1
|
Hassan M, Flanagan TW, Eshaq AM, Altamimi OK, Altalag H, Alsharif M, Alshammari N, Alkhalidi T, Boulifa A, El Jamal SM, Haikel Y, Megahed M. Reduction of Prostate Cancer Risk: Role of Frequent Ejaculation-Associated Mechanisms. Cancers (Basel) 2025; 17:843. [PMID: 40075690 PMCID: PMC11898507 DOI: 10.3390/cancers17050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Prostate cancer (PCa) accounts for roughly 15% of diagnosed cancers among men, with disease incidence increasing worldwide. Age, family history and ethnicity, diet, physical activity, and chemoprevention all play a role in reducing PCa risk. The prostate is an exocrine gland that is characterized by its multi-functionality, being involved in reproductive aspects such as male ejaculation and orgasmic ecstasy, as well as playing key roles in the regulation of local and systemic concentrations of 5α-dihydrotestosterone. The increase in androgen receptors at the ventral prostate is the first elevated response induced by copulation. The regulation of prostate growth and function is mediated by an androgen-dependent mechanism. Binding 5-DHT to androgen receptors (AR) results in the formation of a 5α-DHT:AR complex. The interaction of the 5α-DHT:AR complex with the specific DNA enhancer element of androgen-regulated genes leads to the regulation of androgen-specific target genes to maintain prostate homeostasis. Consequently, ejaculation may play a significant role in the reduction of PCa risk. Thus, frequent ejaculation in the absence of risky sexual behavior is a possible approach for the prevention of PCa. In this review, we provide an insight into possible mechanisms regulating the impact of frequent ejaculation on reducing PCa risk.
Collapse
Affiliation(s)
- Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulaziz M. Eshaq
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Osama K. Altamimi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Hassan Altalag
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Nouf Alshammari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Tamadhir Alkhalidi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Abdelhadi Boulifa
- Berlin Institute of Health, Charité University Hospital, 10117 Berlin, Germany;
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Charité-University Hospital, 10117 Berlin, Germany
| | - Siraj M. El Jamal
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| |
Collapse
|
2
|
Tonon AC, Nexha A, Mendonça da Silva M, Gomes FA, Hidalgo MP, Frey BN. Sleep and circadian disruption in bipolar disorders: From psychopathology to digital phenotyping in clinical practice. Psychiatry Clin Neurosci 2024; 78:654-666. [PMID: 39210713 PMCID: PMC11804932 DOI: 10.1111/pcn.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Sleep and biological rhythms are integral to mood regulation across the lifespan, particularly in bipolar disorder (BD), where alterations in sleep phase, structure, and duration occur in all mood states. These disruptions are linked to poorer quality of life, heightened suicide risk, impaired cognitive function, and increased relapse rates. This review highlights the pathophysiology of sleep disturbances in BD and aims to consolidate understanding and clinical applications of these phenomena. It also summarizes the evolution of sleep and biological rhythms assessment methods, including ecological momentary assessment (EMA) and digital phenotyping. It underscores the importance of recognizing circadian rhythm involvement in mood regulation, suggesting potential therapeutic targets. Future research directions include elucidating circadian clock gene mechanisms, understanding environmental impacts on circadian rhythms, and investigating the bidirectional relationship between sleep disturbances and mood regulation in BD. Standardizing assessment methods and addressing privacy concerns related to EMA technology and digital phenotyping are essential for advancing research. Collaborative efforts are crucial for enhancing clinical applicability and understanding the broader implications of biological rhythms in BD diagnosis and treatment. Overall, recognizing the significance of sleep and biological rhythms in BD offers promise for improved outcomes through targeted interventions and a deeper understanding of the disorder's underlying mechanisms.
Collapse
Affiliation(s)
- André C. Tonon
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Adile Nexha
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Mariana Mendonça da Silva
- Laboratório de Cronobiologia e SonoPorto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Fabiano A. Gomes
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e SonoPorto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Graduate Program in Psychiatry and Behavioral SciencesFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Benicio N. Frey
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
3
|
Tejeda-Martínez AR, Ramos-Molina AR, Brand-Rubalcava PA, Flores-Soto ME. Involvement of serotonergic receptors in depressive processes and their modulation by β-arrestins: A review. Medicine (Baltimore) 2024; 103:e38943. [PMID: 38996114 PMCID: PMC11245247 DOI: 10.1097/md.0000000000038943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Over time, several studies have been conducted to demonstrate the functions of the neurotransmitter 5-hydroxytryptamine (5-HT), better known as serotonin. This neurotransmitter is associated with the modulation of various social and physiological behaviors, and its dysregulation has consequences at the behavioral level, leading to various neurophysiological disorders. Disorders such as anxiety, depression, schizophrenia, epilepsy, sexual disorders, and eating disorders, have been closely linked to variations in 5-HT concentrations and modifications in brain structures, including the raphe nuclei (RN), prefrontal cortex, basal ganglia, hippocampus, and hypothalamus, among others. The involvement of β-arrestin proteins has been implicated in the modulation of the serotonergic receptor response, as well as the activation of different signaling pathways related to the serotonergic system, this is particularly relevant in depressive disorders. This review will cover the implications of alterations in 5-HT receptor expression in depressive disorders in one hand and how β-arrestin proteins modulate the response mediated by these receptors in the other hand.
