1
|
Fernezelian D, Rondeau P, Gence L, Diotel N. Telencephalic stab wound injury induces regenerative angiogenesis and neurogenesis in zebrafish: unveiling the role of vascular endothelial growth factor signaling and microglia. Neural Regen Res 2025; 20:2938-2954. [PMID: 39248179 PMCID: PMC11826465 DOI: 10.4103/nrr.nrr-d-23-01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00025/figure1/v/2024-11-26T163120Z/r/image-tiff After brain damage, regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals, suggesting a close link between these processes. However, the mechanisms by which these processes interact are not well understood. In this work, we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury. To this end, we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms. First, using the Tg( fli1:EGFP × mpeg1.1:mCherry ) zebrafish line, which enables visualization of blood vessels and microglia respectively, we analyzed regenerative angiogenesis from 1 to 21 days post-lesion. In parallel, we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry. We found that after brain damage, the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor ( vegfaa and vegfbb ) were increased. At the same time, neural stem cell proliferation was also increased, peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis, along with the recruitment of microglia. Then, through pharmacological manipulation by injecting an anti-angiogenic drug (Tivozanib) or Vegf at the lesion site, we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes, as well as microglial recruitment. Finally, we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis, as previously described, as well as injury-induced angiogenesis. In conclusion, we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process. In addition, we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes. This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
Collapse
Affiliation(s)
- Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Pierre, La Réunion, France
| |
Collapse
|
2
|
Wu N, Li W, Chen Q, Chen M, Chen S, Cheng C, Xie Y. Research Advances in Neuroblast Migration in Traumatic Brain Injury. Mol Neurobiol 2024; 61:1-13. [PMID: 38507029 DOI: 10.1007/s12035-024-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Neuroblasts were first derived from the adult mammalian brains in the 1990s by Reynolds et al. Since then, persistent neurogenesis in the subgranular zone (SGZ) of the hippocampus and subventricular zone (SVZ) has gradually been recognized. To date, reviews on neuroblast migration have largely investigated glial cells and molecular signaling mechanisms, while the relationship between vasculature and cell migration remains a mystery. Thus, this paper underlines the partial biological features of neuroblast migration and unravels the significance and mechanisms of the vasculature in the process to further clarify theoretically the neural repair mechanism after brain injury. Neuroblast migration presents three modes according to the characteristics of cells that act as scaffolds during the migration process: gliophilic migration, neurophilic migration, and vasophilic migration. Many signaling molecules, including brain-derived neurotrophic factor (BDNF), stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and angiopoietin-1 (Ang-1), affect vasophilic migration, synergistically regulating the migration of neuroblasts to target areas along blood vessels. However, the precise role of blood vessels in the migration of neuroblasts needs to be further explored. The in-depth study of neuroblast migration will most probably provide theoretical basis and breakthrough for the clinical treatment of brain injury diseases.
Collapse
Affiliation(s)
- Na Wu
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Wenlang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qiang Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Meng Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Siyuan Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| |
Collapse
|
3
|
Purvis EM, Garcia-Epelboim AD, Krizman EN, O’Donnell JC, Cullen DK. A three-dimensional tissue-engineered rostral migratory stream as an in vitro platform for subventricular zone-derived cell migration. Front Bioeng Biotechnol 2024; 12:1410717. [PMID: 38933539 PMCID: PMC11199690 DOI: 10.3389/fbioe.2024.1410717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In the brains of most adult mammals, neural precursor cells (NPCs) from the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to replace olfactory bulb interneurons. Following brain injury, published studies have shown that NPCs can divert from the SVZ-RMS-OB route and migrate toward injured brain regions, but the quantity of arriving cells, the lack of survival and terminal differentiation of neuroblasts into neurons, and their limited capacity to re-connect into circuitry are insufficient to promote functional recovery in the absence of therapeutic intervention. Our lab has fabricated a biomimetic tissue-engineered rostral migratory stream (TE-RMS) that replicates some notable structural and functional components of the endogenous rat RMS. Based on the design attributes for the TE-RMS platform, it may serve as a regenerative medicine strategy to facilitate sustained neuronal replacement into an injured brain region or an in vitro tool to investigate cell-cell communication and neuroblast migration. Previous work has demonstrated that the TE-RMS replicates the basic structure, unique nuclear shape, cytoskeletal arrangement, and surface protein expression of the endogenous rat RMS. Here, we developed an enhanced TE-RMS fabrication method in hydrogel microchannels that allowed more robust and high-throughput TE-RMS assembly. We report unique astrocyte behavior, including astrocyte bundling into the TE-RMS, the presence of multiple TE-RMS bundles, and observations of discontinuities in TE-RMS bundles, when microtissues are fabricated in agarose microchannels containing different critical curved or straight geometric features. We also demonstrate that we can harvest NPCs from the SVZ of adult rat brains and that EGFP+ cells migrate in chain formation from SVZ neurospheres through the TE-RMS in vitro. Overall, the TE-RMS can be utilized as an in vitro platform to investigate the pivotal cell-cell signaling mechanisms underlying the synergy of molecular cues involved in immature neuronal migration and differentiation.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrés D. Garcia-Epelboim
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth N. Krizman
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Nakamura Y, Miwa T, Shiga H, Sakata H, Shigeta D, Hatta T. Histological changes in the olfactory bulb and rostral migratory stream due to interruption of olfactory input. Auris Nasus Larynx 2024; 51:517-524. [PMID: 38522356 DOI: 10.1016/j.anl.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.
