1
|
Pislyagin EA, Tarbeeva DV, Yurchenko EA, Menchinskaya ES, Gorpenchenko TY, Pokhilo ND, Kalinovskiy AI, Aminin DL, Fedoreyev SA. Neuroprotective Activity of Oligomeric Stilbenes from Alpha Grape Stems in In Vitro Models of Parkinson's Disease. Int J Mol Sci 2025; 26:2411. [PMID: 40141054 PMCID: PMC11942555 DOI: 10.3390/ijms26062411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigated the neuroprotective activity of oligomeric stilbenes (OSs) derived from Alpha grape stems in various in vitro models of Parkinson's disease (PD). Using neurotoxin-induced cellular models, including 1-methyl-4-phenylpyridine (MPP+), paraquat (PQ), 6-hydroxydopamine (6-OHDA), and rotenone, we screened the cytoprotective effects of ampelopsin A (1), ε-viniferin (2), vitisin D (3), vitisin A (4), α-viniferin (5), trans-vitisin B (6), cis-vitisin B (7), and melanoxylin A (8). The results demonstrate that certain stilbenes significantly enhanced cell viability and reduced reactive oxygen species (ROS) levels in neurotoxin-treated Neuro-2a cells. Notably, vitisin A and trans-vitisin B exhibited promising neuroprotective properties by decreasing mitochondrial ROS and cardiolipin peroxidation. This study highlights the potential of these compounds in mitigating oxidative stress and inflammation associated with PD. Additionally, we provided new insights into the antioxidant mechanisms of these stilbenes, including their direct ROS-scavenging abilities. Our findings contribute to the understanding of oligomeric stilbenes as potential therapeutic agents for the prevention and treatment of neurodegenerative diseases, particularly those associated with oxidative damage. Further research is warranted to explore its clinical applications and underlying mechanisms of action.
Collapse
Affiliation(s)
- Evgeny A. Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
| | - Darya V. Tarbeeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
| | - Tatiana Y. Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia;
| | - Natalya D. Pokhilo
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
| | - Anatoly I. Kalinovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (D.V.T.); (E.A.Y.); (E.S.M.); (N.D.P.); (A.I.K.); (D.L.A.); (S.A.F.)
| |
Collapse
|
2
|
Buneeva O, Medvedev A. Monoamine Oxidase Inhibitors in Toxic Models of Parkinsonism. Int J Mol Sci 2025; 26:1248. [PMID: 39941014 PMCID: PMC11818313 DOI: 10.3390/ijms26031248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/16/2025] Open
Abstract
Monoamine oxidase inhibitors are widely used for the symptomatic treatment of Parkinson's disease (PD). They demonstrate antiparkinsonian activity in different toxin-based models induced by 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and pesticides (rotenone and paraquat). In some models, such as MPTP-induced PD, MAO inhibitors prevent the formation of the neurotoxin MPP+ from the protoxin MPTP. Regardless of the toxin's nature, potent MAO inhibitors prevent dopamine loss reduction, the formation of hydrogen peroxide, hydrogen peroxide signaling, and the accumulation of hydrogen peroxide-derived reactive oxygen species responsible for the development of oxidative stress. It becomes increasingly clear that some metabolites of MAO inhibitors (e.g., the rasagiline metabolite 1-R-aminoindan) possess their own bio-pharmacological activities unrelated to the parent compound. In addition, various MAO inhibitors exhibit multitarget action, in which MAO-independent effects prevail. This opens new prospects in the development of novel therapeutics based on simultaneous actions on several prospective targets for the therapy of PD.
Collapse
Affiliation(s)
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia;
| |
Collapse
|
3
|
Duret LC, Nagoshi E. The intertwined relationship between circadian dysfunction and Parkinson's disease. Trends Neurosci 2025; 48:62-76. [PMID: 39578132 DOI: 10.1016/j.tins.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Neurodegenerative disorders represent a leading cause of disability among the elderly population, and Parkinson's disease (PD) is the second most prevalent. Emerging evidence suggests a frequent co-occurrence of circadian disruption and PD. However, the nature of this relationship remains unclear: is circadian disruption a cause, consequence, or a parallel feature of the disease that shares the same root cause? This review seeks to address this question by highlighting and discussing clinical evidence and findings from experiments using vertebrate and invertebrate animal models. While research on causality is still in its early stages, the available data suggest reciprocal interactions between PD progression and circadian disruption.
Collapse
Affiliation(s)
- Lou C Duret
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Tu H, Yeo XY, Zhang ZW, Zhou W, Tan JY, Chi L, Chia SY, Li Z, Sim AY, Singh BK, Ma D, Zhou Z, Bonne I, Ling SC, Ng ASL, Jung S, Tan EK, Zeng L. NOTCH2NLC GGC intermediate repeat with serine induces hypermyelination and early Parkinson's disease-like phenotypes in mice. Mol Neurodegener 2024; 19:91. [PMID: 39609868 PMCID: PMC11603791 DOI: 10.1186/s13024-024-00780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The expansion of GGC repeats (typically exceeding 60 repeats) in the 5' untranslated region (UTR) of the NOTCH2NLC gene (N2C) is linked to N2C-related repeat expansion disorders (NREDs), such as neuronal intranuclear inclusion disease (NIID), frontotemporal dementia (FTD), essential tremor (ET), and Parkinson's disease (PD). These disorders share common clinical manifestations, including parkinsonism, dementia, seizures, and muscle weakness. Intermediate repeat sizes ranging from 40 to 60 GGC repeats, particularly those with AGC-encoded serine insertions, have been reported to be associated with PD; however, the functional implications of these intermediate repeats with serine insertion remain unexplored. METHODS Here, we utilized cellular models harbouring different sizes of N2C variant 2 (N2C2) GGC repeat expansion and CRISPR-Cas9 engineered transgenic mouse models carrying N2C2 GGC intermediate repeats with and without serine insertion to elucidate the underlying pathophysiology associated with N2C intermediate repeat with serine insertion in NREDs. RESULTS Our findings revealed that the N2C2 GGC intermediate repeat with serine insertion (32G13S) led to mitochondrial dysfunction and cell death in vitro. The neurotoxicity was influenced by the length of the repeat and was exacerbated by the presence of the serine insertion. In 12-month-old transgenic mice, 32G13S intensified intranuclear aggregation and exhibited early PD-like characteristics, including the formation of α-synuclein fibers in the midbrain and the loss of tyrosine hydroxylase (TH)-positive neurons in both the cortex and striatum. Additionally, 32G13S induced neuronal hyperexcitability and caused locomotor behavioural impairments. Transcriptomic analysis of the mouse cortex indicated dysregulation in calcium signaling and MAPK signaling pathways, both of which are critical for mitochondrial function. Notably, genes associated with myelin sheath components, including MBP and MOG, were dysregulated in the 32G13S mouse. Further investigations using immunostaining and transmission electron microscopy revealed that the N2C intermediate repeat with serine induced mitochondrial dysfunction-related hypermyelination in the cortex. CONCLUSIONS Our in vitro and in vivo investigations provide the first evidence that the N2C-GGC intermediate repeat with serine promotes intranuclear aggregation of N2C, leading to mitochondrial dysfunction-associated hypermyelination and neuronal hyperexcitability. These changes contribute to motor deficits in early PD-like neurodegeneration in NREDs.
Collapse
Affiliation(s)
- Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wei Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
| | - Jayne Yi Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Li Chi
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Zhihong Li
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Aik Yong Sim
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore, 169609, Singapore
| | - Zhidong Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Isabelle Bonne
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shuo-Chien Ling
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, 13488, Republic of Korea
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Novena Campus, 308232, Singapore.
| |
Collapse
|
5
|
Zhang A, Wang J, Zhao Y, He Y, Sun N. Intermittent fasting, fatty acid metabolism reprogramming, and neuroimmuno microenvironment: mechanisms and application prospects. Front Nutr 2024; 11:1485632. [PMID: 39512520 PMCID: PMC11541237 DOI: 10.3389/fnut.2024.1485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Intermittent fasting (IF) has demonstrated extensive health benefits through the regulation of fatty acid metabolism and modulation of the neuroimmune microenvironment, primarily via the activation of key signaling pathways such as AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). IF not only facilitates fatty acid oxidation and improves metabolic health, but also enhances mitochondrial function, mitigates oxidative stress, promotes autophagy, and inhibits apoptosis and ferroptosis. These mechanisms contribute to its substantial preventive and therapeutic potential in various conditions, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, autoimmune diseases, and neurotraumatic conditions. While supportive evidence has been obtained from animal models and preliminary clinical studies, further large-scale, long-term randomized controlled trials are imperative to establish its safety and evaluate its clinical efficacy comprehensively.
