1
|
Sharif A, Prevot V. Astrogenesis in the hypothalamus: A life-long process contributing to the development and plasticity of neuroendocrine networks. Front Neuroendocrinol 2024; 75:101154. [PMID: 39226950 DOI: 10.1016/j.yfrne.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Astrocytes are now recognized as integral components of neural circuits, regulating their maturation, activity and plasticity. Neuroendocrinology has provided fertile ground for revealing the diverse strategies used by astrocytes to regulate the physiological and behavioural outcomes of neural circuit activity in response to internal and environmental inputs. However, the development of astrocytes in the hypothalamus has received much less attention than in other brain regions such as the cerebral cortex and spinal cord. In this review, we synthesize our current knowledge of astrogenesis in the hypothalamus across various life stages. A distinctive feature of hypothalamic astrogenesis is that it persists all throughout lifespan, and involves multiple cellular sources corresponding to radial glial cells during early development, followed by tanycytes, parenchymal progenitors and locally dividing astrocytes. Astrogenesis in the hypothalamus is closely coordinated with the maturation of hypothalamic neurons. This coordination is exemplified by recent findings in neurons producing gonadotropin-releasing hormone, which actively shape their astroglial environment during infancy to integrate functionally into their neural network and facilitate sexual maturation, a process vulnerable to endocrine disruption. While hypothalamic astrogenesis shares common principles with other brain regions, it also exhibits specific features in its dynamics and regulation, both at the inter- and intra-regional levels. These unique properties emphasize the importance of further exploration. Additionally, we discuss the experimental strategies used to assess astrogenesis in the hypothalamus and their potential bias and limitations. Understanding the mechanisms of hypothalamic astrogenesis throughout life will be crucial for comprehending the development and function of the hypothalamus under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| |
Collapse
|
2
|
O'Connor AM, Hagenauer MH, Thew Forrester LC, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. Neurobiol Stress 2024; 31:100651. [PMID: 38933284 PMCID: PMC11201356 DOI: 10.1016/j.ynstr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | - Megan Hastings Hagenauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Liam Cannon Thew Forrester
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Pamela M. Maras
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Keiko Arakawa
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huzefa Khalil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Evelyn R. Richardson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Farizah I. Rob
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Yusra Sannah
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Stanley J. Watson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huda Akil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
3
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Iannotti FA, Vitale RM. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021; 10:586. [PMID: 33799988 PMCID: PMC8001692 DOI: 10.3390/cells10030586] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors including PPARα, PPARγ, and PPARβ/δ, acting as transcription factors to regulate the expression of a plethora of target genes involved in metabolism, immune reaction, cell differentiation, and a variety of other cellular changes and adaptive responses. PPARs are activated by a large number of both endogenous and exogenous lipid molecules, including phyto- and endo-cannabinoids, as well as endocannabinoid-like compounds. In this view, they can be considered an extension of the endocannabinoid system. Besides being directly activated by cannabinoids, PPARs are also indirectly modulated by receptors and enzymes regulating the activity and metabolism of endocannabinoids, and, vice versa, the expression of these receptors and enzymes may be regulated by PPARs. In this review, we provide an overview of the crosstalk between cannabinoids and PPARs, and the importance of their reciprocal regulation and modulation by common ligands, including those belonging to the extended endocannabinoid system (or "endocannabinoidome") in the control of major physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
5
|
Balakrishnan J, Kannan S, Govindasamy A. Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain. Nutr Res 2020; 85:119-134. [PMID: 33482601 DOI: 10.1016/j.nutres.2020.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neurodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India.
| | - Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal. Puducherry, India
| |
Collapse
|
6
|
Mohammad Y, Fallah AB, Reynolds JNJ, Boyd BJ, Rizwan SB. Steric stabilisers govern the colloidal and chemical stability but not in vitro cellular toxicity of linoleoylethanolamide cubosomes. Colloids Surf B Biointerfaces 2020; 192:111063. [PMID: 32353710 DOI: 10.1016/j.colsurfb.2020.111063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022]
Abstract
Linoleoylethanolamide (LEA) is an endogenous lipid with remarkable neuromodulatory properties. However, its therapeutic potential is limited by rapid clearance in vivo, targetability and solubility. This study aimed to formulate LEA into liquid crystalline nanoparticles (cubosomes) as a strategy to address the aforementioned challenges. The influence of three different steric stabilisers: Tween 80 and Pluronic F68, both of which have the potential to interact with receptors expressed at the blood-brain barrier and Pluronic F127 as a control, on colloidal stability, internal structure, chemical stability and cytotoxicity of the dispersions were investigated. We found that for effective stabilization of LEA dispersions, a higher concentration of Tween 80 was required compared to Pluronics. Freshly prepared dispersions showed mean particle size of <250 nm and low PDIs (<0.2), with an Im3m type cubic structure but with different lattice parameters. Upon storage at ambient temperature for a week, increased mean particle size and PDI, with a significant reduction in the concentration of LEA was observed in Tween 80-stabilised dispersions. Greater than 80% cell viability was observed at concentrations of up to 20 μg/mL LEA in the presence of all three stabilisers. Collectively, our results suggest that the stabiliser type influences colloidal and chemical stability but not cytotoxicity of LEA cubosomes. This study highlights the potential of endogenous bioactive lipids to be utilized as core cubosome forming lipids with the view to improving their solubility, rapid clearance and targetability to enable delivery of these bioactive molecules to the brain.
