMCID: PMC8760368 DOI: 10.1186/s40798-021-00399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Background The suitability of corticomotor inhibition and corticospinal excitability to measure brain health outcomes and recovery of sport-related head impact (concussion and subconcussion) depends on good inter-day reliability, which is evaluated in this study. Transcranial magnetic stimulation (TMS) reliability in soccer players is assessed by comparing soccer players, for whom reliability on this measure may be reduced due to exposure to head impacts, to generally active individuals not engaged in contact sport. Methods TMS-derived corticomotor inhibition and corticospinal excitability were recorded from the rectus femoris muscle during two testing sessions, spaced 1–2 weeks apart in 19 soccer players (SOC—age 22 ± 3 years) and 20 generally active (CON—age 24 ± 4 years) healthy volunteers. Inter-day reliability between the two time points was quantified by using intra-class correlation coefficients (ICC). Intra-group reliability and group differences on actual measurement values were also explored. Results Good inter-day reliability was evident for corticomotor inhibition (ICCSOC = 0.61; ICCCON = 0.70) and corticospinal excitability (ICCSOC = 0.59; ICCCON = 0.70) in both generally active individuals and soccer players routinely exposed to sport-related head impacts. Corticomotor inhibition showed lower coefficients of variation than excitability for both groups (InhibSOC = 15.2%; InhibCON = 9.7%; ExcitabSOC = 41.6%; ExcitabCON = 39.5%). No group differences between soccer players and generally active individuals were found on the corticomotor inhibition value (p > 0.05), but levels of corticospinal excitability were significantly lower in soccer players (45.1 ± 20.8 vs 85.4 ± 6.2%Mmax, p < 0.0001). Corticomotor inhibition also showed excellent inter-rater reliability (ICC = 0.87). Conclusions Corticomotor inhibition and corticospinal excitability are stable and maintain good degrees of reliability when assessed over different days in soccer players, despite their routine exposure to head impacts. However, based on intra-group reliability and group differences of the levels of excitability, we conclude that corticomotor inhibition is best suited for the evaluation of neuromuscular alterations associated with head impacts in contact sports.
Collapse
|
16
|
Sirant LW, Singh J, Martin S, Gaul CA, Stuart-Hill L, Candow DG, Mang C, Neary JP. Long-term effects of multiple concussions on prefrontal cortex oxygenation during neurovascular coupling activation in retired male contact sport athletes. Curr Res Physiol 2022; 5:421-428. [PMID: 36466150 PMCID: PMC9713254 DOI: 10.1016/j.crphys.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study aimed to investigate the long-term effects of multiple concussions on prefrontal cortex oxygenation during a neurovascular coupling activating task using near infrared spectroscopy (NIRS). Methods Self-reported physically active males who previously participated in contact team sports at various levels of competition and who previously had experienced at least 3 concussions (n = 55; mTBI) or had no history of concussions (n = 29; CTRL) were recruited. Participants completed a 5 min "Where's Waldo" object identification protocol which consisted of participants closing their eyes for 20-s followed by 40-s (repeated 5 times over 5-min) of searching a computer screen for "Waldo" hidden in a field of distractors. NIRS (μM) was used to measure right and left prefrontal cortex cerebral oxygenation. Oxygenated (O2Hb), deoxygenated (HHb), total (tHb) haemoglobin, and haemoglobin difference (HbDiff) were analysed through the change in average maximal and minimal values (ΔMAX), Z-scores, and standard deviations. Results There were no significant differences in the relative change in cerebral oxygenation of the right prefrontal cortex between groups. In mTBI, left prefrontal cortex HHb ΔMAX (p = 0.031) and tHb ΔMAX (p = 0.044) were significantly lower than in the CTRL group. Within-group, right vs. left prefrontal cortex differences showed significantly lower values in left HbDiff Z-scores (p = 0.019) in only the mTBI group while the CTRL group showed significantly lower values in left HbDiff SD (p = 0.045). Conclusion This preliminary study suggests that there are changes in prefrontal cortex oxygenation in males who had a history of experiencing multiple concussions in their past during a neurovascular coupling activating task. These changes may represent potential long-term effects in the brain's ability to adapt cerebral oxygenation during increased neural activity.
