1
|
Almeida MS, Sanches MP, Tonet NS, Zuglianello C, Morari J, Velloso LA, Lemos-Senna E, Rafacho A. Intranasal pramlintide matches intraperitoneal effects on food intake and gastric emptying in mice. Endocrine 2025:10.1007/s12020-025-04220-z. [PMID: 40169506 DOI: 10.1007/s12020-025-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
PURPOSE Pramlintide is an amylin analog developed as a complementary treatment for diabetes. However, it requires several subcutaneous injections, reducing patients' adherence. Since the intranasal route might be an alternative for drug administration, we evaluated whether intranasal pramlintide treatment exerts comparable actions with intraperitoneal administration. METHODS Adult male Swiss mice were submitted to a refeeding test in a dose-response study with intraperitoneal (PRAM i.p.) or intranasal (PRAM i.n.) pramlintide administration. Intraperitoneal liraglutide served as a positive control (LIRA). Then, the selected dose was administered to analyze gastric emptying after an acute exposure. We also evaluated an 8-day treatment (once daily) to determine food intake and body mass. Blood glucose and plasma triacylglycerides were measured on the euthanasia day. RESULTS In the refeeding test, the anorexigenic dose for the PRAM i.p. or LIRA i.p groups was 200 µg/kg and 400 µg/kg, respectively. The PRAM i.n. group (200 µg/kg) exhibited a trend for that. The reduction in gastric emptying occurred for all treated groups compared with their respective controls (vehicle-treated). Neither the PRAM i.p. nor the PRAM i.n. groups exhibited reduced body mass and food intake in the subchronic experiment. No impact on biochemical parameters was observed regardless of the route of pramlintide administration. CONCLUSION Although intranasal pramlintide is not comparable in magnitude to intraperitoneal administration at an equivalent administered dose, our evidence corroborates the development of novel intranasal formulations destined to overpass the bioavailability issue and potentially serve as an alternative route.
Collapse
Affiliation(s)
- Milena S Almeida
- Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Biological Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Mariele P Sanches
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Health Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Natália S Tonet
- Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Biological Sciences Center, Florianópolis, Santa Catarina, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Carine Zuglianello
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Health Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Elenara Lemos-Senna
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Health Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Alex Rafacho
- Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Biological Sciences Center, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Han Y, He Y, Harris L, Xu Y, Wu Q. Identification of a GABAergic neural circuit governing leptin signaling deficiency-induced obesity. eLife 2023; 12:e82649. [PMID: 37043384 PMCID: PMC10097419 DOI: 10.7554/elife.82649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yang He
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Lauren Harris
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
3
|
Xie D, Stutz B, Li F, Chen F, Lv H, Sestan-Pesa M, Catarino J, Gu J, Zhao H, Stoddard CE, Carmichael GG, Shanabrough M, Taylor HS, Liu ZW, Gao XB, Horvath TL, Huang Y. TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons. J Clin Invest 2022; 132:162365. [PMID: 36189793 PMCID: PMC9525119 DOI: 10.1172/jci162365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.