Collapse
Affiliation(s)
- Younus Mohammad
- University of Otago, 18 Frederick Street, 9054, Dunedin, New Zealand
| | - Anita B Fallah
- University of Otago, 18 Frederick Street, 9054, Dunedin, New Zealand
| | - John N J Reynolds
- University of Otago, 18 Frederick Street, 9054, Dunedin, New Zealand
| | - Ben J Boyd
- University of Otago, 18 Frederick Street, 9054, Dunedin, New Zealand
| | - Shakila B Rizwan
- University of Otago, 18 Frederick Street, 9054, Dunedin, New Zealand.
| |
Collapse
|
7
|
Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants (Basel) 2020; 9:antiox9010061. [PMID: 31936711 PMCID: PMC7022568 DOI: 10.3390/antiox9010061] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are naturally occurring micronutrients that are present in many food sources. Besides being potent antioxidants, these molecules may also possess anti-inflammatory properties. Many studies have highlighted their potential role in the prevention and treatment of various pathological conditions connected to oxidative stress and inflammation (e.g., cancer, and cardiovascular and neurodegenerative disorders). Neurodegenerative diseases are globally one of the main causes of death and represent an enormous burden in terms of human suffering, social distress, and economic costs. Recent data expanded on the initial antioxidant-based mechanism of polyphenols’ action by showing that they are also able to modulate several cell-signaling pathways and mediators. The proposed benefits of polyphenols, either as protective/prophylactic substances or as therapeutic molecules, may be achieved by the consumption of a natural polyphenol-enriched diet, by their use as food supplements, or with formulations as pharmaceutical drugs/nutraceuticals. It has also been proved that the health effects of polyphenols depend on the consumed amount and their bioavailability. However, their overconsumption may raise safety concerns due to the accumulation of high levels of these molecules in the organism, particularly if we consider the loose regulatory legislation regarding the commercialization and use of food supplements. This review addresses the main beneficial effects of food polyphenols, and focuses on neuroprotection and the safety issues related to overconsumption.
Collapse
|
8
|
Chen C, Shen JH, Xu H, Chen P, Chen F, Guan YX, Jiang B, Wu ZH. Hippocampal PPARα is involved in the antidepressant-like effects of venlafaxine in mice. Brain Res Bull 2019; 153:171-180. [DOI: 10.1016/j.brainresbull.2019.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
|
9
|
Maternal n-3 PUFAs deficiency during pregnancy inhibits neural progenitor cell proliferation in fetal rat cerebral cortex. Int J Dev Neurosci 2019; 76:72-79. [PMID: 31299388 DOI: 10.1016/j.ijdevneu.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the in vivo impacts of maternal n-3 polyunsaturated fatty acids (PUFAs) deficiency during pregnancy on the proliferation of neural progenitor cells (NPCs) in the developing cerebral cortex of fetal rats. Our results showed that about 5 weeks of maternal dietary n-3 PUFAs deprivation resulted in a substantial n-3 PUFA deficiency in fetal rat cerebral cortex. Importantly, by two survival schemes and two quantitative methods, we found that maternal intake of n-3 PUFAs deficient diet during the gestation significantly inhibited the proliferation of NPCs in fetal rat cerebral cortex. Moreover, the decreased cortical NPCs proliferation induced by nutritional n-3 PUFAs restriction did not originate from the increased NPCs apoptosis. Finally, our observations indicated that the down-regulation of cyclin E protein might be involved in the inhibitory effects of maternal n-3 PUFAs deficient diet on the proliferation of cortical NPCs. These findings highlight the importance of maternal intake of appropriate n-3 PUFAs and deepen our understanding of the exact effects of n-3 PUFAs on mammalian brain development.
