1
|
Woodie LN, Melink LC, Midha M, de Araújo AM, Geisler CE, Alberto AJ, Krusen BM, Zundell DM, de Lartigue G, Hayes MR, Lazar MA. Hepatic vagal afferents convey clock-dependent signals to regulate circadian food intake. Science 2024; 386:673-677. [PMID: 39509517 PMCID: PMC11629121 DOI: 10.1126/science.adn2786] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/30/2024] [Indexed: 11/15/2024]
Abstract
Circadian desynchrony induced by shiftwork or jet lag is detrimental to metabolic health, but how synchronous or desynchronous signals are transmitted among tissues is unknown. We report that liver molecular clock dysfunction is signaled to the brain through the hepatic vagal afferent nerve (HVAN), leading to altered food intake patterns that are corrected by ablation of the HVAN. Hepatic branch vagotomy also prevents food intake disruptions induced by high-fat diet feeding and reduces body weight gain. Our findings reveal a homeostatic feedback signal that relies on communication between the liver and the brain to control circadian food intake patterns. This identifies the hepatic vagus nerve as a potential therapeutic target for obesity in the setting of chronodisruption.
Collapse
Affiliation(s)
- Lauren N. Woodie
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily C. Melink
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohit Midha
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Caroline E. Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahren J. Alberto
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brianna M. Krusen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaine M. Zundell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matthew R. Hayes
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Al-Onaizi M, Braysh K, Alkafeef SS, Altarrah D, Dannoon S, Alasousi D, Adel H, Al-Ajmi M, Kandari A, Najem R, Nizam R, Williams MR, John S, Thanaraj TA, Ahmad R, Al-Hussaini H, Al-Mulla F, Alzaid F. Glucose intolerance induces anxiety-like behaviors independent of obesity and insulin resistance in a novel model of nutritional metabolic stress. Nutr Neurosci 2024; 27:1143-1161. [PMID: 38319634 DOI: 10.1080/1028415x.2024.2310419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
OBJECTIVES Type 2 diabetes (T2D) is a metabolic disease of major public health concern. It impacts peripheral tissues and the central nervous system, leading to systemic dysmetabolism and neurocognitive impairments, including memory deficits, anxiety, and depression. The metabolic determinants of these neurocognitive impairments remain unidentified. Here, we sought to address this question by developing a proprietary (P-) high-fat diet (HFD), in which glucose intolerance precedes weight gain and insulin resistance. METHODS The P-HFD model was nutritionally characterized, and tested in vivo in mice that underwent behavioral and metabolic testing. The diet was benchmarked against reference models. . RESULTS P-HFD has 42% kcal from fat, high monounsaturated/polyunsaturated fatty acid ratio, and 10% (w/v) sucrose in drinking water. When administered, from the early stages of glucose intolerance alone, animals exhibit anxiety-like behavior, without depression nor recognition memory deficits. Long-term P-HFD feeding leads to weight gain, brain glucose hypometabolism as well as impaired recognition memory. Using an established genetic model of T2D (db/db) and of diet-induced obesity (60% kcal from fat) we show that additional insulin resistance and obesity are associated with depressive-like behaviors and recognition memory deficits. DISCUSSION Our findings demonstrate that glucose intolerance alone can elicit anxiety-like behavior. Through this study, we also provide a novel nutritional model (P-HFD) to characterize the discrete effects of glucose intolerance on cognition, behavior, and the physiology of metabolic disease.
Collapse
Affiliation(s)
- Mohammed Al-Onaizi
- Faculty of Medicine, Department of Anatomy, Kuwait University, Kuwait City, Kuwait
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Kawthar Braysh
- Faculty of Medicine, Department of Anatomy, Kuwait University, Kuwait City, Kuwait
| | - Selma S Alkafeef
- Faculty of Medicine, Department of Biochemistry, Kuwait University, Kuwait City, Kuwait
| | - Dana Altarrah
- Faculty of Public Health, Department of Social and Behavioral Science, Kuwait University, Kuwait City, Kuwait
| | - Shorouk Dannoon
- Faculty of Medicine, Department of Nuclear Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dalal Alasousi
- Faculty of Science, Department of Biochemistry, Kuwait University, Kuwait City, Kuwait
| | - Hawraa Adel
- Faculty of Medicine, Department of Anatomy, Kuwait University, Kuwait City, Kuwait
| | - Mariam Al-Ajmi
- Faculty of Science, Department of Biochemistry, Kuwait University, Kuwait City, Kuwait
| | - Anwar Kandari
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | - Rawan Najem
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | | | - Sumi John
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | | | - Heba Al-Hussaini
- Faculty of Medicine, Department of Anatomy, Kuwait University, Kuwait City, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
3
|
Farahmand F, Sidikpramana M, Gomez AR, Rivera LJ, Trzeciak JR, Sharif S, Tang Q, Leinninger GM, Güler AD, Steele AD. Dopamine production in neurotensin receptor 1 neurons is required for diet-induced obesity and increased day eating on a high-fat diet. Obesity (Silver Spring) 2024; 32:1448-1452. [PMID: 38979671 PMCID: PMC11269025 DOI: 10.1002/oby.24066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE This study aimed to determine a dopaminergic circuit required for diet-induced obesity in mice. METHODS We created conditional deletion mutants for tyrosine hydroxylase (TH) using neurotensin receptor 1 (Ntsr1) Cre and other Cre drivers and measured feeding and body weight on standard and high-fat diets. We then used an adeno-associated virus to selectively restore TH to the ventral tegmental area (VTA) Ntsr1 neurons in conditional knockout (cKO) mice. RESULTS Mice with cKO of Th using Vglut2-Cre, Cck-Cre, Calb1-Cre, and Bdnf-Cre were susceptible to obesity on a high-fat diet; however, Ntsr1-Cre Th cKO mice resisted weight gain on a high-fat diet and did not experience an increase in day eating unlike their wild-type littermate controls. Restoration of TH to the VTA Ntsr1 neurons of the Ntsr1-Cre Th cKO mice using an adeno-associated virus resulted in an increase in weight gain and day eating on a high-fat diet. CONCLUSIONS Ntsr1-Cre Th cKO mice failed to increase day eating on a high-fat diet, offering a possible explanation for their resistance to diet-induced obesity. These results implicate VTA Ntsr1 dopamine neurons as promoting out-of-phase feeding behavior on a high-fat diet that could be an important contributor to diet-induced obesity in humans.