Collapse
Affiliation(s)
- Aldo R. Tejeda-Martínez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Ana R. Ramos-Molina
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Patricia A. Brand-Rubalcava
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Mario E. Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
4
|
Kolling LJ, Khan K, Wang R, Pierson SR, Hartman BD, Balasubramanian N, Guo DF, Rahmouni K, Marcinkiewcz CA. Interaction of serotonin/GLP-1 circuitry in a dual preclinical model for psychiatric disorders and metabolic dysfunction. Psychiatry Res 2024; 337:115951. [PMID: 38735240 PMCID: PMC11267813 DOI: 10.1016/j.psychres.2024.115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.
Collapse
Affiliation(s)
- Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Kanza Khan
- Psychological Sciences, Daemen University, Amherst, New York, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin D Hartman
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | | | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
5
|
Burback L, Forner C, Winkler OK, Al-Shamali HF, Ayoub Y, Paquet J, Verghese M. Survival, Attachment, and Healing: An Evolutionary Lens on Interventions for Trauma-Related Dissociation. Psychol Res Behav Manag 2024; 17:2403-2431. [PMID: 38912158 PMCID: PMC11193433 DOI: 10.2147/prbm.s402456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Dissociation is a necessary part of our threat response system, common to all animal species, normally temporarily activated under conditions of extreme or inescapable threat. Pathological dissociation, however, continues to occur after the initial threat has passed, in response to reminders or inaccessibility of safety and security. Present across the spectrum of psychiatric diagnoses, recurrent dissociative symptoms are linked to severe trauma exposure, insecure attachment, treatment non-response, and maladaptive coping behaviors such as substance use, suicidality, and self-harm. However, empirical studies testing treatments specific to dissociative processes remain scarce. This narrative review summarizes existing studies and provides theoretical, neurobiological, and evolutionary perspectives on dissociative processes and treatments for pathological dissociation. Methods A systematic search of five databases (MEDLINE, EMBASE, APA PsycINFO, CINAHL plus, Scopus) was conducted on April 13, 2023. Peer-reviewed clinical studies with adult participants, assessing intervention effects on dissociative symptoms, were included. Results were thematically analyzed and summarized. Results Sixty-nine studies were identified, mainly focused on posttraumatic stress disorder, trauma-exposed populations, and borderline personality disorder. Psychotherapy was studied in 72.5% of studies; other interventions included medications and neurostimulation. The majority reported positive outcomes, despite the heterogeneous spectrum of interventions. However, treatment of dissociative symptoms was the primary objective in only a minority. Conclusion Pathological dissociation is a complex phenomenon involving brain and body systems designed for perceiving and responding to severe threats, requiring an individualized approach. A literature is emerging regarding potentially evidence-based treatments to help those impacted by recurrent dissociative symptoms. When contextualized within a neurobiological and evolutionary perspective, these treatments can be understood as facilitating an internal and/or relational sense of safety, resulting in symptom reduction. Further studies are needed to explore effective treatments for dissociative symptoms.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Huda F Al-Shamali
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Yahya Ayoub
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jacquelyn Paquet
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Myah Verghese
- Department of Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Laurencin C, Lancelot S, Brosse S, Mérida I, Redouté J, Greusard E, Lamberet L, Liotier V, Le Bars D, Costes N, Thobois S, Boulinguez P, Ballanger B. Noradrenergic alterations in Parkinson's disease: a combined 11C-yohimbine PET/neuromelanin MRI study. Brain 2024; 147:1377-1388. [PMID: 37787503 PMCID: PMC10994534 DOI: 10.1093/brain/awad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chloé Laurencin
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Sarah Brosse
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Inés Mérida
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Jérôme Redouté
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Elise Greusard
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Ludovic Lamberet
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Nicolas Costes
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Stéphane Thobois
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 69500 Bron, France
| | - Philippe Boulinguez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Bénédicte Ballanger
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| |
Collapse
|
7
|
Ren L. The mechanistic basis for the rapid antidepressant-like effects of ketamine: From neural circuits to molecular pathways. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110910. [PMID: 38061484 DOI: 10.1016/j.pnpbp.2023.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Conventional antidepressants that target monoaminergic receptors require several weeks to be efficacious. This lag represents a significant problem in the currently available treatments for serious depression. Ketamine, acting as an N-methyl-d-aspartate receptor antagonist, was shown to have rapid antidepressant-like effects, marking a significant advancement in the study of mood disorders. However, serious side effects and adverse reactions limit its clinical use. Considering the limitations of ketamine, it is crucial to further define the network targets of ketamine. The rapid action of ketamine an as antidepressant is thought to be mediated by the glutamate system. It is believed that synaptic plasticity is essential for the rapid effects of ketamine as an antidepressant. Other mechanisms include the involvement of the γ-aminobutyric acidergic (GABAergic), 5-HTergic systems, and recent studies have linked astrocytes to ketamine's rapid antidepressant-like effects. The interactions between these systems exert a synergistic rapid antidepressant effect through neural circuits and molecular mechanisms. Here, we discuss the neural circuits and molecular mechanisms underlying the action of ketamine. This work will help explain how molecular and neural targets are responsible for the effects of rapidly acting antidepressants and will aid in the discovery of new therapeutic approaches for major depressive disorder.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu 611137, China.