Collapse
Affiliation(s)
- Anren Zhang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyu Wang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinuo Zhao
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nianyi Sun
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Yong SJ, Veerakumarasivam A, Teoh SL, Lim WL, Chew J. Lactoferrin Protects Against Rotenone-Induced Toxicity in Dopaminergic SH-SY5Y Cells through the Modulation of Apoptotic-Associated Pathways. J Mol Neurosci 2024; 74:88. [PMID: 39297981 DOI: 10.1007/s12031-024-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
Parkinson's disease (PD) is a common motor neurodegenerative disease that still lacks effective therapeutic options. Previous studies have reported that lactoferrin exhibited neuroprotective effects in cellular and animal models of PD, typically induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+) synthetic toxin. However, the neuroprotective capacity of lactoferrin in the rotenone-induced cellular model of PD remains relatively less established. Unlike MPTP/MPP+, rotenone is a naturally occurring environmental toxin known to induce chronic toxicity and increase the risk of PD in humans. In this study, we constructed a cellular model of PD by differentiating SH-SY5Y neuroblastoma cells with retinoic acid into mature dopaminergic neurons with increased β-tubulin III and tyrosine hydroxylase expression, followed by 24 h of rotenone exposure. Using this cellular model of PD, we showed that lactoferrin (1-10 µg/ml) pre-treatment for 48 h decreased loss of cell viability, mitochondrial membrane potential impairment, reactive oxygen species generation and pro-apoptotic activities (pan-caspase activation and nuclear condensation) in cells exposed to rotenone (1 and 5 µM) using biochemical assays, Hoechst 33342 staining and immunocytochemical techniques. We further demonstrated that 48 h of lactoferrin (10 µg/ml) pre-treatment decreased Bax:Bcl2 ratio and p42/44 mitogen-activated protein kinase expression but increased pAkt expression in 5 µM rotenone-exposed cells. Our study demonstrates that lactoferrin neuroprotective capacity is present in the rotenone-induced cellular model of PD, further supporting lactoferrin as a potential PD therapeutic that warrants further studies.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
7
|
McConnell EM, Chan D, Ventura K, Callahan JP, Harris K, Hunt VH, Boisjoli S, Knight D, Monk ET, Holahan MR, DeRosa MC. Selection of DNA aptamers that prevent the fibrillization of α-synuclein protein in cellular and mouse models. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102251. [PMID: 39377064 PMCID: PMC11456556 DOI: 10.1016/j.omtn.2024.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2024] [Indexed: 10/09/2024]
Abstract
A neuropathological hallmark of Parkinson's disease (PD) is the aggregation and spreading of misfolded α-synuclein (αSyn) protein. In this study, a selection method was developed to identify aptamers that showed affinity for monomeric αSyn and inhibition of αSyn aggregation. Aptamer a-syn-1 exhibited strong inhibition of αSyn aggregation in vitro by transmission electron microscopy and Thioflavin T fluorescence. A-syn-1-treated SH-SY5Y cells incubated with pre-formed fibrils (PFFs) showed less intracellular aggregation of αSyn in comparison with a scrambled oligonucleotide control, as observed with fluorescent microscopy. Systemic delivery of a-syn-1 to the brain was achieved using a liposome vehicle and confirmed with fluorescence microscopy and qPCR. Transgenic mice overexpressing the human A53T variant of αSyn protein were injected with a-syn-1 loaded liposomes at 5 months of age both acutely (single intraperitoneal [i.p.] injection) and repeatedly (5 i.p. injections over 5 days). Western blot protein quantification revealed that both acute and repeated injections of a-syn-1 decreased levels of the aggregated form of αSyn in the transgenic mice in the prefrontal cortex, caudate, and substania nigra (SNc). These results provide in vitro and in vivo evidence that a-syn-1 can inhibit pathological αSyn aggregation and may have implications in treatment strategies to target dysregulation in PD.
Collapse
Affiliation(s)
- Erin M. McConnell
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Dennis Chan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Joshua P. Callahan
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kathryn Harris
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Vernon H. Hunt
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Spencer Boisjoli
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel Knight
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Evan T. Monk
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Techaniyom P, Korsirikoon C, Rungruang T, Pakaprot N, Prombutara P, Mukda S, Kettawan AK, Kettawan A. Cold-pressed perilla seed oil: Investigating its protective influence on the gut-brain axis in mice with rotenone-induced Parkinson's disease. Food Sci Nutr 2024; 12:6259-6283. [PMID: 39554352 PMCID: PMC11561828 DOI: 10.1002/fsn3.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024] Open
Abstract
Perilla seed oil, derived from a regional plant native to northern Thailand, undergoes cold-pressing to analyze its bioactive components, notably alpha-linolenic acid (ALA). ALA, constituting approximately 61% of the oil, serves as a precursor for therapeutic omega-3 fatty acids, EPA and DHA, with neurodegenerative disease benefits and anti-inflammatory responses. This study administered different concentrations of perilla seed oil to male C57BL/6 mice, categorized as low dose (LP 5% w/w), middle dose (MP 10% w/w), and high dose (HP 20% w/w), along with a fish oil (FP 10% w/w) diet. An experimental group received soybean oil (5% w/w). Over 42 days, these diets were administered while inducing Parkinson's disease (PD) with rotenone injections. Mice on a high perilla seed oil dose exhibited decreased Cox-2 expression in the colon, suppressed Iba-1 microglia activation, reduced alpha-synuclein accumulation in the colon and hippocampus, prevented dopaminergic cell death in the substantia nigra, and improved motor and non-motor symptoms. Mice on a middle dose showed maintenance of diverse gut microbiota, with an increased abundance of short-chain fatty acid (SCFA)-producing bacteria (Bifidobacteria, Lactobacillus, and Faecalibacteria). A reduction in bacteria correlated with PD (Turicibacter, Ruminococcus, and Akkermansia) was observed. Results suggest the potential therapeutic efficacy of high perilla seed oil doses in mitigating both intestinal and neurological aspects linked to the gut-brain axis in PD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of NutritionMahidol UniversityBangkokThailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Mod Gut Co., Ltd.BangkokThailand
| | - Sujira Mukda
- Research Center for NeuroscienceInstitute of Molecular Biosciences, Mahidol UniversityNakhon PathomThailand
| | | | | |
Collapse
|
9
|
Guimarães RP, de Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. Int J Mol Sci 2024; 25:8971. [PMID: 39201659 PMCID: PMC11354451 DOI: 10.3390/ijms25168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Current drugs only alleviate symptoms without halting disease progression, making rodent models essential for researching new therapies and understanding the disease better. However, selecting the right model is challenging due to the numerous models and protocols available. Key factors in model selection include construct, face, and predictive validity. Construct validity ensures the model replicates pathological changes seen in human PD, focusing on dopaminergic neurodegeneration and a-synuclein aggregation. Face validity ensures the model's symptoms mirror those in humans, primarily reproducing motor and non-motor symptoms. Predictive validity assesses if treatment responses in animals will reflect those in humans, typically involving classical pharmacotherapies and surgical procedures. This review highlights the primary characteristics of PD and how these characteristics are validated experimentally according to the three criteria. Additionally, it serves as a valuable tool for researchers in selecting the most appropriate animal model based on established validation criteria.
Collapse
Affiliation(s)
- Rayanne Poletti Guimarães
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Maria Clara Souza de Resende
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Mesquita Tavares
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Caio Belardinelli de Azevedo
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Cesar Merino Ruiz
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
- Neurological Rehabilitation Unit, Sarah Network of Rehabilitation Hospitals, Brasília 70335-901, Brazil
| | - Márcia Renata Mortari
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| |
Collapse
|
10
|
Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson's Disease: A Narrative Review. Brain Sci 2024; 14:156. [PMID: 38391730 PMCID: PMC10887213 DOI: 10.3390/brainsci14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent efforts to search for biomarkers for the pre-symptomatic diagnosis of Parkinson's disease (PD), the presence of risk factors, prodromal signs, and family history still support the classification of individuals at risk for this disease. Human epidemiological studies are useful in this search but fail to provide causality. The study of well-known risk factors for PD in animal models can help elucidate mechanisms related to the disease's etiology and contribute to future prevention or treatment approaches. This narrative review aims to discuss animal studies that investigated four of the main risk factors and/or prodromal signs related to PD: advanced age, male sex, sleep alterations, and depression. Different databases were used to search the studies, which were included based on their relevance to the topic. Although still in a reduced number, such studies are of great relevance in the search for evidence that leads to a possible early diagnosis and improvements in methods of prevention and treatment.
Collapse
Affiliation(s)
- R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - D G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - M Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - A M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil
| | - J R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana 49500-000, SE, Brazil
| |
Collapse
|
11
|
Chahardehi AM, Hosseini Y, Mahdavi SM, Naseh I. The Zebrafish Model as a New Discovery Path for Medicinal Plants in the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:306-314. [PMID: 36999188 DOI: 10.2174/1871527322666230330111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
Parkinson's disease (PD) is one of the most frequent degenerative central nervous system disorders affecting older adults. Dopaminergic neuron failure in the substantia nigra is a pathological sign connected with the motor shortfall of PD. Due to their low teratogenic and adverse effect potential, medicinal herbs have emerged as a promising therapy option for preventing and curing PD and other neurodegenerative disorders. However, the mechanism through which natural compounds provide neuroprotection against PD remains unknown. While testing compounds in vertebrates such as mice is prohibitively expensive and time-consuming, zebrafish (Danio rerio) may offer an appealing alternative because they are vertebrates and share many of the same characteristics as humans. Zebrafish are commonly used as animal models for studying many human diseases, and their molecular history and bioimaging properties are appropriate for the study of PD. However, a literature review indicated that only six plants, including Alpinia oxyhylla, Bacopa monnieri, Canavalia gladiate, Centella asiatica, Paeonia suffruticosa, and Stachytarpheta indica had been investigated as potential PD treatments using the zebrafish model. Only C. asiatica and B. monnieri were found to have potential anti-PD activity. In addition to reviewing the current state of research in this field, these plants' putative mechanisms of action against PD are explored, and accessible assays for investigation are made.
Collapse
Affiliation(s)
| | - Yasaman Hosseini
- Cognitive Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mahdavi
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology (MUT), Tehran, Iran
| | - Iman Naseh
- Cognitive Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Pardridge WM. Treatment of Parkinson's disease with biologics that penetrate the blood-brain barrier via receptor-mediated transport. Front Aging Neurosci 2023; 15:1276376. [PMID: 38035276 PMCID: PMC10682952 DOI: 10.3389/fnagi.2023.1276376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Parkinson's disease (PD) is characterized by neurodegeneration of nigral-striatal neurons in parallel with the formation of intra-neuronal α-synuclein aggregates, and these processes are exacerbated by neuro-inflammation. All 3 components of PD pathology are potentially treatable with biologics. Neurotrophins, such as glial derived neurotrophic factor or erythropoietin, can promote neural repair. Therapeutic antibodies can lead to disaggregation of α-synuclein neuronal inclusions. Decoy receptors can block the activity of pro-inflammatory cytokines in brain. However, these biologic drugs do not cross the blood-brain barrier (BBB). Biologics can be made transportable through the BBB following the re-engineering of the biologic as an IgG fusion protein, where the IgG domain targets an endogenous receptor-mediated transcytosis (RMT) system within the BBB, such as the insulin receptor or transferrin receptor. The receptor-specific antibody domain of the fusion protein acts as a molecular Trojan horse to ferry the biologic into brain via the BBB RMT pathway. This review describes the re-engineering of all 3 classes of biologics (neurotrophins, decoy receptor, therapeutic antibodies) for BBB delivery and treatment of PD. Targeting the RMT pathway at the BBB also enables non-viral gene therapy of PD using lipid nanoparticles (LNP) encapsulated with plasmid DNA encoding therapeutic genes. The surface of the lipid nanoparticle is conjugated with a receptor-specific IgG that triggers RMT of the LNP across the BBB in vivo.