Collapse
Affiliation(s)
- Yukari Nakamura
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan.
| | - Hideaki Shiga
- Department of Otorhinolaryngology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Hiromi Sakata
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Daichi Shigeta
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| | - Toshihisa Hatta
- Department of Anatomy I, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Japan
| |
Collapse
|
5
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
6
|
Tomasello B, Bellia F, Naletova I, Magrì A, Tabbì G, Attanasio F, Tomasello MF, Cairns WRL, Fortino M, Pietropaolo A, Greco V, La Mendola D, Sciuto S, Arena G, Rizzarelli E. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem Neurosci 2024; 15:1755-1769. [PMID: 38602894 DOI: 10.1021/acschemneuro.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Irina Naletova
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Antonio Magrì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Giovanni Tabbì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | | | | | - Warren R L Cairns
- Istituto di Scienze Polari (ISP), c/o Campus Scientifico, Università Ca' Foscari Venezia Via Torino, Venezia Mestre 155-30170, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Diego La Mendola
- Department of Pharmaceutical Sciences, University of Pisa, Bonanno Pisano 12, Pisa 56126, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| |
Collapse
|
7
|
Moon S, Ito Y. Vasculature cells control neuroglial co-localization and synaptic connection in a central nervous system tissue mimic system. Hum Cell 2023; 36:1938-1947. [PMID: 37470936 DOI: 10.1007/s13577-023-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Despite the development of neural tissue differentiation methods using a wide variety of stem cells and compartments, there is no standardized strategy for establishing synapses. As the neuronal network is developed in parallel with blood vessel angiogenesis in the central nervous system (CNS) from the embryonic period, we examined neuron-astrocyte-vasculature interactions to understand the effect of the vasculature on the development and stabilization of neurological morphogenesis. We generated a cellular co-culture module targeting the CNS that was embedded in a collagen-based extracellular matrix (ECM) gel. Our neuron-astrocyte-vascular complex module identified the neurological co-localization effect by endothelial cells, as well as the pericyte-induced improvement of synaptic connections. Furthermore, it was suggested that the PDGF, BDNF, IGF, and WNT/BMP pathways were upregulated in synaptic connections enhanced conditions, which are composed of neurexin. These results suggest that the integrity of the vasculature cells in the CNS is important for the establishment of neuronal networks and for synapse connection.
Collapse
Affiliation(s)
- SongHo Moon
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tenno-Dai, Tsukuba, Ibaraki, 305-8972, Japan
| | - Yuzuru Ito
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tenno-Dai, Tsukuba, Ibaraki, 305-8972, Japan.
- Life Science Development Department, Frontier Business Division, Chiyoda Corporation, Yokohama, Kanagawa, Japan.
| |
Collapse
|
8
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
9
|
Tang H, Li Y, Tang W, Zhu J, Parker GC, Zhang JH. Endogenous Neural Stem Cell-induced Neurogenesis after Ischemic Stroke: Processes for Brain Repair and Perspectives. Transl Stroke Res 2023; 14:297-303. [PMID: 36057034 DOI: 10.1007/s12975-022-01078-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Ischemic stroke is a very common cerebrovascular accident that occurred in adults and causes higher risk of neural deficits. After ischemic stroke, patients are often left with severe neurological deficits. Therapeutic strategies for ischemic stroke might mitigate neuronal loss due to delayed neural cell death in the penumbra or seek to replace dead neural cells in the ischemic core. Currently, stem cell therapy is the most promising approach for inducing neurogenesis for neural repair after ischemic stroke. Stem cell treatments include transplantation of exogenous stem cells but also stimulating endogenous neural stem cells (NSCs) proliferation and differentiation into neural cells. In this review, we will discuss endogenous NSCs-induced neurogenesis after ischemic stroke and provide perspectives for the therapeutic effects of endogenous NSCs in ischemic stroke. Our review would inform future therapeutic development not only for patients with ischemic stroke but also with other neurological deficits.
Collapse
Affiliation(s)
- Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
10
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
11
|
Neuroblasts migration under control of reactive astrocyte-derived BDNF: a promising therapy in late neurogenesis after traumatic brain injury. Stem Cell Res Ther 2023; 14:2. [PMID: 36600294 DOI: 10.1186/s13287-022-03232-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a disease with high mortality and morbidity, which leads to severe neurological dysfunction. Neurogenesis has provided therapeutic options for treating TBI. Brain derived neurotrophic factor (BDNF) plays a key role in neuroblasts migration. We aimed to investigate to the key regulating principle of BDNF in endogenous neuroblasts migration in a mouse TBI model. METHODS In this study, controlled cortical impact (CCI) mice (C57BL/6J) model was established to mimic TBI. The sham mice served as control. Immunofluorescence staining and enzyme-linked immunosorbent assay were performed on the CCI groups (day 1, 3, 7, 14 and 21 after CCI) and the sham group. All the data were analyzed with Student's t-test or one-way or two-way analysis of variance followed by Tukey's post hoc test. RESULTS Our results revealed that neuroblasts migration initiated as early as day 1, peaking at day 7, and persisted till day 21. The spatiotemporal profile of BDNF expression was similar to that of neuroblasts migration, and BDNF level following CCI was consistently higher in injured cortex than in subventricular zone (SVZ). Reactive astrocytes account for the major resource of BDNF along the migrating path, localized with neuroblasts in proximity. Moreover, injection of exogenous CC chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, at random sites promoted neuroblasts migration and astrocytic BDNF expression in both normal and CCI mice (day 28). These provoked neuroblasts can also differentiate into mature neurons. CC chemokine ligand receptor 2 antagonist can restrain the neuroblasts migration after TBI. CONCLUSIONS Neuroblasts migrated along the activated astrocytic tunnel, directed by BDNF gradient between SVZ and injured cortex after TBI. CCL2 might be a key regulator in the above endogenous neuroblasts migration. Moreover, delayed CCL2 administration may provide a promising therapeutic strategy for late neurogenesis post-trauma.