Collapse
Affiliation(s)
- Firozeh Farahmand
- Department of Biological Sciences, California State Polytechnic University Pomona; Pomona, CA; USA
| | - Michael Sidikpramana
- Department of Biological Sciences, California State Polytechnic University Pomona; Pomona, CA; USA
| | - Alyssa R. Gomez
- Department of Biological Sciences, California State Polytechnic University Pomona; Pomona, CA; USA
| | - Luis J. Rivera
- Department of Biological Sciences, California State Polytechnic University Pomona; Pomona, CA; USA
| | - Jacqueline R. Trzeciak
- Department of Biological Sciences, California State Polytechnic University Pomona; Pomona, CA; USA
| | - Sarah Sharif
- Department of Biological Sciences, California State Polytechnic University Pomona; Pomona, CA; USA
| | - Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Gina M. Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Andrew D. Steele
- Department of Biological Sciences, California State Polytechnic University Pomona; Pomona, CA; USA
| |
Collapse
|
4
|
de Sousa CAR, Nogueira LF, Cipolla-Neto J, Moreno CRDC, Marqueze EC. 12-week melatonin administration had no effect on diabetes risk markers and fat intake in overweight women night workers. Front Nutr 2024; 11:1285398. [PMID: 38318471 PMCID: PMC10839037 DOI: 10.3389/fnut.2024.1285398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Interactions between circadian clocks and key mediators of chronic low-grade inflammation associated with fat consumption may be important in maintaining metabolic homeostasis and may pose a risk for the development of obesity-associated comorbidities, especially type 2 diabetes (T2DM). Objective The aims of the present study were to evaluate the effects of melatonin administration on diabetes risk markers according to dietary lipid profile (pro-inflammatory versus anti-inflammatory) in excessive weight night workers, and to determine the effect of administration on fat consumption profile. Methods A randomized, controlled, double-blind, crossover clinical trial involving 27 nursing professionals working permanent night shifts under a 12×36-hour system. The melatonin group (12 weeks) used synthetic melatonin (3 mg) only on days off and between shifts, while the placebo group (12 weeks) was instructed to take a placebo, also on days off and between shifts. For inflammatory characteristics, participants were divided into pro-inflammatory (saturated fats, trans fats and cholesterol) and anti-inflammatory (monounsaturated, polyunsaturated fats and EPA + DHA) groups according to fatty acid determinations. At baseline and at the end of each phase, blood glucose, insulin, glycosylated hemoglobin plasma concentrations were collected, and HOMA-IR was calculated. Conclusion Melatonin administration for 12 weeks had no effect on T2DM risk markers according to dietary lipid profile (pro-inflammatory or anti-inflammatory potential) in excessive weight night workers. Among the limitations of the study include the fact that the low dose may have influenced the results expected in the hypothesis, and individual adaptations to night work were not evaluated. The insights discussed are important for future research investigating the influence of melatonin and fats considered anti- or pro-inflammatory on glucose and insulin homeostasis related to night work.