Collapse
Affiliation(s)
- Luke W. Sirant
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Jyotpal Singh
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Steve Martin
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Catherine A. Gaul
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Lynneth Stuart-Hill
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Cameron Mang
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - J. Patrick Neary
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| |
Collapse
|
17
|
Repeated Sub-Concussive Impacts and the Negative Effects of Contact Sports on Cognition and Brain Integrity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127098. [PMID: 35742344 PMCID: PMC9222631 DOI: 10.3390/ijerph19127098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Sports are yielding a wealth of benefits for cardiovascular fitness, for psychological resilience, and for cognition. The amount of practice, and the type of practiced sports, are of importance to obtain these benefits and avoid any side effects. This is especially important in the context of contact sports. Contact sports are not only known to be a major source of injuries of the musculoskeletal apparatus, they are also significantly related to concussion and sub-concussion. Sub-concussive head impacts accumulate throughout the active sports career, and thus can cause measurable deficits and changes to brain health. Emerging research in the area of cumulative sub-concussions in contact sports has revealed several associated markers of brain injury. For example, recent studies discovered that repeated headers in soccer not only cause measurable signs of cognitive impairment but are also related to a prolonged cortical silent period in transcranial magnetic stimulation measurements. Other cognitive and neuroimaging biomarkers are also pointing to adverse effects of heading. A range of fluid biomarkers completes the picture of cumulating effects of sub-concussive impacts. Those accumulating effects can cause significant cognitive impairment later in life of active contact sportswomen and men. The aim of this review is to highlight the current scientific evidence on the effects of repeated sub-concussive head impacts on contact sports athletes’ brains, identify the areas in need of further investigation, highlight the potential of advanced neuroscientific methods, and comment on the steps governing bodies have made to address this issue. We conclude that there are indeed neural and biofluid markers that can help better understand the effects of repeated sub-concussive head impacts and that some aspects of contact sports should be redefined, especially in situations where sub-concussive impacts and concussions can be minimized.
Collapse
|
18
|
Functional, but Minimal Microstructural Brain Changes Present in Aging Canadian Football League Players Years After Retirement. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Lavender AP, Georgieva J, Takechi R. A Suggested New Term and Definition to Describe the Cumulative Physiological and Functional Effects of Non-injurious Head Impacts. Front Neurol 2022; 13:799884. [PMID: 35432181 PMCID: PMC9009409 DOI: 10.3389/fneur.2022.799884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Andrew P. Lavender
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
- *Correspondence: Andrew P. Lavender
| | - Julia Georgieva
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
20
|
Wu S, Chen A, Cao C, Ma S, Feng Y, Wang S, Song J, Xu G. Repeated subconcussive exposure alters low-frequency neural oscillation in memory retrieval processing. J Neurotrauma 2022; 39:398-410. [PMID: 35021889 DOI: 10.1089/neu.2021.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repeated subconcussive head impacts are frequently experienced by athletes involved in competitive sports, such as boxing. The objective of the present study was to investigate the changes in working memory performance and memory retrieval-related neural oscillations in boxing athletes who experienced repeated subconcussive head impacts. Twenty-one boxing athletes (boxing group) and twenty-five matched controls (control group) completed a modified visual working memory task, and their continuous scalp electroencephalography (EEG) data were collected simultaneously. The behavioral measures and retrieval-related low-frequency neural oscillations were analyzed at each working memory set size in both groups. Subjects in the boxing group showed a reduced mean accuracy, diminished capacity estimates, and slower reaction time at demanding set sizes and a marginally increased intraindividual coefficient of variation (ICV) for overall set sizes. Additionally, decreased event-related frontal theta synchronization, parieto-occipital alpha desynchronization, and frontal low beta synchronization were observed in the boxing group, suggesting underlying working memory dysfunction for efficient neurocognitive resource employment, inhibition of distracting stimuli, and post-retrieval control in the boxing group. Moreover, a negative correlation was found between frontal beta synchronization and reaction time for most set sizes in both groups. The present study was the first to reveal the underlying working memory deficits caused by the cumulative effects of boxing-related subconcussive head impacts from the perspective of behavior and EEG time-frequency oscillations. Joint analysis of EEG low-frequency oscillations and the innovative task with multiple challenging load conditions may serve as a promising way to detect concealed deficiencies within working memory processing. Keywords: repeated subconcussive head impacts, working memory, modified Sternberg task, event-related desynchronization, event-related synchronization, boxing athletes.