Collapse
|
12
|
Kim HS, Shin SM, Kim S, Nam Y, Yoo A, Moon M. Relationship between adult subventricular neurogenesis and Alzheimer’s disease: Pathologic roles and therapeutic implications. Front Aging Neurosci 2022; 14:1002281. [PMID: 36185481 PMCID: PMC9518691 DOI: 10.3389/fnagi.2022.1002281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by irreversible cognitive declines. Senile plaques formed by amyloid-β (Aβ) peptides and neurofibrillary tangles, consisting of hyperphosphorylated tau protein accumulation, are prominent neuropathological features of AD. Impairment of adult neurogenesis is also a well-known pathology in AD. Adult neurogenesis is the process by which neurons are generated from adult neural stem cells. It is closely related to various functions, including cognition, as it occurs throughout life for continuous repair and development of specific neural pathways. Notably, subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, transports neurons to several brain regions such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. These migrating neurons can affect cognitive function and behavior in different neurodegenerative diseases. Despite several studies indicating the importance of adult SVZ neurogenesis in neurodegenerative disorders, the pathological alterations and therapeutic implications of impaired adult neurogenesis in the SVZ in AD have not yet been fully explained. In this review, we summarize recent progress in understanding the alterations in adult SVZ neurogenesis in AD animal models and patients. Moreover, we discuss the potential therapeutic approaches for restoring impaired adult SVZ neurogenesis. Our goal is to impart to readers the importance of adult SVZ neurogenesis in AD and to provide new insights through the discussion of possible therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Min Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
- *Correspondence: Minho Moon,
| |
Collapse
|
13
|
Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1093-1115. [PMID: 34970956 PMCID: PMC9886816 DOI: 10.2174/1570159x20666211231090659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | | | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Bai S, Lu X, Pan Q, Wang B, Pong U K, Yang Y, Wang H, Lin S, Feng L, Wang Y, Li Y, Lin W, Wang Y, Zhang X, Li Y, Li L, Yang Z, Wang M, Lee WYW, Jiang X, Li G. Cranial Bone Transport Promotes Angiogenesis, Neurogenesis, and Modulates Meningeal Lymphatic Function in Middle Cerebral Artery Occlusion Rats. Stroke 2022; 53:1373-1385. [PMID: 35135326 DOI: 10.1161/strokeaha.121.037912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ischemic stroke is a leading cause of death and disability worldwide. However, the time window for quickly dissolving clots and restoring cerebral blood flow, using tissue-type plasminogen activator treatment is rather limited, resulting in many patients experiencing long-term functional impairments if not death. This study aims to determine the roles of cranial bone transport (CBT), a novel, effective, and simple surgical technique, in the recovery of ischemic stroke using middle cerebral artery occlusion (MCAO) rat model. METHODS CBT was performed by slowly sliding a bone segment in skull with a special frame and a speed of 0.25 mm/12 hours for 10 days following MCAO. Morris water maze, rotarod test, and catwalk gait analysis were used to study the neurological behaviors, and infarct area and cerebral flow were evaluated during CBT process. Immunofluorescence staining of CD31 and Nestin/Sox2 (sex determining region Y box 2) was performed to study the angiogenesis and neurogenesis. OVA-A647 (ovalbumin-Alexa Fluor 647) was intracisterna magna injected to evaluate the meningeal lymphatic drainage function. RESULTS CBT treatment has significantly reduced the ischemic lesions areas and improved the neurological deficits in MCAO rats compared with the rats in the control groups. CBT treatment significantly promoted angiogenesis and neurogenesis in the brain of MCAO rats. The drainage function of meningeal lymphatic vessels in MCAO rats was significantly impaired compared with normal rats. Ablation of meningeal lymphatic drainage led to increased neuroinflammation and aggravated neurological deficits and ischemic injury in MCAO rats. CBT treatment significantly improved the meningeal lymphatic drainage function and alleviated T-cell infiltration in MCAO rats. CONCLUSIONS This study provided evidence for the possible mechanisms on how CBT attenuates ischemic stroke injury and facilitates rapid neuronal function recovery, suggesting that CBT may be an alternative treatment strategy for managing ischemic stroke.
Collapse
Affiliation(s)
- Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Qi Pan
- Department of Pediatric Orthopaedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, PR China (Q.P.)
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Kin Pong U
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, PR China (K.P.U., X.J.)
| | - Yongkang Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Yan Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | | | | | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Yuan Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, PR China (K.P.U., X.J.)
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| |
Collapse
|
15
|
MALAT1 improves functional recovery after traumatic brain injury through promoting angiogenesis in experimental mice. Brain Res 2022; 1775:147731. [PMID: 34808123 DOI: 10.1016/j.brainres.2021.147731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022]
Abstract
As a highly evolutionary conserved lncRNA, MALAT1 was first demonstrated to associate with metastasis of lung tumor by promoting angiogenesis. Activated vasculature was recently indicated to assist neurogenesis by secreting neurotrophic factor Ang1 (Angiopoietin-1). The purpose of this study is to investigate the potential role of MALAT1 in angiogenesis following traumatic brain injury (TBI). Adult male mice were subjected to controlled cortical impact (CCI) and brain microvascular endothelial cells were exposed to oxygen-glucose deprivation (OGD). MALAT1 RNA levels were quantified by qRT-PCR in different cells of CNS and located by RNA-FISH. Angiogenesis were measured by cell viability, migration assay, tube formation assay in vitro, and immunohistochemistry in vivo. Expression of Angiopoietin-1 was assessed by Western blot. Neurological functions were performed by NSS, Wire grip and MWM tests. Our results indicated that 1) MALAT1 RNA was localized in cerebral endothelium, enhanced by OGD stimuli. 2) Inhibition of MALAT1 by siRNA suppressed angiogenesis, as indicated by endothelial viability, tube formation, migration, and functional vessel density. 3) MALAT1 inhibition further decreased Ang1 expression in the endothelium. 4) Mice with MALAT1 inhibition exhibited worse behavioral performances (NSS, wire grip, Morris water maze), as compared to control. MALAT1 could promote angiogenesis, subsequently contributing to the Ang1 synthesis from active vasculature. It may eventually benefit to functional recovery following TBI.