| |
Collapse
|
8
|
Acquarone E, Argyrousi EK, Arancio O, Watterson DM, Roy SM. The 5HT2b Receptor in Alzheimer's Disease: Increased Levels in Patient Brains and Antagonist Attenuation of Amyloid and Tau Induced Dysfunction. J Alzheimers Dis 2024; 98:1349-1360. [PMID: 38578894 DOI: 10.3233/jad-240063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Background: Neurodegenerative diseases manifest behavioral dysfunction with disease progression. Intervention with neuropsychiatric drugs is part of most multi-drug treatment paradigms. However, only a fraction of patients responds to the treatments and those responding must deal with drug-drug interactions and tolerance issues generally attributed to off-target activities. Recent efforts have focused on the identification of underexplored targets and exploration of improved outcomes by treatment with selective molecular probes. Objective As part of ongoing efforts to identify and validate additional targets amenable to therapeutic intervention, we examined levels of the serotonin 5-HT2b receptor (5-HT2bR) in Alzheimer's disease (AD) brains and the potential of a selective 5-HT2bR antagonist to counteract synaptic plasticity and memory damage induced by AD-related proteins, amyloid-β, and tau. Methods This work used a combination of biochemical, chemical biology, electrophysiological, and behavioral techniques. Biochemical methods included analysis of protein levels. Chemical biology methods included the use of an in vivo molecular probe MW071, a selective antagonist for the 5HT2bR. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated spatial memory and associative memory. Results 5HT2bR levels are increased in brain specimens of AD patients compared to controls. 5HT2bR antagonist treatment rescued amyloid-β and tau oligomer-induced impairment of synaptic plasticity and memory. Conclusions The increased levels of 5HT-2bR in AD patient brains and the attenuation of disease-related synaptic and behavioral dysfunctions by MW071 treatment suggest that the 5HT-2bR is a molecular target worth pursuing as a potential therapeutic target.
Collapse
Affiliation(s)
- Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
- Department of Internal Medicine, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - D Martin Watterson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Saktimayee M Roy
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Orrico-Sanchez A, Guiard BP, Manta S, Callebert J, Launay JM, Louis F, Paccard A, Gruszczynski C, Betancur C, Vialou V, Gautron S. Organic cation transporter 2 contributes to SSRI antidepressant efficacy by controlling tryptophan availability in the brain. Transl Psychiatry 2023; 13:302. [PMID: 37775532 PMCID: PMC10542329 DOI: 10.1038/s41398-023-02596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common first-line treatments for major depression. However, a significant number of depressed patients do not respond adequately to these pharmacological treatments. In the present preclinical study, we demonstrate that organic cation transporter 2 (OCT2), an atypical monoamine transporter, contributes to the effects of SSRI by regulating the routing of the essential amino acid tryptophan to the brain. Contrarily to wild-type mice, OCT2-invalidated mice failed to respond to prolonged fluoxetine treatment in a chronic depression model induced by corticosterone exposure recapitulating core symptoms of depression, i.e., anhedonia, social withdrawal, anxiety, and memory impairment. After corticosterone and fluoxetine treatment, the levels of tryptophan and its metabolites serotonin and kynurenine were decreased in the brain of OCT2 mutant mice compared to wild-type mice and reciprocally tryptophan and kynurenine levels were increased in mutants' plasma. OCT2 was detected by immunofluorescence in several structures at the blood-cerebrospinal fluid (CSF) or brain-CSF interface. Tryptophan supplementation during fluoxetine treatment increased brain concentrations of tryptophan and, more discreetly, of 5-HT in wild-type and OCT2 mutant mice. Importantly, tryptophan supplementation improved the sensitivity to fluoxetine treatment of OCT2 mutant mice, impacting chiefly anhedonia and short-term memory. Western blot analysis showed that glycogen synthase kinase-3β (GSK3β) and mammalian/mechanistic target of rapamycin (mTOR) intracellular signaling was impaired in OCT2 mutant mice brain after corticosterone and fluoxetine treatment and, conversely, tryptophan supplementation recruited selectively the mTOR protein complex 2. This study provides the first evidence of the physiological relevance of OCT2-mediated tryptophan transport, and its biological consequences on serotonin homeostasis in the brain and SSRI efficacy.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Stella Manta
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Jacques Callebert
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Antoine Paccard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
10
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Maglione AV, do Nascimento BPP, Ribeiro MO, de Souza TJL, da Silva REC, Sato MA, Penatti CAA, Britto LRG, de Souza JS, Maciel RMB, da Conceição RR, Laureano-Melo R, Giannocco G. Triiodothyronine Treatment reverses Depression-Like Behavior in a triple-transgenic animal model of Alzheimer's Disease. Metab Brain Dis 2022; 37:2735-2750. [PMID: 35951206 DOI: 10.1007/s11011-022-01055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.