Collapse
Affiliation(s)
- Carlos Alberto Rodrigues de Sousa
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Epidemiology, Postgraduate Program in Public Health, Catholic University of Santos, São Paulo, Brazil
| | - Luciana Fidalgo Nogueira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia Roberta de Castro Moreno
- Department of Epidemiology, Postgraduate Program in Public Health, Catholic University of Santos, São Paulo, Brazil
- Department of Health, Life Cycles and Society, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| | - Elaine Cristina Marqueze
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Koning E, McDonald A, Bambokian A, Gomes FA, Vorstman J, Berk M, Fabe J, McIntyre RS, Milev R, Mansur RB, Brietzke E. The concept of "metabolic jet lag" in the pathophysiology of bipolar disorder: implications for research and clinical care. CNS Spectr 2023; 28:571-580. [PMID: 36503605 DOI: 10.1017/s1092852922001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar disorder (BD) is a potentially chronic mental disorder marked by recurrent depressive and manic episodes, circadian rhythm disruption, and changes in energetic metabolism. "Metabolic jet lag" refers to a state of shift in circadian patterns of energy homeostasis, affecting neuroendocrine, immune, and adipose tissue function, expressed through behavioral changes such as irregularities in sleep and appetite. Risk factors include genetic variation, mitochondrial dysfunction, lifestyle factors, poor gut microbiome health and abnormalities in hunger, satiety, and hedonistic function. Evidence suggests metabolic jet lag is a core component of BD pathophysiology, as individuals with BD frequently exhibit irregular eating rhythms and circadian desynchronization of their energetic metabolism, which is associated with unfavorable clinical outcomes. Although current diagnostic criteria lack any assessment of eating rhythms, technological advancements including mobile phone applications and ecological momentary assessment allow for the reliable tracking of biological rhythms. Overall, methodological refinement of metabolic jet lag assessment will increase knowledge in this field and stimulate the development of interventions targeting metabolic rhythms, such as time-restricted eating.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alexandra McDonald
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alexander Bambokian
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Fabiano A Gomes
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jacob Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Jennifer Fabe
- Department of Neurology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Roger S McIntyre
- Department of Psychiatry and Pharmacology, University of Toronto, The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Roumen Milev
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
- Department of Psychiatry, Providence Care Hospital, Kingston, ON, Canada
| | - Rodrigo B Mansur
- Department of Psychiatry and Pharmacology, University of Toronto, The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Elisa Brietzke
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
6
|
Lesani A, Djafarian K, Akbarzade Z, Janbozorgi N, Shab-Bidar S. Meal-specific dietary patterns and their contribution to habitual dietary patterns in the Iranian population. Br J Nutr 2023; 129:262-271. [PMID: 35537809 DOI: 10.1017/s0007114521005067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent studies have focused on habitual intake without addressing meal-specific intakes. We aimed to identify meal-specific dietary patterns and their contribution to habitual dietary patterns. This cross-sectional study was conducted on 838 adults, both sexes who attended the health centres in Tehran. Dietary data were recorded by three 24-h dietary recalls (24hDR). Dietary patterns were identified by using principal component analysis on meal-specific and overall food intakes. Intraclass correlation (ICC) was used as a measurement of consistency across meals and days. Correlation analysis and linear regression (partial R2) were used for meals contribution. Four habitual dietary patterns were derived from average dietary intake of 3-d 24hDR labelled as 'Western', 'Healthy', 'Traditional' and 'Legume and broth'. Also, we identified two major dietary patterns on each meal level (factor 1 and 2 for breakfast, lunch, afternoon snack and dinner). The highest contribution of energy intake was observed in lunch (25·7 %), followed by dinner (20·81 %). Consistency of food groups was the highest across days (ICC tea = 0·58) and breakfasts (ICC tea = 0·60). Dinner had a strong correlation coefficient with the 'Western' habitual dietary pattern then followed by lunch. Similarly, dinner and lunch contributed the most (r and partial R2) to the 'Western' habitual dietary pattern. Our results suggest that habitual dietary patterns to several extents are formed at meal levels, and dinner has a greater contribution to the habitual dietary patterns in Iranian people. This may help planning for local dietary guidelines according to the time of eating to promote public health.
Collapse
Affiliation(s)
- Azadeh Lesani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Akbarzade
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Janbozorgi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Egea MB, Pierce G, Park SH, Lee SI, Heger F, Shay N. Consumption of Antioxidant-Rich “Cerrado” Cashew Pseudofruit Affects Hepatic Gene Expression in Obese C57BL/6J High Fat-Fed Mice. Foods 2022; 11:foods11172543. [PMID: 36076729 PMCID: PMC9455023 DOI: 10.3390/foods11172543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Rio Verde 75901-970, Brazil
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Gavin Pierce
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Si-Hong Park
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Sang-In Lee
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Fabienne Heger
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Schloss Hohenheim 1, 70599 Stuttgart, Germany
| | - Neil Shay
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
- Correspondence:
| |
Collapse
|
8
|
