1
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
2
|
Mazurie Z, Branchereau P, Cattaert D, Henkous N, Savona-Baron C, Vouimba RM. Acute stress differently modulates interneurons excitability and synaptic plasticity in the primary motor cortex of wild-type and SOD1 G93A mouse model of ALS. J Physiol 2024; 602:4987-5015. [PMID: 39216080 DOI: 10.1113/jp285210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Primary motor cortex (M1) network stability depends on activity of inhibitory interneurons, for which susceptibility to stress was previously demonstrated in limbic regions. Hyperexcitability in M1 following changes in the excitatory/inhibitory balance is a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Using electrophysiological approaches, we assessed the impact of acute restraint stress on inhibitory interneurons excitability and global synaptic plasticity in M1 of the SOD1G93A ALS mouse model at a late pre-symptomatic stage (10-12.5 weeks). Based on their firing type (continuous, discontinuous, with accommodation or not) and electrophysiological characteristics (resting potential, rheobase, firing frequency), interneurons from M1 slices were separated into four clusters, labelled from 1 to 4. Among them, only interneurons from the first cluster, presenting continuous firing with few accommodations, tended to show increased excitability in wild-type (WT) and decreased excitability in SOD1G93A animals following stress. In vivo analyses of evoked field potentials showed that stress suppressed the theta burst-induced plasticity of an excitatory component (N1) recorded in the superficial layers of M1 in WT, with no impact on an inhibitory complex (N2-P1) from the deeper layers. In SOD1G93A mice, stress did not affect N1 but suppressed the N2-P1 plasticity. These data suggest that stress can alter M1 network functioning in a different manner in WT and SOD1G93A mice, possibly through changes of inhibitory interneurons excitability and synaptic plasticity. This suggests that stress-induced activity changes in M1 may therefore influence ALS outcomes. KEY POINTS: Disruption of the excitatory/inhibitory balance in the primary motor cortex (M1) has been linked to cortical hyperexcitability development, a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Psychological stress was reported to influence excitatory/inhibitory balance in limbic regions, but very little is known about its influence on the M1 functioning under physiological or pathological conditions. Our study revealed that acute stress influences the excitatory/inhibitory balance within the M1, through changes in interneurons excitability along with network plasticity. Such changes were different in pathological (SOD1G93A ALS mouse model) vs. physiological (wild-type) conditions. The results of our study help us to better understand how stress modulates the M1 and highlight the need to further characterize stress-induced motor cortex changes because it may be of importance when evaluating ALS outcomes.
Collapse
Affiliation(s)
- Zoé Mazurie
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nadia Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Catherine Savona-Baron
- Present address: BoRdeaux Institute of onCology (BRIC), INSERM U1312, University of Bordeaux, Bordeaux, France
| | - Rose-Marie Vouimba
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
4
|
Robinson SL, Thiele TE. Somatostatin signaling modulates binge drinking behavior via the central nucleus of the amygdala. Neuropharmacology 2023; 237:109622. [PMID: 37307896 PMCID: PMC10527233 DOI: 10.1016/j.neuropharm.2023.109622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Somatostatin (SST) is a neuropeptide widely expressed in the central nervous system with dense expression in limbic regions such as the extended amygdala. It has recently gained attention for playing a role in modulating alcohol use disorders and co-morbid neuropsychiatric disorders. However, the role of SST in the central nucleus of the amygdala (CeA), a key region for neuropeptide regulation of alcohol and anxiety related behaviors, in alcohol consumption has not been assessed. In this work we perform an initial examination of the interaction between the CeA SST system and binge ethanol intake. Binge intake is a dangerous pattern of excessive ethanol consumption associated with health complications and the transition into alcohol dependence. We use the Drinking in the Dark (DID) model of binge intake in C57BL/6J male and female mice to examine: 1) the impact of 3 DID cycles on CeA SST expression; 2) the effect of intra-CeA SST injection on binge-like ethanol consumption; and 3) if the SST receptor 2 or 4 (SST2R or SST4R) mediate any effect on consumption. Our results show binge-like ethanol intake decreases SST expression in the CeA, but not neighboring basolateral amygdala. We further found intra-SST CeA administration reduces binge ethanol intake. This decrease was replicated by the administration of an SST4R agonist. These effects were not sex-dependent. Overall, this work lends further support for SST playing a role in alcohol related behaviors and as a potential therapeutic target.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Brockway DF, Griffith KR, Aloimonos CM, Clarity TT, Moyer JB, Smith GC, Dao NC, Hossain MS, Drew PJ, Gordon JA, Kupferschmidt DA, Crowley NA. Somatostatin peptide signaling dampens cortical circuits and promotes exploratory behavior. Cell Rep 2023; 42:112976. [PMID: 37590138 PMCID: PMC10542913 DOI: 10.1016/j.celrep.2023.112976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