Collapse
|
10
|
Gorantla VR, Thomas SE, Millis RM. Environmental Enrichment and Brain Neuroplasticity in the Kainate Rat Model of Temporal Lobe Epilepsy. J Epilepsy Res 2019; 9:51-64. [PMID: 31482057 PMCID: PMC6706649 DOI: 10.14581/jer.19006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Environmental enrichment (EE) improves brain function and ameliorates cognitive impairments; however, whether EE can reverse the learning and memory deficits seen following seizures remains unknown. Methods We tested the hypothesis that EE augments neurogenesis and attenuates the learning and memory deficits in rats subjected to kainate-induced seizures in hippocampus, amygdala and motor cortex. EE consisted of daily exposures immediately after KA lesioning (early EE) and after a 60-day period (late EE). Morphometric counting of neuron numbers (NN), dendritic branch-points and intersections (DDBPI) were performed. Spatial learning in a T-maze test was described as percent correct responses and memory in a passive-avoidance test was calculated as time spent in the small compartment where they were previously exposed to an aversive stimulus. Results EE increased NN and DDBPI in the normal control and in the KA-lesioned rats in all brain areas studied, after both early and late exposure to EE. Late EE resulted in significantly fewer surviving neurons than early EE in all brain areas (p < 0.0001). EE increased the percent correct responses and decreased time spent in the small compartment, after both early and late EE. The timing of EE (early vs. late) had no effect on the behavioral measurements. Conclusions These findings demonstrate that, after temporal lobe and motor cortex epileptic seizures in rats, EE improves neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the EE treatment is delayed for 60 days. Future studies should determine whether EE is a useful therapeutic strategy for patients affected by seizures.
Collapse
Affiliation(s)
- Vasavi R Gorantla
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Sneha E Thomas
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Richard M Millis
- Department of Behavioral Science and Neuroscience, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda.,Department of Medical Physiology, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| |
Collapse
|
11
|
Rivera P, Silva-Peña D, Blanco E, Vargas A, Arrabal S, Serrano A, Pavón FJ, Bindila L, Lutz B, Rodríguez de Fonseca F, Suárez J. Oleoylethanolamide restores alcohol-induced inhibition of neuronal proliferation and microglial activity in striatum. Neuropharmacology 2019; 146:184-197. [DOI: 10.1016/j.neuropharm.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 01/19/2023]
|
12
|
Dause TJ, Kirby ED. Aging gracefully: social engagement joins exercise and enrichment as a key lifestyle factor in resistance to age-related cognitive decline. Neural Regen Res 2019; 14:39-42. [PMID: 30531067 PMCID: PMC6262997 DOI: 10.4103/1673-5374.243698] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduces quality of life. As the aging population expands, the need for interventional strategies to prevent cognitive decline has become more pressing. Fortunately, several major lifestyle factors have proven effective at combating hippocampal aging, the most well-known of which are environmental enrichment and exercise. While the evidence supporting the beneficial nature of these factors is substantial, a less well-understood factor may also contribute to healthy cognitive aging: social engagement. We review the evidence supporting the role of social engagement in preserving hippocampal function in old age. In elderly humans, high levels of social engagement correlate with better hippocampal function, yet there is a dearth of work to indicate a causative role. Existing rodent literature is also limited but has begun to provide causative evidence and establish candidate mechanisms. Summed together, while many unanswered questions remain, it is clear that social engagement is a viable lifestyle factor for preserving cognitive function in old age. Social integration across the lifespan warrants more investigation and more appreciation when designing living circumstances for the elderly.