Collapse
|
13
|
Omotayo T, Otenaike TA, Adedara AO, Adeyemi OE, Jonhnson TO, Abolaji AO. Biological interactions and attenuation of MPTP-induced toxicity in Drosophila melanogaster by Trans-astaxanthin. Neurosci Res 2023; 196:52-58. [PMID: 37329901 DOI: 10.1016/j.neures.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Trans-astaxanthin (TA) is a carotenoid with amphipathic chemical structure found in yeast, and aquatic organisms. It is known to possess both antioxidative and anti-inflammatory properties. This study was carried out to investigate the ameliorative action of TA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity in Drosophila melanogaster (Fruit fly). The flies were orally treated with TA (2.5 mg/10 g diet) and/or MPTP (500 µM) for 5 days. Thereafter, we evaluated selected biomarkers of locomotor deficits (acetylcholinesterase (AChE) and negative geotaxis), oxidative stress (hydrogen peroxide (H2O2), protein carbonyls (PC)), antioxidants (total thiols (T-SH), non-protein thiols, glutathione-S-transferase (GST) and catalase), and inflammation (nitric oxide (nitrite/nitrate) in the flies. Furthermore, we investigated molecular docking analysis of TA against Kelch-like ECH-associated protein 1 (Keap1)) of Homo sapiens and D. melanogaster. The results indicated that TA increased MPTP-induced decreased activities of AChE, GST, and catalase, as well as levels of non-protein thiols and T-SH compared with MPTP-treated flies (p < 0.05). Furthermore, TA attenuated inflammation, and improved locomotor deficit in the flies. The molecular docking data showed that TA had docking scores for binding both the Human and Drosophila Keap1, nearly closer to or higher than the standard inhibitor. The attenuating effects of TA against MPTP-induced toxicity could arise from its antioxidative and anti-inflammatory properties as well as its chemical structure.
Collapse
Affiliation(s)
- Tolulope Omotayo
- Drosophila Laboratory. Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Titilayomi A Otenaike
- Drosophila Laboratory. Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeola Oluwatosin Adedara
- Drosophila Laboratory. Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Drosophila Research and Training Centre, Basorun, Ibadan, Nigeria
| | - Oluwagbenga Eyitayo Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Titilayo O Jonhnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Amos Olalekan Abolaji
- Drosophila Laboratory. Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Drosophila Research and Training Centre, Basorun, Ibadan, Nigeria.
| |
Collapse
|
14
|
Aktas B. Gut Microbial Alteration in MPTP Mouse Model of Parkinson Disease is Administration Regimen Dependent. Cell Mol Neurobiol 2023; 43:2815-2829. [PMID: 36708421 PMCID: PMC9883829 DOI: 10.1007/s10571-023-01319-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Parkinson Disease (PD) is one of the most common neurodegenerative disorders characterized by loss of dopaminergic neurons involved in motor functions. Growing evidence indicates that gut microbiota communicates with the brain known as the gut-brain axis (GBA). Mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used in animal studies to investigate the GBA in PD. Various MPTP administration regimens are performed in PD mouse models involving one to multiple injections in 1 day or one injection per day for several days. The aim of this study is to investigate if the impact of MPTP on gut microbiota differs depending on the administration regimen. C57BL/6 mice were treated with acute or subchronic regimens of MPTP. Motor functions were assessed by open-field, catalepsy, and wire hanging tests. The cecum and the brain samples were obtained for microbiota and gene expression analyses, respectively. MPTP administration regimens differed in their ability to alter the gut microbiota. Firmicutes and Bacteroidota were both increased in subchronic mice while did not change and decreased, respectively, in acute mice. Verrucomicrobiota was elevated in acute MPTP mice but dropped in subchronic MPTP mice. Muribaculaceae was the predominant genus in all groups but acute mice. In acute mice, Akkermansia was increased and Colidextribacter was decreased; however, they showed an opposite trend in subchronic mice. These data suggest that MPTP mouse model cause a gut microbiota dysbiosis in an administration regimen dependent manner, and it is important to take consideration of mouse model to investigate the GBA in neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University Burdur, 15030, Burdur, Turkey.
| |
Collapse
|
15
|
Oliynyk Z, Rudyk M, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Inflammatory hallmarks in 6-OHDA- and LPS-induced Parkinson's disease in rats. Brain Behav Immun Health 2023; 30:100616. [PMID: 37096171 PMCID: PMC10121378 DOI: 10.1016/j.bbih.2023.100616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting more than 1% of aged people. PD, which was previously identified as movement disorder, now is recognized as a multi-factorial systemic disease with important pathogenetic and pathophysiological role of inflammation. Reproducing local and systemic inflammation, which is inherent in PD, in animal models is essential for maximizing the translation of their potential to the clinic, as well as for developing putative anti-inflammatory neuroprotective agents. This study was aimed to compare activation patterns of microglia/macrophage population and systemic inflammation indices in rats with 6-Hydroxydopamine (6-OHDA)- and Lipopolysaccharide (LPS)-induced PD. Metabolic and phenotypic characteristics of microglia/macrophage population were examined by flow cytometry, systemic inflammatory markers were calculated using hematological parameters in 6-OHDA- and LPS-lesioned Wistar rats 29 days after the surgery. Microglia/macrophages from rats in both models exhibited pro-inflammatory metabolic shift. Nevertheless, in LPS-lesioned animals, highly increased proportion of CD80/86+ cells in microglia/macrophage population was registered alongside increased values of systemic inflammatory indices: neutrophil to lymphocyte ratio (NLR), derived neutrophil to lymphocyte ratio (dNLR), platelet to lymphocyte ratio and systemic immune inflammation index (SII). There was significant positive correlation between the count of CD80/86+ cells and systemic inflammatory indices in these animals. Microglia/macrophages from 6-OHDA-lesioned rats were characterized by the increased fraction of CD206+ cells alongside decreased proportion of CD80/86+ cells. No signs of systemic inflammation were observed. Negative correlation between quantitation characteristics of CD80/86+ cells and values of systemic inflammatory indices was registered. Collectively, our data show that LPS-PD model unlike 6-OHDA-PD replicates crosstalk between local and systemic inflammatory responses, which is inherent in PD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Zhanna Oliynyk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| | - Mariia Rudyk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
- Corresponding author. Microbiology and Immunology Department, ESC “Institute of Biology and Medicine”, Taras Shevchenko Kyiv National University, Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine.
| | - Taisa Dovbynchuk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| | - Nataliia Dzubenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| |
Collapse
|
16
|
Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. Int J Mol Sci 2023; 24:ijms24109088. [PMID: 37240432 DOI: 10.3390/ijms24109088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Disease modeling in non-human subjects is an essential part of any clinical research. To gain proper understanding of the etiology and pathophysiology of any disease, experimental models are required to replicate the disease process. Due to the huge diversity in pathophysiology and prognosis in different diseases, animal modeling is customized and specific accordingly. As in other neurodegenerative diseases, Parkinson's disease is a progressive disorder coupled with varying forms of physical and mental disabilities. The pathological hallmarks of Parkinson's disease are associated with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient's motor activity. Extensive research has already been conducted regarding animal modeling of Parkinson's diseases. These include animal systems with induction of Parkinson's, either pharmacologically or via genetic manipulation. In this review, we will be summarizing and discussing some of the commonly employed Parkinson's disease animal model systems and their applications and limitations.
Collapse
Affiliation(s)
- Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
17
|
Liu Z, Shen C, Li H, Tong J, Wu Y, Ma Y, Wang J, Wang Z, Li Q, Zhang X, Dong H, Yang Y, Yu M, Wang J, Zhou R, Fei J, Huang F. NOD-like receptor NLRC5 promotes neuroinflammation and inhibits neuronal survival in Parkinson's disease models. J Neuroinflammation 2023; 20:96. [PMID: 37072793 PMCID: PMC10111753 DOI: 10.1186/s12974-023-02755-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/02/2023] [Indexed: 04/20/2023] Open
Abstract
Parkinson's disease (PD) is mainly characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and neuroinflammation mediated by overactivated microglia and astrocytes. NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5) has been reported to participate in various immune disorders, but its role in neurodegenerative diseases remains unclear. In the current study, we found that the expression of NLRC5 was increased in the nigrostriatal axis of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced PD, as well as in primary astrocytes, microglia and neurons exposed to different neurotoxic stimuli. In an acute MPTP-induced PD model, NLRC5 deficiency significantly reduced dopaminergic system degeneration and ameliorated motor deficits and striatal inflammation. Furthermore, we found that NLRC5 deficiency decreased the expression of the proinflammatory genes IL-1β, IL-6, TNF-α and COX2 in primary microglia and primary astrocytes treated with neuroinflammatory stimuli and reduced the inflammatory response in mixed glial cells in response to LPS treatment. Moreover, NLRC5 deficiency suppressed activation of the NF-κB and MAPK signaling pathways and enhanced the activation of AKT-GSK-3β and AMPK signaling in mixed glial cells. Furthermore, NLRC5 deficiency increased the survival of primary neurons treated with MPP+ or conditioned medium from LPS-stimulated mixed glial cells and promoted activation of the NF-κB and AKT signaling pathways. Moreover, the mRNA expression of NLRC5 was decreased in the blood of PD patients compared to healthy subjects. Therefore, we suggest that NLRC5 promotes neuroinflammation and dopaminergic degeneration in PD and may serve as a marker of glial activation.
