1
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
2
|
Sun M, Song Y, Hu X, Zhang Z, Tan R, Cai Z, Wang X, Fu Y, You H, Cui S, Zhao W, An J, Chen X, Lu H. Leptin reduces LPS-induced A1 reactive astrocyte activation and inflammation via inhibiting p38-MAPK signaling pathway. Glia 2025; 73:25-37. [PMID: 39310943 DOI: 10.1002/glia.24611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 12/21/2024]
Abstract
Neurotoxic A1 reactive astrocytes are induced by inflammatory stimuli. Leptin has been confirmed to have neuroprotective properties. However, its effect on the activation of A1 astrocytes in infectious inflammation is unclear. In the current study, astrocytes cultured from postnatal day 1 Sprague-Dawley rats were stimulated with lipopolysaccharide (LPS) to induce an acute in vitro inflammatory response. Leptin was applied 6 h later to observe its protective effects. The viability of the astrocytes was assessed. A1 astrocyte activation was determined by analyzing the gene expression of C3, H2-D1, H2-T23, and Serping 1 and secretion of pro-inflammatory cytokines IL-6 and TNF-α. The levels of phospho-p38 (pp38) and nuclear factor-κB (NF-κB) phosphor-p65 (pp65) were measured to explore the possible signaling pathways. Additionally, an LPS-induced inflammatory animal model was established to investigate the in vivo effects of leptin on A1 astrocytic activation. Results showed that in the in vitro culture system, LPS stimulation caused elevated expression of A1 astrocyte-specific genes and the secretion of pro-inflammatory cytokines, indicating the activation of A1 astrocytes. Leptin treatment significantly reversed the LPS induced upregulation in a dose-dependent manner. Similarly, LPS upregulated pp38, NF-κB pp65 protein and inflammatory cytokines were successfully reduced by leptin. In the LPS-induced animal model, the amelioratory effect of leptin on A1 astrocyte activation and inflammation was further confirmed, showed by the reduced sickness behaviors, A1 astrocyte genesis and inflammatory cytokines in vivo. Our results demonstrate that leptin efficiently inhibits LPS-induced neurotoxic activation of A1 astrocytes and neuroinflammation by suppressing p38-MAPK signaling pathway.
Collapse
Affiliation(s)
- Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yiqun Song
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zixuan Zhang
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ruolan Tan
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhenlu Cai
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyi Wang
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yali Fu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hongli You
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Simeng Cui
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wanting Zhao
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
3
|
Gilani M, Abak N, Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine. Pharmacol Biochem Behav 2024; 245:173897. [PMID: 39424200 DOI: 10.1016/j.pbb.2024.173897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Mood and anxiety disorders are complex psychiatric conditions shaped by the multifactorial interplay of genetic, epigenetic, and neuropeptide factors. This review aims to elucidate the intricate interactions among these factors and their potential in advancing personalized medicine. We examine the genetic underpinnings, emphasizing key heritability studies and specific gene associations. The role of epigenetics is discussed, focusing on how environmental factors can modify gene expression and contribute to these disorders. Neuropeptides, including substance P, CRF, AVP, NPY, galanin, and kisspeptin, are evaluated for their involvement in mood regulation and their potential as therapeutic targets. Additionally, we address the emerging role of the gut microbiome in modulating neuropeptide activity and its connection to mood disorders. This review integrates findings from genetic, epigenetic, and neuropeptide research, offering a comprehensive overview of their collective impact on mood and anxiety disorders. By highlighting novel insights and potential clinical applications, we underscore the importance of a multi-omics approach in developing personalized treatment strategies. Future research directions are proposed to address existing knowledge gaps and translate these findings into clinical practice. Our review provides a fresh perspective on the pathophysiology of mood and anxiety disorders, paving the way for more effective and individualized therapies.