Collapse
Affiliation(s)
- Shukai Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,The Second Affiliated Hospital of Fujian Medical University, neurosurgery, Quanzhou, Fujian, China;
| | - Aobo Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Chenglong Cao
- The First School of Clinical Medicine, Southern Medical University, Neurosurgery, Guangzhou, China.,Maastricht University Faculty of Psychology and Neuroscience, 396107, Maastricht, Limburg, Netherlands;
| | - Shenghui Ma
- Medical College of Wuhan University of Science and Technology, 481115, Wuhan, Hubei , China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Yu Feng
- Medical College of Wuhan University of Science and Technology, 481115, Wuhan, Hubei , China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Shuochen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, neurosurgery, Wuhan, China;
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| |
Collapse
|
21
|
Acid-Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. BIOLOGY 2022; 11:biology11010065. [PMID: 35053063 PMCID: PMC8773011 DOI: 10.3390/biology11010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The aim of our study was to analyze the changes in ABB after a three-round kickboxing fight and the level of technical and tactical skills presented during the fight. Fighting in kickboxing under K1 rules takes place with a high presence of anaerobic metabolism. Kickboxing athletes must have a good tolerance for metabolic acidosis and the ability to conduct an effective duel despite ABB disorders. Properly developed post-workout regeneration also plays an extremely important role. Abstract Background: Acid–base balance (ABB) is a major component of homeostasis, which is determined by the efficient functioning of many organs, including the lungs, kidneys, and liver, and the proper water and electrolyte exchange between these components. The efforts made during competitions by combat sports athletes such as kickboxers require a very good anaerobic capacity, which, as research has shown, can be improved by administering sodium bicarbonate. Combat sports are also characterized by an open task structure, which means that cognitive and executive functions must be maintained at an appropriate level during a fight. The aim of our study was to analyze the changes in ABB in capillary blood, measuring levels of H+, pCO2, pO2, HCO3−, BE and total molar CO2 concentration (TCO2), which were recorded 3 and 20 min after a three-round kickboxing bout, and the level of technical and tactical skills presented during the fight. Methods: The study involved 14 kickboxers with the highest skill level (champion level). Statistical comparison of mentioned variables recorded prior to and after a bout was done with the use of Friedman’s ANOVA. Results: 3 min after a bout, H+ and pO2 were higher by 41% and 11.9%, respectively, while pCO2, HCO3−, BE and TO2 were lower by 14.5%, 39.4%, 45.4% and 34.4%, respectively. Furthermore, 20 min after the bout all variables tended to normalization and they did not differ significantly compared to the baseline values. Scores in activeness of the attack significantly correlated (r = 0.64) with pre–post changes in TCO2. Conclusions: The disturbances in ABB and changes in blood oxygen and carbon dioxide saturation observed immediately after a bout indicate that anaerobic metabolism plays a large part in kickboxing fights. Anaerobic training should be included in strength and conditioning programs for kickboxers to prepare the athletes for the physiological requirements of sports combat.
Collapse
|
22
|
Ntikas M, Hunter AM, Gallagher IJ, Di Virgilio TG. Longer Neurophysiological vs. Clinical Recovery Following Sport Concussion. Front Sports Act Living 2021; 3:737712. [PMID: 34957396 PMCID: PMC8695881 DOI: 10.3389/fspor.2021.737712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: The objective of this study was to assess if injury-related alterations in the Sport Concussion Assessment Tool-5 (SCAT5) are matched by changes in transcranial magnetic stimulation-derived intracortical inhibition. We hypothesised that neurophysiological measures would take longer to return to normal than recovery assessed by the SCAT5 following sport related concussion (SRC). Methods: Thirteen male contact sport athletes (20.5 ± 4.5 years), who reported a concussion were recruited from local Rugby and American football clubs. Participants were tested at 4 timepoints throughout the concussion recovery period: within 24 h of concussion (day 0), and at 7, 9, and 11 days after concussion. All participants completed the SCAT5 and underwent TMS to assess cortical silent period duration (CSp), a measure of intracortical inhibition. Results: After concussion CSp significantly declined from day 0 (122 ± 28 ms) to day 11 (106 ± 15 ms) [F(3, 33) = 7.80, p < 0.001]. SCAT5 measures of symptom number and severity were significantly decreased [symptom number: χ(3)2 = 30.44, p < 0.01; symptom severity: χ(3)2 = 25.75, p < 0.001] between the day 0 timepoint and each of the other timepoints. SCAT5 balance errors (mBESS) decreased significantly [F(3, 33) = 19.55, p < 0.001] between the day 0 timepoint and each of the other timepoints. CSp and SCAT5 recovery patterns were different. SCAT5 domains recovered faster showing no further significant changes after day 7, whilst CSp was still decreasing between days 7 and 9. Due to the small sample size we also used a Bayesian linear model to investigate the recovery of CSp and mBESS. The posterior distribution of our Bayesian model provided evidence that CSp decreased at day 7 and it continued to decrease at day 9, unlike mBESS which decreased at day 7 and then reached a plateau. Conclusion: There are clinically important discrepancies between clinical and neurophysiological measures of concussion recovery. This finding has important implications for return to play (RTP) protocols and the prevention of complications after sport concussion.
