1
|
Xie Z, Rose L, Feng J, Zhao Y, Lu Y, Kane H, Hibberd TJ, Hu X, Wang Z, Zang K, Yang X, Richardson Q, Othman R, Venezia O, Zhakyp A, Gao F, Abe N, Vigeland K, Wang H, Branch C, Duizer C, Deng L, Meng X, Zamidar L, Hauptschein M, Bergin R, Dong X, Chiu IM, Kim BS, Spencer NJ, Hu H, Jackson R. Enteric neuronal Piezo1 maintains mechanical and immunological homeostasis by sensing force. Cell 2025; 188:2417-2432.e19. [PMID: 40132579 DOI: 10.1016/j.cell.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
The gastrointestinal (GI) tract experiences a myriad of mechanical forces while orchestrating digestion and barrier immunity. A central conductor of these processes, the enteric nervous system (ENS), detects luminal pressure to regulate peristalsis independently of extrinsic input from the central and peripheral nervous systems. However, how the ∼500 million enteric neurons that reside in the GI tract sense and respond to force remains unknown. Herein, we establish that the mechanosensor Piezo1 is functionally expressed in cholinergic enteric neurons. Optogenetic stimulation of Piezo1+ cholinergic enteric neurons drives colonic motility, while Piezo1 deficiency reduces cholinergic neuronal activity and slows peristalsis. Additionally, Piezo1 deficiency in cholinergic enteric neurons abolishes exercise-induced acceleration of GI motility. Finally, we uncover that enteric neuronal Piezo1 function is required for motility alterations in colitis and acts to prevent aberrant inflammation and tissue damage. This work uncovers how the ENS senses and responds to mechanical force.
Collapse
Affiliation(s)
- Zili Xie
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Lillian Rose
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Yisi Lu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Kane
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Xueming Hu
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Zhen Wang
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Xingliang Yang
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | | - Rahmeh Othman
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ademi Zhakyp
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Gao
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Nobuya Abe
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Keren Vigeland
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongshen Wang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Camren Branch
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Coco Duizer
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Meng
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Lydia Zamidar
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Max Hauptschein
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ronan Bergin
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Issac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian S Kim
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hongzhen Hu
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA; The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Morales-Soto W, Smith-Edwards KM. Unique properties of proximal and distal colon reflect distinct motor functions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G448-G454. [PMID: 40095602 DOI: 10.1152/ajpgi.00215.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
The gastrointestinal tract is made up of specialized organs that work in tandem to facilitate digestion. The colon regulates the final steps in this process where complex motor patterns in proximal regions facilitate the formation of fecal pellets that are propelled along the distal colon via self-sustaining neural peristalsis and temporarily stored before defecation. Historically, our understanding of colonic motility has focused primarily on distal regions, and the intrinsic reflex circuits of the enteric nervous system involved in neural peristalsis have been defined, but we do not yet have a clear grasp on the mechanisms orchestrating motor function in proximal regions. New approaches have brought to the forefront the unique structural, neurochemical, and functional characteristics that exist in distinct regions of the mouse and human colon. In this mini-review, we highlight key differences along the proximal-distal colonic axis and discuss how these differences relate to region-specific motor function.
Collapse
Affiliation(s)
- Wilmarie Morales-Soto
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Kristen M Smith-Edwards
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Parkar N, Spencer NJ, Wiklendt L, Olson T, Young W, Janssen P, McNabb WC, Dalziel JE. Novel insights into mechanisms of inhibition of colonic motility by loperamide. Front Neurosci 2024; 18:1424936. [PMID: 39268036 PMCID: PMC11390470 DOI: 10.3389/fnins.2024.1424936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Background It is well known that opiates slow gastrointestinal (GI) transit, via suppression of enteric cholinergic neurotransmission throughout the GI tract, particularly the large intestine where constipation is commonly induced. It is not clear whether there is uniform suppression of enteric neurotransmission and colonic motility across the full length of the colon. Here, we investigated whether regional changes in colonic motility occur using the peripherally-restricted mu opioid agonist, loperamide to inhibit colonic motor complexes (CMCs) in isolated mouse colon. Methods High-resolution video imaging was performed to monitor colonic wall diameter on isolated whole mouse colon. Regional changes in the effects of loperamide on the pattern generator underlying cyclical CMCs and their propagation across the full length of large intestine were determined. Results The sensitivity of CMCs to loperamide across the length of colon varied significantly. Although there was a dose-dependent inhibition of CMCs with increasing concentrations of loperamide (10 nM - 1 μM), a major observation was that in the mid and distal colon, CMCs were abolished at low doses of loperamide (100 nM), while in the proximal colon, CMCs persisted at the same low concentration, albeit at a significantly slower frequency. Propagation velocity of CMCs was significantly reduced by 46%. The inhibitory effects of loperamide on CMCs were reversed by naloxone (1 μM). Naloxone alone did not change ongoing CMC characteristics. Discussion The results show pronounced differences in the inhibitory action of loperamide across the length of large intestine. The most potent effect of loperamide to retard colonic transit occurred between the proximal colon and mid/distal regions of colon. One of the possibilities as to why this occurs is because the greatest density of mu opioid receptors are located on interneurons responsible for neuro-neuronal transmission underlying CMCs propagation between the proximal and mid/distal colon. The absence of effect of naloxone alone on CMC characteristics suggest that the mu opioid receptor has little ongoing constitutive activity under our recording conditions.
Collapse
Affiliation(s)
- Nabil Parkar
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Wiklendt
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | | | - Wayne Young
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Patrick Janssen
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Julie E Dalziel
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Sicard P, Falco A, Faure S, Thireau J, Lindsey SE, Chauvet N, de Santa Barbara P. High-resolution ultrasound and speckle tracking: a non-invasive approach to assess in vivo gastrointestinal motility during development. Development 2022; 149:dev200625. [PMID: 35912573 PMCID: PMC10655954 DOI: 10.1242/dev.200625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2023]
Abstract
Gastrointestinal motor activity has been extensively studied in adults; however, only few studies have investigated fetal motor skills. It is unknown when the gastrointestinal tract starts to contract during the embryonic period and how this function evolves during development. Here, we adapted a non-invasive high-resolution echography technique combined with speckle tracking analysis to examine the gastrointestinal tract motor activity dynamics during chick embryo development. We provided the first recordings of fetal gastrointestinal motility in living embryos without anesthesia. We found that, although gastrointestinal contractions appear very early during development, they become synchronized only at the end of the fetal period. To validate this approach, we used various pharmacological inhibitors and BAPX1 gene overexpression in vivo. We found that the enteric nervous system determines the onset of the synchronized contractions in the stomach. Moreover, alteration of smooth muscle fiber organization led to an impairment of this functional activity. Altogether, our findings show that non-invasive high-resolution echography and speckle tracking analysis allows visualization and quantification of gastrointestinal motility during development and highlight the progressive acquisition of functional and coordinated gastrointestinal motility before birth.
