1
|
Mueller C, Hong H, Sharma AA, Qin H, Benveniste EN, Szaflarski JP. Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy. Epilepsia Open 2024; 9:2454-2466. [PMID: 39470707 PMCID: PMC11633690 DOI: 10.1002/epi4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE Epileptogenesis is linked to neuroinflammation. We hypothesized that local heat production caused by neuroinflammation can be visualized non-invasively in vivo via brain magnetic resonance spectroscopic imaging (MRSI) and MRSI-thermometry (MRSI-t) and that there is a relationship in patients with temporal lobe epilepsy (TLE) between MRSI-t and brain metabolites choline and myo-inositol and between neuroimaging and cellular and serum biomarkers of inflammation. METHODS Thirty-six (36) participants, 18 with temporal lobe epilepsy (13 females) and 18 age-matched healthy controls (nine females), were enrolled prospectively and underwent MRSI/MRSI-t; TLE participants also provided blood samples. Temperature was measured using creatine as a reference metabolite. Analysis of Functional NeuroImages 3dttest++ tool was used to analyze voxel-level group differences in temperature, choline, and myo-inositol. Associations with immune cell subsets, cytokines, and chemokines related to inflammation were quantified using correlation coefficients with significant relationships as noted. RESULTS Patients with TLE showed elevated temperature, choline, and myo-inositol in the temporal lobes. Higher brain temperature was associated with higher levels of cytokines and chemokines, including GM-CSF, TNF, IL-1β, and IL - 12p70, and lower frequency of immune cells including CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and classical monocytes. Higher choline was associated with higher levels of the cytokines including LT-α, IL-13, and IL-4, and higher myo-inositol was associated with a higher frequency of CD4+ T-cell and CD19+ B-cell subsets and higher levels of cytokines and chemokines including LT-α, IL-13, and CCL3. SIGNIFICANCE This study, for the first time, showed that in temporal lobes of patients with TLE temperature and metabolite changes correlate with cellular and serum biomarkers of inflammation. Our results provide support for further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool. PLAIN LANGUAGE SUMMARY Neuroinflammation is associated with excessive heat production which can be visualized with magnetic resonance spectroscopic imaging and thermometry (MRSI-t). We prospectively investigated the relationship between MRSI-t and cellular and serum measures of peripheral inflammation in patients with temporal lobe epilepsy (TLE); we compared the results of MRSI-t in patients with TLE to healthy controls. We showed a relationship between the temperature elevations in TLE and elevations of various measures of peripheral inflammation. Our results support further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool.
Collapse
Affiliation(s)
- Christina Mueller
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Huixian Hong
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ayushe A. Sharma
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jerzy P. Szaflarski
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Brain metabolites are associated with sleep architecture and cognitive functioning in older adults. Brain Commun 2024; 6:fcae245. [PMID: 39104903 PMCID: PMC11300014 DOI: 10.1093/braincomms/fcae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Sleep deficits are a possible risk factor for development of cognitive decline and dementia in older age. Research suggests that neuroinflammation may be a link between the two. This observational, cross-sectional study evaluated relationships between sleep architecture, neuroinflammation and cognitive functioning in healthy older adults. Twenty-two adults aged ≥60 years underwent whole-brain magnetic resonance spectroscopic imaging (in vivo method of visualizing increased brain temperatures as a proxy for neuroinflammation), supervised laboratory-based polysomnography, and comprehensive neurocognitive testing. Multiple regressions were used to assess relationships between magnetic resonance spectroscopic imaging-derived brain temperature and metabolites related to inflammation (choline; myo-inositol; N-acetylaspartate), sleep efficiency, time and % N3 sleep and cognitive performance. Choline, myo-inositol and N-acetylaspartate were associated with sleep efficiency and cognitive performance. Higher choline and myo-inositol in the bilateral frontal lobes were associated with slower processing speed and lower sleep efficiency. Higher choline and myo-inositol in bilateral frontoparietal regions were associated with better cognitive performance. Higher N-acetylaspartate around the temporoparietal junction and