Tang Q, Assali DR, Güler AD, Steele AD. Dopamine systems and biological rhythms: Let's get a move on. Front Integr Neurosci 2022; 16:957193. [PMID: 35965599 PMCID: PMC9364481 DOI: 10.3389/fnint.2022.957193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
How dopamine signaling regulates biological rhythms is an area of emerging interest. Here we review experiments focused on delineating dopamine signaling in the suprachiasmatic nucleus, nucleus accumbens, and dorsal striatum to mediate a range of biological rhythms including photoentrainment, activity cycles, rest phase eating of palatable food, diet-induced obesity, and food anticipatory activity. Enthusiasm for causal roles for dopamine in the regulation of circadian rhythms, particularly those associated with food and other rewarding events, is warranted. However, determining that there is rhythmic gene expression in dopamine neurons and target structures does not mean that they are bona fide circadian pacemakers. Given that dopamine has such a profound role in promoting voluntary movements, interpretation of circadian phenotypes associated with locomotor activity must be differentiated at the molecular and behavioral levels. Here we review our current understanding of dopamine signaling in relation to biological rhythms and suggest future experiments that are aimed at teasing apart the roles of dopamine subpopulations and dopamine receptor expressing neurons in causally mediating biological rhythms, particularly in relation to feeding, reward, and activity.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Dina R. Assali
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Andrew D. Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| |
Collapse
|
9
|
Allweyer M, Emde M, Bähr I, Spielmann J, Bieramperl P, Naujoks W, Kielstein H. Investigation of Behavior and Plasma Levels of Corticosterone in Restrictive- and Ad Libitum-Fed Diet-Induced Obese Mice. Nutrients 2022; 14:nu14091746. [PMID: 35565711 PMCID: PMC9100467 DOI: 10.3390/nu14091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Diet-induced obesity (DIO) mice models are commonly used to investigate obesity-related health problems. Until now, only sparse data exist on the influence of DIO on behavior and stress hormones in mice. The present study investigates high-fat DIO with two different feeding regimes on behavioral parameters in mice. Various behavioral tests (open field, elevated plus maze, social interaction, hotplate) were performed with female BALB/c and male C57BL/6 mice after a feeding period of twelve weeks (restrictive vs. ad libitum and normal-fat diet vs. high-fat diet) to investigate levels of anxiety and aggression. BALB/c mice were DIO-resistant and therefore the prerequisite for the behavior analyses was not attained. C57BL/6 mice fed a high-fat diet had a significantly higher body weight and fat mass compared to C57BL/6 mice fed a control diet. Interestingly, the DIO C57BL/6 mice showed no changes in their aggression- or anxiety-related behavior but showed a significant change in the anxiety index. This was probably due to a lower activity level, as other ethological parameters did not show an altered anxiety-related behavior. In the ad libitum-fed DIO group, the highest corticosterone level was detected. Changes due to the feeding regime (restrictive vs. ad libitum) were not observed. These results provide a possible hint to a bias in the investigation of DIO-related health problems in laboratory animal experiments, which may be influenced by the lower activity level.
Collapse
|
10
|
OUP accepted manuscript. Nutr Rev 2022; 80:1942-1957. [DOI: 10.1093/nutrit/nuac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Steckler R, Tamir S, Gutman R. Mice held at an environmental photic cycle oscillating at their tau-like period length do not show the high-fat diet-induced obesity that develops under the 24-hour photic cycle. Chronobiol Int 2021; 38:598-612. [PMID: 33455455 DOI: 10.1080/07420528.2020.1869029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Circadian disruptions precede high-fat diet (HFD)-induced obesity (DIO). Deviation of the endogenous circadian rhythm period length (tau) from 24 hours correlates with mice inter-strain DIO under the 24-hour light-dark cycle (T-cycle). Additionally, entrainment to a tau-resembling T-cycle attenuates DIO, to some extent, in muted mice. These phenomena suggest that entrainment to a 24-hour T-cycle promotes DIO beyond that expected from the HFD-induced metabolic disruptions. However, the hypothesis that entrainment to a tau-resembling T-cycle attenuates DIO has not been tested in wild-type mice. Therefore, we examined, in newborn female FVB/N mice, whether DIO found under their 'regular' 24-hour T-cycle is attenuated under a T-cycle oscillating at their tau-resembling period of 23.7 h, which is diverted from 24 hours by only 0.3 h. Compared to mice fed a low-fat diet, those fed an HFD under the 24-hour T-cycle showed a disrupted pattern of circadian locomotor activity prior to DIO onset. Both these phenomena were absent under the tau-like T-cycle. DIO developed under the 24-hour T-cycle despite similar caloric intake, and was associated with the lower locomotor activity of HFD-fed mice compared to the other mouse groups. These results demonstrated that DIO is secondary to HFD-induced circadian disruptions that are not harmonized by the strongest Zeitgeber (light-dark cycle) when oscillating at a period that diverts by as little as ca. 0.3-h from tau. More importantly, imposing a light-dark cycle oscillating at a tau-like period length, which enhances entrainment and presumably reinforces endogenous circadian rhythms, prevented HFD-induced circadian disruptions and enabled tighter control of energy homeostasis, as manifested by the absence of DIO, even under ad-lib HFD feeding. These results support the identification of tau-related biomarkers, which may be considered as risk-factors for DIO. Moreover, these findings may promote the development of clock-related pharmaceutical interventions that will reduce the gap between tau and 24 hours, and increase the robustness of the endogenous and entrained circadian rhythms. This will enable reducing DIO, even without caloric restriction or time-restricted feeding.