Collapse
Affiliation(s)
- Maryam Gilani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wang Y, Zhang L, Lyu T, Cui L, Zhao S, Wang X, Wang M, Wang Y, Li Z. Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state. Neural Regen Res 2024; 19:2229-2239. [PMID: 38488557 PMCID: PMC11034580 DOI: 10.4103/1673-5374.392890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lu Cui
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shunying Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuechun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
He E, Ma R, Qu S, Zheng X, Peng X, Ji J, Ma W, Zhang X, Li Y, Li H, Li Y, Li L, Gong Z. L-methionine and the L-type Ca 2+ channel agonist BAY K 8644 collaboratively contribute to the reduction of depressive-like behavior in mice. Front Neural Circuits 2024; 18:1435507. [PMID: 39268349 PMCID: PMC11391425 DOI: 10.3389/fncir.2024.1435507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The L-type Ca2+ channel (LTCC, also known as Cav1,2) is involved in the regulation of key neuronal functions, such as dendritic information integration, cell survival, and neuronal gene expression. Clinical studies have shown an association between L-type calcium channels and the onset of depression, although the precise mechanisms remain unclear. The development of depression results from a combination of environmental and genetic factors. DNA methylation, a significant epigenetic modification, plays a regulatory role in the pathogenesis of psychiatric disorders such as posttraumatic stress disorder (PTSD), depression, and autism. In our study, we observed reduced Dnmt3a expression levels in the hippocampal DG region of mice with LPS-induced depression compared to control mice. The antidepressant Venlafaxine was able to increase Dnmt3a expression levels. Conversely, Bay K 8644, an agonist of the L-type Ca2+ channel, partially ameliorated depression-like behaviors but did not elevate Dnmt3a expression levels. Furthermore, when we manipulated DNA methylation levels during Bay K 8644 intervention in depression-like models, we found that enhancing the expression of Dnmt3a could improve LPS-induced depression/anxiety-like behaviors, while inhibiting DNA methylation exacerbated anxiety-like behaviors, the combined use of BAY K 8644 and L-methionine can better improve depressive-like behavior. These findings indicate that DNA methylation plays a role in the regulation of depression-like behaviors by the L-type Ca2+ channel, and further research is needed to elucidate the interactions between DNA methylation and L-type Ca2+ channels.
Collapse
Affiliation(s)
- Ershu He
- School of Medicine, Dali University, Dali, China
| | - Ruixue Ma
- School of Medicine, Dali University, Dali, China
| | - Shanglan Qu
- School of Medicine, Dali University, Dali, China
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor's University, Subang Jaya, Malaysia
| | - Xiaoye Zheng
- School of Medicine, Dali University, Dali, China
| | - Xin Peng
- School of Medicine, Dali University, Dali, China
| | - Jieyu Ji
- School of Medicine, Dali University, Dali, China
| | - Wenhao Ma
- School of Medicine, Dali University, Dali, China
| | - Xueyan Zhang
- School of Medicine, Dali University, Dali, China
| | - Ying Li
- School of Medicine, Dali University, Dali, China
| | - Hanwei Li
- School of Medicine, Dali University, Dali, China
| | - Yanjiao Li
- School of Medicine, Dali University, Dali, China
| | - Lijuan Li
- School of Medicine, Dali University, Dali, China
| | - Zhiting Gong
- School of Medicine, Dali University, Dali, China
| |
Collapse
|
6
|
Costa MR, Dos Santos AYI, de Miranda TB, Aires R, de Camargo Coque A, Hurtado ECP, Bernardi MM, Pecorari VGA, Andia DC, Birbrair A, Guillemin GJ, Latini A, da Silva RA. Impact of neuroinflammation on epigenetic transcriptional control of Sonic Hedgehog members in the central nervous system. Brain Res 2023; 1799:148180. [PMID: 36463954 DOI: 10.1016/j.brainres.2022.148180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Sonic Hedgehog (Shh) signaling plays a critical role during central nervous system (CNS) development, and its dysregulation leads to neurological disorders. Nevertheless, little is known about Shh signaling regulation in the adult brain. Here, we investigated the contribution of DNA methylation on the transcriptional control of Shh signaling pathway members and its basal distribution impact on the brain, as well as its modulation by inflammation. The methylation status of the promoter regions of these members and the transcriptional profile of DNA-modifying enzymes (DNA Methyltransferases - DNMTs and Tet Methylcytosine Dioxygenase - TETs) were investigated in a murine model of neuroinflammation by qPCR. We showed that, in the adult brain, methylation in the CpG promoter regions of the Shh signaling pathway members was critical to determine the endogenous differential transcriptional pattern observed between distinct brain regions. We also found that neuroinflammation differentially modulates gene expression of DNA-modifying enzymes. This study reveals the basal transcriptional profile of DNMTs and TETs enzymes in the CNS and demonstrates the effect of neuroinflammation on the transcriptional control of members of the Shh Signaling pathway in the adult brain.