adjacent white matter was associated with better visuospatial function. Brain temperature was not related to cognitive or sleep outcomes. Our findings are consistent with the limited literature regarding neuroinflammation and its relationships with sleep and cognition in older age, which has implicated ageing microglia and astrocytes in circadian dysregulation, impaired glymphatic clearance and increased blood-brain barrier integrity, with downstream effects of neurodegeneration and cognitive decline. Inflammatory processes remain difficult to measure in the clinical setting, but magnetic resonance spectroscopic imaging may serve as a marker of the relationship between neuroinflammation, sleep and cognitive decline in older adults.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Sharma AA, Nenert R, Goodman AM, Szaflarski JP. Brain temperature and free water increases after mild COVID-19 infection. Sci Rep 2024; 14:7450. [PMID: 38548815 PMCID: PMC10978935 DOI: 10.1038/s41598-024-57561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The pathophysiology underlying the post-acute sequelae of COVID-19 remains understudied and poorly understood, particularly in healthy adults with a history of mild infection. Chronic neuroinflammation may underlie these enduring symptoms, but studying neuroinflammatory phenomena in vivo is challenging, especially without a comparable pre-COVID-19 dataset. In this study, we present a unique dataset of 10 otherwise healthy individuals scanned before and after experiencing mild COVID-19. Two emerging MR-based methods were used to map pre- to post-COVID-19 brain temperature and free water changes. Post-COVID-19 brain temperature and free water increases, which are indirect biomarkers of neuroinflammation, were found in structures functionally associated with olfactory, cognitive, and memory processing. The largest pre- to post-COVID brain temperature increase was observed in the left olfactory tubercle (p = 0.007, 95% CI [0.48, 3.01]), with a mean increase of 1.75 °C. Notably, the olfactory tubercle is also the region of the primary olfactory cortex where participants with chronic olfactory dysfunction showed the most pronounced increases as compared to those without lingering olfactory dysfunction (adjusted pFDR = 0.0189, 95% CI [1.42, 5.27]). These preliminary insights suggest a potential link between neuroinflammation and chronic cognitive and olfactory dysfunction following mild COVID-19, although further investigations are needed to improve our understanding of what underlies these phenomena.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Rodolphe Nenert
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Adam M Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, USA.
| |
Collapse
|
4
|
Sharma AA, Szaflarski JP. The longitudinal effects of cannabidiol on brain temperature in patients with treatment-resistant epilepsy. Epilepsy Behav 2024; 151:109606. [PMID: 38199054 DOI: 10.1016/j.yebeh.2023.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Neuroinflammation (NI) is a key pathophysiological contributor to treatment-resistant epilepsy (TRE) that remains challenging to observe in vivo. Magnetic resonance spectroscopic imaging and thermometry (MRSI-t) is an emerging technique that can be used to non-invasively map brain temperature, whereby brain temperature elevations serve as a surrogate for the cellular and biochemical processes associated with NI. In a previous multimodal imaging study of focal epilepsy patients, we observed MRSI-t-based brain temperature elevations ipsilateral to the seizure onset zone (SOZ) that were concordant with evidence of edema (Sharma et al., 2023). Despite its potential as tool, it is unclear if MRSI-t can monitor changes in brain temperature in response to treatment. We imaged 25 participants approximately 12-weeks apart. Eight patients with TRE were imaged before receiving highly-purified pharmaceutical grade cannabidiol (CBD; pre-CBD) and after 12-weeks of CBD (on-CBD) therapy. Seventeen healthy controls (HCs) were also imaged twice. Repeated measures t-tests computed changes in TRE patients' seizure symptoms, mood, and brain temperature within their respective SOZs. Repeated measures ANOVAs tested Group*Time changes in imaging data. Participants with TRE had abnormally high peak brain temperatures within their SOZs that decreased after CBD initiation (p < 0.0001). Seizure severity scores also improved after CBD initiation (p < 0.001). These findings provide insights into the possible neural effects of CBD, and further demonstrate MRSI-t's potential as a tool for delineating SOZ. Further investigations into MRSI-t as a longitudinal measure of therapy-induced changes in NI are warranted.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, USA.