Collapse
Affiliation(s)
- Di Xie
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Bernardo Stutz
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Feng Li
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Fan Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Haining Lv
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Matija Sestan-Pesa
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonatas Catarino
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Marya Shanabrough
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Zhong-Wu Liu
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiao-Bing Gao
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tamas L Horvath
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| |
Collapse
|
4
|
Brain circuits for promoting homeostatic and non-homeostatic appetites. Exp Mol Med 2022; 54:349-357. [PMID: 35474340 PMCID: PMC9076862 DOI: 10.1038/s12276-022-00758-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
As the principal means of acquiring nutrients, feeding behavior is indispensable to the survival and well-being of animals. In response to energy or nutrient deficits, animals seek and consume food to maintain energy homeostasis. On the other hand, even when animals are calorically replete, non-homeostatic factors, such as the sight, smell, and taste of palatable food, or environmental cues that predict food, can stimulate feeding behavior. These homeostatic and non-homeostatic factors have traditionally been investigated separately, but a growing body of literature highlights that these factors work synergistically to promote feeding behavior. Furthermore, recent breakthroughs in cell type-specific and circuit-specific labeling, recording, and manipulation techniques have markedly accelerated the discovery of well-defined neural populations underlying homeostatic and non-homeostatic appetite control, as well as overlapping circuits that contribute to both types of appetite. This review aims to provide an update on our understanding of the neural circuit mechanisms for promoting homeostatic and non-homeostatic appetites, focusing on the function of recently identified, genetically defined cell types. Research on the neural circuit mechanisms underlying feeding behaviors is critical to identifying therapeutic targets for food-related disorders like obesity and anorexia. Sung-Yon Kim and colleagues at Seoul National University, South Korea, reviewed the current understanding of neural circuits promoting feeding behavior, which is regulated by homeostatic and non-homeostatic appetites. In response to deficits in energy (caloric) or nutrients, specific populations of neurons sensitive to hormones leptin and ghrelin generate homeostatic appetite and promote feeding. In addition, diverse neural populations stimulate non-homeostatic appetite in the absence of immediate internal needs and are thought to drive overconsumption in the modern obesogenic environment. These appetites extensively interact through overlapping neural circuits to jointly promote feeding behaviors.
Collapse
|
5
|
Kravchun PG, Kadykova OI, Herasymchuk US. Adipokines in patients with hypertensive disease with obesity in the dynamics of combined antihypertensive therapy. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hypertensive disease today is one of the most common cardiovascular diseases, as well as the most common disease associated with obesity. Evaluation of the level of adipokines, namely adiponutrin and galanin, depending on the degree and duration of hypertension, the degree of obesity and their correction against the background of combined antihypertensive therapy is relevant for further understanding of this comorbidity and improvement of the early diagnostics. 127 people were examined, including 107 patients with hypertension of degree 1–3 and 20 healthy persons. Of the patients included in the study, the adiponutrin and the galanin levels were determined in 58 patients, out of which 22 were prescribed different regimens of combined antihypertensive therapy. To determine the level of adiponutrin and galanin, an enzyme-linked immunosorbent assay was used. A significant increase was found in the blood serum of the examined adipokines in comparison with the control group: the galanin level was 4.8 times higher than in the control group, the adiponutrin level in patients with this comorbid pathology was 3.3 times higher than that in the control group. The galanin level is most pronounced in patients with hypertension of degree 3 and obesity of degree 3, which is confirmed by the presence of a direct correlation with systolic, diastolic and pulse blood pressure, very low density lipoprotein cholesterol. The adiponutrin level in the blood serum increased correspondingly to the increase in body mass index: in patients with obesity of degree 3 it was 15.8 times higher than this indicator in patients with normal body weight, 8.8 times higher than in patients with overweight, 6.1 times higher than in patients with obesity of degree 1 and 2.5 times higher than in patients with obesity of degree 2. The levels of the studied adipokines in patients differed also relative to the duration of hypertension. There was a 1.8-, 5.1-, 5.2-fold increase (respectively, ≤5, 6–10, >10 years) of the galanin content in the blood serum compared to the control group. Also an increase of the serum adiponutrin level was noted in comparison with the control group. Against the background of combined antihypertensive therapy, we observed favourable dynamics of galanin and adiponutrin. It is important to conduct further studies to assess the activity of galanin and adiponutrin with a longer follow-up period in wider populations.