Collapse
Affiliation(s)
| | | | | | - Rogério Aires
- Epigenetic Study Center and Gene Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, São Paulo, Brazil
| | - Alex de Camargo Coque
- Epigenetic Study Center and Gene Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, São Paulo, Brazil
| | - Elizabeth Cristina Perez Hurtado
- Epigenetic Study Center and Gene Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, São Paulo, Brazil.
| | - Maria Martha Bernardi
- Epigenetic Study Center and Gene Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, São Paulo, Brazil
| | | | - Denise Carleto Andia
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, São Paulo, Brazil.
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Alexandra Latini
- Bioenergetics and Oxidative Stress Lab - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo A da Silva
- School of Dentistry, University of Taubaté, 12020-3400 Taubaté, São Paulo, Brazil; Epigenetic Study Center and Gene Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, São Paulo, Brazil.
| |
Collapse
|
7
|
Rhodes C, Lin CH. Role of the histone methyltransferases Ezh2 and Suv4-20h1/Suv4-20h2 in neurogenesis. Neural Regen Res 2023; 18:469-473. [DOI: 10.4103/1673-5374.350188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Rani A, Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Moldawer LL, Efron PA, Foster TC. Influence of age and sex on microRNA response and recovery in the hippocampus following sepsis. Aging (Albany NY) 2022; 14:728-746. [PMID: 35094981 PMCID: PMC8833110 DOI: 10.18632/aging.203868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar manner across age or sex and these few miR were generally associated with neuroprotection against inflammation. Similar to previous work examining transcription, young females exhibited a better recovery of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4 were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or resilience to cognitive impairment due to sepsis.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Stortz
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - McKenzie Hollen
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Dina Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.,Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Yu W, Lu L, Ji X, Qian Q, Lin X, Wang H. Recent Advances on Possible Association Between the Periodontal Infection of Porphyromonas gingivalis and Central Nervous System Injury. J Alzheimers Dis 2021; 84:51-59. [PMID: 34487050 DOI: 10.3233/jad-215143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic periodontitis caused by Porphyromonas gingivalis (P. gingivalis) infection generally lasts for a lifetime. The long-term existence and development of P. gingivalis infection gradually aggravate the accumulation of inflammatory signals and toxic substances in the body. Recent evidence has revealed that P. gingivalis infection may be relevant to some central nervous system (CNS) diseases. The current work collects information and tries to explore the possible relationship between P. gingivalis infection and CNS diseases, including the interaction or pathways between peripheral infection and CNS injury, and the underlying neurotoxic mechanisms.