Collapse
Affiliation(s)
- Pierre Sicard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
- IPAM, Biocampus Montpellier, CNRS, INSERM, University of Montpellier, 34295 Montpellier, France
| | - Amandine Falco
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Jérome Thireau
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Stéphanie E. Lindsey
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
- Department of Mechanical and Aerospace Engineering, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Norbert Chauvet
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | | |
Collapse
|
5
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
6
|
Spencer NJ, Costa M. Rhythmicity in the Enteric Nervous System of Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:295-306. [PMID: 36587167 DOI: 10.1007/978-3-031-05843-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
7
|
Barth BB, Spencer NJ, Grill WM. Activation of ENS Circuits in Mouse Colon: Coordination in the Mouse Colonic Motor Complex as a Robust, Distributed Control System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:113-123. [PMID: 36587151 DOI: 10.1007/978-3-031-05843-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The characteristic motor patterns of the colon are coordinated by the enteric nervous system (ENS) and involve enterochromaffin (EC) cells, enteric glia, smooth muscle fibers, and interstitial cells. While the fundamental control mechanisms of colonic motor patterns are understood, greater complexity in the circuitry underlying motor patterns has been revealed by recent advances in the field. We review these recent advances and new findings from our laboratories that provide insights into how the ENS coordinates motor patterns in the isolated mouse colon. We contextualize these observations by describing the neuromuscular system underling the colonic motor complex (CMC) as a robust, distributed control system. Framing the colonic motor complex as a control system reveals a new perspective on the coordinated motor patterns in the colon. We test the control system by applying electrical stimulation in the isolated mouse colon to disrupt the coordination and propagation of the colonic motor complex.
Collapse
Affiliation(s)
- Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Smolilo DJ, Dinning PG, Brookes SJ, Spencer NJ. Characterization of alternating neurogenic motor patterns in mouse colon. Neurogastroenterol Motil 2021; 33:e14047. [PMID: 33252184 DOI: 10.1111/nmo.14047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Colonic motor complexes (CMCs) have been widely recorded in the large intestine of vertebrates. We have investigated whether in the smooth muscle, a single unified pattern of electrical activity, or different patterns of electrical activity give rise to the different neurogenic patterns of motility underlying CMCs in vitro. METHODS To study differences of the CMCs between proximal and distal colon, we used a novel combination of techniques to simultaneously record muscle diameter and force at multiple sites along the whole mouse colon ex vivo. In addition, electrical activity of smooth muscle was recorded by suction electrodes. KEY RESULTS Two distinct types of CMCs were distinguished; CMCs that propagated along the entire colon (complete CMC) and CMCs which were restricted to the proximal colon (incomplete CMC). The two types of CMC often occurred in the same preparations. Incomplete CMCs had longer bursts of smooth muscle action potentials than complete CMCs and propagated more slowly. Interestingly, both types of CMC were associated with similar frequency bursts of smooth muscle action potentials at ~2.4 Hz. In the most proximal colon, an additional firing frequency was detected close to ~7 Hz generating multiple peaks within each CMC. CONCLUSIONS & INFERENCES We report distinct characteristics underlying complete and incomplete CMCs in isolated mouse colon. Recognizing these distinct patterns of motility will be important for future interpretation of analysis of murine colonic motility recordings. The identification of alternating patterns of motor activity in proximal colon, but not distal colon may reflect specific neural mechanisms for fecal pellet formation.
Collapse
Affiliation(s)
- Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Lauren J Keightley
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Timothy J Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David J Smolilo
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Sun EW, Martin AM, de Fontgalland D, Sposato L, Rabbitt P, Hollington P, Wattchow DA, Colella AD, Chataway T, Wewer Albrechtsen NJ, Spencer NJ, Young RL, Keating DJ. Evidence for Glucagon Secretion and Function Within the Human Gut. Endocrinology 2021; 162:6127286. [PMID: 33534908 DOI: 10.1210/endocr/bqab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 11/19/2022]
Abstract
Glucagon is secreted by pancreatic α cells in response to hypoglycemia and increases hepatic glucose output through hepatic glucagon receptors (GCGRs). There is evidence supporting the notion of extrapancreatic glucagon but its source and physiological functions remain elusive. Intestinal tissue samples were obtained from patients undergoing surgical resection of cancer. Mass spectrometry analysis was used to detect glucagon from mucosal lysate. Static incubations of mucosal tissue were performed to assess glucagon secretory response. Glucagon concentration was quantitated using a highly specific sandwich enzyme-linked immunosorbent assay. A cholesterol uptake assay and an isolated murine colonic motility assay were used to assess the physiological functions of intestinal GCGRs. Fully processed glucagon was detected by mass spectrometry in human intestinal mucosal lysate. High glucose evoked significant glucagon secretion from human ileal tissue independent of sodium glucose cotransporter and KATP channels, contrasting glucose-induced glucagon-like peptide 1 (GLP-1) secretion. The GLP-1 receptor agonist Exendin-4 attenuated glucose-induced glucagon secretion from the human ileum. GCGR blockade significantly increased cholesterol uptake in human ileal crypt culture and markedly slowed ex vivo colonic motility. Our findings describe the human gut as a potential source of extrapancreatic glucagon and demonstrate a novel enteric glucagon/GCGR circuit with important physiological functions beyond glycemic regulation.
Collapse
Affiliation(s)
- Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Luigi Sposato
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Alexander D Colella
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Tim Chataway
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Richard L Young
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
10
|
Barth BB, Travis L, Spencer NJ, Grill WM. Control of colonic motility using electrical stimulation to modulate enteric neural activity. Am J Physiol Gastrointest Liver Physiol 2021; 320:G675-G687. [PMID: 33624530 PMCID: PMC8238160 DOI: 10.1152/ajpgi.00463.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Electrical stimulation of the enteric nervous system (ENS) is an attractive approach to modify gastrointestinal transit. Colonic motor complexes (CMCs) occur with a periodic rhythm, but the ability to elicit a premature CMC depends, at least in part, upon the intrinsic refractory properties of the ENS, which are presently unknown. The objectives of this study were to record myoelectric complexes (MCs, the electrical correlates of CMCs) in the smooth muscle and 1) determine the refractory periods of MCs, 2) inform and evaluate closed-loop stimulation to repetitively evoke MCs, and 3) identify stimulation methods to suppress MC propagation. We dissected the colon from male and female C57BL/6 mice, preserving the integrity of intrinsic circuitry while removing the extrinsic nerves, and measured properties of spontaneous and evoked MCs in vitro. Hexamethonium abolished spontaneous and evoked MCs, confirming the necessary involvement of the ENS for electrically evoked MCs. Electrical stimulation reduced the mean interval between evoked and spontaneous CMCs (24.6 ± 3.5 vs. 70.6 ± 15.7 s, P = 0.0002, n = 7). The absolute refractory period was 4.3 s (95% confidence interval (CI) = 2.8-5.7 s, R2 = 0.7315, n = 8). Electrical stimulation applied during fluid distention-evoked MCs led to an arrest of MC propagation, and following stimulation, MC propagation resumed at an increased velocity (n = 9). The timing parameters of electrical stimulation increased the rate of evoked MCs and the duration of entrainment of MCs, and the refractory period provides insight into timing considerations for designing neuromodulation strategies to treat colonic dysmotility.NEW & NOTEWORTHY Maintained physiological distension of the isolated mouse colon induces rhythmic cyclic myoelectric complexes (MCs). MCs evoked repeatedly by closed-loop electrical stimulation entrain MCs more frequently than spontaneously occurring MCs. Electrical stimulation delivered at the onset of a contraction temporarily suppresses the propagation of MC contractions. Controlled electrical stimulation can either evoke MCs or temporarily delay MCs in the isolated mouse colon, depending on timing relative to ongoing activity.