Collapse
Affiliation(s)
- Tyler J Dause
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology; Neuroscience; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Hsieh YC, Chiang MC, Huang YC, Yeh TH, Shih HY, Liu HF, Chen HY, Wang CP, Cheng YC. Pparα deficiency inhibits the proliferation of neuronal and glial precursors in the zebrafish central nervous system. Dev Dyn 2018; 247:1264-1275. [DOI: 10.1002/dvdy.24683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yen-Che Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - Ming-Chang Chiang
- Department of Life Science; Fu Jen Catholic University; New Taipei City Taiwan
| | - Yin-Cheng Huang
- College of Medicine; Chang Gung University; Taoyuan Taiwan
- Department of Neurosurgery; Chang Gung Memorial Hospital; Linkou, Taoyuan Taiwan
| | - Tu-Hsueh Yeh
- College of Medicine; Chang Gung University; Taoyuan Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital; Linkou, Taoyuan Taiwan
- Section of Movement Disorders, Department of Neurology; Chang Gung Memorial Hospital; Linkou, Taoyuan Taiwan
- Department of Neurology; Taipei Medical University Hospital; Taipei Taiwan
| | - Hung-Yu Shih
- Graduate Institute of Biomedical Sciences, College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - Han-Fang Liu
- Graduate Institute of Biomedical Sciences, College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - Hao-Yuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - Chien-Ping Wang
- School of Medicine, College of Medicine, Chang Gung University; Taoyuan Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine; Chang Gung University; Taoyuan Taiwan
- College of Medicine; Chang Gung University; Taoyuan Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital; Linkou, Taoyuan Taiwan
| |
Collapse
|
14
|
Song L, Wang H, Wang YJ, Wang JL, Zhu Q, Wu F, Zhang W, Jiang B. Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice. Br J Pharmacol 2018; 175:2968-2987. [PMID: 29722018 DOI: 10.1111/bph.14346] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Developing novel pharmacological targets beyond the monoaminergic system is now a popular strategy for treating depression. PPARα is a nuclear receptor protein that functions as a transcription factor,-regulating gene expression. We have previously reported that both WY14643 and fenofibrate, two pharmacological agonists of PPARα, have antidepressant-like effects in mice, implying that PPARα is a potential antidepressant target. EXPERIMENTAL APPROACH We first used various biotechnological methods to evaluate the effects of chronic stress and fluoxetine on hippocampal PPARα. The viral-mediated genetic approach was then employed to explore whether hippocampal PPARα was an antidepressant target. PPARα inhibitors, PPARα-knockout (KO) mice and PPARα-knockdown (KD) mice were further used to determine the role of PPARα in the antidepressant effects of fluoxetine. KEY RESULTS Chronic stress significantly decreased mRNA and protein levels of PPARα in the hippocampus, but not other regions, and also fully reduced the recruitment of hippocampal PPARα to the cAMP response element-binding (CREB) promoter. Genetic overexpression of hippocampal PPARα induced significant antidepressant-like actions in mice by promoting CREB-mediated biosynthesis of brain-derived neurotrophic factor. Moreover, fluoxetine notably restored the stress-induced negative effects on hippocampal PPARα. Using PPARα antagonists fully blocked the antidepressant effects of fluoxetine in mice, and similarly, both PPARα-KO and PPARα-KD abolished the effects of fluoxetine. Besides, PPARα-KO and PPARα-KD aggravated depression in mice. CONCLUSIONS AND IMPLICATIONS Hippocampal PPARα is a potential novel antidepressant target that mediates the antidepressant actions of fluoxetine in mice.
Collapse
Affiliation(s)
- Lu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Hao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Qing Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Smith BM, Yao X, Chen KS, Kirby ED. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice. Front Aging Neurosci 2018; 10:142. [PMID: 29904345 PMCID: PMC5990613 DOI: 10.3389/fnagi.2018.00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023] Open
Abstract
The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.
Collapse
Affiliation(s)
- Bryon M Smith
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Xinyue Yao
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Kelly S Chen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Elizabeth D Kirby
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Center for Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
Wei W, Wang X, Gong Q, Fan M, Zhang J. Cortical Thickness of Native Tibetans in the Qinghai-Tibetan Plateau. AJNR Am J Neuroradiol 2017; 38:553-560. [PMID: 28104637 DOI: 10.3174/ajnr.a5050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE High-altitude environmental factors and genetic variants together could have exerted their effects on the human brain. The present study was designed to investigate the cerebral morphology in high-altitude native Tibetans. MATERIALS AND METHODS T1-weighted brain images were obtained from 77 Tibetan adolescents on the Qinghai-Tibetan Plateau (altitude, 2300-5300 m) and 80 matched Han controls living at sea level. Cortical thickness, curvature, and sulcus were analyzed by using FreeSurfer. RESULTS Cortical thickness was significantly decreased in the left posterior cingulate cortex, lingual gyrus, superior parietal cortex, precuneus, and rostral middle frontal cortex and the right medial orbitofrontal cortex, lateral occipital cortex, precuneus, and paracentral lobule. Curvature was significantly decreased in the left superior parietal cortex and right superior marginal gyrus; the depth of the sulcus was significantly increased in the left inferior temporal gyrus and significantly decreased in the right superior marginal gyrus, superior temporal gyrus, and insular cortex. Moreover, cortical thickness was negatively correlated with altitude in the left superior and middle temporal gyri, rostral middle frontal cortex, insular cortex, posterior cingulate cortex, precuneus, lingual gyrus, and the right superior temporal gyrus. Curvature was positively correlated with altitude in the left rostral middle frontal cortex, insular cortex, and middle temporal gyrus. The depth of the sulcus was negatively correlated with altitude in the left lingual gyrus and right medial orbitofrontal cortex. CONCLUSIONS Differences in cortical morphometry in native Tibetans may reflect adaptations related to high altitude.