Collapse
Affiliation(s)
- Wenlei Yu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Linjie Lu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xintong Ji
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qiwei Qian
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaohan Lin
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huanhuan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
11
|
Patki M, Saraswat A, Bhutkar S, Dukhande V, Patel K. In vitro assessment of a synergistic combination of gemcitabine and zebularine in pancreatic cancer cells. Exp Cell Res 2021; 405:112660. [PMID: 34048785 DOI: 10.1016/j.yexcr.2021.112660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 01/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with an extremely poor prognosis. Gemcitabine (Gem) is still the mainstay drug for the treatment of PDAC. However, rapid inactivation by cytidine deaminase (CDA) present in pancreatic cancer cells severely limits anticancer efficacy of Gem. In this study, we investigated the effect of a CDA inhibitor - Zebularine (Zeb) on anticancer activity of Gem in pancreatic cancer cell lines MiaPaCa-2, BxPC-3, and Panc-1. Zeb treatment synergistically increased Gem-induced cytotoxicity in all three pancreatic cancer cell lines. The strongest synergistic activity was found at 1:10 M ratio of Gem/Zeb (combination index 0.04-0.4). Additionally, Gem + Zeb treated cells showed marked decreased in the expressions of anti-apoptotic protein including Bcl-2 and survivin while significantly increased the cleaved caspase-3, and loss of mitochondrial membrane potential was observed. Multicellular 3D spheroids of MiaPaCa-2 cells treated with combination showed significant reduction (25-60%) in spheroid size, weight compared to single drug and control group. Live/dead cell imaging showed that Gem + Zeb treated spheroids exhibited a highly distorted surface with significantly higher number of dead cells (red). The results of the present study confirm that this synergistic combination is worthy of future investigations as a potential approach for the treatment of PDAC.
Collapse
Affiliation(s)
- Manali Patki
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | | | - Shraddha Bhutkar
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Vikas Dukhande
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, NY, USA.
| |
Collapse
|
12
|
Adetunji AO, Kawai T, Shimada M. Impact of lipopolysaccharide administration on luteinizing hormone/choriogonadotropin receptor (Lhcgr) expression in mouse ovaries. J Reprod Immunol 2020; 142:103193. [DOI: 10.1016/j.jri.2020.103193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
|
13
|
Rosenberg T, Kisliouk T, Cramer T, Shinder D, Druyan S, Meiri N. Embryonic Heat Conditioning Induces TET-Dependent Cross-Tolerance to Hypothalamic Inflammation Later in Life. Front Genet 2020; 11:767. [PMID: 32849788 PMCID: PMC7419591 DOI: 10.3389/fgene.2020.00767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Early life encounters with stress can lead to long-lasting beneficial alterations in the response to various stressors, known as cross-tolerance. Embryonic heat conditioning (EHC) of chicks was previously shown to mediate resilience to heat stress later in life. Here we demonstrate that EHC can induce cross-tolerance with the immune system, attenuating hypothalamic inflammation. Inflammation in EHC chicks was manifested, following lipopolysaccharide (LPS) challenge on day 10 post-hatch, by reduced febrile response and reduced expression of LITAF and NFκB compared to controls, as well as nuclear localization and activation of NFκB in the hypothalamus. Since the cross-tolerance effect was long-lasting, we assumed that epigenetic mechanisms are involved. We focused on the role of ten-eleven translocation (TET) family enzymes, which are the mediators of active CpG demethylation. Here, TET transcription during early life stress was found to be necessary for stress resilience later in life. The expression of the TET family enzymes in the midbrain during conditioning increased in parallel to an elevation in concentration of their cofactor α-ketoglutarate. In-ovo inhibition of TET activity during EHC, by the α-ketoglutarate inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES), resulted in reduced total and locus specific CpG demethylation in 10-day-old chicks and reversed both thermal and inflammatory resilience. In addition, EHC attenuated the elevation in expression of the stress markers HSP70, CRHR1, and CRHR2, during heat challenge on day 10 post-hatch. This reduction in expression was reversed by BPTES. Similarly, the EHC-dependent reduction of inflammatory gene expression during LPS challenge was eliminated in BPTES-treated chicks. Thus, TET family enzymes and CpG demethylation are essential for the embryonic induction of stress cross-tolerance in the hypothalamus.