Collapse
Affiliation(s)
- Zhaolin Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chenye Shen
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Heng Li
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jiabin Tong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yufei Wu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zishan Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Qing Li
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yufang Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Renyuan Zhou
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai, 201203, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Troshev D, Blokhin V, Ukrainskaya V, Kolacheva A, Ugrumov M. Isolation of living dopaminergic neurons labeled with a fluorescent ligand of the dopamine transporter from mouse substantia nigra as a new tool for basic and applied research. Front Mol Neurosci 2022; 15:1020070. [PMID: 36568278 PMCID: PMC9780273 DOI: 10.3389/fnmol.2022.1020070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic neurons (DNs) of the nigrostriatal system control the motor function, and their degeneration leads to the development of Parkinson's disease (PD). A stumbling block in the study of DNs in the whole substantia nigra (SN) is the lack of tools to analyze the expression of most of the genes involved in neurotransmission, neurodegeneration, and neuroplasticity, since they are also expressed in other cells of the SN. Therefore, this study aimed to develop a fluorescence-activated cell sorting method for isolating living DNs from the SN of wild-type mice using two fluorescent dyes, DRAQ5 (nuclear stain) and a dopamine uptake inhibitor GBR 12909 coupled to a fluorophore (DN stain). We have developed a method for selecting a population of DNs from the SN of mice, as evidenced by: (i) immunopositivity of 95% of the sorted cells for tyrosine hydroxylase, the first enzyme of dopamine synthesis; (ii) the sorted cells expressing the genes for specific proteins of the dopaminergic phenotype, tyrosine hydroxylase, the dopamine transporter, and vesicular monoamine transporter 2 and non-specific proteins, such as aromatic L-amino acid decarboxylase, non-specific enzyme of dopamine synthesis. We then compared the changes in gene expression found in the sorted DNs and in the SN homogenate in a PD model we developed, reproduced in mice by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Using quantitative PCR, we obtained evidence of the same changes in the expression of specific genes in the sorted DNs of SN and in the SN homogenate of a MPTP mouse model of PD, compared with the control. The undoubted advantage of our approach is the possibility of obtaining a large amount of readily available and relatively cheap primary material (SN) from wild-type mice, which can be used to solve both research and applied problems. In addition, this method can be easily adapted to the isolation of DNs from the SN in other animal species, including non-human primates.
Collapse
Affiliation(s)
- Dmitry Troshev
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Valeria Ukrainskaya
- Laboratory of Biocatalysis, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kolacheva
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia,*Correspondence: Michael Ugrumov,
| |
Collapse
|
19
|
Alabrahim OAA, Azzazy HMES. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson's disease. NANOSCALE ADVANCES 2022; 4:5233-5244. [PMID: 36540116 PMCID: PMC9724695 DOI: 10.1039/d2na00524g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
As the world's population ages, the incidence of Parkinson's disease (PD), the second most common neurological ailment, keeps increasing. It is estimated that 1% of the global population over the age of 60 has the disease. The continuous loss of dopaminergic neurons and the concomitant brain depletion of dopamine levels represent the hallmarks of PD. As a result, current PD therapies primarily target dopamine or its precursor (levodopa). Therapeutic approaches that aim to provide an exogenous source of levodopa or dopamine are hindered by their poor bioavailability and the blood-brain barrier. Nevertheless, the fabrication of many polymeric nanoparticles has been exploited to deliver several drugs inside the brain. In addition to a brief introduction of PD and its current therapeutic approaches, this review covers novel polymeric nanoparticulate drug delivery systems exploited lately for dopamine and levodopa replacement in PD.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Graduate Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo 11835 New Cairo Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
20
|
Chiu CH, Weng SJ, Yeh SHH, Jhao YT, Chang HF, Huang WS, Cheng CY, Yeh CC, Ma KH. Assessment of the anti-nociceptive effects of fetal ventral mesencephalic tissue allografts in a rat model of hemi-Parkinson's disease using fMRI. Front Aging Neurosci 2022; 14:948848. [PMID: 36466604 PMCID: PMC9716198 DOI: 10.3389/fnagi.2022.948848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2023] Open
Abstract
Extensive studies showed increased subjective pain sensitivity in Parkinson's disease (PD), which appeared to be partially reversed by dopaminergic (DA) treatment. Although cell replacement represents an attractive therapeutic strategy, its potential for PD-related hyperalgesia remains unclear. We investigated re-establishment of DA function via allografting exogenic DA cells on pain hypersensitivity in a rat model of PD. We evaluated the anti-nociceptive effects of fetal ventral mesencephalic (rVM) tissue allografts in PD rats after unilateral 6-OHDA-induced toxicity in the medial forebrain bundle. The drug -induced rotation test was used to validate the severity of the nigrostriatal lesion; von Frey and thermal pain tests were employed to evaluate nociceptive function. Nociception-induced cerebral blood volume (CBV) response was measured using a 4.7-T MR system. Finally, the immunohistochemical (IHC) studies were performed and the results were compared with the imaging findings from functional magnetic resonance imaging (fMRI). The grafts significantly improved drug-induced rotation behavior and increased mechanical and thermal nociceptive thresholds in PD rats. The elevation of CBV signals significantly recovered on the grafted striatum, whereas this effect was inhibited by the D2R antagonist eticlopride in each striatum. Quantitative IHC analysis revealed the transplantation markedly increased the numbers of tyrosine hydroxylase immunoreactive cells. Therefore, we concluded transplantation of rVM tissue results in anti-nociceptive effects and improves motor function. Moreover, in vivo CBV response confirmed the key role of D2R-mediated pain modulation. Therefore, we demonstrate fMRI as a reliable imaging index in evaluating the anti-nociceptive therapeutic effects of fetal rVM transplantation in the rat model of PD.
Collapse
Affiliation(s)
- Chuang-Hsin Chiu
- Department of Nuclear Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | | | - Yun-Ting Jhao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | | | - Wen-Sheng Huang
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chun-Chang Yeh
- Department of Anesthesiology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
21
|
Cesaroni V, Blandini F, Cerri S. Dyskinesia and Parkinson's disease: animal model, drug targets, and agents in preclinical testing. Expert Opin Ther Targets 2022; 26:837-851. [PMID: 36469635 DOI: 10.1080/14728222.2022.2153036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. PD patients exhibit a classic spectrum of motor symptoms, arising when dopamine neurons in the substantia nigra pars compacta are reduced by 60%. The dopamine precursor L-DOPA represents the most effective therapy for improving PD motor dysfunctions, thus far available. Unfortunately, long-term treatment with L-DOPA is associated with the development of severe side effects, resulting in abnormal involuntary movements termed levodopa-induced dyskinesia (LID). Amantadine is the only drug currently approved for the treatment of LID indicating that LID management is still an unmet need in PD and encouraging the search for novel anti-dyskinetic drugs or the assessment of combined therapies with different molecular targets. AREAS COVERED This review provides an overview of the main preclinical models used to study LID and of the latest preclinical evidence on experimental and clinically available pharmacological approaches targeting non-dopaminergic systems. EXPERT OPINION LIDs are supported by complex molecular and neurobiological mechanisms that are still being studied today. This complexity suggests the need of developing personalized pharmacological approach to obtain an effective amelioration of LID condition and improve the quality of life of PD patients.
Collapse
Affiliation(s)
- Valentina Cesaroni
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| | - Fabio Blandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico 20122, Milan, Italy
| | - Silvia Cerri
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| |
Collapse
|
22
|
Miao WG, Nguyen T, Iqbal J, Pierens GK, Ma L, Richardson DR, Wood SA, Mellick GD, Quinn RJ, Feng Y. Meeting the Challenge 2: Identification of Potential Chemical Probes for Parkinson's Disease from Ligusticum chuanxiong Hort Using Cytological Profiling. ACS Chem Neurosci 2022; 13:2565-2578. [PMID: 36018577 DOI: 10.1021/acschemneuro.1c00820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been around for thousands of years and is increasingly gaining popularity in the Western world to treat various complex disorders including the incurable neurodegenerative condition, Parkinson's Disease (PD). One of the many directions in recent studies of PD is utilizing the phenotypic assay, or cytological profiling, to evaluate the phenotypic changes of PD-implicated cellular components in patient-derived olfactory neuroepithelial (hONS) cells, upon treating the cells with extracts or pure compounds. To obtain small molecules for studies utilizing PD phenotyping assays, Ligusticum chuanxiong Hort was selected for analysis as it is a popular Chinese herbal medicine used for treating PD-like symptoms. Fifty-three secondary metabolites, including six new compounds, were isolated from the ethanolic extract of L. chuanxiong; their structures were elucidated based on several spectroscopic techniques such as NMR, MS, Fourier transform infrared (FTIR), UV, and theoretical density functional theory (DFT) calculations. Cytological profiling of the afforded natural products against PD hONS cells revealed 34 compounds strongly perturbated the staining of several cellular organelles. In fact, greaterthan 1.5-fold change was observed compared to the control (dimethyl sulfoxide; DMSO), with early endosome, lysosome, and autophagosome (LC3b) being particularly affected. Given these biological compartments are closely related to PD pathogenesis, the results helped rationalize the traditional medicinal use of L. chuanxiong in PD treatment. Further, the hit compounds can serve as chemical probes to map the molecular pathways underlying PD, potentially leading to new therapeutic targets for PD.
Collapse
Affiliation(s)
- William Gang Miao
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Jamila Iqbal
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Des R Richardson
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia.,School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
23
|
Bagnoli S, Fronte B, Bibbiani C, Terzibasi Tozzini E, Cellerino A. Quantification of noradrenergic-, dopaminergic-, and tectal-neurons during aging in the short-lived killifish Nothobranchius furzeri. Aging Cell 2022; 21:e13689. [PMID: 35986561 PMCID: PMC9470901 DOI: 10.1111/acel.13689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) is characterized by phosphorylation and aggregation of the protein α-Synuclein and ensuing neuronal death progressing from the noradrenergic locus coeruleus to midbrain dopaminergic neurons. In 2019, Matsui and colleagues reported a spontaneous age-dependent degeneration of dopaminergic neurons and an even greater neurodegeneration of the noradrenergic neurons in the short-lived killifish Nothobranchius furzeri. Given the great possible relevance of a spontaneous model for PD, we assessed neurodegeneration of noradrenergic and dopaminergic neurons in two further laboratory strains of N. furzeri. We implemented, for the first time in N. furzeri, a whole-brain clarification technique and proceeded to entire 3D nuclei reconstruction to quantify total cell numbers in two different stains of N. furzeri. In both strains, we observed that age-dependent neurodegeneration is limited to the locus coeruleus and does not involve the posterior tuberculum. We also applied 3D counting to the optic tectum, an area of active adult neurogenesis, and detected an increase of neurons with age. Our results confirm age-dependent neurodegeneration of noradrenergic neurons, a condition reminiscent of the presymptomatic stage of PD indicating that N. furzeri could be used in the future to identify modifying factors for age-dependent neurodegeneration and open the intriguing possibility that natural genetic variation may influence the susceptibility of dopaminergic neurons.