Collapse
Affiliation(s)
- Michail Ntikas
- Department of Psychology, University of Stirling, Stirling, United Kingdom
| | - Angus M Hunter
- Department of Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, United Kingdom
| | - Iain J Gallagher
- Department of Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, United Kingdom
| | - Thomas G Di Virgilio
- Department of Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
23
|
O'Halloran P, Goggins L, Peirce N. Observable player behaviours and playing performance following helmet strikes in elite cricket. BMJ Open Sport Exerc Med 2021; 7:e001128. [PMID: 34950503 PMCID: PMC8650467 DOI: 10.1136/bmjsem-2021-001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Investigate the observable player behaviours and features of both concussive (HS-C) and non-concussive (HS-NC) helmet strikes and describe their impact on playing performance. METHODS Elite male cricketers sustaining helmet strikes between the 2016 and 2018 seasons were identified by the England and Wales Cricket Board. Medical records identified players sustaining a concussion and those in whom concussion was excluded. Retrospective cohort analysis was performed on batting and bowling performance data available for these players in the 2 years prior to and 3 months post helmet strike. Video analysis of available incidents was conducted to describe the characteristics of the helmet strike and subsequent observable player behaviours. The HS-C and HS-NC cohorts were compared. RESULTS Data were available for 194 helmet strikes. 56 (29%) resulted in concussion. No significant differences were seen in playing performance in the 3 months post concussive helmet strike. However, a significant decline in batting performance was seen in this period in the HS-NC group (p<0.001).Video features signifying motor incoordination were most useful in identifying concussion post helmet strike, however, typical features suggesting transient loss of consciousness were not seen. Features such as a longer duration pause prior to the batsman resuming play and the level of concern shown by other players were also useful features. CONCLUSION HS-NC may be more significant for player performance than previously thought. Guidance for using video replay to identify concussion in cricket may need to be modified when compared with other field sports.
Collapse
Affiliation(s)
- Patrick O'Halloran
- Marker Diagnostics UK Ltd, Birmingham, UK
- Musculoskeletal Medicine, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - Luke Goggins
- Department for Health, University of Bath, Bath, UK
| | - Nicholas Peirce
- Science and Medicine, England and Wales Cricket Board, Loughborough, UK
- National Centre for Sports Medicine, Loughborough University, Loughborough, UK
| |
Collapse
|
24
|
Head Accelerations during a 1-on-1 Rugby Tackling Drill Performed by Experienced Rugby Union Players. Brain Sci 2021; 11:brainsci11111497. [PMID: 34827495 PMCID: PMC8615476 DOI: 10.3390/brainsci11111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/05/2022] Open
Abstract
Rugby Union is a popular sport played by males and females worldwide, from junior to elite levels. The highly physical skill of tackling occurs every few seconds throughout a match and various injuries associated with tackling are relatively common. Of particular interest are head injuries that result in a concussion. Recently, repeated non-injurious head impacts in sport have attracted the attention of researchers interested in brain health. Therefore, this study assessed head movement during repeated rugby tackle drills among experienced Rugby Union players. Experienced male and female participants performed 15 1-on-1 tackles in a motion analysis laboratory to measure the head movements of the ball carrier and tackler during each tackle, using three-dimensional motion capture. The average peak acceleration of the head for ball carriers was 28.9 ± 24.08 g and 36.67 ± 28.91 g for the tacklers. This study found that the type of head impacts common while performing a tackle in Rugby Union are similar to those experienced by soccer players during heading, which has been found to alter brain function that lasts hours after the event. This has important implications for player health and suggests that mitigation strategies should be considered for Rugby Union.