We sought to characterize the unique role of somatostatin (SST) in the prelimbic (PL) cortex in mice. We performed slice electrophysiology in pyramidal and GABAergic neurons to characterize the pharmacological mechanism of SST signaling and fiber photometry of GCaMP6f fluorescent calcium signals from SST neurons to characterize the activity profile of SST neurons during exploration of an elevated plus maze (EPM) and open field test (OFT). We used local delivery of a broad SST receptor (SSTR) agonist and antagonist to test causal effects of SST signaling. SSTR activation hyperpolarizes layer 2/3 pyramidal neurons, an effect that is recapitulated with optogenetic stimulation of SST neurons. SST neurons in PL are activated during EPM and OFT exploration, and SSTR agonist administration directly into the PL enhances open arm exploration in the EPM. This work describes a broad ability for SST peptide signaling to modulate microcircuits within the prefrontal cortex and related exploratory behaviors.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Keith R Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chloe M Aloimonos
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas T Clarity
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Brody Moyer
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Grace C Smith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nigel C Dao
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Md Shakhawat Hossain
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J Drew
- Neuroscience Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Departments of Engineering Science and Mechanics and Neurosurgery, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Office of the Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Crowley
- Neuroscience Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Wang X, Ge S, Zhang C. Bed nuclei of the stria terminalis: A key hub in the modulation of anxiety. Eur J Neurosci 2023; 57:900-917. [PMID: 36725691 DOI: 10.1111/ejn.15926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
The bed nuclei of the stria terminalis (BST) is recognised as a pivotal integrative centre for monitoring emotional valence. It is implicated in the regulation of diverse affective states and motivated behaviours, and decades of research have firmly established its critical role in anxiety-related behavioural processes. Researchers have recently intricately dissected the BST's dynamic activities, its connection patterns and its functions with respect to specific cell types using multiple techniques such as optogenetics, in vivo calcium imaging and transgenic tools to unmask the complex circuitry mechanisms that underlie anxiety. In this review, we principally focus on studies of anxiety-involved neuromodulators within the BST and provide a comprehensive architecture of the anxiety network-highlighting the BST as a key hub in orchestrating anxiety-like behaviour. We posit that these promising efforts will contribute to the identification of an accurate roadmap for future treatment of anxiety disorders.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
An M, Kim HK, Park H, Kim K, Heo G, Park HE, Chung C, Kim SY. Lateral Septum Somatostatin Neurons are Activated by Diverse Stressors. Exp Neurobiol 2022; 31:376-389. [PMID: 36631846 PMCID: PMC9841747 DOI: 10.5607/en22024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
The lateral septum (LS) is a forebrain structure that has been implicated in a wide range of behavioral and physiological responses to stress. However, the specific populations of neurons in the LS that mediate stress responses remain incompletely understood. Here, we show that neurons in the dorsal lateral septum (LSd) that express the somatostatin gene (hereafter, LSdSst neurons) are activated by diverse stressors. Retrograde tracing from LSdSst neurons revealed that these neurons are directly innervated by neurons in the locus coeruleus (LC), the primary source of norepinephrine well-known to mediate diverse stress-related functions in the brain. Consistently, we found that norepinephrine increased excitatory synaptic transmission onto LSdSst neurons, suggesting the functional connectivity between LSdSst neurons and LC noradrenergic neurons. However, optogenetic stimulation of LSdSst neurons did not affect stress-related behaviors or autonomic functions, likely owing to the functional heterogeneity within this population. Together, our findings show that LSdSst neurons are activated by diverse stressors and suggest that norepinephrine released from the LC may modulate the activity of LSdSst neurons under stressful circumstances.