| |
Collapse
|
5
|
Mueller C, Sharma AA, Szaflarski JP. Peripheral and Central Nervous System Biomarkers of Inflammation in Functional Seizures: Assessment with Magnetic Resonance Spectroscopy. Neuropsychiatr Dis Treat 2023; 19:2729-2743. [PMID: 38077237 PMCID: PMC10710262 DOI: 10.2147/ndt.s437063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Purpose Inflammation may link trauma to clinical symptoms in functional seizures (FS). We compared brain temperature and metabolites in FS, psychiatric (PCs) and healthy controls (HCs) and quantified their associations with serum biomarkers of inflammation and clinical symptoms. Patients and Methods Brain temperature and metabolites were measured with whole-brain magnetic resonance spectroscopic imaging (MRSI) and compared between groups in regions of interest and the whole brain. Relationships with inflammatory biomarkers and symptoms were assessed with Pearson correlations. Results Brain temperature was higher in FS than HCs in the orbitofrontal cortex (OFC) and anterior cingulate gyrus (ACG) and lower in the occipital cortex and frontal lobe. PCs showed lower temperatures than HCs in the frontal lobe including precentral gyrus and in the cerebellum. Myo-inositol (MINO) was higher in FS than HCs in the precentral gyrus, posterior temporal gyrus, ACG and OFC, and choline (CHO) was higher in the occipital lobe. CHO was higher in PCs than HCs in the ACG and OFC, and N-acetylaspartate (NAA) was higher in the ACG. There were no significant correlations with the serum inflammatory biomarkers. In FS, brain temperature correlated with depression, quality of life, psychological symptoms, and disability, CHO correlated with disability, and MINO correlated with hostility, disability, and quality of life. Conclusion Some of the previously identified neuroimaging abnormalities in FS may be related to comorbid psychiatric symptoms, while others, such as abnormalities in sensorimotor cortex, occipital regions, and the temporo-parietal junction may be specific to FS. Overlapping MINO and temperature increases in the ACG and OFC in FS suggest neuroinflammation.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ayushe A Sharma
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Departments of Neurology, Neurobiology, and Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Mueller C, Jordan I, Jones C, Lawson P, Younger JW. Abnormal immune system response in the brain of women with Fibromyalgia after experimental endotoxin challenge. Brain Behav Immun Health 2023; 30:100624. [PMID: 37114015 PMCID: PMC10126845 DOI: 10.1016/j.bbih.2023.100624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Background The pathophysiology of fibromyalgia (FM) is thought to include an overactive immune system, leading to central nervous system sensitization, allodynia, and hyperalgesia. We aimed to test this theory using an experimental immune system activation procedure and neuroimaging with magnetic resonance spectroscopic imaging (MRSI). Methods Twelve women with FM and 13 healthy women (healthy controls; HC) received 0.3 or 0.4 ng/kg endotoxin and underwent MRSI before and after the infusion. Changes in brain levels of choline (CHO), myo-inositol (MI), N-Acetylaspartate (NAA), and MRSI-derived brain temperature were compared between groups and dosage levels using mixed analyses of variance. Results Significant group-by-time interactions in brain temperature were found in the right thalamus. Post-hoc testing revealed that brain temperature increased by 0.55 °C in the right thalamus in FM (t(10) = -3.483, p = 0.006), but not in HCs (p > 0.05). Dose-by-time interactions revealed brain temperature increases in the right insula after 0.4 ng/kg (t(12) = -4.074, p = 0.002), but not after 0.3 ng/kg (p > 0.05). Dose-by-time interactions revealed decreased CHO in the right Rolandic operculum after 0.4 ng/kg endotoxin (t(13) = 3.242, p = 0.006) but not 0.3 ng/kg. In the left paracentral lobule, CHO decreased after 0.3 ng/kg (t(9) = 2.574, p = 0.030) but not 0.4 ng/kg. Dose-by-time interactions affected MI in several brain regions. MI increased after 0.3 ng/kg in the right Rolandic operculum (t(10) = -2.374, p = 0.039), left supplementary motor area (t(9) = -2.303, p = 0.047), and left occipital lobe (t(10) = -3.757, p = 0.004), with no changes after 0.4 ng/kg (p > 0.05). Group-by time interactions revealed decreased NAA in the left Rolandic operculum in FM (t(13) = 2.664, p = 0.019), but not in HCs (p > 0.05). A dose-by-time interaction showed decreased NAA in the left paracentral lobule after 0.3 ng/kg (t(9) = 3.071, p = 0.013) but not after 0.4 ng/kg (p > 0.05). In the combined sample, there was a main effect of time whereby NAA decreased in the left anterior cingulate (F[1,21] = 4.458, p = 0.047) and right parietal lobe (F[1,21] = 5.457, p = 0.029). Conclusion We found temperature increases and NAA decreases in FM that were not seen in HCs, suggesting that FM patients may have abnormal immune responses in the brain. The 0.3 and 0.4 ng/kg had differential effects on brain temperature and metabolites, with neither dose effecting a stronger response overall. There is insufficient evidence provided by the study to determine whether FM involves abnormal central responses to low-level immune challenges.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Indonesia Jordan
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chloe Jones
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prentiss Lawson
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarred W. Younger