Collapse
Affiliation(s)
- Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
11
|
Spencer NJ, Costa M, Hibberd TJ, Wood JD. Advances in colonic motor complexes in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G12-G29. [PMID: 33085903 DOI: 10.1152/ajpgi.00317.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary functions of the gastrointestinal (GI) tract are to absorb nutrients, water, and electrolytes that are essential for life. This is accompanied by the capability of the GI tract to mix ingested content to maximize absorption and effectively excrete waste material. There have been major advances in understanding intrinsic neural mechanisms involved in GI motility. This review highlights major advances over the past few decades in our understanding of colonic motor complexes (CMCs), the major intrinsic neural patterns that control GI motility. CMCs are generated by rhythmic coordinated firing of large populations of myenteric neurons. Initially, it was thought that serotonin release from the mucosa was required for CMC generation. However, careful experiments have now shown that neither the mucosa nor endogenous serotonin are required, although, evidence suggests enteroendocrine (EC) cells modulate CMCs. The frequency and extent of propagation of CMCs are highly dependent on mechanical stimuli (circumferential stretch). In summary, the isolated mouse colon emerges as a good model to investigate intrinsic mechanisms underlying colonic motility and provides an excellent preparation to explore potential therapeutic agents on colonic motility, in a highly controlled in vitro environment. In addition, during CMCs, the mouse colon facilitates investigations into the emergence of dynamic assemblies of extensive neural networks, applicable to the nervous system of different organisms.
Collapse
Affiliation(s)
- N J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - M Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - T J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - J D Wood
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Mohd RR, Heitmann P, Raghu K, Hibbard TJ, Costa M, Wiklendt L, Wattchow DA, Arkwright J, de Fontgalland D, Brookes S, Spencer NJ, Dinning P. Distinct patterns of myogenic motor activity identified in isolated human distal colon with high-resolution manometry. Neurogastroenterol Motil 2020; 32:e13871. [PMID: 32374068 PMCID: PMC7529858 DOI: 10.1111/nmo.13871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colonic high-resolution manometry (HRM) has been used to reveal discrete, propagating colonic motor patterns. To help determine mechanisms underlying these patterns, we used HRM to record contractile activity in human distal colon ex vivo. METHODS Surgically excised segments of descending (n = 30) or sigmoid colon (n = 4) were immersed in oxygenated Krebs solution at 36°C (n = 34; 16 female; 67.6 ± 12.4 years; length: 24.7 ± 3.5 cm). Contractility was recorded by HRM catheters. After 30 minutes of baseline recording, 0.3 mM lidocaine and/or 1 mM hexamethonium were applied. Ascending neural pathways were activated by electrical field stimulation (EFS; 10 Hz, 0.5 ms, 50 V, 5-s duration) applied to the anal end before and after drug application. RESULTS Spontaneous propagating contractions were recorded in all specimens (0.1-1.5 cycles/minute). Most contractions occurred synchronously across all recording sites. In five specimens, rhythmic antegrade contractions propagated across the full length of the preparation. EFS evoked local contractions at the site of stimulation (latency: 5.5 ± 2.4 seconds) with greater amplitude than spontaneous contractions (EFS; 29.3 ± 26.9 vs 12.1 ± 14.8 mm Hg; P = .02). Synchronous or retrograde propagating motor patterns followed EFS; 71% spanned the entire preparation length. Hexamethonium and lidocaine modestly and only temporarily inhibited spontaneous contractions, whereas TTX increased the frequency of contractile activity while inhibiting EFS-evoked contractions. CONCLUSIONS AND INFERENCES Our study suggests that the propagated contractions recorded in the organ bath have a myogenic origin which can be regulated by neural input. Once activated at a local site, the contractions do not require the propulsion of fecal content to sustain long-distance propagation.
Collapse
Affiliation(s)
- Rosli R Mohd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - P.T Heitmann
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University,Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - K Raghu
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - T. J. Hibbard
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - L Wiklendt
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - D. A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University,Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - J Arkwright
- College of Science and Engineering, Flinders University. Adelaide, Australia
| | - D de Fontgalland
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - S.J.H Brookes
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - N. J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - P.G Dinning
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University,Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| |
Collapse
|
13
|
A Novel Mode of Sympathetic Reflex Activation Mediated by the Enteric Nervous System. eNeuro 2020; 7:ENEURO.0187-20.2020. [PMID: 32675175 PMCID: PMC7418536 DOI: 10.1523/eneuro.0187-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric viscerofugal neurons provide a pathway by which the enteric nervous system (ENS), otherwise confined to the gut wall, can activate sympathetic neurons in prevertebral ganglia. Firing transmitted through these pathways is currently considered fundamentally mechanosensory. The mouse colon generates a cyclical pattern of neurogenic contractile activity, called the colonic motor complex (CMC). Motor complexes involve a highly coordinated firing pattern in myenteric neurons with a frequency of ∼2 Hz. However, it remains unknown how viscerofugal neurons are activated and communicate with the sympathetic nervous system during this naturally-occurring motor pattern. Here, viscerofugal neurons were recorded extracellularly from rectal nerve trunks in isolated tube and flat-sheet preparations of mouse colon held at fixed circumferential length. In freshly dissected preparations, motor complexes were associated with bursts of viscerofugal firing at 2 Hz that aligned with 2-Hz smooth muscle voltage oscillations. This behavior persisted during muscle paralysis with nicardipine. Identical recordings were made after a 4- to 5-d organotypic culture during which extrinsic nerves degenerated, confirming that recordings were from viscerofugal neurons. Single unit analysis revealed the burst firing pattern emerging from assemblies of viscerofugal neurons differed from individual neurons, which typically made partial contributions, highlighting the importance and extent of ENS-mediated synchronization. Finally, sympathetic neuron firing was recorded from the central nerve trunks emerging from the inferior mesenteric ganglion. Increased sympathetic neuron firing accompanied all motor complexes with a 2-Hz burst pattern similar to viscerofugal neurons. These data provide evidence for a novel mechanism of sympathetic reflex activation derived from synchronized firing output generated by the ENS.