Collapse
Affiliation(s)
- Myungmo An
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea,Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Kyung Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea,Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kyunghoe Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea,Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Gyuryang Heo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Han-Eol Park
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea,
ChiHye Chung, TEL: 82-2-450-0432, e-mail:
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea,Department of Chemistry, Seoul National University, Seoul 08826, Korea,To whom correspondence should be addressed. Sung-Yon Kim, TEL: 82-2-880-4994, e-mail:
| |
Collapse
|
8
|
Carletto D, Breiland MW, Hytterød S, Timmerhaus G, Lazado CC. Recurrent oxidant treatment induces dysregulation in the brain transcriptome of Atlantic salmon ( Salmo salar) smolts. Toxicol Rep 2022; 9:1461-1471. [PMID: 36518465 PMCID: PMC9742874 DOI: 10.1016/j.toxrep.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022] Open
Abstract
Peracetic acid (PAA) is an organic peroxide that produces free radicals, which contribute to its potent disinfection power. At therapeutic doses, PAA is considered a mild stressor that can trigger transient local and systemic oxidative stress in fish, but the resulting consequences in the brain have yet to be identified. Therefore, we report the brain transcriptome of Atlantic salmon (Salmo salar) smolts that have been periodically exposed to PAA. Fish were treated three times (every 15 days) with PAA with either short (15 min) or long (30 min) exposure periods. After the third treatment, the whole brain was collected and subjected to biochemical and transcriptomic analyses. The level of reactive oxygen species in the brain was not significantly affected by recurrent PAA treatments. Microarray analysis was performed on the whole brain and revealed 205 differentially expressed genes (DEGs), regardless of the duration of the treatment. The short exposure duration had a more considerable impact on the brain transcriptome, correlating with 70% more DEGs than the long exposure. Strikingly, the brain transcriptome was characterised by the downregulation of gene expression, especially in the short exposure group, and around 82% of the identified DEGs were downregulated. Some of the highly affected genes were key molecules of the vasotocinergic and isotocinergic systems and the corticotropin-releasing factor signalling system, indicating interference of the stress axis but could also suggest an anxiolytic effect. In addition, there were alterations in genes involved in cellular metabolism and processing, signalling and trafficking, and innate immunity, which underscores the physiological changes in the brain following recurrent PAA treatment. Overall, the transcriptomic data reveal that recurrent oxidant treatment could influence brain functions, and although the magnitude was marginal, the alterations suggested neurological adaptations of fish to PAA as a potential chemical stressor. The results identify the risks of PAA, which would be valuable in drafting a framework for its empirically driven use in fish farming.
Collapse
Affiliation(s)
- Danilo Carletto
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166S Agata-Messina, Italy
| | - Mette W. Breiland
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, 9019 Tromsø, Norway
| | - Sigurd Hytterød
- Norwegian Veterinary Institute, PO Box 750, Sentrum, 0106 Oslo, Norway
| | - Gerrit Timmerhaus
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Carlo C. Lazado
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| |
Collapse
|
9
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
10
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
11
|
Zheng HT, Zhuang ZX, Chen CJ, Liao HY, Chen HL, Hsueh HC, Chen CF, Chen SE, Huang SY. Effects of acute heat stress on protein expression and histone modification in the adrenal gland of male layer-type country chickens. Sci Rep 2021; 11:6499. [PMID: 33753796 PMCID: PMC7985386 DOI: 10.1038/s41598-021-85868-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
The adrenal gland responds to heat stress by epinephrine and glucocorticoid release to alleviate the adverse effects. This study investigated the effect of acute heat stress on the protein profile and histone modification in the adrenal gland of layer-type country chickens. A total of 192 roosters were subject to acute heat stress and thereafter classified into a resistant or susceptible group according to body temperature change. The iTRAQ analysis identified 80 differentially expressed proteins, in which the resistant group had a higher level of somatostatin and hydroxy-δ-5-steroid dehydrogenase but a lower parathymosin expression in accordance with the change of serum glucocorticoid levels. Histone modification analysis identified 115 histone markers. The susceptible group had a higher level of tri-methylation of histone H3 lysine 27 (H3K27me3) and showed a positive crosstalk with K36me and K37me in the H3 tails. The differential changes of body temperature projected in physiological regulation at the hypothalamus-pituitary-adrenal axis suggest the genetic heterogeneity in basic metabolic rate and efficiency for heat dissipation to acclimate to thermal stress and maintain body temperature homeostasis. The alteration of adrenal H3K27me3 level was associated with the endocrine function of adrenal gland and may contribute to the thermotolerance of chickens.