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Sung D, Rejimon A, Allen JW, Fedorov AG, Fleischer CC. Predicting brain temperature in humans using bioheat models: Progress and outlook. J Cereb Blood Flow Metab 2023; 43:833-842. [PMID: 36883416 PMCID: PMC10196749 DOI: 10.1177/0271678x231162173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Brain temperature, regulated by the balance between blood circulation and metabolic heat generation, is an important parameter related to neural activity, cerebral hemodynamics, and neuroinflammation. A key challenge for integrating brain temperature into clinical practice is the lack of reliable and non-invasive brain thermometry. The recognized importance of brain temperature and thermoregulation in both health and disease, combined with limited availability of experimental methods, has motivated the development of computational thermal models using bioheat equations to predict brain temperature. In this mini-review, we describe progress and the current state-of-the-art in brain thermal modeling in humans and discuss potential avenues for clinical applications.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Abinand Rejimon
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason W Allen
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory
University School of Medicine, Atlanta, GA, USA
| | - Andrei G Fedorov
- Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Candace C Fleischer
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Sung D, Risk BB, Wang KJ, Allen JW, Fleischer CC. Resting-State Brain Temperature: Dynamic Fluctuations in Brain Temperature and the Brain-Body Temperature Gradient. J Magn Reson Imaging 2023; 57:1222-1228. [PMID: 35904094 PMCID: PMC9884314 DOI: 10.1002/jmri.28376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND While fluctuations in healthy brain temperature have been investigated over time periods of weeks to months, dynamics over shorter time periods are less clear. PURPOSE To identify physiological fluctuations in brain temperature in healthy volunteers over time scales of approximately 1 hour. STUDY TYPE Prospective. SUBJECTS A total of 30 healthy volunteers (15 female; 26 ± 4 years old). SEQUENCE AND FIELD STRENGTH 3 T; T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) and semi-localized by adiabatic selective refocusing (sLASER) single-voxel spectroscopy. ASSESSMENTS Brain temperature was calculated from the chemical shift difference between N-acetylaspartate and water. To evaluate within-scan repeatability of brain temperature and the brain-body temperature difference, 128 spectral transients were divided into two sets of 64-spectra. Between-scan repeatability was evaluated using two time periods, ~1-1.5 hours apart. STATISTICAL TESTS A hierarchical linear mixed model was used to calculate within-scan and between-scan correlations (Rw and Rb , respectively). Significance was determined at P ≤ .05. Values are reported as the mean ± standard deviation. RESULTS A significant difference in brain temperature was observed between scans (-0.4 °C) but body temperature was stable (P = .59). Brain temperature (37.9 ± 0.7 °C) was higher than body temperature (36.5 ± 0.5 °C) for all but one subject. Within-scan correlation was high for brain temperature (Rw = 0.95) and brain-body temperature differences (Rw = 0.96). Between scans, variability was high for both brain temperature (Rb = 0.30) and brain-body temperature differences (Rb = 0.41). DATA CONCLUSION Significant changes in brain temperature over time scales of ~1 hour were observed. High short-term repeatability suggests temperature changes appear to be due to physiology rather than measurement error. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | - Benjamin B. Risk
- Department of Biostatistics and Bioinformatics, Emory University
| | - Kelly J. Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Neuroscience, Georgia Institute of Technology
| | - Jason W. Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| | - Candace C. Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
| |
Collapse
|
9
|
Sung D, Risk BB, Kottke PA, Allen JW, Nahab F, Fedorov AG, Fleischer CC. Comparisons of healthy human brain temperature predicted from biophysical modeling and measured with whole brain MR thermometry. Sci Rep 2022; 12:19285. [PMID: 36369468 PMCID: PMC9652378 DOI: 10.1038/s41598-022-22599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Brain temperature is an understudied parameter relevant to brain injury and ischemia. To advance our understanding of thermal dynamics in the human brain, combined with the challenges of routine experimental measurements, a biophysical modeling framework was developed to facilitate individualized brain temperature predictions. Model-predicted brain temperatures using our fully conserved model were compared with whole brain chemical shift thermometry acquired in 30 healthy human subjects (15 male and 15 female, age range 18-36 years old). Magnetic resonance (MR) thermometry, as well as structural imaging, angiography, and venography, were acquired prospectively on a Siemens Prisma whole body 3 T MR scanner. Bland-Altman plots demonstrate agreement between model-predicted and MR-measured brain temperatures at the voxel-level. Regional variations were similar between predicted and measured temperatures (< 0.55 °C for all 10 cortical and 12 subcortical regions of interest), and subcortical white matter temperatures were higher than cortical regions. We anticipate the advancement of brain temperature as a marker of health and injury will be facilitated by a well-validated computational model which can enable predictions when experiments are not feasible.