Collapse
|
25
|
Follmer B, Varga AA, Herrmann KB, Sun Y, Zehr EP. Effects of chronic exposure to head impacts on the balance function of combat sports athletes. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno Follmer
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
- School of Exercise Science, Physical and Health Education University of Victoria Victoria British Columbia Canada
- Human Discovery Science International Collaboration on Repair Discoveries (ICORD) Vancouver British Columbia Canada
| | - Aaron Alexander Varga
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
| | - Konrad Byron Herrmann
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
- School of Exercise Science, Physical and Health Education University of Victoria Victoria British Columbia Canada
- Human Discovery Science International Collaboration on Repair Discoveries (ICORD) Vancouver British Columbia Canada
| | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
- School of Exercise Science, Physical and Health Education University of Victoria Victoria British Columbia Canada
- Human Discovery Science International Collaboration on Repair Discoveries (ICORD) Vancouver British Columbia Canada
- Centre for Biomedical Research University of Victoria Victoria British Columbia Canada
- Division of Medical Sciences University of Victoria Victoria British Columbia Canada
| |
Collapse
|
26
|
Potential Mechanisms of Acute Standing Balance Deficits After Concussions and Subconcussive Head Impacts: A Review. Ann Biomed Eng 2021; 49:2693-2715. [PMID: 34258718 DOI: 10.1007/s10439-021-02831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023]
Abstract
Standing balance deficits are prevalent after concussions and have also been reported after subconcussive head impacts. However, the mechanisms underlying such deficits are not fully understood. The objective of this review is to consolidate evidence linking head impact biomechanics to standing balance deficits. Mechanical energy transferred to the head during impacts may deform neural and sensory components involved in the control of standing balance. From our review of acute balance-related changes, concussions frequently resulted in increased magnitude but reduced complexity of postural sway, while subconcussive studies showed inconsistent outcomes. Although vestibular and visual symptoms are common, potential injury to these sensors and their neural pathways are often neglected in biomechanics analyses. While current evidence implies a link between tissue deformations in deep brain regions including the brainstem and common post-concussion balance-related deficits, this link has not been adequately investigated. Key limitations in current studies include inadequate balance sampling duration, varying test time points, and lack of head impact biomechanics measurements. Future investigations should also employ targeted quantitative methods to probe the sensorimotor and neural components underlying balance control. A deeper understanding of the specific injury mechanisms will inform diagnosis and management of balance deficits after concussions and subconcussive head impact exposure.
Collapse
|
27
|
Balagopal R, Won M, Patel SS, Chuang AZ, Sereno AB. Heading-Related Slowing by Twenty-Four Hours in Youth Athletes. J Neurotrauma 2020; 37:2664-2673. [PMID: 32799741 DOI: 10.1089/neu.2020.7085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Research suggests cumulative effects of repetitive head impacts (RHIs) on brain structure, especially with younger age of first exposure. Further, recent evidence suggests no immediate cognitive changes with increased RHIs but impairments across a sports season. The aim was to examine more closely the short-term time course of behavioral effects of exposure to RHI. Across 2 years, 18 female adolescent soccer players were tested on ProPoint (sensorimotor) and AntiPoint (cognitive) tasks with reaction time (RT) being the main outcome measure. The athletes were tested before and after workout with ball heading (immediate effect), as well as 24 h after workout (24 h effect) throughout two consecutive seasons. The number of headers performed 24 h before workout, during workout, and season average per workout were recorded. The athletes showed a decrease in ProPoint and AntiPoint RTs immediately after a workout, with no change or decrease in RTs with increasing RHIs. However, increasing RHIs during workout increased RTs in both tasks when tested 24 h later. The athletes also showed an increase in AntiPoint RTs with increasing season average RHIs. Our findings show a complex time course of effects of RHIs on sensorimotor and cognitive performance in adolescent athletes, with exposure to RHIs associated with no change or immediate benefits and then deficits by 24 h. Pathophysiological changes associated with exercise and traumatic brain injury can account for the sensorimotor and cognitive performance changes occurring within 24 h after RHIs.