Collapse
|
16
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
17
|
Soares R, Ribeiro FF, Lourenço DM, Rodrigues RS, Moreira JB, Sebastião AM, Morais VA, Xapelli S. The neurosphere assay: an effective in vitro technique to study neural stem cells. Neural Regen Res 2021; 16:2229-2231. [PMID: 33818505 PMCID: PMC8354118 DOI: 10.4103/1673-5374.310678] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rita Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina; Instituto de Farmacologia e Neurociências, Faculdade de Medicina; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo M Lourenço
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa A Morais
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Efimova EV, Kozlova AA, Razenkova V, Katolikova NV, Antonova KA, Sotnikova TD, Merkulyeva NS, Veshchitskii AS, Kalinina DS, Korzhevskii DE, Musienko PE, Kanov EV, Gainetdinov RR. Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice. Neuropharmacology 2020; 182:108373. [PMID: 33132188 DOI: 10.1016/j.neuropharm.2020.108373] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
Abstract
Trace amine-associated receptors (TAARs) are a class of sensory G protein-coupled receptors that detect biogenic amines, products of decarboxylation of amino acids. The majority of TAARs (TAAR2-TAAR9) have been described mainly in the olfactory epithelium and considered to be olfactory receptors sensing innate odors. However, there is recent evidence that one of the members of this family, TAAR5, is expressed also in the limbic brain areas receiving projection from the olfactory system and involved in the regulation of emotions. In this study, we further characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO mice) that express beta-galactosidase mapping TAAR5 expression. We found that in TAAR5-KO mice the number of dopamine neurons, the striatal levels of dopamine and its metabolites, as well as striatal levels of GDNF mRNA, are elevated indicating a potential increase in dopamine neuron proliferation. Furthermore, an analysis of TAAR5 beta-galactosidase expression revealed that TAAR5 is present in the major neurogenic areas of the brain such as the subventricular zone (SVZ), the subgranular zone (SGZ) and the less characterized potentially neurogenic zone surrounding the 3rd ventricle. Direct analysis of neurogenesis by using specific markers doublecortin (DCX) and proliferating cell nuclear antigen (PCNA) revealed at least 2-fold increase in the number of proliferating neurons in the SVZ and SGZ of TAAR5-KO mice, but no such markers were detected in mutant or control mice in the areas surrounding the 3rd ventricle. These observations indicate that TAAR5 involved not only in regulation of emotional status but also adult neurogenesis and dopamine transmission. Thus, future TAAR5 antagonists may exert not only antidepressant and/or anxiolytic action but may also provide new treatment opportunity for neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Alena A Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Nataliia V Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Tatyana D Sotnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Natalia S Merkulyeva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | | | - Daria S Kalinina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Pavel E Musienko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; St. Petersburg State Research Institute of Phthisiopulmonology, Ministry of Healthcare of the RF, St. Petersburg, 191036, Russia
| | - Evgeny V Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, 199034, Russia.
| |
Collapse
|
19
|
From Tumor Metastasis towards Cerebral Ischemia-Extracellular Vesicles as a General Concept of Intercellular Communication Processes. Int J Mol Sci 2019; 20:ijms20235995. [PMID: 31795140 PMCID: PMC6928831 DOI: 10.3390/ijms20235995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been tremendous carriers in both experimental and translational science. These vesicles—formerly regarded as artifacts of in vitro research—have a heterogeneous population of vesicles derived from virtually all eukaryotic cells. EVs consist of a bilayer lipid structure with a diameter of about 30 to 1000 nm and have a characteristic protein and non-coding RNA content that make up different forms of EVs such as exosomes, microvesicles, and others. Despite recent progress in the EV field, which is known to serve as potential biomarkers and therapeutic tools under various pathological conditions, fundamental questions are yet to be answered. This short review focuses on recently reported data regarding EVs under pathological conditions with a particular emphasis on the role of EVs under such different conditions like tumor formation and cerebral ischemia. The review strives to point out general concepts of EV intercellular communication processes that might be vital to both diagnostic and therapeutic strategies in the long run.
Collapse
|
20
|
Citicoline affects serum angiostatin and neurospecific protein levels in patients with atrial fibrillation and ischemic stroke. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
22
|
Karakatsani A, Shah B, Ruiz de Almodovar C. Blood Vessels as Regulators of Neural Stem Cell Properties. Front Mol Neurosci 2019; 12:85. [PMID: 31031591 PMCID: PMC6473036 DOI: 10.3389/fnmol.2019.00085] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023] Open
Abstract
In the central nervous system (CNS), a precise communication between the vascular and neural compartments is essential for proper development and function. Recent studies demonstrate that certain neuronal populations secrete various molecular cues to regulate blood vessel growth and patterning in the spinal cord and brain during development. Interestingly, the vasculature is now emerging as a critical component that regulates stem cell niches during neocortical development, as well as during adulthood. In this review article, we will first provide an overview of blood vessel development and maintenance in embryonic and adult neurogenic niches. We will also summarize the current understanding of how blood vessel-derived signals influence the behavior of neural stem cells (NSCs) during early development as well as in adulthood, with a focus on their metabolism.