Collapse
Affiliation(s)
- Dongsuk Sung
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Benjamin B. Risk
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Peter A. Kottke
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Jason W. Allen
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Fadi Nahab
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Andrei G. Fedorov
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Candace C. Fleischer
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Wesley Woods Health Center, Emory University School of Medicine, 1841 Clifton Road, Atlanta, GA 30329 USA
| |
Collapse
|
10
|
Diprose WK, Morgan CA, Wang MT, Diprose JP, Lin JC, Sheriff S, Campbell D, Barber PA. Active conductive head cooling of normal and infarcted brain: A magnetic resonance spectroscopy imaging study. J Cereb Blood Flow Metab 2022; 42:2058-2065. [PMID: 35707879 PMCID: PMC9580175 DOI: 10.1177/0271678x221107988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Active conductive head cooling is a simple and non-invasive intervention that may slow infarct growth in ischemic stroke. We investigated the effect of active conductive head cooling on brain temperature using whole brain echo-planar spectroscopic imaging. A cooling cap (WElkins Temperature Regulation System, 2nd Gen) was used to administer cooling for 80 minutes to healthy volunteers and chronic stroke patients. Whole brain echo-planar spectroscopic imaging scans were obtained before and after cooling. Brain temperature was estimated using the Metabolite Imaging and Data Analysis System software package, which allows voxel-level temperature calculations using the chemical shift difference between metabolite (N-acetylaspartate, creatine, choline) and water resonances. Eleven participants (six healthy volunteers, five post-stroke) underwent 80 ± 5 minutes of cooling. The average temperature of the coolant was 1.3 ± 0.5°C below zero. Significant reductions in brain temperature (ΔT = -0.9 ± 0.7°C, P = 0.002), and to a lesser extent, rectal temperature (ΔT = -0.3 ± 0.1°C, P = 0.03) were observed. Exploratory analysis showed that the occipital lobes had the greatest reduction in temperature (ΔT = -1.5 ± 1.2°C, P = 0.002). Regions of infarction had similar temperature reductions to the contralateral normal brain. Future research could investigate the feasibility of head cooling as a potential neuroprotective strategy in patients being considered for acute stroke therapies.
Collapse
Affiliation(s)
- William K Diprose
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Catherine A Morgan
- Centre for Advanced MRI, The University of Auckland, Auckland, New Zealand.,School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Michael Tm Wang
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | | - Joanne C Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Sulaiman Sheriff
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Doug Campbell
- Department of Anaesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand
| | - P Alan Barber
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
11
|
Dong Z, Kantrowitz JT, Mann JJ. Improving the reproducibility of proton magnetic resonance spectroscopy brain thermometry: Theoretical and empirical approaches. NMR IN BIOMEDICINE 2022; 35:e4749. [PMID: 35475306 DOI: 10.1002/nbm.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In proton magnetic resonance spectroscopy (1 H MRS)-based thermometry of brain, averaging temperatures measured from more than one reference peak offers several advantages, including improving the reproducibility (i.e., precision) of the measurement. This paper proposes theoretically and empirically optimal weighting factors to improve the weighted average of temperatures measured from three references. We first proposed concepts of equivalent noise and equivalent signal-to-noise ratio in terms of frequency measurement and a concept of relative frequency that allows the combination of different peaks in a spectrum for improving the precision of frequency measurement. Based on these, we then derived a theoretically optimal weighting factor and proposed an empirical weighting factor, both involving equivalent noise levels, for a weighted average of temperatures measured from three references (i.e., the singlets of NAA, Cr, and Ch in the 1 H MR spectrum). We assessed these two weighting factors by comparing their errors in measurement of temperatures with the errors of temperatures measured from individual references; we also compared these two new weighting factors with two previously proposed weighting factors. These errors were defined as the standard deviations in repeated measurements or in Monte Carlo studies. Both the proposed theoretical and empirical weighting factors outperformed the two previously proposed weighting factors as well as the three individual references in all phantom and in vivo experiments. In phantom experiments with 4- or 10-Hz line broadening, the theoretical weighting factor outperformed the empirical one, but the latter was superior in all other repeated and Monte Carlo tests performed on phantom and in vivo data. The proposed weighting factors are superior to the two previously proposed weighting factors and can improve the reproducibility of temperature measurement using 1 H MRS-based thermometry.