Collapse
|
6
|
Varela L, Stutz B, Song JE, Kim JG, Liu ZW, Gao XB, Horvath TL. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice. J Clin Invest 2021; 131:144239. [PMID: 33848272 DOI: 10.1172/jci144239] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/08/2021] [Indexed: 01/06/2023] Open
Abstract
Hypothalamic feeding circuits have been identified as having innate synaptic plasticity, mediating adaption to the changing metabolic milieu by controlling responses to feeding and obesity. However, less is known about the regulatory principles underlying the dynamic changes in agouti-related protein (AgRP) perikarya, a region crucial for gating of neural excitation and, hence, feeding. Here we show that AgRP neurons activated by food deprivation, ghrelin administration, or chemogenetics decreased their own inhibitory tone while triggering mitochondrial adaptations in neighboring astrocytes. We found that it was the inhibitory neurotransmitter GABA released by AgRP neurons that evoked this astrocytic response; this in turn resulted in increased glial ensheetment of AgRP perikarya by glial processes and increased excitability of AgRP neurons. We also identified astrocyte-derived prostaglandin E2, which directly activated - via EP2 receptors - AgRP neurons. Taken together, these observations unmasked a feed-forward, self-exciting loop in AgRP neuronal control mediated by astrocytes, a mechanism directly relevant for hunger, feeding, and overfeeding.
Collapse
Affiliation(s)
- Luis Varela
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bernardo Stutz
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jae Eun Song
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
| | - Zhong-Wu Liu
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiao-Bing Gao
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tamas L Horvath
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Neuropeptidergic Control of Feeding: Focus on the Galanin Family of Peptides. Int J Mol Sci 2021; 22:ijms22052544. [PMID: 33802616 PMCID: PMC7961366 DOI: 10.3390/ijms22052544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity/overweight are important health problems due to metabolic complications. Dysregulation of peptides exerting orexigenic/anorexigenic effects must be investigated in-depth to understand the mechanisms involved in feeding behaviour. One of the most important and studied orexigenic peptides is galanin (GAL). The aim of this review is to update the mechanisms of action and physiological roles played by the GAL family of peptides (GAL, GAL-like peptide, GAL message-associated peptide, alarin) in the control of food intake and to review the involvement of these peptides in metabolic diseases and food intake disorders in experimental animal models and humans. The interaction between GAL and NPY in feeding and energy metabolism, the relationships between GAL and other substances involved in food intake mechanisms, the potential pharmacological strategies to treat food intake disorders and obesity and the possible clinical applications will be mentioned and discussed. Some research lines are suggested to be developed in the future, such as studies focused on GAL receptor/neuropeptide Y Y1 receptor interactions in hypothalamic and extra-hypothalamic nuclei and sexual differences regarding the expression of GAL in feeding behaviour. It is also important to study the possible GAL resistance in obese individuals to better understand the molecular mechanisms by which GAL regulates insulin/glucose metabolism. GAL does not exert a pivotal role in weight regulation and food intake, but this role is crucial in fat intake and also exerts an important action by regulating the activity of other key compounds under conditions of stress/altered diet.
Collapse
|
8
|
Kim ER, Xu Y, Cassidy RM, Lu Y, Yang Y, Tian J, Li DP, Van Drunen R, Ribas-Latre A, Cai ZL, Xue M, Arenkiel BR, Eckel-Mahan K, Xu Y, Tong Q. Paraventricular hypothalamus mediates diurnal rhythm of metabolism. Nat Commun 2020; 11:3794. [PMID: 32732906 PMCID: PMC7393104 DOI: 10.1038/s41467-020-17578-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Defective rhythmic metabolism is associated with high-fat high-caloric diet (HFD) feeding, ageing and obesity; however, the neural basis underlying HFD effects on diurnal metabolism remains elusive. Here we show that deletion of BMAL1, a core clock gene, in paraventricular hypothalamic (PVH) neurons reduces diurnal rhythmicity in metabolism, causes obesity and diminishes PVH neuron activation in response to fast-refeeding. Animal models mimicking deficiency in PVH neuron responsiveness, achieved through clamping PVH neuron activity at high or low levels, both show obesity and reduced diurnal rhythmicity in metabolism. Interestingly, the PVH exhibits BMAL1-controlled rhythmic expression of GABA-A receptor γ2 subunit, and dampening rhythmicity of GABAergic input to the PVH reduces diurnal rhythmicity in metabolism and causes obesity. Finally, BMAL1 deletion blunts PVH neuron responses to external stressors, an effect mimicked by HFD feeding. Thus, BMAL1-driven PVH neuron responsiveness in dynamic activity changes involving rhythmic GABAergic neurotransmission mediates diurnal rhythmicity in metabolism and is implicated in diet-induced obesity.