Collapse
Affiliation(s)
- Rafi Steckler
- Laboratory of Integrative Physiology (LIP), The Department of Nutrition and Natural Products, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel.,Laboratory of Human Health and Nutrition Sciences, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology (LIP), The Department of Nutrition and Natural Products, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel.,Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
12
|
Andersen PAK, Petrenko V, Rose PH, Koomen M, Fischer N, Ghiasi SM, Dahlby T, Dibner C, Mandrup-Poulsen T. Proinflammatory Cytokines Perturb Mouse and Human Pancreatic Islet Circadian Rhythmicity and Induce Uncoordinated β-Cell Clock Gene Expression via Nitric Oxide, Lysine Deacetylases, and Immunoproteasomal Activity. Int J Mol Sci 2020; 22:E83. [PMID: 33374803 PMCID: PMC7795908 DOI: 10.3390/ijms22010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic β-cell-specific clock knockout mice develop β-cell oxidative-stress and failure, as well as glucose-intolerance. How inflammatory stress affects the cellular clock is under-investigated. Real-time recording of Per2:luciferase reporter activity in murine and human pancreatic islets demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β) lengthened the circadian period. qPCR-profiling of core clock gene expression in insulin-producing cells suggested that the combination of the proinflammatory cytokines IL-1β and interferon-γ (IFN-γ) caused pronounced but uncoordinated increases in mRNA levels of multiple core clock genes, in particular of reverse-erythroblastosis virus α (Rev-erbα), in a dose- and time-dependent manner. The REV-ERBα/β agonist SR9009, used to mimic cytokine-mediated Rev-erbα induction, reduced constitutive and cytokine-induced brain and muscle arnt-like 1 (Bmal1) mRNA levels in INS-1 cells as expected. SR9009 induced reactive oxygen species (ROS), reduced insulin-1/2 (Ins-1/2) mRNA and accumulated- and glucose-stimulated insulin secretion, reduced cell viability, and increased apoptosis levels, reminiscent of cytokine toxicity. In contrast, low (<5,0 μM) concentrations of SR9009 increased Ins-1 mRNA and accumulated insulin-secretion without affecting INS-1 cell viability, mirroring low-concentration IL-1β mediated β-cell stimulation. Inhibiting nitric oxide (NO) synthesis, the lysine deacetylase HDAC3 and the immunoproteasome reduced cytokine-mediated increases in clock gene expression. In conclusion, the cytokine-combination perturbed the intrinsic clocks operative in mouse and human pancreatic islets and induced uncoordinated clock gene expression in INS-1 cells, the latter effect associated with NO, HDAC3, and immunoproteasome activity.
Collapse
Affiliation(s)
- Phillip Alexander Keller Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Peter Horskjær Rose
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Melissa Koomen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Nico Fischer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| |
Collapse
|
13
|
Walley SN, Krumm EA, Yasrebi A, Wiersielis KR, O'Leary S, Tillery T, Roepke TA. Maternal organophosphate flame-retardant exposure alters offspring feeding, locomotor and exploratory behaviors in a sexually-dimorphic manner in mice. J Appl Toxicol 2020; 41:442-457. [PMID: 33280148 DOI: 10.1002/jat.4056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Increased usage of organophosphate flame retardants (OPFRs) has led to detectable levels in pregnant women and neonates, which is associated with negative neurological outcomes. Therefore, we investigated if maternal OPFR exposure altered adult offspring feeding, locomotor, and anxiety-like behaviors on a low-fat (LFD) or high-fat diet (HFD). Wild-type C57Bl/6J dams were orally dosed with vehicle (sesame oil) or an OPFR mixture (1 mg/kg combination each of tris(1,3-dichloro-2-propyl)phosphate, triphenyl phosphate and tricresyl phosphate) from gestation day 7 to postnatal day 14. After weaning, pups were fed either a LFD or HFD until 19 weeks of age. Locomotor and anxiety-like behaviors were evaluated with the open field test, elevated plus maze, and metabolic cages. Feeding behaviors and meal patterns were analyzed by a Biological Data Acquisition System. Anogenital distance was reduced in OPFR-exposed male pups, but no effect was detected on adult body weight. We observed interactions of OPFR exposure and HFD consumption on locomotor and anxiety-like behavior in males, suggesting an anxiogenic effect while reducing overall nighttime activity. We also observed an interaction of OPFR exposure and HFD on weekly food intake and feeding behaviors. OPFR-exposed males consumed more total HFD than oil-exposed males during the 72-hour trial. However, when arcuate gene expression was analyzed, OPFR exposure induced Agrp expression in females, which would suggest greater orexigenic tone. Collectively, the implications of our study are that the behavioral effects of OPFR exposure are modulated by adult HFD consumption, which may influence the metabolic and neurological consequences of maternal OPFR exposure.