Collapse
Affiliation(s)
- Andromachi Karakatsani
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
23
|
Grasman JM, Ferreira JA, Kaplan DL. Tissue Models for Neurogenesis and Repair in 3D. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1803822. [PMID: 32440261 PMCID: PMC7241596 DOI: 10.1002/adfm.201803822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development and maturation of vascular and neuronal tissues occurs simultaneously in utero, and are regulated by significant crosstalk. We report on the development of a 3D tissue system to model neurogenesis and recapitulate developmental signaling conditions. Human umbilical vein endothelial cells (HUVECs) were seeded inside channels within collagen gels to represent nascent vascular networks. Axons extending from chicken dorsal root ganglia (DRGs) grew significantly longer and preferentially towards the HUVEC seeded channels with respect to unloaded channels. To replicate these findings without the vascular component, channels were loaded with brain-derived neurotrophic factor (BDNF), the principle signaling molecule in HUVEC-stimulated axonal growth, and axons likewise were significantly longer and grew preferentially towards the BDNF-loaded channels with respect to controls. This 3D tissue system was then used as an in vitro replicate for peripheral nerve injury, with neural repair observed within 2 weeks. These results demonstrate that our 3D tissue system can model neural network formation, repair after laceration injuries, and can be utilized to further study how these networks form and interact with other tissues, such as skin or skeletal muscle.
Collapse
Affiliation(s)
| | | | - David L. Kaplan
- Address Correspondence to: David L. Kaplan, Ph.D., Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA, 02155, Tel: 617-627-3251, Fax: 617-627-3231,
| |
Collapse
|
24
|
Doeppner TR, Bähr M, Giebel B, Hermann DM. Immunological and non-immunological effects of stem cell-derived extracellular vesicles on the ischaemic brain. Ther Adv Neurol Disord 2018; 11:1756286418789326. [PMID: 30083231 PMCID: PMC6071165 DOI: 10.1177/1756286418789326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
Following the implementation of thrombolysis and endovascular recanalization
strategies, stroke therapy has profoundly changed in recent years. In spite of
these advancements, a considerable proportion of stroke patients still exhibit
functional impairment in the long run, increasing the need for adjuvant
therapies that promote neurological recovery. Stem cell therapies have initially
attracted great interest in the stroke field, since there were hopes that
transplanted cells may allow for the replacement of lost cells. After the
recognition that transplanted cells integrate poorly into existing neural
networks and that they induce brain remodelling in a paracrine way by secreting
a heterogeneous group of nanovesicles, these extracellular vesicles (EVs) have
been identified as key players that mediate restorative effects of stem and
progenitor cells in ischaemic brain tissue. We herein review restorative effects
of EVs in stroke models and discuss immunological and non-immunological
mechanisms that may underlie recovery of function.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Department of Neurology, Goettingen, Germany
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
25
|
Machado-Pereira M, Santos T, Ferreira L, Bernardino L, Ferreira R. Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neurosci Lett 2018. [PMID: 29518539 DOI: 10.1016/j.neulet.2018.02.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perinatal stroke is often difficult to diagnose and an established treatment has not yet been validated, except for symptomatic measures. Herein, we propose to test the neuroprotective potential of the intravenous injection of retinoic acid-loaded nanoparticles (RA-NP) upon ischemic injury to the immature brain. The role of RA-NP on endothelial cells and organotypic slice cultures exposed to oxygen and glucose deprivation was assessed by evaluating markers pertaining to survival, proliferation, oxidative stress (NO, ROS), neuronal damage (enolase), vascular oxidation (p47phox) and microglia activation (CD68). Data showed that RA-NP (3 μg/ml) increased endothelial proliferation and survival, and normalized NO and ROS levels. The intravenous administration of RA-NP (10 μg/g) prevented ischemic injury in the hippocampus of 2-day-old mice by inhibiting cell death and normalizing markers of neurovascular function and inflammation. In sum, systemic administration of RA-NP protected neurovascular integrity and the inflammatory milieu from ischemia in the immature brain, highlighting its therapeutic value for perinatal stroke.
Collapse
Affiliation(s)
- Marta Machado-Pereira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Tiago Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Lino Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal.
| |
Collapse
|
26
|
Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ. MicroRNA-210 Promotes Accumulation of Neural Precursor Cells Around Ischemic Foci After Cerebral Ischemia by Regulating the SOCS1-STAT3-VEGF-C Pathway. J Am Heart Assoc 2018; 7:JAHA.116.005052. [PMID: 29478968 PMCID: PMC5866312 DOI: 10.1161/jaha.116.005052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Neural precursor cell (NPC) migration toward lesions is key for neurological functional recovery. The neovasculature plays an important role in guiding NPC migration. MicroRNA‐210 (miR‐210) promotes angiogenesis and neurogenesis in the subventricular zone and hippocampus after cerebral ischemia; however, whether miR‐210 regulates NPC migration and the underlying mechanism is still unclear. This study investigated the role of miR‐210 in NPC migration. Methods and Results Neovascularization and NPC accumulation was detected around ischemic foci in a mouse model of middle cerebral artery occlusion (MCAO) and reperfusion. Bone marrow–derived endothelial progenitor cells (EPCs) were found to participate in neovascularization. miR‐210 was markedly upregulated after focal cerebral ischemia/reperfusion. Overexpressed miR‐210 enhanced neovascularization and NPC accumulation around the ischemic lesion and vice versa, strongly suggesting that miR‐210 might be involved in neovascularization and NPC accumulation after focal cerebral ischemia/reperfusion. In vitro experiments were conducted to explore the underlying mechanism. The transwell assay showed that EPCs facilitated NPC migration, which was further promoted by miR‐210 overexpression in EPCs. In addition, miR‐210 facilitated VEGF‐C (vascular endothelial growth factor C) expression both in vitro and in vivo. Moreover, the luciferase reporter assay demonstrated that miR‐210 directly targeted the 3′ untranslated region of SOCS1 (suppressor of cytokine signaling 1), and miR‐210 overexpression in HEK293 cells or EPCs decreased SOCS1 and increased STAT3 (signal transducer and activator of transcription 3) and VEGF‐C expression. When EPCs were simultaneously transfected with miR‐210 mimics and SOCS1, the expression of STAT3 and VEGF‐C was reversed. Conclusions miR‐210 promoted neovascularization and NPC migration via the SOCS1–STAT3–VEGF‐C pathway.