Collapse
Affiliation(s)
- Eun Ran Kim
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ryan M Cassidy
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA
| | - Yungang Lu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jinbin Tian
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Department of Integrative Physiology and Pharmacology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - De-Pei Li
- Department of Critical Care and Respiratory Care, Division of Anesthesiology, Critical Care and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Van Drunen
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA
| | - Aleix Ribas-Latre
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Kristin Eckel-Mahan
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
The undeveloped properties of GABA neurons in the ventral tegmental area promote energy intake for growth in juvenile rats. Sci Rep 2019; 9:11848. [PMID: 31413349 PMCID: PMC6694191 DOI: 10.1038/s41598-019-48336-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Juvenile animals show higher energy intake (EI) per body weight (BW) to meet the energy requirements for growth. However, the underlying mechanisms that induce high EI/BW in juvenile animals remain unknown. The EI from a control diet (CD) and high fat diet (HFD), as well as BW changes were compared between juvenile (3 weeks old) and adult (8 weeks old) rats. BW gain and EI were increased in the HFD-fed adult rats compared to the CD-fed adult rats. However, in the juvenile rats, there were no differences in BW gain and EI between the CD-fed and HFD-fed groups. The locomotor activity was significantly increased in HFD group compared with the CD group in juvenile, but not in adult rats. Gamma-aminobutyric acid (GABA) neurons in the VTA were found to remain undeveloped with less GABAergic input into dopamine neurons in the juvenile rats. The deletion of the VTA GABA neurons in the adult rats significantly increased CD consumption, but showed almost no change in HFD consumption. These data suggest that undeveloped properties of VTA GABA neurons in juvenile rats can promote higher EI regardless of high or less palatable feeding, and contribute to growth promotion.
Collapse
|
10
|
van den Pol AN, Acuna C, Davis JN, Huang H, Zhang X. Defining the caudal hypothalamic arcuate nucleus with a focus on anorexic excitatory neurons. J Physiol 2019; 597:1605-1625. [PMID: 30618146 PMCID: PMC6418765 DOI: 10.1113/jp277152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Excitatory glutamate neurons are sparse in the rostral hypothalamic arcuate nucleus (ARC), the subregion that has received the most attention in the past. In striking contrast, excitatory neurons are far more common (by a factor of 10) in the caudal ARC, an area which has received relatively little attention. These glutamate cells may play a negative role in energy balance and food intake. They can show an increase in phosphorylated Stat-3 in the presence of leptin, are electrically excited by the anorectic neuromodulator cholecystokinin, and inhibited by orexigenic neuromodulators neuropeptide Y, met-enkephalin, dynorphin and the catecholamine dopamine. The neurons project local axonal connections that excite other ARC neurons including proopiomelanocortin neurons that can play an important role in obesity. These data are consistent with models suggesting that the ARC glutamatergic neurons may play both a rapid and a slower role in acting as anorectic neurons in CNS control of food intake and energy homeostasis. ABSTRACT Here we interrogate a unique class of excitatory neurons in the hypothalamic arcuate nucleus (ARC) that utilizes glutamate as a fast neurotransmitter using mice expressing GFP under control of the vesicular glutamate transporter 2 (vGluT2) promoter. These neurons show a unique distribution, synaptic characterization, cellular physiology and response to neuropeptides involved in energy homeostasis. Although apparently not previously appreciated, the caudal ARC showed a far greater density of vGluT2 cells than the rostral ARC, as seen in transgenic vGluT2-GFP mice and mRNA analysis. After food deprivation, leptin induced an increase in phosphorylated Stat-3 in vGluT2-positive neurons, indicating a response to hormonal cues of energy state. Based on whole-cell recording electrophysiology in brain slices, vGluT2 neurons were spontaneously active with a spike frequency around 2 Hz. vGluT2 cells were responsive to a number of neuropeptides related to energy homeostasis; they were excited by the anorectic peptide cholecystokinin, but inhibited by orexigenic neuropeptide Y, dynorphin and met-enkephalin, consistent with an anorexic role in energy homeostasis. Dopamine, associated with the hedonic aspect of enhancing food intake, inhibited vGluT2 neurons. Optogenetic excitation of vGluT2 cells evoked EPSCs in neighbouring neurons, indicating local synaptic excitation of other ARC neurons. Microdrop excitation of ARC glutamate cells in brain slices rapidly increased excitatory synaptic activity in anorexigenic proopiomelanocortin neurons. Together these data support the perspective that vGluT2 cells may be more prevalent in the ARC than previously appreciated, and play predominantly an anorectic role in energy metabolism.