Collapse
|
14
|
Tan W, Lee G, Chen JH, Huizinga JD. Relationships Between Distention-, Butyrate- and Pellet-Induced Stimulation of Peristalsis in the Mouse Colon. Front Physiol 2020; 11:109. [PMID: 32132933 PMCID: PMC7040375 DOI: 10.3389/fphys.2020.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Luminal factors such as short-chain fatty acids are increasingly recognized for playing a regulatory role in peristaltic activity. Our objective was to understand the roles of butyrate and propionate in regulating peristaltic activity in relation to distention-induced activities. Methods Butyrate and propionate were perfused intraluminally under varying intraluminal pressures in murine colons bathed in Krebs solution. We used video recording and spatiotemporal maps to examine peristalsis induced by the intrinsic rhythmic colonic motor complex (CMC) as well as pellet-induced peristaltic reflex movements. Results The CMC showed several configurations at different levels of excitation, culminating in long distance contractions (LDCs) which possess a triangular shape in murine colon spatiotemporal maps. Butyrate increased the frequency of CMCs but was a much weaker stimulus than distention and only contributed to significant changes under low distention. Propionate inhibited CMCs by decreasing either their amplitudes or frequencies, but only in low distention conditions. Butyrate did not consistently counteract propionate-induced inhibition likely due to the multiple and distinct mechanisms of action for these signaling molecules in the lumen. Pellet movement occurred through ongoing CMCs as well as pellet induced peristaltic reflex movements and butyrate augmented both types of peristaltic motor patterns to decrease the amount of time required to expel each pellet. Conclusions Butyrate is effective in promoting peristalsis, but only when the level of colonic activity is low such as under conditions of low intraluminal pressure. This suggests that it may play a significant role in patients with poor fiber intake, where there is low mechanical stimulation in the lumen.
Collapse
Affiliation(s)
- Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Grace Lee
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Ji-Hong Chen
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
15
|
Costa M, Hibberd TJ, Keightley LJ, Wiklendt L, Arkwright JW, Dinning PG, Brookes SJH, Spencer NJ. Neural motor complexes propagate continuously along the full length of mouse small intestine and colon. Am J Physiol Gastrointest Liver Physiol 2020; 318:G99-G108. [PMID: 31709829 DOI: 10.1152/ajpgi.00185.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclical propagating waves of muscle contraction have been recorded in isolated small intestine or colon, referred to here as motor complexes (MCs). Small intestinal and colonic MCs are neurogenic, occur at similar frequencies, and propagate orally or aborally. Whether they can be coordinated between the different gut regions is unclear. Motor behavior of whole length mouse intestines, from duodenum to terminal rectum, was recorded by intraluminal multisensor catheter. Small intestinal MCs were recorded in 27/30 preparations, and colonic MCs were recorded in all preparations (n = 30) with similar frequencies (0.54 ± 0.03 and 0.58 ± 0.02 counts/min, respectively). MCs propagated across the ileo-colonic junction in 10/30 preparations, forming "full intestine" MCs. The cholinesterase inhibitor physostigmine increased the probability of a full intestine MC but had no significant effect on frequency, speed, or direction. Nitric oxide synthesis blockade by Nω-nitro-l-arginine, after physostigmine, increased MC frequency in small intestine only. Hyoscine-resistant MCs were recorded in the colon but not small intestine (n = 5). All MCs were abolished by hexamethonium (n = 18) or tetrodotoxin (n = 2). The enteric neural mechanism required for motor complexes is present along the full length of both the small and large intestine. In some cases, colonic MCs can be initiated in the distal colon and propagate through the ileo-colonic junction, all the way to duodenum. In conclusion, the ileo-colonic junction provides functional neural continuity for propagating motor activity that originates in the small or large intestine.NEW & NOTEWORTHY Intraluminal manometric recordings revealed motor complexes can propagate antegradely or retrogradely across the ileo-colonic junction, spanning the entire small and large intestines. The fundamental enteric neural mechanism(s) underlying cyclic motor complexes exists throughout the length of the small and large intestine.
Collapse
Affiliation(s)
- Marcello Costa
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Timothy James Hibberd
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Lauren J Keightley
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - John W Arkwright
- Computer Science, Engineering and Mathematics, Flinders University, Adelaide, South Australia, Australia
| | - Philip G Dinning
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia.,Department of Gastroenterology and Surgery, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Corsetti M, Costa M, Bassotti G, Bharucha AE, Borrelli O, Dinning P, Di Lorenzo C, Huizinga JD, Jimenez M, Rao S, Spiller R, Spencer NJ, Lentle R, Pannemans J, Thys A, Benninga M, Tack J. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nat Rev Gastroenterol Hepatol 2019; 16:559-579. [PMID: 31296967 PMCID: PMC7136172 DOI: 10.1038/s41575-019-0167-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Alterations in colonic motility are implicated in the pathophysiology of bowel disorders, but high-resolution manometry of human colonic motor function has revealed that our knowledge of normal motor patterns is limited. Furthermore, various terminologies and definitions have been used to describe colonic motor patterns in children, adults and animals. An example is the distinction between the high-amplitude propagating contractions in humans and giant contractions in animals. Harmonized terminology and definitions are required that are applicable to the study of colonic motility performed by basic scientists and clinicians, as well as adult and paediatric gastroenterologists. As clinical studies increasingly require adequate animal models to develop and test new therapies, there is a need for rational use of terminology to describe those motor patterns that are equivalent between animals and humans. This Consensus Statement provides the first harmonized interpretation of commonly used terminology to describe colonic motor function and delineates possible similarities between motor patterns observed in animal models and humans in vitro (ex vivo) and in vivo. The consolidated terminology can be an impetus for new research that will considerably improve our understanding of colonic motor function and will facilitate the development and testing of new therapies for colonic motility disorders.
Collapse
Affiliation(s)
- Maura Corsetti
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marcello Costa
- Human Physiology and Centre of Neuroscience, College of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Gabrio Bassotti
- Department of Medicine, University of Perugia Medical School, Perugia, Italy
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Osvaldo Borrelli
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Sick Children, London, UK
| | - Phil Dinning
- Human Physiology and Centre of Neuroscience, College of Medicine, Flinders University, Bedford Park, South Australia, Australia
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Carlo Di Lorenzo
- Department of Pediatric Gastroenterology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcel Jimenez
- Department of Cell Physiology, Physiology and Immunology and Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Satish Rao
- Division of Gastroenterology/Hepatology, Augusta University, Augusta, GA, USA
| | - Robin Spiller
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nick J Spencer
- Discipline of Human Physiology, School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Roger Lentle
- Digestive Biomechanics Group, College of Health, Massey University, Palmerston North, New Zealand
| | - Jasper Pannemans
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands
| | - Alexander Thys
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands
| | - Marc Benninga
- Translational Research Center for Gastrointestinal disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Centre, Amsterdam, Netherlands.