Collapse
Affiliation(s)
- Tali Rosenberg
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Tomer Cramer
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dmitry Shinder
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Shelly Druyan
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Noam Meiri
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| |
Collapse
|
14
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
15
|
Cisternas CD, Cortes LR, Golynker I, Castillo-Ruiz A, Forger NG. Neonatal Inhibition of DNA Methylation Disrupts Testosterone-Dependent Masculinization of Neurochemical Phenotype. Endocrinology 2020; 161:5631853. [PMID: 31742329 DOI: 10.1210/endocr/bqz022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.
Collapse
Affiliation(s)
| | - Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Ilona Golynker
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
16
|
Ying Y, Mao Y, Yao M. NLRP3 Inflammasome Activation by MicroRNA-495 Promoter Methylation May Contribute to the Progression of Acute Lung Injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:801-814. [PMID: 31734560 PMCID: PMC6861628 DOI: 10.1016/j.omtn.2019.08.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is a pulmonary disorder that causes acute respiratory failure, thus leading to relative high mortality worldwide. However, the molecular mechanisms of ALI remain largely unknown. MicroRNA (miRNA)-dependent control of gene expression at a post-transcriptional level has been recently reported. Herein, we identify a candidate miRNA, miR-495, that affects the progression of ALI. Alveolar macrophages (NR8383) were treated with 1 μg/mL lipopolysaccharide (LPS) to establish a cell-injury model. Combined with the data from western blot, methylation-specific PCR, methylated DNA immunoprecipitation, and chromatin immunoprecipitation assays, NLRP3 inflammasome activation and methylation-dependent repression of miR-495 were found in LPS-exposed NR8383 cells. Dual-luciferase reporter gene assay and miR-495 gain-of-function experiments confirmed that NLRP3 was a target of miR-495. Next, the expression of miR-495 and NLRP3 was overexpressed or silenced to assess their effects on NLRP3 inflammasome activation, alveolar macrophage inflammation, and pyroptosis in vitro. As demonstrated, overexpressed miR-495 alleviated alveolar macrophage inflammation and pyroptosis and inhibited NLRP3 inflammasome activation by negatively regulating the NLRP3 gene. Consistently, elevated miR-495 alleviated lung injury and reduced the neutrophil infiltration and inflammation in rat models of LPS-induced ALI. Taken together, the data in our study demonstrated that methylation of the miR-495 promoter could downregulate miR-495, whose elevation could attenuate the activation of the NLRP3 inflammasome to protect against ALI, which provides novel therapeutic targets for ALI treatment.
Collapse
Affiliation(s)
- Youguo Ying
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yong Mao
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China.
| |
Collapse
|
17
|
Keller SM, Doherty TS, Roth TL. Pharmacological manipulation of DNA methylation normalizes maternal behavior, DNA methylation, and gene expression in dams with a history of maltreatment. Sci Rep 2019; 9:10253. [PMID: 31311968 PMCID: PMC6635500 DOI: 10.1038/s41598-019-46539-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
The quality of parental care received during development profoundly influences an individual's phenotype, including that of maternal behavior. We previously found that female rats with a history of maltreatment during infancy mistreat their own offspring. One proposed mechanism through which early-life experiences influence behavior is via epigenetic modifications. Indeed, our lab has identified a number of brain epigenetic alterations in female rats with a history of maltreatment. Here we sought to investigate the role of DNA methylation in aberrant maternal behavior. We administered zebularine, a drug known to alter DNA methylation, to dams exposed during infancy to the scarcity-adversity model of low nesting resources, and then characterized the quality of their care towards their offspring. First, we replicate that dams with a history of maltreatment mistreat their own offspring. Second, we show that maltreated-dams treated with zebularine exhibit lower levels of adverse care toward their offspring. Third, we show that administration of zebularine in control dams (history of nurturing care) enhances levels of adverse care. Lastly, we show altered methylation and gene expression in maltreated dams normalized by zebularine. These findings lend support to the hypothesis that epigenetic alterations resulting from maltreatment causally relate to behavioral outcomes.
Collapse
Affiliation(s)
- Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|