Collapse
Affiliation(s)
| | - Claudio Acuna
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - John N. Davis
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Hao Huang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Xiaobing Zhang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| |
Collapse
|
11
|
Leptin regulates neuropeptides associated with food intake and GnRH secretion. ANNALES D'ENDOCRINOLOGIE 2019; 80:38-46. [DOI: 10.1016/j.ando.2018.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
|
12
|
Heparin Increases Food Intake through AgRP Neurons. Cell Rep 2018; 20:2455-2467. [PMID: 28877477 PMCID: PMC6310124 DOI: 10.1016/j.celrep.2017.08.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022] Open
Abstract
Although the widely used anticoagulant drug heparin has been shown to have many other biological functions independent of its anticoagulant role, its effects on energy homeostasis are unknown. Here, we demonstrate that heparin level is negatively associated with nutritional states and that heparin treatment increases food intake and body weight gain. By using electrophysiological, pharmacological, molecular biological, and chemogenetic approaches, we provide evidence that heparin increases food intake by stimulating AgRP neurons and increasing AgRP release. Our results support a model whereby heparin competes with insulin for insulin receptor binding on AgRP neurons, and by doing so it inhibits FoxO1 activity to promote AgRP release and feeding. Heparin may be a potential drug target for food intake regulation and body weight control. Zhu et al. demonstrate that heparin competes with insulin for insulin receptor binding on AgRP neurons, and by doing so it inhibits FoxO1 activity to promote AgRP release and feeding. Heparin is identified as a potential drug target for food intake regulation and body weight control.
Collapse
|
13
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
14
|
Palomino R, Lee HW, Millhauser GL. The agouti-related peptide binds heparan sulfate through segments critical for its orexigenic effects. J Biol Chem 2017; 292:7651-7661. [PMID: 28264929 DOI: 10.1074/jbc.m116.772822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Syndecans potently modulate agouti-related peptide (AgRP) signaling in the central melanocortin system. Through heparan sulfate moieties, syndecans are thought to anchor AgRP near its receptor, enhancing its orexigenic effects. Original work proposed that the N-terminal domain of AgRP facilitates this interaction. However, this is not compatible with evidence that this domain is posttranslationally cleaved. Addressing this long-standing incongruity, we used calorimetry and magnetic resonance to probe interactions of AgRP peptides with glycosaminoglycans, including heparan sulfate. We show that mature, cleaved, C-terminal AgRP, not the N-terminal domain, binds heparan sulfate. NMR shows that the binding site consists of regions distinct from the melanocortin receptor-binding site. Using a library of designed AgRP variants, we find that the strength of the syndecan interaction perfectly tracks orexigenic action. Our data provide compelling evidence that AgRP is a heparan sulfate-binding protein and localizes critical regions in the AgRP structure required for this interaction.