Collapse
Affiliation(s)
- Sabrina N Walley
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sarah O'Leary
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Taylor Tillery
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
14
|
Pickel L, Sung HK. Feeding Rhythms and the Circadian Regulation of Metabolism. Front Nutr 2020; 7:39. [PMID: 32363197 PMCID: PMC7182033 DOI: 10.3389/fnut.2020.00039] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
The molecular circadian clock regulates metabolic processes within the cell, and the alignment of these clocks between tissues is essential for the maintenance of metabolic homeostasis. The possibility of misalignment arises from the differential responsiveness of tissues to the environmental cues that synchronize the clock (zeitgebers). Although light is the dominant environmental cue for the master clock of the suprachiasmatic nucleus, many other tissues are sensitive to feeding and fasting. When rhythms of feeding behavior are altered, for example by shift work or the constant availability of highly palatable foods, strong feedback is sent to the peripheral molecular clocks. Varying degrees of phase shift can cause the systemic misalignment of metabolic processes. Moreover, when there is a misalignment between the endogenous rhythms in physiology and environmental inputs, such as feeding during the inactive phase, the body's ability to maintain homeostasis is impaired. The loss of phase coordination between the organism and environment, as well as internal misalignment between tissues, can produce cardiometabolic disease as a consequence. The aim of this review is to synthesize the work on the mechanisms and metabolic effects of circadian misalignment. The timing of food intake is highlighted as a powerful environmental cue with the potential to destroy or restore the synchrony of circadian rhythms in metabolism.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Jaiswal AK, Sadasivam M, Aja S, Hamad ARA. Lack of Syndecan-1 produces significant alterations in whole-body composition, metabolism and glucose homeostasis in mice. World J Diabetes 2020; 11:126-136. [PMID: 32313611 PMCID: PMC7156300 DOI: 10.4239/wjd.v11.i4.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/18/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is a disease state with serious adverse metabolic complications, including glucose intolerance and type 2 diabetes that currently has no cure. Identifying and understanding roles of various modulators of body composition and glucose homeostasis is required for developing effective cures. Syndecan-1 (Sdc1) is a member of the heparan sulfate proteoglycan family that has mainly been investigated for its role in regulating proliferation and survival of epithelia and tumor cells, but little is known about its roles in regulating obesity and glucose homeostasis.
AIM To examine the role of Sdc1 in regulating body fat and glucose metabolism.
METHODS We used female wild type and Sdc1 knockout (Sdc1 KO) mice on BALB/c background and multiple methods. Metabolic measurements (rates of oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure) were performed using an open-flow indirect calorimeter with additional features to measure food intake and physical activity. Glucose intolerance and insulin resistance were measured by established tolerance test methods.
RESULTS Although our primary goal was to investigate the effects of Sdc1 deficiency on body fat and glucose homeostasis, we uncovered that Sdc1 regulates multiple metabolic parameters. Sdc1KO mice have reduced body weight due to significant decreases in fat and lean masses under both chow and high fat diet conditions. The reduced body weight was not due to changes in food intakes, but Sdc1 KO mice exhibited altered feeding behavior as they ate more during the dark phase and less during the light phase than wild type mice. In addition, Sdc1 KO mice suffered from high rate of energy expenditure, glucose intolerance and insulin resistance.
CONCLUSION These results reveal critical multisystem and opposing roles for Sdc1 in regulating normal energy balance and glucose homeostasis. The results will have important implications for targeting Sdc1 to modulate metabolic parameters. Finally, we offer a novel hypothesis that could reconcile the opposing roles associated with Sdc1 deficiency.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Department of Pathobiology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States
| | - Susan Aja
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
16
|
The Disruption of Liver Metabolic Circadian Rhythms by a Cafeteria Diet Is Sex-Dependent in Fischer 344 Rats. Nutrients 2020; 12:nu12041085. [PMID: 32295282 PMCID: PMC7230270 DOI: 10.3390/nu12041085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/30/2022] Open
Abstract
Circadian rhythms are ~24 h fluctuations of different biological processes that are regulated by the circadian clock system. They exert a major influence on most of the metabolism, such as the hepatic metabolism. This rhythmicity can be disrupted by obesogenic diets, fact that is considered to be a risk factor for the development of metabolic diseases. Nevertheless, obesogenic diets do not affect both genders in the same manner. We hypothesized that the circadian rhythms disruption of the hepatic metabolism, caused by obesogenic diets, is gender-dependent. Male and female Fischer 344 rats were fed either a standard diet or a cafeteria diet and sacrificed at two different moments, at zeitgeber 3 and 15. Only female rats maintained the circadian variations of the hepatic metabolism under a cafeteria diet. Most of those metabolites were related with the very low density lipoprotein (VLDL) synthesis, such as choline, betaine or phosphatidylcholine. Most of these metabolites were found to be increased at the beginning of the dark period. On the other hand, male animals did not show these time differences. These findings suggest that females might be more protected against the circadian disruption of the hepatic metabolism caused by a cafeteria diet through the increase of the VLDL synthesis at the beginning of the feeding time.
Collapse
|
17
|
Dopamine Signaling in Circadian Photoentrainment: Consequences of Desynchrony. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:271-281. [PMID: 31249488 PMCID: PMC6585530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Circadian rhythms, or biological oscillations of approximately 24 hours, impact almost all aspects of our lives by regulating the sleep-wake cycle, hormone release, body temperature fluctuation, and timing of food consumption. The molecular machinery governing these rhythms is similar across organisms ranging from unicellular fungi to insects, rodents, and humans. Circadian entrainment, or temporal synchrony with one's environment, is essential for survival. In mammals, the central circadian pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and mediates entrainment to environmental conditions. While the light:dark cycle is the primary environmental cue, arousal-inducing, non-photic signals such as food consumption, exercise, and social interaction are also potent synchronizers. Many of these stimuli enhance dopaminergic signaling suggesting that a cohesive circadian physiology depends on the relationship between circadian clocks and the neuronal circuits responsible for detecting salient events. Here, we review the inner workings of mammalian circadian entrainment, and describe the health consequences of circadian rhythm disruptions with an emphasis on dopamine signaling.
Collapse
|
18
|
Abstract
Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.