Collapse
Affiliation(s)
- Hao-Teng Zheng
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Zi-Xuan Zhuang
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Chao-Jung Chen
- grid.411508.90000 0004 0572 9415Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, 2 Yude Road, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, China Medical University, 91 Hsueh–Shih Road, Taichung, 40402 Taiwan
| | - Hsin-Yi Liao
- grid.411508.90000 0004 0572 9415Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, 2 Yude Road, Taichung, 40447 Taiwan
| | - Hung-Lin Chen
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Huang-Chun Hsueh
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Chih-Feng Chen
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Shuen-Ei Chen
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - San-Yuan Huang
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| |
Collapse
|
12
|
Rajkumar RP. Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Front Psychol 2021; 12:621853. [PMID: 33815205 PMCID: PMC8012770 DOI: 10.3389/fpsyg.2021.621853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
Healthcare workers are at a high risk of psychological morbidity in the face of the COVID-19 pandemic. However, there is significant variability in the impact of this crisis on individual healthcare workers, which can be best explained through an appreciation of the construct of resilience. Broadly speaking, resilience refers to the ability to successfully adapt to stressful or traumatic events, and thus plays a key role in determining mental health outcomes following exposure to such events. A proper understanding of resilience is vital in enabling a shift from a reactive to a proactive approach for protecting and promoting the mental well-being of healthcare workers. Research in the past decade has identified six areas that provide promising leads in understanding the biological basis of individual variations in resilience. These are: (1) the key role played by the monoamines noradrenaline and serotonin, (2) the centrality of the hypothalamic-pituitary-adrenal axis in influencing stress vulnerability and resilience, (3) the intimate links between the immune system and stress sensitivity, (4) the role of epigenetic modulation of gene expression in influencing the stress response, (5) the role played by certain neuropeptides as a natural “brake” mechanism in the face of stress, and (6) the neurobiological mechanisms by which environmental factors, such as exercise, diet, and social support, influence resilience to subsequent life events. Though much of this research is still in its early stages, it has already provided valuable information on which strategies – including dietary changes, lifestyle modification, environmental modification, psychosocial interventions, and even pharmacological treatments – may prove to be useful in fostering resilience in individuals and groups. This paper examines the above evidence more closely, with a specific focus on the challenges faced by healthcare workers during the COVID-19 pandemic, and provides suggestions regarding how it may be translated into real-world interventions, as well as how the more tentative hypotheses advanced in this field may be tested during this critical period.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
13
|
Molecular characterization of the stress network in individuals at risk for schizophrenia. Neurobiol Stress 2021; 14:100307. [PMID: 33644266 PMCID: PMC7893486 DOI: 10.1016/j.ynstr.2021.100307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 01/24/2023] Open
Abstract
The biological mechanisms underlying inter-individual differences in human stress reactivity remain poorly understood. We aimed to identify the molecular underpinning of aberrant neural stress sensitivity in individuals at risk for schizophrenia. Linking mRNA expression data from the Allen Human Brain Atlas to task-based fMRI revealed 201 differentially expressed genes in cortex-specific brain regions differentially activated by stress in individuals with low (healthy siblings of schizophrenia patients) or high (healthy controls) stress sensitivity. These genes are associated with stress-related psychiatric disorders (e.g. schizophrenia and anxiety) and include markers for specific neuronal populations (e.g. ADCYAP1, GABRB1, SSTR1, and TNFRSF12A), neurotransmitter receptors (e.g. GRIN3A, SSTR1, GABRB1, and HTR1E), and signaling factors that interact with the corticosteroid receptor and hypothalamic-pituitary-adrenal axis (e.g. ADCYAP1, IGSF11, and PKIA). Overall, the identified genes potentially underlie altered stress reactivity in individuals at risk for schizophrenia and other psychiatric disorders and play a role in mounting an adaptive stress response in at-risk individuals, making them potentially druggable targets for stress-related diseases.