Collapse
Affiliation(s)
- Andréa V Maglione
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Bruna P P do Nascimento
- Laboratory of Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Talytha J L de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Renata E C da Silva
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo André- Brazil, São Paulo, Santo André, Brazil
| | - Carlos A A Penatti
- Laboratory of Human Physiology, Universidade Nove de Julho, São Paulo, Brazil
| | - Luiz R G Britto
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina S de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rui M B Maciel
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rodrigo Rodrigues da Conceição
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| | - Roberto Laureano-Melo
- Laboratory of Physiopharmacoly and Behavior, Universidade de Barra Mansa, Rio de Janeiro, Brazil
| | - Gisele Giannocco
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| |
Collapse
|
12
|
Sun N, Qin YJ, Xu C, Xia T, Du ZW, Zheng LP, Li AA, Meng F, Zhang Y, Zhang J, Liu X, Li TY, Zhu DY, Zhou QG. Design of fast-onset antidepressant by dissociating SERT from nNOS in the DRN. Science 2022; 378:390-398. [PMID: 36302033 DOI: 10.1126/science.abo3566] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mental disorders. We designed a fast-onset antidepressant that works by disrupting the interaction between the serotonin transporter (SERT) and neuronal nitric oxide synthase (nNOS) in the dorsal raphe nucleus (DRN). Chronic unpredictable mild stress (CMS) selectively increased the SERT-nNOS complex in the DRN in mice. Augmentation of SERT-nNOS interactions in the DRN caused a depression-like phenotype and accounted for the CMS-induced depressive behaviors. Disrupting the SERT-nNOS interaction produced a fast-onset antidepressant effect by enhancing serotonin signaling in forebrain circuits. We discovered a small-molecule compound, ZZL-7, that elicited an antidepressant effect 2 hours after treatment without undesirable side effects. This compound, or analogous reagents, may serve as a new, rapidly acting treatment for MDD.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya-Juan Qin
- Department of Pharmacochemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chu Xu
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing 210042, China
| | - Tian Xia
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zi-Wei Du
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Li-Ping Zheng
- Department of Pharmacochemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - An-An Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xu Zhou 221004, China
| | - Fan Meng
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yu Zhang
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting-You Li
- Department of Pharmacochemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dong-Ya Zhu
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qi-Gang Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinic Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- Department of Clinic Pharmacology, Sir runrun Hospital, Nanjing Medical University, Nanjing 211167, China
| |
Collapse
|
13
|
Gaszner T, Farkas J, Kun D, Ujvári B, Berta G, Csernus V, Füredi N, Kovács LÁ, Hashimoto H, Reglődi D, Kormos V, Gaszner B. Fluoxetine treatment supports predictive validity of the three hit model of depression in male PACAP heterozygous mice and underpins the impact of early life adversity on therapeutic efficacy. Front Endocrinol (Lausanne) 2022; 13:995900. [PMID: 36213293 PMCID: PMC9537566 DOI: 10.3389/fendo.2022.995900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.
Collapse
Affiliation(s)
- Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Dániel Kun
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Valér Csernus
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- ELKH-PTE PACAP Research Group Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
14
|
German-Ponciano LJ, Rosas-Sánchez GU, Cueto-Escobedo J, Fernández-Demeneghi R, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV, Rodríguez-Landa JF. Participation of the Serotonergic System and Brain-Derived Neurotrophic Factor in the Antidepressant-like Effect of Flavonoids. Int J Mol Sci 2022; 23:ijms231810896. [PMID: 36142808 PMCID: PMC9505567 DOI: 10.3390/ijms231810896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Depressive disorders are among the most disabling diseases experienced around the world, and their incidence has significantly increased over the last few decades due to multiple environmental, social, and biological factors. The search for new pharmacological alternatives to treat depression is a global priority. In preclinical research, molecules obtained from plants, such as flavonoids, have shown promising antidepressant-like properties through several mechanisms of action that have not been fully elucidated, including crossing of the blood brain barrier (BBB). This review will focus on discussing the main findings related to the participation of the serotonergic system and brain-derived neurotrophic factor (BDNF) on the antidepressant-like effect of some flavonoids reported by behavioral, neurochemical, and molecular studies. In this sense, evidence shows that depressive individuals have low levels of serotonin and BDNF, while flavonoids can reverse it. Finally, the elucidation of the mechanism used by flavonoids to modulate serotonin and BDNF will contribute to our understanding of the neurobiological bases underlying the antidepressant-like effects produced by these natural compounds.