Collapse
Affiliation(s)
- Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
19
|
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019; 40:66-95. [PMID: 30169559 DOI: 10.1210/er.2018-00049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Salamat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Erik Maronde
- Department of Anatomy, Goethe University Frankfurt, Frankfurt, Germany
| | - Warrick Inder
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Christie S, Vincent AD, Li H, Frisby CL, Kentish SJ, O'Rielly R, Wittert GA, Page AJ. A rotating light cycle promotes weight gain and hepatic lipid storage in mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G932-G942. [PMID: 30188750 DOI: 10.1152/ajpgi.00020.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Processes involved in regulation of energy balance and intermediary metabolism are aligned to the light-dark cycle. Shift-work and high-fat diet (HFD)-induced obesity disrupt circadian rhythmicity and are associated with increased risk of nonalcoholic fatty liver disease. This study aimed to determine the effect of simulating shift work on hepatic lipid accumulation in lean and HFD mice. C57BL/6 mice fed a standard laboratory diet (SLD) or HFD for 4 wk were further allocated to a normal light (NL) cycle (lights on: 0600-1800) or rotating light (RL) cycle [3 days NL and 4 days reversed (lights on: 1800-0600) repeated] for 8 wk. Tissue was collected every 3 h beginning at 0600. HFD mice gained more weight than SLD mice, and RL mice gained more weight than NL mice. SLD-NL and HFD-NL mice, but not RL mice, were more active, had higher respiratory quotients, and consumed/expended more energy during the dark phase compared with the light phase. Blood glucose and plasma cholesterol and triglyceride concentrations were elevated in HFD and SLD-RL compared with SLD-NL mice. Hepatic glycogen was elevated in HFD compared with SLD mice. Hepatic triglycerides were elevated in SLD-RL and HFD mice compared with SLD-NL. Circadian rhythmicity of hepatic acetyl-CoA carboxylase (ACACA) mRNA was phase shifted in SLD-RL and HFD-NL and lost in HFD-RL mice. Hepatic ACACA protein was reduced in SLD-RL and HFD mice compared with SLD-NL mice. Hepatic adipose triglyceride lipase was elevated in HFD-NL compared with SLD-NL but lower in RL mice compared with NL mice irrespective of diet. In conclusion, an RL cycle model of shift work promotes weight gain and hepatic lipid storage even in lean conditions. NEW & NOTEWORTHY In this publication we describe the effects of a rotating light cycle model of shift work in lean and high-fat diet-induced obese mice on body mass, diurnal patterns of energy intake and expenditure, and hepatic lipid storage. The data indicate that modeling shift work, via a rotating light cycle, promotes weight gain and hepatic lipid accumulation even in mice on a standard laboratory diet.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide , Adelaide, South Australia
| | - Andrew D Vincent
- Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide , Adelaide, South Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute , Adelaide, South Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide , Adelaide, South Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute , Adelaide, South Australia
| | - Claudine L Frisby
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide , Adelaide, South Australia
| | - Stephen J Kentish
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide , Adelaide, South Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide , Adelaide, South Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide , Adelaide, South Australia.,Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide , Adelaide, South Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute , Adelaide, South Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide , Adelaide, South Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute , Adelaide, South Australia
| |
Collapse
|
21
|
Zhou J, Mao L, Xu P, Wang Y. Effects of (-)-Epigallocatechin Gallate (EGCG) on Energy Expenditure and Microglia-Mediated Hypothalamic Inflammation in Mice Fed a High-Fat Diet. Nutrients 2018; 10:nu10111681. [PMID: 30400620 PMCID: PMC6266769 DOI: 10.3390/nu10111681] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Obesity is an escalating global epidemic caused by an imbalance between energy intake and expenditure. (−)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been reported to be conducive to preventing obesity and alleviating obesity-related chronic diseases. However, the role of EGCG in energy metabolism disorders and central nervous system dysfunction induced by a high-fat diet (HFD) remains to be elucidated. The aim of this study was to evaluate the effects of EGCG on brown adipose tissue (BAT) thermogenesis and neuroinflammation in HFD-induced obese C57BL/6J mice. Mice were randomly divided into four groups with different diets: normal chow diet (NCD), normal chow diet supplemented with 1% EGCG (NCD + EGCG), high-fat diet (HFD), and high-fat diet supplemented with 1% EGCG (HFD + EGCG). Investigations based on a four-week experiment were carried out including the BAT activity, energy consumption, mRNA expression of major inflammatory cytokines in the hypothalamus, nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) phosphorylation, and immunofluorescence staining of microglial marker Iba1 in hypothalamic arcuate nucleus (ARC). Experimental results demonstrated that dietary supplementation of EGCG significantly inhibited HFD-induced obesity by enhancing BAT thermogenesis, and attenuated the hypothalamic inflammation and microglia overactivation by regulating the NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Limin Mao
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
23
|
Panagiotou M, Meijer JH, Deboer T. Chronic high-caloric diet modifies sleep homeostasis in mice. Eur J Neurosci 2018; 47:1339-1352. [PMID: 29737605 DOI: 10.1111/ejn.13932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022]
Abstract
Obesity prevalence and sleep habit changes are commonplace nowadays, due to modern lifestyle. A bidirectional relationship likely exists between sleep quality and metabolic disruptions, which could impact quality of life. In our study, we investigated the effects of a chronic high-caloric diet on sleep architecture and sleep regulation in mice. We studied the effect of 3 months high-caloric diet (HCD, 45% fat) on sleep and the sleep electroencephalogram (EEG) in C57BL/6J mice during 24-hr baseline (BL) recordings, and after 6-hr sleep deprivation (SD). We examined the effect of HCD on sleep homeostasis, by performing parameter estimation analysis and simulations of the sleep homeostatic Process S, a measure of sleep pressure, which is reflected in the non-rapid-eye-movement (NREM) sleep slow-wave-activity (SWA, EEG power density between 0.5 and 4.0 Hz). Compared to controls (n = 11, 30.7 ± 0.8 g), mice fed with HCD (n = 9, 47.6 ± 0.8 g) showed an increased likelihood of consecutive NREM-REM sleep cycles, increased REM sleep and decreased NREM sleep EEG SWA. After SD, these effects were more pronounced. The simulation resulted in a close fit between the time course of SWA and Process S in both groups. HCD fed mice had a slower time constant (Ti = 15.98 hr) for the increase in homeostatic sleep pressure compared with controls (5.95 hr) indicating a reduced effect of waking on the increase in sleep pressure. Our results suggest that chronic HCD consumption impacts sleep regulation.