Collapse
Affiliation(s)
- Zhao-You Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua-Li Kang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian-Ning Li
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhu-Juan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
27
|
Dietrich J, Baryawno N, Nayyar N, Valtis YK, Yang B, Ly I, Besnard A, Severe N, Gustafsson KU, Andronesi OC, Batchelor TT, Sahay A, Scadden DT. Bone marrow drives central nervous system regeneration after radiation injury. J Clin Invest 2017; 128:281-293. [PMID: 29202481 DOI: 10.1172/jci90647] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/24/2017] [Indexed: 01/05/2023] Open
Abstract
Nervous system injury is a frequent result of cancer therapy involving cranial irradiation, leaving patients with marked memory and other neurobehavioral disabilities. Here, we report an unanticipated link between bone marrow and brain in the setting of radiation injury. Specifically, we demonstrate that bone marrow-derived monocytes and macrophages are essential for structural and functional repair mechanisms, including regeneration of cerebral white matter and improvement in neurocognitive function. Using a granulocyte-colony stimulating factor (G-CSF) receptor knockout mouse model in combination with bone marrow cell transplantation, MRI, and neurocognitive functional assessments, we demonstrate that bone marrow-derived G-CSF-responsive cells home to the injured brain and are critical for altering neural progenitor cells and brain repair. Additionally, compared with untreated animals, animals that received G-CSF following radiation injury exhibited enhanced functional brain repair. Together, these results demonstrate that, in addition to its known role in defense and debris removal, the hematopoietic system provides critical regenerative drive to the brain that can be modulated by clinically available agents.
Collapse
Affiliation(s)
- Jorg Dietrich
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Neurology and Division of Neuro-Oncology, MGH, and
| | - Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Naema Nayyar
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Yannis K Valtis
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Betty Yang
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ina Ly
- Department of Neurology and Division of Neuro-Oncology, MGH, and
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Karin U Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Athinoula A. Martinos Biomedical Imaging Center, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Doeppner TR, Bähr M, Hermann DM, Giebel B. Concise Review: Extracellular Vesicles Overcoming Limitations of Cell Therapies in Ischemic Stroke. Stem Cells Transl Med 2017; 6:2044-2052. [PMID: 28941317 PMCID: PMC6430061 DOI: 10.1002/sctm.17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in stroke therapy, current therapeutic concepts are still limited. Thus, additional therapeutic strategies are in order. In this sense, the transplantation of stem cells has appeared to be an attractive adjuvant tool to help boost the endogenous regenerative capacities of the brain. Although transplantation of stem cells is known to induce beneficial outcome in (preclinical) stroke research, grafted cells do not replace lost tissue directly. Rather, these transplanted cells like neural progenitor cells or mesenchymal stem cells act in an indirect manner, among which the secretion of extracellular vesicles (EVs) appears to be one key factor. Indeed, the application of EVs in preclinical stroke studies suggests a therapeutic role, which appears to be noninferior in comparison to the transplantation of stem cells themselves. In this short review, we highlight some of the recent advances in the field of EVs as a therapeutic means to counter stroke. Stem Cells Translational Medicine2017;6:2044–2052
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
29
|
Abstract
Understanding how nerves spontaneously innervate tissues or regenerate small injuries is critical to enhance material-based interventions to regenerate large scale, traumatic injuries. During embryogenesis, neural and vascular tissues form interconnected, complex networks as a result of signaling between these tissue types. Here, we report that human endothelial cells (HUVECs) secrete brain-derived neurotrophic factor (BDNF), which significantly stimulated axonal growth from chicken or rat dorsal root ganglia (DRGs). HUVEC-conditioned medium was sufficient to enhance axonal growth, demonstrating that direct cell-cell contact was not required. When BDNF was neutralized, there was a significant reduction in axonal growth when incubated in HUVEC-conditioned medium and in direct co-culture with HUVECs. These data show that HUVECs secrete neurotrophic factors that significantly enhance axonal growth, and can inform future in vivo studies to direct or pattern the angiogenic response in regenerating tissues to encourage re-innervation.
Collapse
|
30
|
Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem 2017; 141:835-847. [DOI: 10.1111/jnc.14002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
- Division of Neural Development and Regeneration; National Institute for Physiological Sciences; Okazaki Aichi Japan
| |
Collapse
|
31
|
Gutierre RC, Vannucci Campos D, Mortara RA, Coppi AA, Arida RM. Reflection imaging of China ink-perfused brain vasculature using confocal laser-scanning microscopy after clarification of brain tissue by the Spalteholz method. J Anat 2017; 230:601-606. [PMID: 28054714 DOI: 10.1111/joa.12578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2016] [Indexed: 11/28/2022] Open
Abstract
Confocal laser-scanning microscopy is a useful tool for visualizing neurons and glia in transparent preparations of brain tissue from laboratory animals. Currently, imaging capillaries and venules in transparent brain tissues requires the use of fluorescent proteins. Here, we show that vessels can be imaged by confocal laser-scanning microscopy in transparent cortical, hippocampal and cerebellar preparations after clarification of China ink-injected specimens by the Spalteholz method. This method may be suitable for global, three-dimensional, quantitative analyses of vessels, including stereological estimations of total volume and length and of surface area of vessels, which constitute indirect approaches to investigate angiogenesis.
Collapse
Affiliation(s)
- R C Gutierre
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Braz
| | - D Vannucci Campos
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Braz
| | - R A Mortara
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - A A Coppi
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - R M Arida
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
32
|
Ferreira R, Fonseca MC, Santos T, Sargento-Freitas J, Tjeng R, Paiva F, Castelo-Branco M, Ferreira LS, Bernardino L. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. NANOSCALE 2016; 8:8126-37. [PMID: 27025400 DOI: 10.1039/c5nr09077f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.