| |
Collapse
|
17
|
Díaz-Ruano S, López-Pérez AE, Girón R, Pérez-García I, Martín-Fontelles MI, Abalo R. Fluoroscopic Characterization of Colonic Dysmotility Associated to Opioid and Cannabinoid Agonists in Conscious Rats. J Neurogastroenterol Motil 2019; 25:300-315. [PMID: 30870877 PMCID: PMC6474695 DOI: 10.5056/jnm18202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Gastrointestinal adverse effects have a major impact on health and quality of life in analgesics users. Non-invasive methods to study gastrointestinal motility are of high interest. Fluoroscopy has been previously used to study gastrointestinal motility in small experimental animals, but they were generally anesthetized and anesthesia itself may alter motility. In this study, our aim is to determine, in conscious rats, the effect of increasing doses of 2 opioid (morphine and loperamide) and 1 cannabinoid (WIN 55,212-2) agonists on colonic motility using fluoroscopic recordings and spatio-temporal maps. Methods Male Wistar rats received barium sulfate intragastrically, 20–22 hours before fluoroscopy, so that stained fecal pellets could be seen at the time of recording. Animals received an intraperitoneal administration of morphine, loperamide, or WIN 55,212-2 (at 0.1, 1, 5, or 10 mg/kg) or their corresponding vehicles (saline, Cremophor, and Tocrisolve, respectively), 30 minutes before fluoroscopy. Rats were conscious and placed within movement-restrainers for the length of fluoroscopic recordings (120 seconds). Spatio-temporal maps were built, and different parameters were analyzed from the fluoroscopic recordings in a blinded fashion to evaluate colonic propulsion of endogenous fecal pellets. Results The analgesic drugs inhibited propulsion of endogenous fecal pellets in a dose-dependent manner. Conclusions Fluoroscopy allows studying colonic propulsion of endogenous fecal pellets in conscious rats. Our method may be applied to the noninvasive study of the effect of different drug treatments and pathologies.
Collapse
Affiliation(s)
- Susana Díaz-Ruano
- Unidad de Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana E López-Pérez
- Unidad de Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Rocío Girón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Irene Pérez-García
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - María I Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| |
Collapse
|
18
|
Chevalier NR, Dacher N, Jacques C, Langlois L, Guedj C, Faklaris O. Embryogenesis of the peristaltic reflex. J Physiol 2019; 597:2785-2801. [PMID: 30924929 DOI: 10.1113/jp277746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Neurogenic gut movements start after longitudinal smooth muscle differentiation in three species (mouse, zebrafish, chicken), and at E16 in the chicken embryo. The first activity of the chicken enteric nervous system is dominated by inhibitory neurons. The embryonic enteric nervous system electromechanically couples circular and longitudinal spontaneous myogenic contractions, thereby producing a new, rostro-caudally directed bolus transport pattern: the migrating motor complex. The response of the embryonic gut to mechanical stimulation evolves from a symmetric, myogenic response at E12, to a neurally mediated, polarized, descending inhibitory, 'law of the intestine'-like response at E16. High resolution, whole-mount 3D reconstructions are presented of the enteric nervous system of the chicken embryo at the neural-control stage E16 with the iDISCO+ tissue clarification technique. ABSTRACT Gut motility is a complex transport phenomenon involving smooth muscle, enteric neurons, glia and interstitial cells of Cajal. Because these different cells differentiate and become active at different times during embryo development, studying the ontogenesis of motility offers a unique opportunity to 'time-reverse-engineer' the peristaltic reflex. Working on chicken embryo intestinal explants in vitro, we found by spatio-temporal mapping and signal processing of diameter and position changes that motility follows a characteristic sequence of increasing complexity: (1) myogenic circular smooth muscle contractions from E6 to E12 that propagate as waves along the intestine, (2) overlapping and independent, myogenic, low-frequency, bulk longitudinal smooth muscle contractions around E14, and (3) tetrodotoxin-sensitive coupling of longitudinal and circular contractions by the enteric nervous system as from E16. Inhibition of nitric oxide synthase neurons shows that the coupling consists in nitric oxide-mediated relaxation of circular smooth muscle when the longitudinal muscle layer is contracted. This mechanosensitive coupling gives rise to a directional, cyclical, propagating bolus transport pattern: the migrating motor complex. We further reveal a transition to a polarized, descending, inhibitory reflex response to mechanical stimulation after neuronal activity sets in at E16. This asymmetric response is the elementary mechanism responsible for peristaltic transport. We finally present unique high-resolution 3D reconstructions of the chicken enteric nervous system at the neural-control stage based on confocal imaging of iDISCO+ clarified tissues. Our study shows that the enteric nervous system gives rise to new peristaltic transport patterns during development by coupling spontaneous circular and longitudinal smooth muscle contraction waves.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Nicolas Dacher
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Cécile Jacques
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Lucas Langlois
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Chloé Guedj
- Imagoseine Core Facility, Institut Jacques Monod, Université Paris Diderot/CNRS UMR7592, 15 rue Hélène Brion, 75013, Paris, France
| | - Orestis Faklaris
- Imagoseine Core Facility, Institut Jacques Monod, Université Paris Diderot/CNRS UMR7592, 15 rue Hélène Brion, 75013, Paris, France.,MRI Core facility, Biocampus, UMS 3426 CNRS - Université Montpellier, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| |
Collapse
|
19
|
Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. eLife 2019; 8:42914. [PMID: 30747710 PMCID: PMC6391068 DOI: 10.7554/elife.42914] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.
Collapse
Affiliation(s)
- Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Costa M, Keightley LJ, Wiklendt L, Hibberd TJ, Arkwright JW, Omari T, Wattchow DA, Brookes SJH, Dinning PG, Spencer NJ. Identification of multiple distinct neurogenic motor patterns that can occur simultaneously in the guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2019; 316:G32-G44. [PMID: 30335474 DOI: 10.1152/ajpgi.00256.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the guinea pig distal colon, nonpropulsive neurally mediated motor patterns have been observed in different experimental conditions. Isolated segments of guinea pig distal colon were used to investigate these neural mechanisms by simultaneously recording wall motion, intraluminal pressure, and smooth muscle electrical activity in different conditions of constant distension and in response to pharmacological agents. Three distinct neurally dependent motor patterns were identified: transient neural events (TNEs), cyclic motor complexes (CMC), and distal colon migrating motor complexes (DCMMC). These could occur simultaneously and were distinguished by their electrophysiological, mechanical, and pharmacological features. TNEs occurred at irregular intervals of ~3s, with bursts of action potentials at 9 Hz. They propagated orally at 12 cm/s via assemblies of ascending cholinergic interneurons that activated final excitatory and inhibitory motor neurons, apparently without involvement of stretch-sensitive intrinsic primary afferent neurons. CMCs occurred during maintained distension and consisted of clusters of closely spaced TNEs, which fused to cause high-frequency action potential firing at 7 Hz lasting ~10 s. They generated periodic pressure peaks mediated by stretch-sensitive intrinsic primary afferent neurons and by cholinergic interneurons. DCMMCs were generated by ongoing activity in excitatory motor neurons without apparent involvement of stretch-sensitive neurons, cholinergic interneurons, or inhibitory motor neurons. In conclusion, we have identified three distinct motor patterns that can occur concurrently in the isolated guinea pig distal colon. The mechanisms underlying the generation of these neural patterns likely involve recruitment of different populations of enteric neurons with distinct temporal activation properties.