Collapse
|
14
|
Fee C, Prevot TD, Misquitta K, Knutson DE, Li G, Mondal P, Cook JM, Banasr M, Sibille E. Behavioral Deficits Induced by Somatostatin-Positive GABA Neuron Silencing Are Rescued by Alpha 5 GABA-A Receptor Potentiation. Int J Neuropsychopharmacol 2021; 24:505-518. [PMID: 33438026 PMCID: PMC8278801 DOI: 10.1093/ijnp/pyab002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Deficits in somatostatin-positive gamma-aminobutyric acid interneurons (SST+ GABA cells) are commonly reported in human studies of mood and anxiety disorder patients. A causal link between SST+ cell dysfunction and symptom-related behaviors has been proposed based on rodent studies showing that chronic stress, a major risk factor for mood and anxiety disorders, induces a low SST+ GABA cellular phenotype across corticolimbic brain regions; that lowering Sst, SST+ cell, or GABA functions induces depressive-/anxiety-like behaviors (a rodent behavioral construct collectively defined as "behavioral emotionality"); and that disinhibiting SST+ cells has antidepressant-like effects. Recent studies found that compounds preferentially potentiating receptors mediating SST+ cell functions, α5-GABAA receptor positive allosteric modulators (α5-PAMs), achieved antidepressant-like effects. Together, the evidence suggests that SST+ cells regulate mood and cognitive functions that are disrupted in mood disorders and that rescuing SST+ cell function via α5-PAM may represent a targeted therapeutic strategy. METHODS We developed a mouse model allowing chemogenetic manipulation of brain-wide SST+ cells and employed behavioral characterization 30 minutes after repeated acute silencing to identify contributions to symptom-related behaviors. We then assessed whether an α5-PAM, GL-II-73, could rescue behavioral deficits. RESULTS Brain-wide SST+ cell silencing induced features of stress-related illnesses, including elevated neuronal activity and plasma corticosterone levels, increased anxiety- and anhedonia-like behaviors, and impaired short-term memory. GL-II-73 led to antidepressant- and anxiolytic-like improvements among behavioral deficits induced by brain-wide SST+ cell silencing. CONCLUSION Our data validate SST+ cells as regulators of mood and cognitive functions and demonstrate that bypassing low SST+ cell function via α5-PAM represents a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Keith Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA,Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| | - Prithu Mondal
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Correspondence: Etienne Sibille, PhD, CAMH, 250 College Street, Room 134, Toronto, ON M5T 1R8, Canada ()
| |
Collapse
|
15
|
Shamsi BH, Chatoo M, Xu XK, Xu X, Chen XQ. Versatile Functions of Somatostatin and Somatostatin Receptors in the Gastrointestinal System. Front Endocrinol (Lausanne) 2021; 12:652363. [PMID: 33796080 PMCID: PMC8009181 DOI: 10.3389/fendo.2021.652363] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
Somatostatin (SST) and somatostatin receptors (SSTRs) play an important role in the brain and gastrointestinal (GI) system. SST is produced in various organs and cells, and the inhibitory function of somatostatin-containing cells is involved in a range of physiological functions and pathological modifications. The GI system is the largest endocrine organ for digestion and absorption, SST-endocrine cells and neurons in the GI system are a critical effecter to maintain homeostasis via SSTRs 1-5 and co-receptors, while SST-SSTRs are involved in chemo-sensory, mucus, and hormone secretion, motility, inflammation response, itch, and pain via the autocrine, paracrine, endocrine, and exoendocrine pathways. It is also a power inhibitor for tumor cell proliferation, severe inflammation, and post-operation complications, and is a first-line anti-cancer drug in clinical practice. This mini review focuses on the current function of producing SST endocrine cells and local neurons SST-SSTRs in the GI system, discusses new development prognostic markers, phosphate-specific antibodies, and molecular imaging emerging in diagnostics and therapy, and summarizes the mechanism of the SST family in basic research and clinical practice. Understanding of endocrines and neuroendocrines in SST-SSTRs in GI will provide an insight into advanced medicine in basic and clinical research.