Collapse
Affiliation(s)
- Rafael Palomino
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Hsiau-Wei Lee
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Glenn L Millhauser
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
15
|
Lee NK, Park SE, Kwon SJ, Shim S, Byeon Y, Kim JH, Na DL, Chang JW. Agouti Related Peptide Secreted Via Human Mesenchymal Stem Cells Upregulates Proteasome Activity in an Alzheimer's Disease Model. Sci Rep 2017; 7:39340. [PMID: 28051110 PMCID: PMC5209736 DOI: 10.1038/srep39340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023] Open
Abstract
The activity of the ubiquitin proteasome system (UPS) is downregulated in aggregation diseases such as Alzheimer’s disease (AD). In this study, we investigated the therapeutic potential of the Agouti-related peptide (AgRP), which is secreted by human mesenchymal stem cells (MSCs), in terms of its effect on the regulation of proteasome activity in AD. When SH-SY5Y human neuroblastoma cells were co-cultured with MSCs isolated from human Wharton’s Jelly (WJ-MSC), their proteasome activity was significantly upregulated. Further analysis of the conditioned media after co-culture allowed us to identify significant concentrations of a neuropeptide, called AgRP. The stereotactic delivery of either WJ-MSCs or AgRP into the hippocampi of C57BL6/J and 5XFAD mice induced a significant increase of proteasome activity and suppressed the accumulation of ubiquitin-conjugated proteins. Collectively, these findings suggest strong therapeutic potential for WJ-MSCs and AgRP to enhance proteasome activity, thereby potentially reducing abnormal protein aggregation and delaying the clinical progression of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Kyung Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell &Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Eon Park
- Stem Cell &Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Jin Kwon
- Stem Cell &Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sangmi Shim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeji Byeon
- Stem Cell &Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jong-Hwa Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Republic of Korea
| | - Duk L Na
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell &Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell &Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
16
|
Jacobs DT, Silva LM, Allard BA, Schonfeld MP, Chatterjee A, Talbott GC, Beier DR, Tran PV. Dysfunction of intraflagellar transport-A causes hyperphagia-induced obesity and metabolic syndrome. Dis Model Mech 2016; 9:789-98. [PMID: 27482817 PMCID: PMC4958314 DOI: 10.1242/dmm.025791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022] Open
Abstract
Primary cilia extend from the plasma membrane of most vertebrate cells and mediate signaling pathways. Ciliary dysfunction underlies ciliopathies, which are genetic syndromes that manifest multiple clinical features, including renal cystic disease and obesity. THM1 (also termed TTC21B or IFT139) encodes a component of the intraflagellar transport-A complex and mutations in THM1 have been identified in 5% of individuals with ciliopathies. Consistent with this, deletion of murine Thm1 during late embryonic development results in cystic kidney disease. Here, we report that deletion of murine Thm1 during adulthood results in obesity, diabetes, hypertension and fatty liver disease, with gender differences in susceptibility to weight gain and metabolic dysfunction. Pair-feeding of Thm1 conditional knock-out mice relative to control littermates prevented the obesity and related disorders, indicating that hyperphagia caused the obese phenotype. Thm1 ablation resulted in increased localization of adenylyl cyclase III in primary cilia that were shortened, with bulbous distal tips on neurons of the hypothalamic arcuate nucleus, an integrative center for signals that regulate feeding and activity. In pre-obese Thm1 conditional knock-out mice, expression of anorexogenic pro-opiomelanocortin (Pomc) was decreased by 50% in the arcuate nucleus, which likely caused the hyperphagia. Fasting of Thm1 conditional knock-out mice did not alter Pomc nor orexogenic agouti-related neuropeptide (Agrp) expression, suggesting impaired sensing of changes in peripheral signals. Together, these data indicate that the Thm1-mutant ciliary defect diminishes sensitivity to feeding signals, which alters appetite regulation and leads to hyperphagia, obesity and metabolic disease. Summary: Disruption of the IFT-A complex gene, Thm1, in adult mice misregulates response to feeding signals, altering appetite regulation and resulting in obesity through hyperphagia.