Collapse
Affiliation(s)
- Marcello Costa
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University , Adelaide , Australia
| | - Lauren J Keightley
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University , Adelaide , Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University , Adelaide , Australia
| | - Timothy J Hibberd
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University , Adelaide , Australia
| | - John W Arkwright
- College of Science and Engineering, Flinders University , Adelaide , Australia
| | - Taher Omari
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre , Adelaide , Australia
| | - David A Wattchow
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre , Adelaide , Australia
| | - Simon J H Brookes
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University , Adelaide , Australia
| | - Phil G Dinning
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre , Adelaide , Australia
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University , Adelaide , Australia
| |
Collapse
|
21
|
Hibberd TJ, Feng J, Luo J, Yang P, Samineni VK, Gereau RW, Kelley N, Hu H, Spencer NJ. Optogenetic Induction of Colonic Motility in Mice. Gastroenterology 2018; 155:514-528.e6. [PMID: 29782847 PMCID: PMC6715392 DOI: 10.1053/j.gastro.2018.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/12/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Strategies are needed to increase gastrointestinal transit without systemic pharmacologic agents. We investigated whether optogenetics, focal application of light to control enteric nervous system excitability, could be used to evoke propagating contractions and increase colonic transit in mice. METHODS We generated transgenic mice with Cre-mediated expression of light-sensitive channelrhodopsin-2 (ChR2) in calretinin neurons (CAL-ChR2 Cre+ mice); Cre- littermates served as controls. Colonic myenteric neurons were analyzed by immunohistochemistry, patch-clamp, and calcium imaging studies. Motility was assessed by mechanical, electrophysiological, and video recording in vitro and by fecal output in vivo. RESULTS In isolated colons, focal light stimulation of calretinin enteric neurons evoked classic polarized motor reflexes (50/58 stimulations), followed by premature anterograde propagating contractions (39/58 stimulations). Light stimulation could evoke motility from sites along the entire colon. These effects were prevented by neural blockade with tetrodotoxin (n = 2), and did not occur in control mice (n = 5). Light stimulation of proximal colon increased the proportion of natural fecal pellets expelled over 15 minutes in vitro (75% ± 17% vs 32% ± 8% for controls) (P < .05). In vivo, activation of wireless light-emitting diodes implanted onto the colon wall significantly increased hourly fecal pellet output in conscious, freely moving mice (4.2 ± 0.4 vs 1.3 ± 0.3 in controls) (P < .001). CONCLUSIONS In studies of mice, we found that focal activation of a subset of enteric neurons can increase motility of the entire colon in vitro, and fecal output in vivo. Optogenetic control of enteric neurons might therefore be used to modify gut motility.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Australia
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Pu Yang
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay K Samineni
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert W Gereau
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nigel Kelley
- SA Biomedical Engineering, SA Health, Government of South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri.
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia.
| |
Collapse
|
22
|
Hofma BR, Wardill HR, Mavrangelos C, Campaniello MA, Dimasi D, Bowen JM, Smid SD, Bonder CS, Beckett EA, Hughes PA. Colonic migrating motor complexes are inhibited in acute tri-nitro benzene sulphonic acid colitis. PLoS One 2018; 13:e0199394. [PMID: 29933379 PMCID: PMC6014673 DOI: 10.1371/journal.pone.0199394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is characterized by overt inflammation of the intestine and is typically accompanied by symptoms of bloody diarrhea, abdominal pain and cramping. The Colonic Migrating Motor Complex (CMMC) directs the movement of colonic luminal contents over long distances. The tri-nitrobenzene sulphonic acid (TNBS) model of colitis causes inflammatory damage to enteric nerves, however it remains to be determined whether these changes translate to functional outcomes in CMMC activity. We aimed to visualize innate immune cell infiltration into the colon using two-photon laser scanning intra-vital microscopy, and to determine whether CMMC activity is altered in the tri-nitro benzene sulphonic (TNBS) model of colitis. Methods Epithelial barrier permeability was compared between TNBS treated and healthy control mice in-vitro and in-vivo. Innate immune activation was determined by ELISA, flow cytometry and by 2-photon intravital microscopy. The effects of TNBS treatment and IL-1β on CMMC function were determined using a specialized organ bath. Results TNBS colitis increased epithelial barrier permeability in-vitro and in-vivo. Colonic IL-1β concentrations, colonic and systemic CD11b+ cell infiltration, and the number of migrating CD11b+ cells on colonic blood vessels were all increased in TNBS treated mice relative to controls. CMMC frequency and amplitude were inhibited in the distal and mid colon of TNBS treated mice. CMMC activity was not altered by superfusion with IL-1β. Conclusions TNBS colitis damages the epithelial barrier and increases innate immune cell activation in the colon and systemically. Innate cell migration into the colon is readily identifiable by two-photon intra-vital microscopy. CMMC are inhibited by inflammation, but this is not due to direct effects of IL-1β.
Collapse
Affiliation(s)
- Ben R. Hofma
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hannah R. Wardill
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A. Campaniello
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Joanne M. Bowen
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Scott D. Smid
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Claudine S. Bonder
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | | | - Patrick A. Hughes
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Nutrition and GI Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
- * E-mail:
| |
Collapse
|
23
|
Hibberd TJ, Costa M, Travis L, Brookes SJH, Wattchow DA, Feng J, Hu H, Spencer NJ. Neurogenic and myogenic patterns of electrical activity in isolated intact mouse colon. Neurogastroenterol Motil 2017; 29:1-12. [PMID: 28418103 DOI: 10.1111/nmo.13089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Relatively little is known about the electrical rhythmicity of the whole colon, where long neural pathways are preserved. METHODS Smooth muscle electrical activity was recorded extracellularly from the serosa of isolated flat-sheet preparations consisting of the whole mouse colon (n=31). KEY RESULTS Two distinct electrical patterns were observed. The first, long intense spike bursts, occurred every 349±256 seconds (0.2±0.2 cpm), firing action potentials for 31±11 seconds at 2.1±0.5 Hz. They were hexamethonium- and tetrodotoxin-sensitive, but persisted in nicardipine as 2 Hz electrical oscillations lacking action potentials. This pattern is called here neurogenic spike bursts. The second pattern, short spike bursts, occurred about every 30 seconds (2.0±0.6 cpm), with action potentials firing at about 1 Hz for 9 seconds (1.0±0.2 Hz, 9±4 seconds). Short spike bursts were hexamethonium- and tetrodotoxin-resistant but nicardipine-sensitive and thus called here myogenic spike bursts. Neurogenic spike bursts transiently delayed myogenic spike bursts, while blocking neurogenic activity enhanced myogenic spike burst durations. External stimuli significantly affected neurogenic but not myogenic spike bursts. Aboral electrical or mechanical stimuli evoked premature neurogenic spike bursts. Circumferential stretch significantly decreased intervals between neurogenic spike bursts. Lesioning the colon down to 10 mm segments significantly increased intervals or abolished neurogenic spike bursts, while myogenic spike bursts persisted. CONCLUSIONS & INFERENCES Distinct neurogenic and myogenic electrical patterns were recorded from mouse colonic muscularis externa. Neurogenic spike bursts likely correlate with neurogenic colonic migrating motor complexes (CMMC) and are highly sensitive to mechanical stimuli. Myogenic spike bursts may correspond to slow myogenic contractions, whose duration can be modulated by enteric neural activity.