Collapse
Affiliation(s)
- Zhengchao Dong
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
- Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
12
|
Brain temperature as an indicator of neuroinflammation induced by typhoid vaccine: Assessment using whole-brain magnetic resonance spectroscopy in a randomised crossover study. Neuroimage Clin 2022; 35:103053. [PMID: 35617872 PMCID: PMC9136180 DOI: 10.1016/j.nicl.2022.103053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
MRSI-derived whole-brain temperature did not detect low-level neuroinflammation. Regional brain temperature was a more sensitive measure of neuroinflammation. MRSI/EPSI might be a useful measure of neuroinflammation in psychiatric disorders.
Prior studies indicate a pathogenic role of neuroinflammation in psychiatric disorders; however, there are no accepted methods that can reliably measure low-level neuroinflammation non-invasively in these individuals. Magnetic resonance spectroscopic imaging (MRSI) is a versatile, non-invasive neuroimaging technique that demonstrates sensitivity to brain inflammation. MRSI in conjunction with echo-planar spectroscopic imaging (EPSI) measures brain metabolites to derive whole-brain and regional brain temperatures, which may increase in neuroinflammation. The validity of MRSI/EPSI for measurement of low level neuroinflammation was tested using a safe experimental model of human brain inflammation – intramuscular administration of typhoid vaccine. Twenty healthy volunteers participated in a double-blind, placebo-controlled crossover study including MRSI/EPSI scans before and 3 h after vaccine/placebo administration. Body temperature and mood, assessed using the Profile of Mood States, were measured every hour up to four hours post-treatment administration. A mixed model analysis of variance was used to test for treatment effects. A significant proportion of brain regions (44/47) increased in temperature post-vaccine compared to post-placebo (p < 0.0001). For temperature change in the brain as a whole, there was no significant treatment effect. Significant associations were seen between mood scores assessed at 4 h and whole brain and regional temperatures post-treatment. Findings indicate that regional brain temperature may be a more sensitive measure of low-level neuroinflammation than whole-brain temperature. Future work where these measurement techniques are applied to populations with psychiatric disorders would be of clinical interest.
Collapse
|
13
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
14
|
Sharma AA, Szaflarski JP. Neuroinflammation as a pathophysiological factor in the development and maintenance of functional seizures: A hypothesis. Epilepsy Behav Rep 2021; 16:100496. [PMID: 34917920 PMCID: PMC8645839 DOI: 10.1016/j.ebr.2021.100496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022] Open
Abstract
Early-life stress may be a priming neuroinflammatory factor for later development of FS. Secondary trauma has emerged as an important predisposing factor for FS initiation. We propose an explanatory, two-hit hypothesis for FS development. The proposed hypothesis is based on findings from neuroimaging and biomarker studies.
The neurobiological underpinnings of functional seizure (FS) development and maintenance represent an active research area. Recent work has focused on hardware (brain structure) and software (brain function and connectivity). However, understanding whether FS are an adaptive consequence of changes in brain structure, function, and/or connectivity is important for identifying a causative mechanism and for FS treatment and prevention. Further, investigation must also uncover what causes these structural and functional phenomena. Pioneering work in the field of psychoneuroimmunology has established a strong, consistent link between psychopathology, immune dysfunction, and brain structure/function. Based on this and recent FS biomarker findings, we propose a new etiologic model of FS pathophysiology. We hypothesize that early-life stressors cause neuroinflammatory and neuroendocrine changes that prime the brain for later FS development following secondary trauma (e.g., traumatic brain injury or psychological trauma). This framework coalesces existing knowledge regarding brain aberrations underlying FS and established neurobiological theories on the pathophysiology of underlying psychiatric disorders. We also propose brain temperature mapping as a way of indirectly visualizing neuroinflammation in patients with FS, particularly in emotion regulation, fear processing, and sensory-motor integration circuits. We offer a foundation on which future research can be built, with clear recommendations for future studies.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Departments of Neurology, University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA.,UAB Epilepsy Center (UABEC), Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Departments of Neurology, University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA.,Departments of Neurosurgery, and University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA.,Departments of Neurobiology, University of Alabama at Birmingham (UAB) Heersink School of Medicine, Birmingham, AL, USA.,UAB Epilepsy Center (UABEC), Birmingham, AL, USA
| |
Collapse
|
15
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|