Collapse
Affiliation(s)
- Sara Bagnoli
- Laboratory of Biology (BIO@SNS)Scuola Normale SuperiorePisaItaly
| | | | - Carlo Bibbiani
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Eva Terzibasi Tozzini
- Biology and Evolution of Marine Organisms Dep. (BEOM)Stazione Zoologica Anton DohrnNaplesItaly
| | - Alessandro Cellerino
- Laboratory of Biology (BIO@SNS)Scuola Normale SuperiorePisaItaly,Leibniz Institute on AgingFritz Lipmann InstituteJenaGermany
| |
Collapse
|
24
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
25
|
Ketogenic therapy for Parkinson's disease: A systematic review and synthesis without meta-analysis of animal and human trials. Maturitas 2022; 163:46-61. [PMID: 35714419 DOI: 10.1016/j.maturitas.2022.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of the present systematic review was to assess the efficacy of ketogenic therapy in Parkinson's disease (PD), using all available data from randomized controlled trials (RCTs) on humans and animal studies with PD models. DESIGN Systematic review of in vivo studies. METHODS Studies related to the research question were identified through searches in PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, clinicaltrials.gov and the gray literature, from inception until November 2021. Rayyan was employed to screen and identify all studies fulfilling the inclusion criteria. Cochrane's revised Risk of Bias 2.0 and SYRCLE tools evaluated bias in RCTs and animal studies, respectively. An effect direction plot was developed to synthesize the evidence of the RCTs. RESULTS Twelve studies were identified and included in the qualitative synthesis (4 RCTs and 8 animal trials). Interventions included ketogenic diets (KDs), supplementation with medium-chain triglyceride (MCT) oil, caprylic acid administration and ketone ester drinks. The animal research used zebrafish and rodents, and PD was toxin-induced. Based on the available RCTs, ketogenic therapy does not improve motor coordination and functioning, cognitive impairment, anthropometrics, blood lipids and glycemic control, exercise performance or voice disorders in patients with PD. The evidence is scattered and heterogenous, with single trials assessing different outcomes; thus, a synthesis of the evidence cannot be conclusive regarding the efficacy of ketogenic therapy. On the other hand, animal studies tend to demonstrate more promising results, with marked improvements in locomotor activity, dopaminergic activity, redox status, and inflammatory markers. CONCLUSIONS Although animal studies indicate promising results, research on the effect of ketogenic therapy in PD is still in its infancy, with RCTs conducted on humans being heterogeneous and lacking PD-specific outcomes. More studies are required to recommend or refute the use of ketogenic therapy in PD.
Collapse
|
26
|
The α7 nAChR allosteric modulator PNU-120596 amends neuroinflammatory and motor consequences of parkinsonism in rats: Role of JAK2/NF-κB/GSk3β/ TNF-α pathway. Biomed Pharmacother 2022; 148:112776. [PMID: 35272136 DOI: 10.1016/j.biopha.2022.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and a leading cause of disability. The current gold standard for PD treatment, L-Dopa, has limited clinical efficacy and multiple side effects. Evidence suggests that activation of α7 nicotinic acetylcholine receptors (α7nAChRs) abrogates neuronal and inflammatory insults. Here we tested whether PNU-120596 (PNU), a type II positive allosteric modulator of α7 nAChR, has a critical role in regulating motor dysfunction and neuroinflammation correlated with the associated PD dysfunction. Neuroprotective mechanisms were investigated through neurobehavioral, molecular, histopathological, and immunohistochemical studies. PNU reversed motor incoordination and hypokinesia induced via the intrastriatal injection of 6-hydroxydopamine and manifested by lower falling latency in the rotarod test, short ambulation time and low rearing incidence in open field test. Tyrosine hydroxylase immunostaining showed a significant restoration of dopaminergic neurons following PNU treatment, in addition to histopathological restoration in nigrostriatal tissues. PNU halted striatal neuroinflammation manifested as a suppressed expression of JAK2/NF-κB/GSk3β accompanied by a parallel decline in the protein expression of TNF-α in nigrostriatal tissue denoting the modulator anti-inflammatory capacity. Moreover, the protective effects of PNU were partially reversed by the α7 nAChR antagonist, methyllycaconitine, indicating the role of α7 nAChR modulation in the mechanism of action of PNU. This is the first study to reveal the positive effects of PNU-120596 on motor derangements of PD via JAK2/NF-κB/GSk3β/ TNF-α neuroinflammatory pathways, which could offer a potential therapeutic strategy for PD.
Collapse
|
27
|
Pamies D, Wiersma D, Katt ME, Zhong L, Burtscher J, Harris G, Smirnova L, Searson PC, Hartung T, Hogberg HT. Human organotypic brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol Dis 2022; 169:105719. [PMID: 35398340 PMCID: PMC9298686 DOI: 10.1016/j.nbd.2022.105719] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is caused by an imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS). This imbalance plays an important role in brain aging and age-related neurodegenerative diseases. In the context of Parkinson’s disease (PD), the sensitivity of dopaminergic neurons in the substantia nigra pars compacta to oxidative stress is considered a key factor of PD pathogenesis. Here we study the effect of different oxidative stress-inducing compounds (6-OHDA, MPTP or MPP+) on the population of dopaminergic neurons in an iPSC-derived human brain 3D model (aka BrainSpheres). Treatment with 6-OHDA, MPTP or MPP+ at 4 weeks of differentiation disrupted the dopaminergic neuronal phenotype in BrainSpheres at (50, 5000, 1000 μM respectively). 6-OHDA increased ROS production and decreased mitochondrial function most efficiently. It further induced the greatest changes in gene expression and metabolites related to oxidative stress and mitochondrial dysfunction. Co-culturing BrainSpheres with an endothelial barrier using a transwell system allowed the assessment of differential penetration capacities of the tested compounds and the damage they caused in the dopaminergic neurons within the BrainSpheres In conclusion, treatment with compounds known to induce PD-like phenotypes in vivo caused molecular deficits and loss of dopaminergic neurons in the BrainSphere model. This approach therefore recapitulates common animal models of neurodegenerative processes in PD at similarly high doses. The relevance as tool for drug discovery is discussed.
Collapse
|
28
|
Zhang J, Sun B, Yang J, Chen Z, Li Z, Zhang N, Li H, Shen L. Comparison of the effect of rotenone and 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine on inducing chronic Parkinson's disease in mouse models. Mol Med Rep 2022; 25:91. [PMID: 35039876 PMCID: PMC8809117 DOI: 10.3892/mmr.2022.12607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Animal models for Parkinson's disease (PD) are very useful in understanding the pathogenesis of PD and screening for new therapeutic approaches. The present study compared two commonly used neurotoxin‑induced mouse models of chronic PD to guide model selection, explore the pathogenesis and mechanisms underlying PD and develop effective treatments. The chronic PD mouse models were established via treatment with rotenone or 1‑methyl‑4‑phenyl‑1,2,3,6-tetrahydropyridine (MPTP) for 6 weeks. The effects of rotenone and MPTP in the mice were compared by assessing neurobehavior, neuropathology and mitochondrial function through the use of the pole, rotarod and open field tests, immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), ionized calcium‑binding adapter molecule 1 (Iba‑1), neuronal nuclear antigen (NeuN) and (p)S129 α‑synuclein, immunofluorescence for GFAP, Iba‑1 and NeuN, western blotting for TH, oxygen consumption, complex I enzyme activity. The locomotor activity, motor coordination and exploratory behavior in both rotenone and MPTP groups were significantly lower compared with the control group. However, behavioral tests were no significant differences between the two groups. In the MPTP group, the loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta, the reduction of the tyrosine hydroxylase content in the SN and striatum and the astrocyte proliferation and microglial activation in the SN were more significant compared with the rotenone group. Notably, mitochondrial‑dependent oxygen consumption and complex I enzyme activity in the SN were significantly reduced in the rotenone group compared with the MPTP group. In addition, Lewy bodies were present only in SN neurons in the rotenone group. Although no significant differences in neurobehavior were observed between the two mouse models, the MPTP model reproduced the pathological features of PD more precisely in terms of the loss of DA neurons, decreased dopamine levels and neuroinflammation in the SN. On the other hand, the rotenone model was more suitable for studying the role of mitochondrial dysfunction (deficient complex I activity) and Lewy body formation in the SN, which is a characteristic pathological feature of PD. The results indicated that MPTP and rotenone PD models have advantages and disadvantages, therefore one or both should be selected based on the purpose of the study.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jifeng Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhuo Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhengzheng Li
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Nan Zhang
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Luxi Shen
- Department of Internal Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
29
|
Troshev D, Voronkov D, Pavlova A, Abaimov D, Latanov A, Fedorova T, Berezhnoy D. Time Course of Neurobehavioral Disruptions and Regional Brain Metabolism Changes in the Rotenone Mice Model of Parkinson’s Disease. Biomedicines 2022; 10:biomedicines10020466. [PMID: 35203675 PMCID: PMC8962442 DOI: 10.3390/biomedicines10020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by slow progression with a long prodromal stage and the gradual evolution of both neuropsychological symptoms and subtle motor changes, preceding motor dysfunction. Thus, in order for animal models of PD to be valid, they should reproduce these characteristics of the disease. One of such models, in which neuropathology is induced by chronic injections of low doses of mitochondrial toxin rotenone, is well established in rats. However, data on this model adapted to mice remain controversial. We have designed the study to describe the timecourse of motor and non-motor symptoms during chronic subcutaneous administration of rotenone (4 mg/kg daily for 35 days) in C57BL/6 mice. We characterize the underlying neuropathological processes (dopaminergic neuron degeneration, regional brain metabolism, monoamine neurotransmitter and lipid peroxidation changes) at different timepoints: 1 day, 2 weeks and 5 weeks of daily rotenone exposure. Based on the behavioral data, we can describe three stages of pathology: cognitive changes from week 2 of rotenone exposure, subtle motor changes in week 3–4 and motor dysfunction starting roughly from week 4. Neuropathological changes in this model include a general decrease in COX activity in different areas of the brain (acute effect of rotenone) and a more specific decrease in midbrain (chronic effect), followed by significant neurodegeneration in SNpc but not VTA by the 5th week of rotenone exposure. However, we were unable to find changes in the level of monoamine neurotransmitters neither in the striatum nor in the cortex, nor in the level of lipid peroxidation in the brainstem. Thus, the gradual progression of pathology in this model is linked with metabolic changes, rather than with oxidative stress or tonic neurotransmitter release levels. Overall, this study supports the idea that a low-dose rotenone mouse model can also reproduce different stages of PD as well as rats.