Collapse
Affiliation(s)
- Bilal Haider Shamsi
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Mahanand Chatoo
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xiao Kang Xu
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xun Xu
- College of Renji, Wenzhou Medical University, Wenzhou, China
| | - Xue Qun Chen
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
- National Health Commission (NHC) and Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Medical Neurobiology, Ministry of Education (MOE), Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xue Qun Chen,
| |
Collapse
|
16
|
Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry 2021; 26:151-167. [PMID: 32346158 DOI: 10.1038/s41380-020-0727-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Cognitive dysfunctions, including impaired attention, learning, memory, planning and problem solving, occur in depressive episodes, often persist during remission, predict relapse, worsen with recurrent episodes, and are not treated by current antidepressants or other medications. Cognitive symptoms are also present in other psychiatric disorders, are a hallmark of aging, and define several late-life disorders, including Alzheimer's disease. This pervasive occurrence suggests either a non-specific outcome of a diseased brain, or a shared underlying pathology contributing to this symptom dimension. Recent findings suggest a role for altered GABAergic inhibition in cognitive symptoms. Cellular, molecular and biochemical studies in human subjects report changes affecting the gamma-amino butyric acid (GABA) system, specifically somatostatin-expressing (SST+) GABAergic interneurons, across brain disorders and during aging. SST+ neurons gate excitatory input onto pyramidal neurons within cortical microcircuits. Experimentally reducing the function of these neurons affects excitatory signal-to-noise ratio, reduces synchronized cellular and neural activity, and leads to cognitive dysfunctions. Conversely, augmenting SST+ cell post-synaptic α5-GABA-A receptor activity has pro-cognitive efficacy in stress and aging models. Together, this suggests that reduced signaling of the SST+ neuron/α5-GABA-A receptor pathway contributes to cognitive dysfunctions, and that it represents a novel therapeutic target for remediating mood and cognitive symptoms in depression, other psychiatric disorders and during aging.
Collapse
|
17
|
Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2020; 106:887-897. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Ji-Fang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education (KLMME), Qingdao, China.
| |
Collapse
|
18
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
19
|
Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020; 167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
In recent years, neuropeptides which display potent regulatory control of stress-related behaviors have been extensively demonstrated to play a critical role in regulating behaviors associated with substance abuse and affective disorders. Somatostatin (SST) is one neuropeptide known to significantly contribute to emotionality and stress behaviors. However, the role of SST in regulating behavior has received relatively little attention relative to other stress-involved peptides, such as neuropeptide Y or corticotrophin releasing factor. This review characterizes our current understanding of the role of SST and SST-expressing cells in general in modulating several behaviors intrinsically linked to substance abuse and affective disorders, specifically: anxiety and fear; stress and depression; feeding and drinking; and circadian rhythms. We further summarize evidence of a direct role for the SST system, and specifically somatostatin receptors 2 and 4, in substance abuse disorders. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
20
|
Zhu C, Zhao L, Zhao J, Zhang S. Sini San ameliorates duodenal mucosal barrier injury and low‑grade inflammation via the CRF pathway in a rat model of functional dyspepsia. Int J Mol Med 2019; 45:53-60. [PMID: 31746413 PMCID: PMC6889936 DOI: 10.3892/ijmm.2019.4394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The gut-brain interaction is associated with impaired duodenal mucosal integrity and low-grade inflammation, which have been proven to be important pathological mechanisms of functional dyspepsia (FD). Sini San (SNS) is a classical Chinese medicine used to treat FD, but its underlying mechanisms are poorly understood. The aim of the present study was to evaluate the effects of SNS on duodenal mucosal barrier injury and low-grade inflammation with FD, and to assess its potential molecular mechanisms on the brain-gut axis. FD rats were established using the iodoacetamide and tail-squeezed methods. The expression of corticotropin-releasing factor (CRF), CRF receptor 1 (CRF-R1) and CRF-R2, were determined by western blot analysis and/or immunohistochemistry (IHC). In addition, mast cell (MC) migration was assessed by IHC with an anti-tryptase antibody, and histamine concentration was quantified using ELISA. The mRNA expression levels of tryptase and protease-activated receptor 2 (PAR-2) were quantified using reverse transcription-quantitative PCR, and the protein expression levels of zona occludens protein 1 (ZO-1), junctional adhesion molecule 1 (JAM-1), β-catenin and E-cadherin were determined via western blot analysis. It was demonstrated that the expression level of CRF was downregulated in the central nervous system and duodenum following SNS treatment, and that SNS modulated the expression of both CRF-R1 and CRF-R2. In addition, SNS suppressed MC infiltration and the activity of the tryptase/PAR-2 pathway in the duodenum. Furthermore, treatment with SNS restored the normal expression levels of ZO-1, JAM-1 and β-catenin in FD rats. These findings suggested that the therapeutic effects of SNS on FD were achieved by restoring mucosal barrier integrity and suppressing low-grade inflammation in the duodenum, which was at least partially mediated via the CRF signaling pathway.