Collapse
Affiliation(s)
- W Wei
- From the MRI Center (W.W.), First Affiliated Hospital of Xiamen University, Xiamen, China.,Institute of Brain Disease and Cognition (W.W., J.Z.), Medical College of Xiamen University, Xiamen, China
| | - X Wang
- Department of Neurology (X.W.), Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Q Gong
- Huaxi Magnetic Resonance Research Center (Q.G.), West China Hospital, Sichuan University, Chengdu, China
| | - M Fan
- Department of Cognitive Sciences (M.F.), Institute of Basic Medical Sciences, Beijing, China
| | - J Zhang
- Institute of Brain Disease and Cognition (W.W., J.Z.), Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Echeverría F, Ortiz M, Valenzuela R, Videla LA. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot Essent Fatty Acids 2016; 114:28-34. [PMID: 27926461 DOI: 10.1016/j.plefa.2016.10.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that function as ligand-dependent transcription factors that can be activated by different types of fatty acids (FAs). Three isoforms of PPARs have been identify, namely, PPARα, PPARβ/δ, and PPARγ, which are able to bind long-chain polyunsaturated FAs (LCPUFAs), n-3 LCPUFAs being bound with greater affinity to achieve activation. FA binding induces a conformational change of the nuclear receptors, triggering the transcription of specific genes including those encoding for various metabolic and cellular processes such as FA β-oxidation and adipogenesis, thus representing key mediators of lipid homeostasis. In addition, PPARs have important roles during placental, embryonal, and fetal development, and in the regulation of processes related to aging comprising oxidative stress, inflammation, and neuroprotection. The aim of this review was to assess the role of FAs as PPARs ligands, in terms of their main functions associated with FA metabolism and their relevance in the prevention and treatment of related pathologies during human life span.
Collapse
Affiliation(s)
| | - Macarena Ortiz
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
18
|
Guebel DV, Torres NV. Sexual Dimorphism and Aging in the Human Hyppocampus: Identification, Validation, and Impact of Differentially Expressed Genes by Factorial Microarray and Network Analysis. Front Aging Neurosci 2016; 8:229. [PMID: 27761111 PMCID: PMC5050216 DOI: 10.3389/fnagi.2016.00229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
Motivation: In the brain of elderly-healthy individuals, the effects of sexual dimorphism and those due to normal aging appear overlapped. Discrimination of these two dimensions would powerfully contribute to a better understanding of the etiology of some neurodegenerative diseases, such as “sporadic” Alzheimer. Methods: Following a system biology approach, top-down and bottom-up strategies were combined. First, public transcriptome data corresponding to the transition from adulthood to the aging stage in normal, human hippocampus were analyzed through an optimized microarray post-processing (Q-GDEMAR method) together with a proper experimental design (full factorial analysis). Second, the identified genes were placed in context by building compatible networks. The subsequent ontology analyses carried out on these networks clarify the main functionalities involved. Results: Noticeably we could identify large sets of genes according to three groups: those that exclusively depend on the sex, those that exclusively depend on the age, and those that depend on the particular combinations of sex and age (interaction). The genes identified were validated against three independent sources (a proteomic study of aging, a senescence database, and a mitochondrial genetic database). We arrived to several new inferences about the biological functions compromised during aging in two ways: by taking into account the sex-independent effects of aging, and considering the interaction between age and sex where pertinent. In particular, we discuss the impact of our findings on the functions of mitochondria, autophagy, mitophagia, and microRNAs. Conclusions: The evidence obtained herein supports the occurrence of significant neurobiological differences in the hippocampus, not only between adult and elderly individuals, but between old-healthy women and old-healthy men. Hence, to obtain realistic results in further analysis of the transition from the normal aging to incipient Alzheimer, the features derived from the sexual dimorphism in hippocampus should be explicitly considered.
Collapse
Affiliation(s)
- Daniel V Guebel
- Biotechnology Counselling ServicesBuenos Aires, Argentina; Systems Biology and Mathematical Modelling Group, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La LagunaSan Cristóbal de La Laguna, España
| | - Néstor V Torres
- Systems Biology and Mathematical Modelling Group, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna San Cristóbal de La Laguna, España
| |
Collapse
|