Collapse
Affiliation(s)
- R Ferreira
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - M C Fonseca
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - T Santos
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - J Sargento-Freitas
- Stroke Unit, Coimbra University and Hospital Centre, Coimbra, Portugal and Biocant - Center of Innovation in Biotechnology, Cantanhede, Portugal
| | - R Tjeng
- Stroke Unit, Hospital Center of Cova da Beira, Covilhã, Portugal
| | - F Paiva
- Stroke Unit, Hospital Center of Cova da Beira, Covilhã, Portugal
| | - M Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal. and Hospital Center of Cova da Beira, Covilhã, Portugal
| | - L S Ferreira
- Biocant - Center of Innovation in Biotechnology, Cantanhede, Portugal and CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - L Bernardino
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
33
|
Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8549590. [PMID: 27069496 PMCID: PMC4812278 DOI: 10.1155/2016/8549590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Background. Tongxinluo is a traditional Chinese medicine compound with the potential to promote the neuronal functional recovery in cerebral ischemic infarction. Objective. This study aimed to disclose whether tongxinluo promotes neurological functional recovery and neurogenesis and angiogenesis in the infarcted area and SVZ after cerebral ischemic infarction in hypertensive rats. Methods. The ischemic model was prepared by distal middle cerebral artery occlusion (MCAO) in hypertensive rats. Tongxinluo was administrated 24 h after MCAO and lasted for 3, 7, or 14 days. Behavioral tests were performed to evaluate the protection of tongxinluo. Immunochemical staining was applied on brain tissue to evaluate the effects of tongxinluo on neurogenesis and vascularization in the MCAO model rats. Results. Postinjury administration of tongxinluo ameliorated the neuronal function deficit in the MCAO model rats. As evidenced by the immunochemical staining, BrdU(+)/DCX(+), BrdU(+)/nestin(+), and BrdU(+) vascular endothelial cells were promoted to proliferate in SVZ after tongxinluo administration. The matured neurons stained by NeuN and vascularization by laminin staining were observed after tongxinluo administration in the peri-infarct area. Conclusion. Tongxinluo postischemia administration could ameliorate the neurological function deficit in the model rats. Possible mechanisms are related to neurogenesis and angiogenesis in the peri-infarct area and SVZ.
Collapse
|
34
|
Marlier Q, Verteneuil S, Vandenbosch R, Malgrange B. Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Front Neurosci 2015; 9:458. [PMID: 26696816 PMCID: PMC4672088 DOI: 10.3389/fnins.2015.00458] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Stroke affects one in every six people worldwide, and is the leading cause of adult disability. After stroke, some limited spontaneous recovery occurs, the mechanisms of which remain largely unknown. Multiple, parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. For years, clinical studies have tried to use exogenous cell therapy as a means of brain repair, with varying success. Since the rediscovery of adult neurogenesis and the identification of adult neural stem cells in the late nineties, one promising field of investigation is focused upon triggering and stimulating this self-repair system to replace the neurons lost following brain injury. For instance, it is has been demonstrated that the adult brain has the capacity to produce large numbers of new neurons in response to stroke. The purpose of this review is to provide an updated overview of stroke-induced adult neurogenesis, from a cellular and molecular perspective, to its impact on brain repair and functional recovery.
Collapse
Affiliation(s)
- Quentin Marlier
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | | | - Renaud Vandenbosch
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| |
Collapse
|
35
|
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 2015; 1628:327-342. [DOI: 10.1016/j.brainres.2015.04.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
36
|
Ruan L, Wang B, ZhuGe Q, Jin K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 2015; 1623:166-73. [PMID: 25736182 PMCID: PMC4552615 DOI: 10.1016/j.brainres.2015.02.042] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 01/19/2023]
Abstract
Stroke is a leading cause of mortality and severe long-term disability worldwide. Development of effective treatment or new therapeutic strategies for ischemic stroke patients is therefore crucial. Ischemic stroke promotes neurogenesis by several growth factors including FGF-2, IGF-1, BDNF, VEGF and chemokines including SDF-1, MCP-1. Stroke-induced angiogenesis is similarly regulated by many factors most notably, eNOS and CSE, VEGF/VEGFR2, and Ang-1/Tie2. Important findings in the last decade have revealed that neurogenesis is not the stand-alone consideration in the fight for full functional recovery from stroke. Angiogenesis has been also shown to be critical in improving post-stroke neurological functional recovery. More than that, recent evidence has shown a highly possible interplay or dependence between stroke-induced neurogenesis and angiogenesis. Moving forward, elucidating the underlying mechanisms of this coupling between stroke-induced neurogenesis and angiogenesis will be of great importance, which will provide the basis for neurorestorative therapy. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Linhui Ruan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Institute of Aging and Alzheimer׳s Disease Research, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Qichuan ZhuGe
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Institute of Aging and Alzheimer׳s Disease Research, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| |
Collapse
|
37
|
Hill J, Cave J. Targeting the vasculature to improve neural progenitor transplant survival. Transl Neurosci 2015; 6:162-167. [PMID: 28123800 PMCID: PMC4936624 DOI: 10.1515/tnsci-2015-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor transplantation is a promising therapeutic option for several neurological diseases and injuries. In nearly all human clinical trials and animal models that have tested this strategy, the low survival rate of progenitors after engraftment remains a significant challenge to overcome. Developing methods to improve the survival rate will reduce the number of cells required for transplant and will likely enhance functional improvements produced by the procedure. Here we briefly review the close relationship between the blood vasculature and neural progenitors in both the embryo and adult nervous system. We also discuss previous studies that have explored the role of the vasculature and hypoxic pre-conditioning in neural transplants. From these studies, we suggest that hypoxic pre-conditioning of a progenitor pool containing both neural and endothelial cells will improve engrafted transplanted neuronal survival rates.