Collapse
Affiliation(s)
- Maria Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
24
|
Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes. Int J Mol Sci 2018; 19:ijms19051325. [PMID: 29710834 PMCID: PMC5983658 DOI: 10.3390/ijms19051325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs) against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON), a high-fat diet (HFD group) or a HFD supplemented with fish oil (FO group) for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.
Collapse
|
25
|
Rodríguez-Palero MJ, López-Díaz A, Marsac R, Gomes JE, Olmedo M, Artal-Sanz M. An automated method for the analysis of food intake behaviour in Caenorhabditis elegans. Sci Rep 2018; 8:3633. [PMID: 29483540 PMCID: PMC5832146 DOI: 10.1038/s41598-018-21964-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/09/2018] [Indexed: 11/24/2022] Open
Abstract
The study of mechanisms that govern feeding behaviour and its related disorders is a matter of global health interest. The roundworm Caenorhabditis elegans is becoming a model organism of choice to study these conserved pathways. C. elegans feeding depends on the contraction of the pharynx (pumping). Thanks to the worm transparency, pumping can be directly observed under a stereoscope. Therefore, C. elegans feeding has been historically investigated by counting pharyngeal pumping or by other indirect approaches. However, those methods are short-term, time-consuming and unsuitable for independent measurements of sizable numbers of individuals. Although some particular devices and long-term methods have been lately reported, they fail in the automated, scalable and/or continuous aspects. Here we present an automated bioluminescence-based method for the analysis and continuous monitoring of worm feeding in a multi-well format. We validate the method using genetic, environmental and pharmacological modulators of pharyngeal pumping. This flexible methodology allows studying food intake at specific time-points or during longer periods of time, in single worms or in populations at any developmental stage. Additionally, changes in feeding rates in response to differential metabolic status or external environmental cues can be monitored in real time, allowing accurate kinetic measurements.
Collapse
Affiliation(s)
- Mª Jesús Rodríguez-Palero
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain
| | - Ana López-Díaz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain
| | - Roxane Marsac
- Institut de Biochimie et Génétique Cellulaires - C.N.R.S. UMR 5095 and Université de Bordeaux, 1, rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France
| | - José-Eduardo Gomes
- Institut de Biochimie et Génétique Cellulaires - C.N.R.S. UMR 5095 and Université de Bordeaux, 1, rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain.
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012, Seville, Spain.
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain.
| |
Collapse
|
26
|
Sasaki T. Neural and Molecular Mechanisms Involved in Controlling the Quality of Feeding Behavior: Diet Selection and Feeding Patterns. Nutrients 2017; 9:nu9101151. [PMID: 29053636 PMCID: PMC5691767 DOI: 10.3390/nu9101151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
We are what we eat. There are three aspects of feeding: what, when, and how much. These aspects represent the quantity (how much) and quality (what and when) of feeding. The quantitative aspect of feeding has been studied extensively, because weight is primarily determined by the balance between caloric intake and expenditure. In contrast, less is known about the mechanisms that regulate the qualitative aspects of feeding, although they also significantly impact the control of weight and health. However, two aspects of feeding quality relevant to weight loss and weight regain are discussed in this review: macronutrient-based diet selection (what) and feeding pattern (when). This review covers the importance of these two factors in controlling weight and health, and the central mechanisms that regulate them. The relatively limited and fragmented knowledge on these topics indicates that we lack an integrated understanding of the qualitative aspects of feeding behavior. To promote better understanding of weight control, research efforts must focus more on the mechanisms that control the quality and quantity of feeding behavior. This understanding will contribute to improving dietary interventions for achieving weight control and for preventing weight regain following weight loss.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| |
Collapse
|
27
|
Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. Eur J Nutr 2017; 57:2513-2528. [DOI: 10.1007/s00394-017-1523-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/06/2017] [Indexed: 12/25/2022]
|