Collapse
Affiliation(s)
- T J Hibberd
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - M Costa
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - L Travis
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D A Wattchow
- Discipline of Surgery & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - J Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - H Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - N J Spencer
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
24
|
Costa M, Wiklendt L, Keightley L, Brookes SJH, Dinning PG, Spencer NJ. New insights into neurogenic cyclic motor activity in the isolated guinea-pig colon. Neurogastroenterol Motil 2017; 29:1-13. [PMID: 28444866 DOI: 10.1111/nmo.13092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The contents of the guinea pig distal colon consist of multiple pellets that move anally in a coordinated manner. This row of pellets results in continued distention of the colon. In this study, we have investigated quantitatively the features of the neurally dependent colonic motor patterns that are evoked by constant distension of the full length of guinea-pig colon. METHODS Constant distension was applied to the excised guinea-pig by high-resolution manometry catheters or by a series of hooks. KEY RESULTS Constant distension elicited regular Cyclic Motor Complexes (CMCs) that originated at multiple different sites along the colon and propagated in an oral or anal direction extending distances of 18.3±10.3 cm. CMCs were blocked by tetrodotoxin (TTX; 0.6 μ mol L-1 ), hexamethonium (100 μ mol L-1 ) or hyoscine (1 μ mol L-1 ). Application of TTX in a localized compartment or cutting the gut circumferentially disrupted the spatial continuity of CMCs. Localized smooth muscle contraction was not required for CMC propagation. Shortening the length of the preparations or disruption of circumferential pathways reduced the integrity and continuity of CMCs. CONCLUSIONS & INFERENCES CMCs are a distinctive neurally dependent cyclic motor pattern, that emerge with distension over long lengths of the distal colon. They do not require changes in muscle tension or contractility to entrain the neural activity underlying CMC propagation. CMCs are likely to play an important role interacting with the neuromechanical processes that time the propulsion of multiple natural pellets and may be particularly relevant in conditions of impaction or obstruction, where long segments of colon are simultaneously distended.
Collapse
Affiliation(s)
- M Costa
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - L Wiklendt
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - L Keightley
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - P G Dinning
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - N J Spencer
- Discipline of Human Physiology, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
25
|
Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 2017; 7:10322. [PMID: 28871143 PMCID: PMC5583244 DOI: 10.1038/s41598-017-10835-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic constipation is a prevalent functional gastrointestinal disorder accompanied with intestinal dysbiosis. However, causal relationship between dysbiosis and constipation remains poorly understood. Serotonin transporter (SERT) is a transmembrane transport protein which re-uptakes excessive 5-hydroxytryptamine (5-HT) from effective location to terminate its physiological effects and involves in regulating gastrointestinal motility. In this study, fecal microbiota from patients with constipation and healthy controls were transplanted into the antibiotic depletion mice model. The mice which received fecal microbiota from patients with constipation presented a reducing in intestinal peristalsis and abnormal defecation parameters including the frequency of pellet expulsion, fecal weight and fecal water content. After fecal microbiota transplantation, the SERT expression in the colonic tissue was significantly upregulated, and the content of 5-HT was decreased which negatively correlated with the gastrointestinal transit time. Moverover, fecal microbiota from the mice which received fecal microbiota from patients with constipation also upregulated SERT in Caco-2 cells. Besides, this process accompanied with the decreased abundance of Clostridium, Lactobacillus, Desulfovibrio, and Methylobacterium and an increased tend of Bacteroides and Akkermansia, which also involved in the impairment of intestinal barrier after FMT. Taken together, intestinal dysbiosis may upregulate the SERT expression and contribute to the development of chronic constipation.
Collapse
|
26
|
Dinning PG, Sia TC, Kumar R, Mohd Rosli R, Kyloh M, Wattchow DA, Wiklendt L, Brookes SJH, Costa M, Spencer NJ. High-resolution colonic motility recordings in vivo compared with ex vivo recordings after colectomy, in patients with slow transit constipation. Neurogastroenterol Motil 2016; 28:1824-1835. [PMID: 27282132 DOI: 10.1111/nmo.12884] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pathogenesis of slow transit constipation (STC) remains poorly understood, with intrinsic and extrinsic abnormalities implicated. Here, we present high-resolution colonic manometry recordings from four STC patients recorded before total colectomy, and subsequently, ex vivo, after excision. METHODS In four female, treatment-resistant STC patients (median age 35.5 years), a fiber-optic manometry catheter (72 sensors spaced at 1 cm intervals) was placed with the aid of a colonoscope, to the mid-transverse colon. Colonic manometry was recorded 2 h before and after a meal. After the colectomy, ex vivo colonic manometry was recorded in an organ bath. Ex vivo recordings were also made from colons from 4 patients (2 male; median age 67.5 years) undergoing anterior resection for nonobstructive carcinoma ('control' tissue). KEY RESULTS A large increase in 'short single propagating contractions' was recorded in STC colon ex vivo compared to in vivo (ex vivo 61.3 ± 32.7 vs in vivo 2.5 ± 5/h). In STC patients, in vivo, the dominant frequency of contractile activity was 2-3 cycle per minute (cpm), whereas 1-cpm short-single propagating contractions dominated ex vivo. This same 1-cpm frequency was also dominant in control colons ex vivo. CONCLUSIONS & INFERENCES In comparison to control adults, the colon of STC patients demonstrates significantly less propagating motor activity. However, once the STC colon is excised from the body it demonstrates a regular and similar frequency of propagating activity to control tissue. This paper provides interesting insights into the control of colonic motor patterns.
Collapse
Affiliation(s)
- P G Dinning
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - T C Sia
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - R Kumar
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - R Mohd Rosli
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - M Kyloh
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - D A Wattchow
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - L Wiklendt
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - S J H Brookes
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - M Costa
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - N J Spencer
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
27
|
HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system. Sci Rep 2016; 6:31203. [PMID: 27491828 PMCID: PMC4974559 DOI: 10.1038/srep31203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
The loss of gut epithelium integrity leads to translocation of microbes and microbial products resulting in immune activation and drives systemic inflammation in acquired immunodeficiency syndrome (AIDS) patients. Although viral loads in HIV patients are significantly reduced in the post-cART era, inflammation and immune activation persist and can lead to morbidity. Here, we determined the interactive effects of the viral protein HIV-1 Tat and lipopolysaccharide (LPS) on enteric neurons and glia. Bacterial translocation was significantly enhanced in Tat-expressing (Tat+) mice. Exposure to HIV-1 Tat in combination with LPS enhanced the expression and release of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α in the ilea of Tat+ mice and by enteric glia. This coincided with enhanced NF-κB activation in enteric glia that was abrogated in glia from TLR4 knockout mice and by knockdown (siRNA) of MyD88 siRNA in wild type glia. The synergistic effects of Tat and LPS resulted in a reduced rate of colonic propulsion in Tat+ mice treated with LPS. These results show that HIV-1 Tat interacts with the TLR4 receptor to enhance the pro-inflammatory effects of LPS leading to gastrointestinal dysmotility and enhanced immune activation.