Collapse
Affiliation(s)
- Dmitry Troshev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Street, 26, 119334 Moscow, Russia;
| | - Dmitry Voronkov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
| | - Anastasia Pavlova
- Biological Faculty, Moscow State University, Leninskie Gory, 1s12, 119234 Moscow, Russia; (A.P.); (A.L.)
| | - Denis Abaimov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
| | - Alexander Latanov
- Biological Faculty, Moscow State University, Leninskie Gory, 1s12, 119234 Moscow, Russia; (A.P.); (A.L.)
| | - Tatiana Fedorova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
| | - Daniil Berezhnoy
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
- Biological Faculty, Moscow State University, Leninskie Gory, 1s12, 119234 Moscow, Russia; (A.P.); (A.L.)
- Correspondence:
| |
Collapse
|
30
|
Abstract
How do protein aggregates contribute to neurodegenerative disorders, and can they be therapeutically targeted? In this issue of Neuron, Stojkovska et al. (2022) show that aggregated α-synuclein disrupts ER and lysosomal function in Parkinson's disease patient-derived neurons and that combined enhancement of multiple arms of the proteostasis network improves these defects.
Collapse
Affiliation(s)
- Christopher J Griffey
- Doctoral Program in Neurobiology and Behavior, Medical Scientist Training Program, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology, and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Markulin I, Matasin M, Turk VE, Salković-Petrisic M. Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2022; 129:773-804. [PMID: 34982206 DOI: 10.1007/s00702-021-02457-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The novel antibiotic-exploiting strategy in the treatment of Alzheimer's (AD) and Parkinson's (PD) disease has emerged as a potential breakthrough in the field. The research in animal AD/PD models provided evidence on the antiamyloidogenic, anti-inflammatory, antioxidant and antiapoptotic activity of tetracyclines, associated with cognitive improvement. The neuroprotective effects of minocycline and doxycycline in animals initiated investigation of their clinical efficacy in AD and PD patients which led to inconclusive results and additionally to insufficient safety data on a long-standing doxycycline and minocycline therapy in these patient populations. The safety issues should be considered in two levels; in AD/PD patients (particularly antibiotic-induced alteration of gut microbiota and its consequences), and as a world-wide threat of development of bacterial resistance to these antibiotics posed by a fact that AD and PD are widespread incurable diseases which require daily administered long-lasting antibiotic therapy. Recently proposed subantimicrobial doxycycline doses should be thoroughly explored for their effectiveness and long-term safety especially in AD/PD populations. Keeping in mind the antibacterial activity-related far-reaching undesirable effects both for the patients and globally, further work on repurposing these drugs for a long-standing therapy of AD/PD should consider the chemically modified tetracycline compounds tailored to lack antimicrobial but retain (or introduce) other activities effective against the AD/PD pathology. This strategy might reduce the risk of long-term therapy-related adverse effects (particularly gut-related ones) and development of bacterial resistance toward the tetracycline antibiotic agents but the therapeutic potential and desirable safety profile of such compounds in AD/PD patients need to be confirmed.
Collapse
Affiliation(s)
- Iva Markulin
- Community Health Centre Zagreb-Centre, Zagreb, Croatia
| | | | - Viktorija Erdeljic Turk
- Division of Clinical Pharmacology, Department of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Melita Salković-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
| |
Collapse
|
32
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
33
|
Brain regions susceptible to alpha-synuclein spreading. Mol Psychiatry 2022; 27:758-770. [PMID: 34561613 DOI: 10.1038/s41380-021-01296-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The spreading of misfolded alpha-synuclein (α-syn) protein has been observed in animal models of Parkinson's disease (PD) and other α-synucleinopathies that mimic human PD pathologies. In animal models, the spreading of α-syn has been associated with motor dysfunction and neuronal death. However, variability in both susceptible brain regions and cellular populations limits our understanding of the consequences of α-syn spreading and the development of associated therapies. Here, we have reviewed the physiological and pathological functions of α-syn and summarized the susceptible brain regions and cell types identified from human postmortem studies and exogenous α-syn injection-based animal models. We have reviewed the methods for inducing α-syn aggregation, the specific hosts, the inoculation sites, the routes of propagation, and other experimental settings that may affect the spreading pattern of α-syn, as reported in current studies. Understanding the spread of α-syn to produce a consistent PD animal model is vital for future drug discovery.
Collapse
|
34
|
Jang JP, Kwon MC, Nogawa T, Takahashi S, Osada H, Ahn JS, Ko SK, Jang JH. Thiolactomide: A New Homocysteine Thiolactone Derivative from Streptomyces sp. with Neuroprotective Activity. J Microbiol Biotechnol 2021; 31:1667-1671. [PMID: 34528916 PMCID: PMC9706031 DOI: 10.4014/jmb.2108.08015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
A new homocysteine thiolactone derivative, thiolactomide (1), was isolated along with a known compound, N-acetyl homocysteine thiolactone (2), from a culture extract of soil-derived Streptomyces sp. RK88-1441. The structures of these compounds were elucidated by detailed NMR and MS spectroscopic analyses with literature study. In addition, biological evaluation studies revealed that compounds 1 and 2 both exert neuroprotective activity against 6-hydroxydopamine (6-OHDA)-mediated neurotoxicity by blocking the generation of hydrogen peroxide in neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Min Cheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Toshihiko Nogawa
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shunji Takahashi
- Natural Products Biosynthesis Research Unit and RIKEN-KRIBB Joint Research Unit, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea,
J.S. Ahn Phone: +82-43-240-6160 Fax: +82-43-240-6169 E-mail:
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea,
S.K. Ko Phone: +82-43-240-6146 Fax: +82-43-240-6169 E-mail:
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea,Corresponding authors J.H. Jang Phone: +82-43-240-6164 Fax: +82-43-240-6169 E-mail:
| |
Collapse
|
35
|
Mitochondrial Phenotypes in Parkinson's Diseases-A Focus on Human iPSC-Derived Dopaminergic Neurons. Cells 2021; 10:cells10123436. [PMID: 34943944 PMCID: PMC8699816 DOI: 10.3390/cells10123436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Established disease models have helped unravel the mechanistic underpinnings of pathological phenotypes in Parkinson’s disease (PD), the second most common neurodegenerative disorder. However, these discoveries have been limited to relatively simple cellular systems and animal models, which typically manifest with incomplete or imperfect recapitulation of disease phenotypes. The advent of induced pluripotent stem cells (iPSCs) has provided a powerful scientific tool for investigating the underlying molecular mechanisms of both familial and sporadic PD within disease-relevant cell types and patient-specific genetic backgrounds. Overwhelming evidence supports mitochondrial dysfunction as a central feature in PD pathophysiology, and iPSC-based neuronal models have expanded our understanding of mitochondrial dynamics in the development and progression of this devastating disorder. The present review provides a comprehensive assessment of mitochondrial phenotypes reported in iPSC-derived neurons generated from PD patients’ somatic cells, with an emphasis on the role of mitochondrial respiration, morphology, and trafficking, as well as mitophagy and calcium handling in health and disease. Furthermore, we summarize the distinguishing characteristics of vulnerable midbrain dopaminergic neurons in PD and report the unique advantages and challenges of iPSC disease modeling at present, and for future mechanistic and therapeutic applications.
Collapse
|
36
|
Prakash S, Carter WG. The Neuroprotective Effects of Cannabis-Derived Phytocannabinoids and Resveratrol in Parkinson's Disease: A Systematic Literature Review of Pre-Clinical Studies. Brain Sci 2021; 11:1573. [PMID: 34942876 PMCID: PMC8699487 DOI: 10.3390/brainsci11121573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson's disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.
Collapse
Affiliation(s)
| | - Wayne G. Carter
- Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK;
| |
Collapse
|
37
|
Boros FA, Vécsei L. Tryptophan 2,3-dioxygenase, a novel therapeutic target for Parkinson's disease. Expert Opin Ther Targets 2021; 25:877-888. [PMID: 34720020 DOI: 10.1080/14728222.2021.1999928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Alterations in the activity of tryptophan 2,3-dioxygenase (TDO) cause imbalances in the levels of serotonin and other neuroactive metabolites which can contribute to motor, psychiatric, gastrointestinal, and other dysfunctions often seen in Parkinson's disease (PD). TDO is a key enzyme of tryptophan metabolism at the entry of the kynurenine pathway (KP) which moderates production of neuroactive compounds primarily outside the central nervous system (CNS). Recent data from experimental models indicate that TDO modulation could have beneficial effects on PD symptoms not targeted by traditional dopamine substitution therapies. AREAS COVERED Based on data available in PubMed and ClinicalTrials databases up until 1 August 2021, we summarize current knowledge of KP alterations in relation to PD. We overview effects of TDO inhibition in preclinical models of neurodegeneration and discuss findings of the impact of enzyme inhibition on motor, memory and gastrointestinal dysfunctions, and neuronal cell loss. EXPERT OPINION TDO inhibition potentially alleviates motor and non-motor dysfunctions of PD. However, data suggesting harmful effects of long-term TDO inhibition raise concerns. To exploit possibilities of TDO inhibitory treatment, development of further selective TDO inhibitor compounds with good bioavailability features and models adequately replicating PD symptoms of systemic origin should be prioritized.