Collapse
Affiliation(s)
- Radhika Balagopal
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Biological Sciences, University of California, Santa Barbara, California, USA
| | - Michelle Won
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Neurobiology and Anatomy, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Saumil S Patel
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Alice Z Chuang
- Department of Ophthalmology and Visual Science, McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Anne B Sereno
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHealth, Houston, Texas, USA.,Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
28
|
The Effect of Sub-Concussive Impacts during a Rugby Tackling Drill on Brain Function. Brain Sci 2020; 10:brainsci10120960. [PMID: 33321843 PMCID: PMC7764819 DOI: 10.3390/brainsci10120960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Concussion is known to detrimentally affect brain health. Rugby tackles commonly occur with high collision force between tackler and ball carrier, and low impact head contact is not uncommon. Cognitive deficits following a bout of soccer ball heading has been attributed to the impact and termed sub-concussion. Although soccer ball heading studies provide evidence for acute effects of sub-concussion, it is unknown whether this phenomenon occurs following rugby tackles. This study investigates the acute effects of rugby tackles on brain function and balance in rugby players. Twenty-six volunteers were assigned to either the ball carrier (9), tackler (9) or control (8) group. Controls performed running without the tackle. Outcome measures included corticomotor function using transcranial magnetic brain stimulation (TMS) and balance was assessed by a series of tasks performed on a NeuroCom Balance Master before and immediately after a tackle training drill. Following the tackling bout, the cortical silent period (cSP) increased for the tacklers with no change for ball carrier and control groups, and no differences between groups for balance measures were observed. Lengthening of cSP observed in the tacklers following the bout has been reported in studies of concussion and may indicate long term detrimental effects.
Collapse
|
29
|
Rawlings S, Takechi R, Lavender AP. Effects of sub-concussion on neuropsychological performance and its potential mechanisms: A narrative review. Brain Res Bull 2020; 165:56-62. [PMID: 33011196 DOI: 10.1016/j.brainresbull.2020.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Concussion and mild traumatic brain injury (mTBI) are recognised as serious medical events that are relatively common in contact sports. Recently, the seemingly non-injurious phenomenon of sub-concussion has gained interest among neuroscience researchers and early studies are showing that there may be some acute and chronic effects on brain health and function with repeated sub-concussive events of the type seen in soccer, where players strike the ball with the head, and collision sports like the rugby codes. The aim of this narrative review is to describe sub-concussion and the current understanding of short and long term effects of repeated minor impacts that have been found to occur in human and animal models. Here, potential mechanisms for cognitive dysfunction following sub-concussion and recommend directions for future research are discussed. The Potential mechanisms of injuries resulting from sub-concussion such as changes in blood brain barrier integrity, neuroinflammation, cognitive impairment, and oxidative stress damage, among other changes in central nervous system function vary considerably making understanding of the underlying causative mechanism challenging for researchers. Some evidence suggests a link between impaired cerebrovascular function and cognitive impairment which poses a potential mechanism linking the two. It is hoped that this review helps guide researchers toward a potential direction of investigations.
Collapse
Affiliation(s)
- Samuel Rawlings
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Andrew P Lavender
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia; School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia.