Collapse
Affiliation(s)
| | | | - Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Gabriel Guillén-Ruiz
- Programa de Investigadoras e Investigadores por México CONACyT-Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Mexico
| | - César Soria-Fregozo
- Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico
| | | | | |
Collapse
|
15
|
Mäki-Marttunen T, Mäki-Marttunen V. Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells. PLoS Comput Biol 2022; 18:e1010506. [PMID: 36099307 PMCID: PMC9506642 DOI: 10.1371/journal.pcbi.1010506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/23/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Dendrites of cortical pyramidal cells are densely populated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, a.k.a. Ih channels. Ih channels are targeted by multiple neuromodulatory pathways, and thus are one of the key ion-channel populations regulating the pyramidal cell activity. Previous observations and theories attribute opposing effects of the Ih channels on neuronal excitability due to their mildly hyperpolarized reversal potential. These effects are difficult to measure experimentally due to the fine spatiotemporal landscape of the Ih activity in the dendrites, but computational models provide an efficient tool for studying this question in a reduced but generalizable setting. In this work, we build upon existing biophysically detailed models of thick-tufted layer V pyramidal cells and model the effects of over- and under-expression of Ih channels as well as their neuromodulation. We show that Ih channels facilitate the action potentials of layer V pyramidal cells in response to proximal dendritic stimulus while they hinder the action potentials in response to distal dendritic stimulus at the apical dendrite. We also show that the inhibitory action of the Ih channels in layer V pyramidal cells is due to the interactions between Ih channels and a hot zone of low voltage-activated Ca2+ channels at the apical dendrite. Our simulations suggest that a combination of Ih-enhancing neuromodulation at the proximal part of the apical dendrite and Ih-inhibiting modulation at the distal part of the apical dendrite can increase the layer V pyramidal excitability more than either of the two alone. Our analyses uncover the effects of Ih-channel neuromodulation of layer V pyramidal cells at a single-cell level and shed light on how these neurons integrate information and enable higher-order functions of the brain.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Biosciences, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Oslo, Norway
- * E-mail:
| | - Verónica Mäki-Marttunen
- Cognitive Psychology Unit, Faculty of Social Sciences, University of Leiden, Leiden, Netherlands
| |
Collapse
|
16
|
Coutens B, Yrondi A, Rampon C, Guiard BP. Psychopharmacological properties and therapeutic profile of the antidepressant venlafaxine. Psychopharmacology (Berl) 2022; 239:2735-2752. [PMID: 35947166 DOI: 10.1007/s00213-022-06203-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Major depression (MD) is one of the most common psychiatric disorders worldwide. Currently, the first-line treatment for MD targets the serotonin system but these drugs, notably the selective serotonin reuptake inhibitors, usually need 4 to 6 weeks before the benefit is felt and a significant proportion of patients shows an unsatisfactory response. Numerous treatments have been developed to circumvent these issues as venlafaxine, a mixed serotonin-norepinephrine reuptake inhibitor that binds and blocks both the SERT and NET transporters. Despite this pharmacological profile, it is difficult to have a valuable insight into its ability to produce more robust efficacy than single-acting agents. In this review, we provide an in-depth characterization of the pharmacological properties of venlafaxine from in vitro data to preclinical and clinical efficacy in depressed patients and animal models of depression to propose an indirect comparison with the most common antidepressants. Preclinical studies show that the antidepressant effect of venlafaxine is often associated with an enhancement of serotonergic neurotransmission at low doses. High doses of venlafaxine, which elicit a concomitant increase in 5-HT and NE tone, is associated with changes in different forms of plasticity in discrete brain areas. In particular, the hippocampus appears to play a crucial role in venlafaxine-mediated antidepressant effects notably by regulating processes such as adult hippocampal neurogenesis or the excitatory/inhibitory balance. Overall, depending on the dose used, venlafaxine shows a high efficacy on depressive-like symptoms in relevant animal models but to the same extent as common antidepressants. However, these data are counterbalanced by a lower tolerance. In conclusion, venlafaxine appears to be one of the most effective treatments for treatment of major depression. Still, direct comparative studies are warranted to provide definitive conclusions about its superiority.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France
| | - Antoine Yrondi
- Département de psychiatrie, CHU Toulouse-Purpan, Toulouse NeuroImaging Center, ToNIC, Université de Toulouse, Inserm, 31059, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France.
| |
Collapse
|
17
|
Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci 2022; 23:ijms23158814. [PMID: 35955946 PMCID: PMC9369404 DOI: 10.3390/ijms23158814] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Being different multifactorial forms of psychopathology, aggression, depression and suicidal behavior, which is considered to be violent aggression directed against the self, have principal neurobiological links: preclinical and clinical evidence associates depression, aggression and suicidal behavior with dysregulation in central serotonergic (5-HT) neurotransmission. The implication of different types of 5-HT receptors in the genetic and epigenetic mechanisms of aggression, depression and suicidality has been well recognized. In this review, we consider and compare the orchestra of 5-HT receptors involved in these severe psychopathologies. Specifically, it concentrates on the role of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3 and 5-HT7 receptors in the mechanisms underlying the predisposition to aggression, depression and suicidal behavior. The review provides converging lines of evidence that: (1) depression-related 5-HT receptors include those receptors with pro-depressive properties (5-HT2A, 5-HT3 and 5-HT7) as well as those providing an antidepressant effect (5-HT1A, 5-HT1B, 5-HT2C subtypes). (2) Aggression-related 5-HT receptors are identical to depression-related 5-HT receptors with the exception of 5-HT7 receptors. Activation of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C receptors attenuate aggressiveness, whereas agonists of 5-HT3 intensify aggressive behavior.