Collapse
Affiliation(s)
- Damon T Jacobs
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bailey A Allard
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael P Schonfeld
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anindita Chatterjee
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - George C Talbott
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia. J Neurosci 2015. [PMID: 26203139 DOI: 10.1523/jneurosci.1110-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and NPY-mediated hyperphagia.
Collapse
|
18
|
Üner A, Gonçalves GH, Li W, Porceban M, Caron N, Schönke M, Delpire E, Sakimura K, Bjørbæk C. The role of GluN2A and GluN2B NMDA receptor subunits in AgRP and POMC neurons on body weight and glucose homeostasis. Mol Metab 2015; 4:678-91. [PMID: 26500840 PMCID: PMC4588453 DOI: 10.1016/j.molmet.2015.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Hypothalamic agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) expressing neurons play critical roles in control of energy balance. Glutamatergic input via n-methyl-d-aspartate receptors (NMDARs) is pivotal for regulation of neuronal activity and is required in AgRP neurons for normal body weight homeostasis. NMDARs typically consist of the obligatory GluN1 subunit and different GluN2 subunits, the latter exerting crucial differential effects on channel activity and neuronal function. Currently, the role of specific GluN2 subunits in AgRP and POMC neurons on whole body energy and glucose balance is unknown. METHODS We used the cre-lox system to genetically delete GluN2A or GluN2B only from AgRP or POMC neurons in mice. Mice were then subjected to metabolic analyses and assessment of AgRP and POMC neuronal function through morphological studies. RESULTS We show that loss of GluN2B from AgRP neurons reduces body weight, fat mass, and food intake, whereas GluN2B in POMC neurons is not required for normal energy balance control. GluN2A subunits in either AgRP or POMC neurons are not required for regulation of body weight. Deletion of GluN2B reduces the number of AgRP neurons and decreases their dendritic length. In addition, loss of GluN2B in AgRP neurons of the morbidly obese and severely diabetic leptin-deficient Lep (ob/ob) mice does not affect body weight and food intake but, remarkably, leads to full correction of hyperglycemia. Lep (ob/ob) mice lacking GluN2B in AgRP neurons are also more sensitive to leptin's anti-obesity actions. CONCLUSIONS GluN2B-containing NMDA receptors in AgRP neurons play a critical role in central control of body weight homeostasis and blood glucose balance via mechanisms that likely involve regulation of AgRP neuronal survival and structure, and modulation of hypothalamic leptin action.
Collapse
Key Words
- AAC, area above the curve
- AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
- ANCOVA, analysis of covariance
- ANOVA, analysis of variance
- AUC, area under the curve
- AgRP
- AgRP, agouti-related peptide
- CNS, central nervous system
- DAB, 3,3′-diaminobenzidine
- DIO, diet-induced obesity
- DREADD, Designer Receptor Exclusively Activated by Dedigner Drugs
- EPSCs, excitatory post-synaptic synaptic currents
- GABA, gamma-aminobutyric acid
- GTT, glucose tolerance test
- GluN2B
- Glycemia
- HFD, high-fat diet
- HSD, honestly significant difference
- ITT, insulin tolerance test
- KO, knockout
- LTD, long-term depression
- LTP, long-term potentiation
- Lepob/ob mice, obese leptin-deficient mice
- Leptin
- Metabolism
- NMDAR
- NMDARs, N-methyl-d-aspartate receptors
- PBS, phosphate-buffered saline
- POMC, pro-opiomelanocortin
- PVN, paraventricular nucleus
- RT, room temperature
- hrGFP, humanized renilla GFP
Collapse
Affiliation(s)
- Aykut Üner
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Gabriel H.M. Gonçalves
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Wenjing Li
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Matheus Porceban
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Nicole Caron
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Christian Bjørbæk
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
19
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
20
|
Scott MM, Xu Y, Elias CF, Williams KW. Central regulation of food intake, body weight, energy expenditure, and glucose homeostasis. Front Neurosci 2014; 8:384. [PMID: 25520610 PMCID: PMC4253741 DOI: 10.3389/fnins.2014.00384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/09/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael M Scott
- Pharmacology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Yong Xu