| |
Collapse
|
30
|
Monroe DC, Blumenfeld RS, Keator DB, Solodkin A, Small SL. One season of head-to-ball impact exposure alters functional connectivity in a central autonomic network. Neuroimage 2020; 223:117306. [PMID: 32861790 PMCID: PMC7822072 DOI: 10.1016/j.neuroimage.2020.117306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/26/2020] [Accepted: 08/22/2020] [Indexed: 11/30/2022] Open
Abstract
Repetitive head impacts represent a risk factor for neurological impairment in team-sport athletes. In the absence of symptoms, a physiological basis for acute injury has not been elucidated. A basic brain function that is disrupted after mild traumatic brain injury is the regulation of homeostasis, instantiated by activity across a specific set of brain regions that comprise a central autonomic network. We sought to relate head-to-ball impact exposure to changes in functional connectivity in a core set of central autonomic regions and then to determine the relation between changes in brain and changes in behavior, specifically cognitive control. Thirteen collegiate men's soccer players and eleven control athletes (golf, cross-country) underwent resting-state fMRI and behavioral testing before and after the season, and a core group of cortical, subcortical, and brainstem regions was selected to represent the central autonomic network. Head-to-ball impacts were recorded for each soccer player. Cognitive control was assessed using a Dot Probe Expectancy task. We observed that head-to-ball impact exposure was associated with diffuse increases in functional connectivity across a core CAN subnetwork. Increased functional connectivity between the left insula and left medial orbitofrontal cortex was associated with diminished proactive cognitive control after the season in those sustaining the greatest number of head-to-ball impacts. These findings encourage measures of autonomic physiology to monitor brain health in contact and collision sport athletes.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Neurology, University of California, Room 150 Med Surge I, Irvine, CA 92697-4275, United States.
| | - Robert S Blumenfeld
- Department of Neurology, University of California, Room 150 Med Surge I, Irvine, CA 92697-4275, United States; Department of Psychology, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, United States
| | - David B Keator
- Department of Psychiatry and Human Behavior, University of California, 163 Irvine Hall, Irvine, CA 92697- 3960, United States
| | - Ana Solodkin
- Department of Anatomy and Neurobiology, University of California-Irvine, B240 Medical Science, Irvine, CA 92697-4275, United States; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, GR 41, Richardson, TX 75080, United States
| | - Steven L Small
- Department of Neurology, University of California, Room 150 Med Surge I, Irvine, CA 92697-4275, United States; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, GR 41, Richardson, TX 75080, United States
| |
Collapse
|
31
|
Scott E, Kidgell DJ, Frazer AK, Pearce AJ. The Neurophysiological Responses of Concussive Impacts: A Systematic Review and Meta-Analysis of Transcranial Magnetic Stimulation Studies. Front Hum Neurosci 2020; 14:306. [PMID: 33192374 PMCID: PMC7481389 DOI: 10.3389/fnhum.2020.00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/08/2020] [Indexed: 01/20/2023] Open
Abstract
Aim: This systematic review and meta-analysis investigated neurophysiological responses using transcranial magnetic stimulation (TMS) following a concussion or sub-concussion. Methods: A systematic searching of relevant databases for peer-reviewed literature quantifying motor evoked potentials from TMS between 1999 and 2019 was performed. A meta-analysis quantified pooled data for measures including motor threshold, motor latency, and motor evoked potential amplitude and for inhibitory measures such as cortical silent period duration, short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI) ratios. Results: Fifteen articles met the inclusion criteria. The studies were arbitrarily classified into the groups, based on time post-concussion, “acute” (subjects 0–3 months post-injury, n = 8) and “post-acute” (3 months−2 years post-concussion, n = 7). A TMS quality of study checklist rated studies from moderate to high in methodological quality; however, the risk of bias analysis found that the included studies were categorised as high risk of bias, particularly for a lack of allocation concealment and blinding of participants in the methodologies. A meta-analysis showed no differences in excitability measures, apart from a decreased motor threshold that was observed in the concussed group (SMD −0.28, 95% CI −0.51 to −0.04; P = 0.02) for the post-acute time frame. Conversely, all inhibitory measures showed differences between groups. Cortical silent period duration was found to be significantly increased in the acute (SMD 1.19, 95% CI 0.58–1.81; P < 0.001) and post-acute (SMD 0.55, 95% CI 0.12–0.98; P = 0.01) time frames. The SICI (SMD −1.15, 95% CI −1.95 to −0.34; P = 0.005) and LICI (SMD −1.95, 95% CI −3.04 to −0.85; P = 0.005) ratios were reduced, inferring increased inhibition, for the post-acute time frame. Conclusion: This systematic review and meta-analysis demonstrates that inhibitory pathways are affected in the acute period post-concussion. However, persistent alterations in cortical excitability remain, with increased intracortical inhibition. While TMS should be considered as a reliable technique to measure the functional integrity of the central nervous system, the high risk of bias and heterogeneity in data suggest that future studies should aim to incorporate standardised methodological techniques, particularly with threshold determination and stimulus intervals for paired-pulse measures.
Collapse
Affiliation(s)
- Emily Scott
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|