Collapse
|
18
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2022; 42:1671-1692. [PMID: 33651238 PMCID: PMC11421740 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Walker LA, Williams JS, Li Y, Roossien DH, Lee WJ, Michki NS, Cai D. nGauge: Integrated and Extensible Neuron Morphology Analysis in Python. Neuroinformatics 2022; 20:755-764. [PMID: 35247136 PMCID: PMC9720862 DOI: 10.1007/s12021-022-09573-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
The study of neuron morphology requires robust and comprehensive methods to quantify the differences between neurons of different subtypes and animal species. Several software packages have been developed for the analysis of neuron tracing results stored in the standard SWC format. The packages, however, provide relatively simple quantifications and their non-extendable architecture prohibit their use for advanced data analysis and visualization. We developed nGauge, a Python toolkit to support the parsing and analysis of neuron morphology data. As an application programming interface (API), nGauge can be referenced by other popular open-source software to create custom informatics analysis pipelines and advanced visualizations. nGauge defines an extendable data structure that handles volumetric constructions (e.g. soma), in addition to the SWC linear reconstructions, while remaining lightweight. This greatly extends nGauge's data compatibility.
Collapse
Affiliation(s)
- Logan A Walker
- Biophysics Program, University of Michigan LS&A, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer S Williams
- Electrical Engineering and Computer Science, University of Michigan Engineering, Ann Arbor, MI, USA
| | - Ye Li
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Wei Jie Lee
- Electrical Engineering and Computer Science, University of Michigan Engineering, Ann Arbor, MI, USA
| | - Nigel S Michki
- Biophysics Program, University of Michigan LS&A, Ann Arbor, MI, USA
| | - Dawen Cai
- Biophysics Program, University of Michigan LS&A, Ann Arbor, MI, USA.
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan LS&A, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Holmes J, Lau T, Saylor R, Fernández-Novel N, Hersey M, Keen D, Hampel L, Horschitz S, Ladewig J, Parke B, Reed MC, Nijhout HF, Best J, Koch P, Hashemi P. Voltammetric Approach for Characterizing the Biophysical and Chemical Functionality of Human Induced Pluripotent Stem Cell-Derived Serotonin Neurons. Anal Chem 2022; 94:8847-8856. [PMID: 35713335 DOI: 10.1021/acs.analchem.1c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Depression is quickly becoming one of the world's most pressing public health crises, and there is an urgent need for better diagnostics and therapeutics. Behavioral models in animals and humans have not adequately addressed the diagnosis and treatment of depression, and biomarkers of mental illnesses remain ill-defined. It has been very difficult to identify biomarkers of depression because of in vivo measurement challenges. While our group has made important strides in developing in vivo tools to measure such biomarkers (e.g., serotonin) in mice using voltammetry, these tools cannot be easily applied for depression diagnosis and drug screening in humans due to the inaccessibility of the human brain. In this work, we take a chemical approach, ex vivo, to introduce a human-derived system to investigate brain serotonin. We utilize human induced pluripotent stem cells differentiated into serotonin neurons and establish a new ex vivo model of real-time serotonin neurotransmission measurements. We show that evoked serotonin release responds to stimulation intensity and tryptophan preloading, and that serotonin release and reuptake kinetics resemble those found in vivo in rodents. Finally, after selective serotonin reuptake inhibitor (SSRI) exposure, we find dose-dependent internalization of the serotonin reuptake transporters (a signature of the in vivo response to SSRI). Our new human-derived chemical model has great potential to provide an ex vivo chemical platform as a translational tool for in vivo neuropsychopharmacology.