Collapse
Affiliation(s)
- Fanni Annamária Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE, Neuroscience Research Group Szeged Hungary.,Interdisciplinary Excellence Center, Department of Neurology, Szeged, Hungary
| |
Collapse
|
38
|
Ganesan S, Parvathi VD. Deconstructing the molecular genetics behind the PINK1/Parkin axis in Parkinson’s disease using Drosophila melanogaster as a model organism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00208-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder marked by the death of nigrostriatal dopaminergic neurons in response to the compounding effects of oxidative stress, mitochondrial dysfunction and protein aggregation. Transgenic Drosophila models have been used extensively to decipher the underlying genetic interactions that exacerbate neural health in PD. Autosomal recessive forms of the disease have been linked to mutations in the serine/threonine kinase PINK1(PTEN-Induced Putative Kinase 1) and E3 ligase Parkin, which function in an axis that is conserved in flies. This review aims to probe the current understanding of PD pathogenesis via the PINK1/Parkin axis while underscoring the importance of several molecular and pharmacologic rescues brought to light through studies in Drosophila.
Main body
Mutations in PINK1 and Parkin have been shown to affect the axonal transport of mitochondria within dopaminergic neurons and perturb the balance between mitochondrial fusion/fission resulting in abnormal mitochondrial morphology. As per studies in flies, ectopic expression of Fwd kinase and Atg-1 to promote fission and mitophagy while suppressing fusion via MUL1 E3 ligase may aid to halt mitochondrial aggregation and prolong the survival of dopaminergic neurons. Furthermore, upregulation of Hsp70/Hsp90 chaperone systems (Trap1, CHIP) to target misfolded mitochondrial respiratory complexes may help to preserve their bioenergetic capacity. Accumulation of reactive oxygen species as a consequence of respiratory complex dysfunction or antioxidant enzyme deficiency further escalates neural death by inducing apoptosis, lipid peroxidation and DNA damage. Fly studies have reported the induction of canonical Wnt signalling to enhance the activity of transcriptional co-activators (PGC1α, FOXO) which induce the expression of antioxidant enzymes. Enhancing the clearance of free radicals via uncoupling proteins (UCP4) has also been reported to ameliorate oxidative stress-induced cell death in PINK1/Parkin mutants.
Conclusion
While these novel mechanisms require validation through mammalian studies, they offer several explanations for the factors propagating dopaminergic death as well as promising insights into the therapeutic importance of transgenic fly models in PD.
Collapse
|
39
|
Zhu Z, Huang P, Sun R, Li X, Li W, Gong W. A Novel Long-Noncoding RNA LncZFAS1 Prevents MPP +-Induced Neuroinflammation Through MIB1 Activation. Mol Neurobiol 2021; 59:778-799. [PMID: 34775541 PMCID: PMC8857135 DOI: 10.1007/s12035-021-02619-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease remains one of the leading neurodegenerative diseases in developed countries. Despite well-defined symptomology and pathology, the complexity of Parkinson's disease prevents a full understanding of its etiological mechanism. Mechanistically, α-synuclein misfolding and aggregation appear to be central for disease progression, but mitochondrial dysfunction, dysfunctional protein clearance and ubiquitin/proteasome systems, and neuroinflammation have also been associated with Parkinson's disease. Particularly, neuroinflammation, which was initially thought to be a side effect of Parkinson's disease pathogenesis, has now been recognized as driver of Parkinson's disease exacerbation. Next-generation sequencing has been used to identify a plethora of long noncoding RNAs (lncRNA) with important transcriptional regulatory functions. Moreover, a myriad of lncRNAs are known to be regulators of inflammatory signaling and neurodegenerative diseases, including IL-1β secretion and Parkinson's disease. Here, LncZFAS1 was identified as a regulator of inflammasome activation, and pyroptosis in human neuroblast SH-SY5Y cells following MPP+ treatment, a common in vitro Parkinson's disease cell model. Mechanistically, TXNIP ubiquitination through MIB1 E3 ubiquitin ligase regulates NLRP3 inflammasome activation in neuroblasts. In contrast, MPP+ activates the NLPR3 inflammasome through miR590-3p upregulation and direct interference with MIB1-dependent TXNIP ubiquitination. LncZFAS overexpression inhibits this entire pathway through direct interference with miR590-3p, exposing a novel research idea regarding the mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Ziman Zhu
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Ruifeng Sun
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Xiaoling Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Wenshan Li
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, 100144, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| |
Collapse
|
40
|
Hu D, Liu Z, Qi X. Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? Front Neurosci 2021; 15:746873. [PMID: 34867159 PMCID: PMC8633545 DOI: 10.3389/fnins.2021.746873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Many lines of evidence have indicated the therapeutic potential of rescuing mitochondrial integrity by targeting specific mitochondrial quality control pathways in neurodegenerative diseases, such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. In addition to ATP synthesis, mitochondria are critical regulators of ROS production, lipid metabolism, calcium buffering, and cell death. The mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy are the three main quality control mechanisms responsible for maintaining mitochondrial proteostasis and bioenergetics. The proper functioning of these complex processes is necessary to surveil and restore mitochondrial homeostasis and the healthy pool of mitochondria in cells. Mitochondrial dysfunction occurs early and causally in disease pathogenesis. A significant accumulation of mitochondrial damage resulting from compromised quality control pathways leads to the development of neuropathology. Moreover, genetic or pharmaceutical manipulation targeting the mitochondrial quality control mechanisms can sufficiently rescue mitochondrial integrity and ameliorate disease progression. Thus, therapies that can improve mitochondrial quality control have great promise for the treatment of neurodegenerative diseases. In this review, we summarize recent progress in the field that underscores the essential role of impaired mitochondrial quality control pathways in the pathogenesis of neurodegenerative diseases. We also discuss the translational approaches targeting mitochondrial function, with a focus on the restoration of mitochondrial integrity, including mitochondrial dynamics, mitophagy, and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Zunren Liu
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
41
|
Tian Y, He M, Pan L, Yuan X, Xiong M, Meng L, Yao Z, Yu Z, Ye K, Zhang Z. Transgenic Mice Expressing Human α-Synuclein 1-103 Fragment as a Novel Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:760781. [PMID: 34744697 PMCID: PMC8569470 DOI: 10.3389/fnagi.2021.760781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. However, its cellular and molecular mechanisms still wrap in the mist. This is partially caused by the absence of appropriate animal models mimicking sporadic PD that constitutes the majority of cases. Previously, we reported that a cysteine protease, asparagine endopeptidase (AEP), is activated in an age-dependent manner, and cleaves α-synuclein in the brain of sporadic PD patients. The AEP-derived α-synuclein 1-103 fragment is required for the pathogenesis of PD. Thus, we designed and characterized a novel transgenic mouse line expressing α-synuclein 1-103 (designated N103 mice). This model shows an abundant accumulation of pathological α-synuclein in the central nervous system, loss of dopaminergic neurons in the substantia nigra, and progressive striatal synaptic degeneration. The N103 mice also manifest age-dependent PD-like behavioral impairments. Notably, the mice show weight loss and constipation, which are the common non-motor symptoms in PD. The RNA-sequencing analysis found that the transcriptomics pattern was extensively altered in N103 mice. In conclusion, the N103 mouse line, as a brand-new tool, might provide new insights into PD research.
Collapse
Affiliation(s)
- Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Aqueous solutions of organic acids as effective solvents for levodopa extraction from Mucuna pruriens seeds. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
44
|
Mira RG, Cerpa W. Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cell Mol Neurobiol 2021; 41:1413-1430. [PMID: 32700093 PMCID: PMC11448584 DOI: 10.1007/s10571-020-00924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, and it is widely accepted to play a role in synaptic plasticity and excitotoxic cell death. Glutamate binds to several receptors, including ionotropic N-methyl-D-Aspartate receptor (NMDAR), which is essential in synaptic plasticity and excitotoxicity. This receptor is a calcium channel that is located in synaptic and extrasynaptic sites, triggering different signalling cascades in each case. The calcium entry through extrasynaptic NMDARs is linked to calcium overload in the mitochondria in neurons in vitro. The mitochondria, besides their role in ATP production in the cell, participate in calcium homeostasis, acting as a buffering organelle. Disruption of mitochondrial calcium homeostasis has been linked to neuronal death either by triggering apoptosis or driven by the opening of the mitochondrial transition pore. These cell-death mechanisms contribute to the pathophysiology of diverse diseases such as neurodegenerative Alzheimer's disease or Parkinson's disease, and acute neuropathological conditions such as stroke or traumatic brain injury. In this review, we will address the available evidence that positions the mitochondria as an essential organelle in the control of calcium-mediated toxicity, highlighting its role from the perspective of specific NMDAR signalling microdomains at the level of the central synapse.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
45
|
Polinski NK. A Summary of Phenotypes Observed in the In Vivo Rodent Alpha-Synuclein Preformed Fibril Model. JOURNAL OF PARKINSONS DISEASE 2021; 11:1555-1567. [PMID: 34486988 PMCID: PMC8609716 DOI: 10.3233/jpd-212847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of wildtype recombinant alpha-synuclein preformed fibrils (aSyn PFFs) to induce endogenous alpha-synuclein to form pathological phosphorylation and trigger neurodegeneration is a popular model for studying Parkinson's disease (PD) biology and testing therapeutic strategies. The strengths of this model lie in its ability to recapitulate the phosphorylation/aggregation of aSyn and nigrostriatal degeneration seen in PD, as well as its suitability for studying the progressive nature of PD and the spread of aSyn pathology. Although the model is commonly used and has been adopted by many labs, variability in observed phenotypes exists. Here we provide summaries of the study design and reported phenotypes from published reports characterizing the aSyn PFF in vivo model in rodents following injection into the brain, gut, muscle, vein, peritoneum, and eye. These summaries are designed to facilitate an introduction to the use of aSyn PFFs to generate a rodent model of PD-highlighting phenotypes observed in papers that set out to thoroughly characterize the model. This information will hopefully improve the understanding of this model and clarify when the aSyn PFF model may be an appropriate choice for one's research.