Collapse
Affiliation(s)
- Chunyang Zhu
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jingyi Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
21
|
Dao NC, Brockway DF, Crowley NA. In Vitro Optogenetic Characterization of Neuropeptide Release from Prefrontal Cortical Somatostatin Neurons. Neuroscience 2019; 419:1-4. [PMID: 31487544 DOI: 10.1016/j.neuroscience.2019.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Somatostatin is a neuropeptide thought to play a role in a variety of neuropsychiatric disorders, and is important for healthy aging and behavioral resiliency. Physiological conditions underlying somatostatin peptidergic release are not well-defined. Using a combination of optogenetic and biochemical approaches in transgenic mice, we demonstrate an assay for the induction and inhibition of somatostatin release in mouse acute brain slices.
Collapse
Affiliation(s)
- Nigel C Dao
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802
| | - Dakota F Brockway
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802; Neuroscience Curriculum, Pennsylvania State University, University Park, PA 16802
| | - Nicole A Crowley
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802; Neuroscience Curriculum, Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
22
|
Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking. Gene 2019; 696:176-185. [PMID: 30769143 DOI: 10.1016/j.gene.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 01/15/2023]
Abstract
Tachykinin 2 (Tac2) is expressed in a number of areas throughout the brain, including the hippocampus. However, knowledge about its function has been only well explored in the hypothalamus in the context of reproductive health. In this study, we identified and validated increased hippocampal Tac2 mRNA expression in response to chronic mild stress in mice. Expression quantitative trait locus (eQTL) analysis showed Tac2 is cis-regulated in the hippocampus. Using a systems genetics approach, we constructed a Tac2 co-expression network to better understand the relationship between Tac2 and the hippocampal stress response. Our network identified 69 total genes associated with Tac2, several of which encode major neuropeptides involved in hippocampal stress signaling as well as critical genes for producing neural plasticity, indicating that Tac2 is involved in these processes. Pathway analysis for the member of Tac2 gene network revealed a strong connection between Tac2 and neuroactive ligand-receptor interaction, calcium signaling pathway, as well as cardiac muscle contraction. In addition, we also identified 46 stress-related phenotypes, specifically fear conditioning response, that were significantly correlated with Tac2 expression. Our results provide evidence for Tac2 as a strong candidate gene who likely plays a role in hippocampal stress processing and neural plasticity.