Collapse
Affiliation(s)
- Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Thorsten Lau
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany.,German Cancer Research Center, 69120 Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, 68159 Mannheim, Germany
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Nadine Fernández-Novel
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany.,German Cancer Research Center, 69120 Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, 68159 Mannheim, Germany
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Deanna Keen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lena Hampel
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany.,German Cancer Research Center, 69120 Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, 68159 Mannheim, Germany
| | - Sandra Horschitz
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany.,German Cancer Research Center, 69120 Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, 68159 Mannheim, Germany
| | - Julia Ladewig
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany.,German Cancer Research Center, 69120 Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, 68159 Mannheim, Germany
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina 27708, United States
| | - H Frederik Nijhout
- Department of Biology, Duke University, Durham, North Carolina 27708, United States
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philipp Koch
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany.,German Cancer Research Center, 69120 Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research gGmbH, 68159 Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.,Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
21
|
De-Miguel FF. The Thermodynamically Expensive Contribution of Three Calcium Sources to Somatic Release of Serotonin. Int J Mol Sci 2022; 23:1495. [PMID: 35163419 PMCID: PMC8836226 DOI: 10.3390/ijms23031495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in absence of synaptic structures. This review describes the cooperative actions of three calcium sources on somatic exocytosis. Emphasis is given to the somatic release of serotonin by the classical leech Retzius neuron, which has allowed detailed studies on the fine steps from excitation to exocytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. For action potential frequencies above 5 Hz, summation of calcium transients on individual action potentials activates the second calcium source: ryanodine receptors produce calcium-induced calcium release. The resulting calcium tsunami activates mitochondrial ATP synthesis to fuel transport of vesicles to the plasma membrane. Serotonin that is released maintains a large-scale exocytosis by activating the third calcium source: serotonin autoreceptors coupled to phospholipase C promote IP3 production. Activated IP3 receptors in peripheral endoplasmic reticulum release calcium that promotes vesicle fusion. The Swiss-clock workings of the machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum near the plasma membrane hinders the vesicle transport, drastically reducing the thermodynamic efficiency of the ATP expenses and elevating the energy cost of release.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
22
|
Terao T. Neglected but not negligible aspects of antidepressants and their availability in bipolar depression. Brain Behav 2021; 11:e2308. [PMID: 34327873 PMCID: PMC8413745 DOI: 10.1002/brb3.2308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Although many antidepressants are available, they are not always used appropriately. For appropriate use of antidepressants, the old concept of a linear dose-response relationship, in which the dose is linearly increased to achieve a sufficient antidepressant effect, should be reconsidered. Furthermore, there is ongoing debate on the safe and appropriate use of antidepressants in patients with bipolar depression. Antidepressants may be used under certain conditions in patients with bipolar depression. These neglected-but not negligible-aspects of antidepressants have been discussed herein. METHODS A narrative qualitative review RESULTS: Dose-response relationships of antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are not linear. They may be bell-shaped, with efficacy initially increasing with an increase in dose but decreasing when the dose is increased beyond a certain point. Despite using international diagnostic criteria, uncertainty remains on whether operationally diagnosed depression is latent bipolar I depression, latent bipolar II depression, or true depression. Furthermore, operationally diagnosed bipolar II depression may be latent bipolar I depression, true bipolar II depression, or depression with false hypomanic episodes. Manic/hypomanic switches are most likely to occur in patients receiving tricyclic antidepressants, followed by those receiving serotonin and noradrenaline reuptake inhibitors and SSRIs, in that order. Also, these switches are most likely to occur in patients with bipolar I depression, followed by those with bipolar II depression and true depression, in that order. CONCLUSIONS Considering the diagnostic subtype of bipolar depression and antidepressant properties may help to determine the optimal treatment strategy.
Collapse
Affiliation(s)
- Takeshi Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| |
Collapse
|
23
|
Ozawa A, Arakawa H. Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behav Brain Res 2021; 406:113234. [PMID: 33741409 PMCID: PMC8110310 DOI: 10.1016/j.bbr.2021.113234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Recent developments in chemogenetic approaches to the investigation of brain function have ushered in a paradigm change in the strategy for drug and behavior research and clinical drug-based medications. As the nature of the drug action is based on humoral regulation, it is a challenge to identify the neuronal mechanisms responsible for the expression of certain targeted behavior induced by drug application. The development of chemogenetic approaches has allowed researchers to control neural activities in targeted neurons through a toolbox, including engineered G protein-coupled receptors or ligand-gated ion channels together with exogenously inert synthetic ligands. This review provides a brief overview of the chemogenetics toolbox with an emphasis on the DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) technique used in rodent models, which is applicable to the investigation of how specific neural circuits regulate behavioral processes. The use of chemogenetics has had a significant impact on basic neuroscience for a better understanding of the relationships between brain activity and the expression of behaviors with cell- and circuit-specific orders. Furthermore, chemogenetics is potentially a useful tool to deconstruct the neuropathological mechanisms of mental diseases and its regulation by drug, and provide us with transformative therapeutics with medication. We also review recent findings in the use of chemogenetic techniques to uncover functional circuit connections of serotonergic neurons in rodent models.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Hiroyuki Arakawa
- Department of Psychology, Tokiwa University, Mito, Ibaraki, Japan; Department of Systems Physiology, University of Ryukyus, Faculty of Medicine, Nakagami District, Okinawa, Japan.
| |
Collapse
|
24
|
Dey S, Surendran D, Engberg O, Gupta A, Fanibunda SE, Das A, Maity BK, Dey A, Visvakarma V, Kallianpur M, Scheidt HA, Walker G, Vaidya VA, Huster D, Maiti S. Altered Membrane Mechanics Provides a Receptor-Independent Pathway for Serotonin Action. Chemistry 2021; 27:7533-7541. [PMID: 33502812 PMCID: PMC8252079 DOI: 10.1002/chem.202100328] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/20/2022]
Abstract
Serotonin, an important signaling molecule in humans, has an unexpectedly high lipid membrane affinity. The significance of this finding has evoked considerable speculation. Here we show that membrane binding by serotonin can directly modulate membrane properties and cellular function, providing an activity pathway completely independent of serotonin receptors. Atomic force microscopy shows that serotonin makes artificial lipid bilayers softer, and induces nucleation of liquid disordered domains inside the raft-like liquid-ordered domains. Solid-state NMR spectroscopy corroborates this data at the atomic level, revealing a homogeneous decrease in the order parameter of the lipid chains in the presence of serotonin. In the RN46A immortalized serotonergic neuronal cell line, extracellular serotonin enhances transferrin receptor endocytosis, even in the presence of broad-spectrum serotonin receptor and transporter inhibitors. Similarly, it increases the membrane binding and internalization of oligomeric peptides. Our results uncover a mode of serotonin-membrane interaction that can potentiate key cellular processes in a receptor-independent fashion.