Collapse
Affiliation(s)
- Nicole K Polinski
- The Michael J. Fox Foundation for Parkinson'sResearch, New York, NY, USA
| |
Collapse
|
46
|
Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson's disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021; 21:422-433. [PMID: 33357211 PMCID: PMC8292858 DOI: 10.17305/bjbms.2020.5181] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Among the popular animal models of Parkinson's disease (PD) commonly used in research are those that employ neurotoxins, especially 1-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). This neurotoxin exerts it neurotoxicity by causing a barrage of insults, such as oxidative stress, mitochondrial apoptosis, inflammation, excitotoxicity, and formation of inclusion bodies acting singly and in concert, ultimately leading to dopaminergic neuronal damage in the substantia nigra pars compacta and striatum. The selective neurotoxicity induced by MPTP in the nigrostriatal dopaminergic neurons of the mouse brain has led to new perspectives on PD. For decades, the MPTP-induced mouse model of PD has been the gold standard in PD research even though it does not fully recapitulate PD symptomatology, but it does have the advantages of simplicity, practicability, affordability, and fewer ethical considerations and greater clinical correlation than those of other toxin models of PD. The model has rejuvenated PD research and opened new frontiers in the quest for more novel therapeutic and adjuvant agents for PD. Hence, this review summarizes the role of MPTP in producing Parkinson-like symptoms in mice and the experimental role of the MPTP-induced mouse model. We discussed recent developments of more promising PD therapeutics to enrich our existing knowledge about this neurotoxin using this model.
Collapse
Affiliation(s)
- Musa Mustapha
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
- Department of Human Anatomy, Faculty of Basic Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
47
|
Teruya PY, Farfán FD, Pizá ÁG, Soletta JH, Lucianna FA, Albarracín AL. Quantifying muscle alterations in a Parkinson's disease animal model using electromyographic biomarkers. Med Biol Eng Comput 2021; 59:1735-1749. [PMID: 34297299 DOI: 10.1007/s11517-021-02400-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease currently diagnosed based on characteristic motor dysfunctions. The most common Parkinson's disease animal model induces massive nigrostriatal degeneration by intracerebral infusion of 6-hydroxydopamine (6-OHDA). Motor deficits in rat models of Parkinson's disease were previously addressed in other works. However, an accurate quantification of muscle function in freely moving PD-lesioned rats over time has not been described until now. In this work, we address the muscular activity characterization of a 6-OHDA-lesion model of PD along 6 weeks post-lesion based on spectral and morphological analysis of the signals. Using chronic implanted EMG electrodes in a hindlimb muscle of freely moving rats, we have evaluated the effect of the PD neurotoxic model in the muscular activity during locomotion. EMG signals obtained from animals with different time post-injury were analyzed. Power spectral densities were characterized by the mean and median frequency, and the EMG burst stationarity was previously verified for all animals. Our results show that as the time post-lesion increases both frequency parameters decrease. Probability distribution function analysis was also performed. The results suggest that contractile dynamics of the biceps femoris muscle change with time post-lesion. We have also demonstrated here the usefulness of frequency parameters as biomarkers for monitoring the muscular function changes that could be used for early detection of motor dysfunction.
Collapse
Affiliation(s)
- Pablo Y Teruya
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina
| | - Fernando D Farfán
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Álvaro G Pizá
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Jorge H Soletta
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Facundo A Lucianna
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Ana L Albarracín
- Laboratorio de Investigaciones en Neurociencias Y Tecnologías Aplicadas (LINTEC), Departamento de Bioingeniería, Facultad de Ciencias Exactas Y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, (4000) San Miguel de Tucumán, Tucumán, Argentina. .,Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
48
|
An H, Lee H, Yang S, Won W, Lee CJ, Nam MH. Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson's Disease. Exp Neurobiol 2021; 30:222-231. [PMID: 34045369 PMCID: PMC8278136 DOI: 10.5607/en21013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. These pathological changes are associated with α-synuclein aggregation, which is more prone to be induced by an A53T mutation. Therefore, the overexpression of A53T-mutated α-synuclein (A53T-α-syn) has been utilized as a popular animal model of PD. However, this animal model only shows marginal-to-moderate extents of reactive astrogliosis and astrocytic α-synuclein accumulation, while these phenomena are prominent in human PD brains. Here we show that Adeno-GFAP-GFP virus injection into SNpc causes severe reactive astrogliosis and exacerbates the A53T-α-syn-mediated PD pathology. In particular, we demonstrate that AAV-CMV-A53T-α-syn injection, when combined with Adeno-GFAP-GFP, causes more significant loss of dopaminergic neuronal tyrosine hydroxylase level and gain of astrocytic GFAP and GABA levels. Moreover, the combination of AAV-CMV-A53T-α-syn and Adeno-GFAP-GFP causes an extensive astrocytic α-syn expression, just as in human PD brains. These results are in marked contrast to previous reports that AAV-CMV-A53T-α-syn alone causes α-syn expression mostly in neurons but rarely in astrocytes. Furthermore, the combination causes a severe PD-like motor dysfunction as assessed by rotarod and cylinder tests within three weeks from the virus injection, whereas Adeno-GFAP-GFP alone or AAV-CMV-A53T-α-syn alone does not. Our findings implicate that inducing reactive astrogliosis exacerbates PD-like pathologies and propose the virus combination as an advanced strategy for developing a new animal model of PD.
Collapse
Affiliation(s)
- Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Hyowon Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of KHU-KIST Convergent Science and Technology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
49
|
Troshev D, Berezhnoy D, Kulikova O, Abaimov D, Muzychuk O, Nalobin D, Stvolinsky S, Fedorova T. The dynamics of nigrostriatal system damage and neurobehavioral changes in the rotenone rat model of Parkinson's disease. Brain Res Bull 2021; 173:1-13. [PMID: 33892082 DOI: 10.1016/j.brainresbull.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Subcutaneous administration of rotenone to rats is currently a widely used method of reproducing Parkinson's disease (PD) symptoms, due to its convenience and effectiveness. Despite this, its influence on the temporal dynamics of parkinsonism development has yet to be investigated. The present study characterizes behavioral and neurochemical disruptancies underlying the dynamics of parkinsonism development in rats, induced by chronic subcutaneous administration of 2 mg/kg rotenone over the course of 18 days. In this article, the presence of two stages of pathology development in the model in question - the premotor and motor disability stages - are illustrated through a complex assessment of animal behavior, the development of an original neurological symptoms scale, and the establishment of the dynamics of histological and neurochemical changes in the brain. The premotor stage was observed up to 3 days of rotenone administration, and was characterized by a decrease in the motivational component of behavior, shown both in the food-getting task and in the "sucrose preference" test. A 30 % decrease in the number of cells in the substantia nigra pars compacta by the 3rd day of rotenone administration was also shown during the premotor stage. No changes in the metabolism of dopamine and other monoamine mediators were observed at this time. At the same time, acute administration of rotenone caused an increase in the GSH / GSSG ratio by 69 %. The motor stage developed after a decrease in the number of cells in the SNpc by more than 30 %, and was characterized by changes in the dopaminergic system, leading up to a 71 % reduction in dopamine levels in the striatum. It was shown that starting from 4 to 6 days of rotenone injection, experimental group animals begin to develop motor symptoms of Parkinson's disease, including bradykinesia, rigidity and postural instability. The development of motor impairment in all rats of this group was accompanied by significantly reduced activity of the antioxidant system in brain frontal lobe tissue homogenates, as compared to intact rats. Thus, in the used model of rotenone-induced parkinsonism, the dynamics of neuropathology development are described and the premotor stage of the disease is highlighted, which allows future using of this model in developing new approaches for treatment of parkinsonism at an early stage.
Collapse
Affiliation(s)
- Dmitry Troshev
- Faculty of Biology, Moscow State University, Leninskie gory, 1s12, Moscow, 119234, Russia.
| | - Daniil Berezhnoy
- Faculty of Biology, Moscow State University, Leninskie gory, 1s12, Moscow, 119234, Russia; Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Olga Kulikova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Denis Abaimov
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Olga Muzychuk
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Denis Nalobin
- Faculty of Biology, Moscow State University, Leninskie gory, 1s12, Moscow, 119234, Russia; Faculty of Biotechnology, Moscow State University, Leninskie gory, 1s51, Moscow, 119991, Russia
| | - Sergey Stvolinsky
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Tatiana Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| |
Collapse
|
50
|
Petiet A. Current and Emerging MR Methods and Outcome in Rodent Models of Parkinson's Disease: A Review. Front Neurosci 2021; 15:583678. [PMID: 33897339 PMCID: PMC8058186 DOI: 10.3389/fnins.2021.583678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/05/2021] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is a major neurodegenerative disease characterized by massive degeneration of the dopaminergic neurons in the substantia nigra pars compacta, α-synuclein-containing Lewy bodies, and neuroinflammation. Magnetic resonance (MR) imaging plays a crucial role in the diagnosis and monitoring of disease progression and treatment. A variety of MR methods are available to characterize neurodegeneration and other disease features such as iron accumulation and metabolic changes in animal models of PD. This review aims at giving an overview of how those physiopathological features of PD have been investigated using various MR methods in rodent models. Toxin-based and genetic-based models of PD are first described. MR methods for neurodegeneration evaluation, iron load, and metabolism alterations are then detailed, and the main findings are provided in those models. Ultimately, future directions are suggested for neuroinflammation and neuromelanin evaluations in new animal models.
Collapse
Affiliation(s)
- Alexandra Petiet
- Centre de Neuroimagerie de Recherche, Institut du Cerveau, Paris, France.,Inserm U1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| |
Collapse
|