Collapse
|
23
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
24
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
25
|
Prévôt TD, Viollet C, Epelbaum J, Dominguez G, Béracochéa D, Guillou JL. sst 2-receptor gene deletion exacerbates chronic stress-induced deficits: Consequences for emotional and cognitive ageing. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:390-400. [PMID: 29409919 DOI: 10.1016/j.pnpbp.2018.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
This study investigated whether sst2 gene deletion interacts with age and chronic stress exposure to produce exacerbated emotional and cognitive ageing. Middle-aged (10-12 month) sst2 knockout (sst2KO) and wild-type (WT) mice underwent an unpredictable chronic mild stress (UCMS) procedure for 6 weeks or no stress for control groups. This was followed by a battery of tests to assess emotional and cognitive functions and neuroendocrine status (CORT level). A re-evaluation was performed 6 months later (i.e. with 18-month-old mice). UCMS reproduced neuroendocrine and behavioral features of stress-related disorders such as elevated circulating CORT levels, physical deteriorations, increased anxiety- and depressive-like behaviors and working memory impairments. sst2KO mice displayed behavioral alterations which were similar to stressed WT and exhibited exacerbated changes following UCMS exposure. The evaluations performed in the older mice showed significant long-term effects of UCMS exposure. Old sst2KO mice previously exposed to UCMS exhibited spatial learning and memory accuracy impairments and high levels of anxiety-like behaviors which drastically added to the effects of normal ageing. Spatial abilities and emotionality scores (mean z-scores) measured both at the UCMS outcome and 6 months later were correlated with the initially measured CORT levels in middle-age. The present findings indicate that the deletion of the sst2 receptor gene produces chronic hypercorticosteronemia and exacerbates sensitivity to stressors which over time, have consequences on ageing brain function processes.
Collapse
Affiliation(s)
- Thomas Damien Prévôt
- Université de Bordeaux, Pessac, France; Centre National de la Recherche Scientifique, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France
| | - Cécile Viollet
- Inserm, UMR 894, Center for Psychiatry & Neuroscience, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques Epelbaum
- Inserm, UMR 894, Center for Psychiatry & Neuroscience, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; UMR 7179 CNRS MNHN - MECADEV, 91800 Brunoy, France
| | - Gaëlle Dominguez
- Centre National de la Recherche Scientifique, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France
| | - Daniel Béracochéa
- Université de Bordeaux, Pessac, France; Centre National de la Recherche Scientifique, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France
| | - Jean-Louis Guillou
- Université de Bordeaux, Pessac, France; Centre National de la Recherche Scientifique, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Pessac, France.
| |
Collapse
|
26
|
|
27
|
Li N, Yang Z, Li Q, Yu Z, Chen X, Li JC, Li B, Ning SL, Cui M, Sun JP, Yu X. Ablation of somatostatin cells leads to impaired pancreatic islet function and neonatal death in rodents. Cell Death Dis 2018; 9:682. [PMID: 29880854 PMCID: PMC5992210 DOI: 10.1038/s41419-018-0741-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
The somatostatin (SST)-secreting cells were mainly distributed in the pancreatic islets, brain, stomach and intestine in mammals and have many physiological functions. In particular, the SST-secreting δ cell is the third most common cell type in the islets of Langerhans. Recent studies have suggested that dysregulation of paracrine interaction between the pancreatic δ cells and β cells results in impaired glucose homeostasis and contributes to diabetes development. However, direct evidence of the functional importance of SST cells in glucose homeostasis control is still lacking. In the present study, we specifically ablated SST-secreting cells by crossing Sst-cre transgenic mice with R26 DTA mice (Sst Cre R26 DTA ). The Sst Cre R26 DTA mice exhibited neonatal death. The life spans of these mice with severe hypoglycemia were extended by glucose supplementation. Moreover, we observed that SST cells deficiency led to increased insulin content and excessive insulin release, which might contribute to the observed hypoglycemia. Unexpectedly, although SST is critical for the regulation of insulin content, factors other than SST that are produced by pancreatic δ cells via their endogenous corticotropin-releasing hormone receptor 2 (CRHR2) activity play the main roles in maintaining normal insulin release, as well as neonatal glucose homeostasis in the resting state. Taken together, our results identified that the SST cells in neonatal mouse played critical role in control of insulin release and normal islet function. Moreover, we provided direct in vivo evidence of the functional importance of the SST cells, which are essential for neonatal survival and the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Qing Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Zhen Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Xu Chen
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Jia-Cheng Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Bo Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Shang-Lei Ning
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Min Cui
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Jin-Peng Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China.,School of Medicine, Duke University, Durham, North Carolina, 27705, USA
| | - Xiao Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| |
Collapse
|
28
|
Hippocampal gene expression profiling in a rat model of functional constipation reveals abnormal expression genes associated with cognitive function. Neurosci Lett 2018; 675:103-109. [DOI: 10.1016/j.neulet.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
|