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine Houston, TX, USA
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, Obstetrics, and Gynecology, The University of Michigan Medical School Ann Arbor, MI, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Departments of Internal Medicine and Neuroscience, The University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
21
|
Smith CM, Walker AW, Hosken IT, Chua BE, Zhang C, Haidar M, Gundlach AL. Relaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases? Front Pharmacol 2014; 5:46. [PMID: 24711793 PMCID: PMC3968750 DOI: 10.3389/fphar.2014.00046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Animal and clinical studies of gene-environment interactions have helped elucidate the mechanisms involved in the pathophysiology of several mental illnesses including anxiety, depression, and schizophrenia; and have led to the discovery of improved treatments. The study of neuropeptides and their receptors is a parallel frontier of neuropsychopharmacology research and has revealed the involvement of several peptide systems in mental illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which is highly responsive to environmental stimuli, particularly neurogenic stressors, and in turn modulates behavioral responses to these stressors and alters key neural processes, including hippocampal theta rhythm and associated learning and memory. Here, we review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt to highlight aspects that are relevant and/or potentially translatable to the etiology and treatment of major depression and anxiety. Evidence pertinent to autism spectrum and metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also nominate some key experimental studies required to better establish the therapeutic potential of this intriguing neuromodulatory signaling system, including an examination of the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common neural substrates and circuitry that are identified as dysfunctional in these debilitating brain diseases.
Collapse
Affiliation(s)
- Craig M Smith
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew W Walker
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Ihaia T Hosken
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Berenice E Chua
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Cary Zhang
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Mouna Haidar
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew L Gundlach
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne VIC, Australia
| |
Collapse
|
22
|
Wang Q, Liu C, Uchida A, Chuang JC, Walker A, Liu T, Osborne-Lawrence S, Mason BL, Mosher C, Berglund ED, Elmquist JK, Zigman JM. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol Metab 2013; 3:64-72. [PMID: 24567905 PMCID: PMC3929914 DOI: 10.1016/j.molmet.2013.10.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreERT2 transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelin's orexigenic effects but are sufficient to mediate ghrelin's effects on glycemia.
Collapse
Key Words
- ARC, arcuate nucleus
- AgRP
- AgRP, Agouti-related peptide
- BAC, bacterial artificial chromosome
- Blood glucose homeostasis
- CNS, central nervous system
- DG, dentate gyrus
- DVC, dorsal vagal complex
- Food intake
- Foxo1, Forkhead box protein O1
- G6p, glucose-6 phosphatase
- GABA, gamma-aminobutyric acid
- GHRH, Growth-hormone-releasing hormone
- GHSR, growth hormone secretagogue receptor, ghrelin receptor
- GOAT, ghrelin O-acyltransferase
- Ghrelin
- Ghrelin receptor
- Hnf4α, hepatocyte nuclear factor 4α
- NAc, nucleus accumbens
- NPY, neuropeptide Y
- POMC, pro-opiomelanocortin
- Pcx, pyruvate carboxylase
- Pepck, phosphoenolpyruvate carboxykinase
- Phox2b, paired-like homeobox 2b
- VGAT, vesicular GABA transporter
- VTA, ventral tegmental area
Collapse
Affiliation(s)
- Qian Wang
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aki Uchida
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jen-Chieh Chuang
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela Walker
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brittany L Mason
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Mosher
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric D Berglund
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
HUANG JUN, JIANG WEIXI, YUAN DUN. Functional profiling of immediate early gene Egr1 in an anorexic mouse model. Mol Med Rep 2013; 8:1563-9. [DOI: 10.3892/mmr.2013.1656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/19/2013] [Indexed: 11/05/2022] Open
|