Collapse
|
28
|
Spencer NJ, Dinning PG, Brookes SJ, Costa M. Insights into the mechanisms underlying colonic motor patterns. J Physiol 2016; 594:4099-116. [PMID: 26990133 PMCID: PMC4967752 DOI: 10.1113/jp271919] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/26/2016] [Indexed: 12/28/2022] Open
Abstract
In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Phil G Dinning
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
- Departments of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, Australia
| | - Simon J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
29
|
Wessel S, Koppen IJN, Wiklendt L, Costa M, Benninga MA, Dinning PG. Characterizing colonic motility in children with chronic intractable constipation: a look beyond high-amplitude propagating sequences. Neurogastroenterol Motil 2016; 28:743-57. [PMID: 26867952 DOI: 10.1111/nmo.12771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/14/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Children with chronic intractable constipation experience severe and long-lasting symptoms, which respond poorly to conventional therapeutic strategies. Detailed characterization of colonic motor patterns in such children has not yet been obtained. METHODS In 18 children with chronic intractable constipation, a high-resolution water-perfused manometry catheter (36 sensors at 1.5-cm intervals) was colonoscopically placed with the tip at the distal transverse colon. Colonic motor patterns were recorded for 2 h prior to and after a meal and then after colonic infusion of bisacodyl. These data were compared with previously published colonic manometry data from 12 healthy adult controls and 14 adults with slow-transit constipation. KEY RESULTS The postprandial number of the retrograde cyclic propagating motor pattern was significantly reduced in these children compared with healthy adults (children, 3.1 ± 4.7/h vs healthy adults, 34.7 ± 45.8/h; p < 0.0001) but not constipated adults (4.5 ± 5.6/h; p = 0.9). The number of preprandial long-single motor patterns was significantly higher (p = 0.003) in children (8.0 ± 13.2/h) than in healthy adults (0.4 ± 0.9/h) and in constipated adults (0.4 ± 0.7/h). Postprandial high-amplitude propagating sequences (HAPSs) were rarely observed in children (2/18), but HAPS could be induced by bisacodyl in 16 of 18 children. CONCLUSIONS & INFERENCES Children with chronic intractable constipation show a similar impaired postprandial colonic response to that seen in adults with slow-transit constipation. Children may have attenuated extrinsic parasympathetic inputs to the colon associated with an increased incidence of spontaneous long-single motor patterns.
Collapse
Affiliation(s)
- S Wessel
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - I J N Koppen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - L Wiklendt
- Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - M Costa
- Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - M A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - P G Dinning
- Department of Human Physiology, Flinders University, Adelaide, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
30
|
Costa M, Wiklendt L, Simpson P, Spencer NJ, Brookes SJ, Dinning PG. Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon. Neurogastroenterol Motil 2015; 27:1466-77. [PMID: 26251321 DOI: 10.1111/nmo.12646] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. METHODS We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. KEY RESULTS Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. CONCLUSIONS & INFERENCES Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop.
Collapse
Affiliation(s)
- M Costa
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - L Wiklendt
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - P Simpson
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - N J Spencer
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - S J Brookes
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - P G Dinning
- Disciplines of Human Physiology, Flinders University, Bedford Park, SA, Australia.,Departments of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
31
|
Kendig DM, Grider JR. Serotonin and colonic motility. Neurogastroenterol Motil 2015; 27:899-905. [PMID: 26095115 PMCID: PMC4477275 DOI: 10.1111/nmo.12617] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
The role of serotonin (5-hydroxytryptamine [5-HT]) in gastrointestinal motility has been studied for over 50 years. Most of the 5-HT in the body resides in the gut wall, where it is located in subsets of mucosal cells (enterochromaffin cells) and neurons (descending interneurons). Many studies suggest that 5-HT is important to normal and dysfunctional gut motility and drugs affecting 5-HT receptors, especially 5-HT3 and 5-HT4 receptors, have been used clinically to treat motility disorders; however, cardiovascular side effects have limited the use of these drugs. Recently studies have questioned the importance and necessity of 5-HT in general and mucosal 5-HT in particular for colonic motility. Recent evidence suggests the importance of 5-HT3 and 5-HT4 receptors for initiation and generation of one of the key colonic motility patterns, the colonic migrating motor complex (CMMC), in rat. The findings suggest that 5-HT3 and 5-HT4 receptors are differentially involved in two different types of rat CMMCs: the long distance contraction (LDC) and the rhythmic propulsive motor complex (RPMC). The understanding of the role of serotonin in colonic motility has been influenced by the specific motility pattern(s) studied, the stimulus used to initiate the motility (spontaneous vs induced), and the route of administration of drugs. All of these considerations contribute to the understanding and the controversy that continues to surround the role of serotonin in the gut.
Collapse
Affiliation(s)
- D. M. Kendig
- Virginia Commonwealth University Program in Enteric Neuromuscular Sciences; Department of Physiology and Biophysics; Virginia Commonwealth University; Richmond VA USA
| | - J. R. Grider
- Virginia Commonwealth University Program in Enteric Neuromuscular Sciences; Department of Physiology and Biophysics; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
32
|
Smith TK, Park KJ, Hennig GW. Colonic migrating motor complexes, high amplitude propagating contractions, neural reflexes and the importance of neuronal and mucosal serotonin. J Neurogastroenterol Motil 2014; 20:423-46. [PMID: 25273115 PMCID: PMC4204412 DOI: 10.5056/jnm14092] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely dependence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural reflexes affect them. Discussed is the possibility that myenteric 5-hydroxytryptamine (5-HT) neurons are not only involved in tonic inhibition of the colon, but are also involved in generating the CMMC and modulation of the entire enteric nervous system, including coupling motility to secretion and blood flow. Mucosal 5-HT appears to be important for the initiation and effective propagation of CMMCs, although this mechanism is a longstanding controversy since the 1950s, which we will address. We argue that the slow apparent propagation of the CMMC/HAPC down the colon is unlikely to result from a slowly conducting wave front of neural activity, but more likely because of an interaction between ascending excitatory and descending (serotonergic) inhibitory neural pathways interacting both within the myenteric plexus and at the level of the muscle. That is, CMMC/HAPC propagation appears to be similar to esophageal peristalsis. The suppression of inhibitory (neuronal nitric oxide synthase) motor neurons and mucosal 5-HT release by an upregulation of prostaglandins has important implications in a number of gastrointestinal disorders, especially slow transit constipation.
Collapse
Affiliation(s)
- Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kyu Joo Park
- Department of Surgery, School of Medicine, Seoul National University, Seoul Korea
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|