Collapse
Affiliation(s)
- Justin Hill
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| | - John Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| |
Collapse
|
38
|
Quintard H, Heurteaux C, Ichai C. Adult neurogenesis and brain remodelling after brain injury: From bench to bedside? Anaesth Crit Care Pain Med 2015; 34:239-45. [PMID: 26233283 DOI: 10.1016/j.accpm.2015.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Brain trauma and stroke cause important disabilities. The mechanisms involved are now well described, but all therapeutics developed thus far for neuro-protection are currently unsuccessful at improving neurologic prognosis. The recently studied neuro-restorative time following brain injury may point towards a promising therapeutic approach. The purpose of this paper is to explain the mechanisms of this revolutionary concept, give an overview of related knowledge and discuss its transfer into clinical practice. DATA SOURCES AND SYNTHESIS An overview of the neurogenesis concept using MEDLINE, EMBASE and CENTRAL databases was carried out in May 2014. The clinicaltrials.gov registry was used to search for ongoing clinical trials in this domain. CONCLUSION The concept of brain remodelling upset fundamental ideas concerning the neurologic system and opened new fields of research. Therapies currently under evaluation hold promising results and could have a real prognostic impact in future years, but the translation of these therapies from the laboratory to the clinic is still far from completion.
Collapse
Affiliation(s)
- Hervé Quintard
- Intensive Care Unit, CHU Nice, 4, rue Pierre-Dévoluy, 06000 Nice, France.
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS), Université de Sophia-Antipolis, 660, route des Lucioles, 06560 Valbonne, France.
| | - Carole Ichai
- Intensive Care Unit, CHU Nice, 4, rue Pierre-Dévoluy, 06000 Nice, France.
| |
Collapse
|
39
|
Katsimpardi L, Rubin LL. Young systemic factors as a medicine for age-related neurodegenerative diseases. NEUROGENESIS 2015; 2:e1004971. [PMID: 27502604 PMCID: PMC4973601 DOI: 10.1080/23262133.2015.1004971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/14/2014] [Accepted: 01/03/2015] [Indexed: 01/19/2023]
Abstract
It is widely known that neurogenesis, brain function and cognition decline with aging. Increasing evidence suggests that cerebrovascular dysfunction is a major cause of cognitive impairment in the elderly but is also involved in age-related neurodegenerative diseases. Finding ways and molecules that reverse this process and ameliorate age- and disease-related cognitive impairment by targeting vascular and neurogenic deterioration would be of great therapeutic value. In Katsimpardi et al. we reported that young blood has a dual beneficial effect in the aged brain by restoring age-related decline in neurogenesis as well as inducing a striking remodeling of the aged vasculature and restoring blood flow to youthful levels. Additionally, we identified a youthful systemic factor, GDF11 that recapitulates these beneficial effects of young blood. We believe that the identification of young systemic factors that can rejuvenate the aged brain opens new roads to therapeutic intervention for neurodegenerative diseases by targeting both neural stem cells and neurogenesis as well as at the vasculature.
Collapse
Affiliation(s)
- Lida Katsimpardi
- Department of Stem Cell and Regenerative Biology; Harvard University and Harvard Stem Cell Institute ; Cambridge, MA USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology; Harvard University and Harvard Stem Cell Institute ; Cambridge, MA USA
| |
Collapse
|
40
|
Doeppner TR, Hermann DM. Stem cell-based treatments against stroke: observations from human proof-of-concept studies and considerations regarding clinical applicability. Front Cell Neurosci 2014; 8:357. [PMID: 25400548 PMCID: PMC4212679 DOI: 10.3389/fncel.2014.00357] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke remains a heavy burden for industrialized countries. The only causal therapy is the recanalization of occluded vessels via thrombolysis, which due to a narrow time window still can be offered only to a minority of patients. Since the majority of patients continues to exhibit neurological deficits even following successful thrombolysis, restorative therapies are urgently needed that promote brain remodeling and repair once stroke injury has occurred. Due to their unique properties of action, stem cell-based strategies gained increasing interest during recent years. Using various stroke models in both rodents and primates, the transplantation of stem cells, namely of bone marrow derived mesenchymal stem cells (MSCs) or neural progenitor cells (NPCs), has been shown to promote neurological recovery most likely via indirect bystander actions. In view of promising observations, clinical proof-of-concept studies are currently under way, in which effects of stem and precursor cells are evaluated in human stroke patients. In this review we summarize already published studies, which due to the broad experience in other medical contexts mostly employed bone marrow-derived MSCs by means of intravenous transplantation. With the overall number of clinical trials limited in number, only a fraction of these studies used non-treated control groups, and only single studies were adequately blinded. Despite these limitations, first promising results justify the need for more elaborate clinical trials in order to make stem cell transplantation a success for stroke treatment in the future.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| |
Collapse
|
41
|
Fuchs E, Flügge G. Adult neuroplasticity: more than 40 years of research. Neural Plast 2014; 2014:541870. [PMID: 24883212 PMCID: PMC4026979 DOI: 10.1155/2014/541870] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023] Open
Abstract
Within the last four decades, our view of the mature vertebrate brain has changed significantly. Today it is generally accepted that the adult brain is far from being fixed. A number of factors such as stress, adrenal and gonadal hormones, neurotransmitters, growth factors, certain drugs, environmental stimulation, learning, and aging change neuronal structures and functions. The processes that these factors may induce are morphological alterations in brain areas, changes in neuron morphology, network alterations including changes in neuronal connectivity, the generation of new neurons (neurogenesis), and neurobiochemical changes. Here we review several aspects of neuroplasticity and discuss the functional implications of the neuroplastic capacities of the adult and differentiated brain with reference to the history of their discovery.
Collapse
Affiliation(s)
- Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Neurology, Medical School, University of Göttingen, 37075 Göttingen, Germany
| | - Gabriele Flügge
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|