Collapse
Affiliation(s)
- Simli Dey
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Dayana Surendran
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Oskar Engberg
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Ankur Gupta
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Sashaina E. Fanibunda
- Department of Biological SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
- Kasturba Health SocietyMedical Research CenterMumbaiIndia
| | - Anirban Das
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Barun Kumar Maity
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Arpan Dey
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Vicky Visvakarma
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Mamata Kallianpur
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Holger A. Scheidt
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Gilbert Walker
- Department of ChemistryUniversity of TorontoTorontoOntarioM5S3H6Canada
| | - Vidita A. Vaidya
- Department of Biological SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| | - Daniel Huster
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
- Institute of Medical Physics and BiophysicsUniversity of LeipzigHärtelstr. 16–1804107LeipzigGermany
| | - Sudipta Maiti
- Department of Chemical SciencesTata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai400005India
| |
Collapse
|
25
|
De-Miguel FF, Leon-Pinzon C, Torres-Platas SG, Del-Pozo V, Hernández-Mendoza GA, Aguirre-Olivas D, Méndez B, Moore S, Sánchez-Sugía C, García-Aguilera MA, Martínez-Valencia A, Ramírez-Santiago G, Rubí JM. Extrasynaptic Communication. Front Mol Neurosci 2021; 14:638858. [PMID: 33994942 PMCID: PMC8119753 DOI: 10.3389/fnmol.2021.638858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Streams of action potentials or long depolarizations evoke a massive exocytosis of transmitters and peptides from the surface of dendrites, axons and cell bodies of different neuron types. Such mode of exocytosis is known as extrasynaptic for occurring without utilization of synaptic structures. Most transmitters and all peptides can be released extrasynaptically. Neurons may discharge their contents with relative independence from the axon, soma and dendrites. Extrasynaptic exocytosis takes fractions of a second in varicosities or minutes in the soma or dendrites, but its effects last from seconds to hours. Unlike synaptic exocytosis, which is well localized, extrasynaptic exocytosis is diffuse and affects neuronal circuits, glia and blood vessels. Molecules that are liberated may reach extrasynaptic receptors microns away. The coupling between excitation and exocytosis follows a multistep mechanism, different from that at synapses, but similar to that for the release of hormones. The steps from excitation to exocytosis have been studied step by step for the vital transmitter serotonin in leech Retzius neurons. The events leading to serotonin exocytosis occur similarly for the release of other transmitters and peptides in central and peripheral neurons. Extrasynaptic exocytosis occurs commonly onto glial cells, which react by releasing the same or other transmitters. In the last section, we discuss how illumination of the retina evokes extrasynaptic release of dopamine and ATP. Dopamine contributes to light-adaptation; ATP activates glia, which mediates an increase in blood flow and oxygenation. A proper understanding of the workings of the nervous system requires the understanding of extrasynaptic communication.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
| | - Carolina Leon-Pinzon
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Susana G Torres-Platas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Vanessa Del-Pozo
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | - Dilia Aguirre-Olivas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Bruno Méndez
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Sharlen Moore
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Celeste Sánchez-Sugía
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | | | | | - J Miguel Rubí
- Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
MicroRNA-34a regulates 5-HT2C expression in dorsal raphe and contributes to the anti-depressant-like effect of fluoxetine. Neuropharmacology 2021; 190:108559. [PMID: 33845072 DOI: 10.1016/j.neuropharm.2021.108559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are designed to improve mood by raising extracellular serotonin levels through the blockade of the serotonin transporter. However, they exhibit a slow onset of action, suggesting the involvement of adaptive regulatory mechanisms. We hypothesized that the microRNA-34 family facilitates the therapeutic activity of SSRIs. We show that genetic deletion of these microRNAs in mice impairs the response to chronic, but not acute, fluoxetine treatment, with a specific effect on behavioral constructs that are related to depression, rather than anxiety. Moreover, using a pharmacological strategy, we found that an increased expression of the serotonin 2C (5-HT2C) receptor in the dorsal raphe region of the brain contributes to this phenotype. The onset of the therapeutic efficacy of SSRIs is paralleled by the desensitization of the 5-HT2C receptor in the dorsal raphe, and 5-HT2C is a putative target of microRNA-34. In this study, acute and chronic fluoxetine treatment differentially alters the expression of 5-HT2C and microRNA-34a in the dorsal raphe. Moreover, by in vitro luciferase assay, we demonstrated the repressive regulatory activity of microRNA-34a against 5-HT2C mRNA. Specific blockade of this interaction through local infusion of a target site blocker was sufficient to prevent the behavioral effects of chronic fluoxetine. Our results demonstrate a new miR-34a-mediated regulatory mechanism of 5-HT2C expression in the dorsal raphe and implicate it in eliciting the behavioral responses to chronic fluoxetine treatment.
Collapse
|
27
|
Cheng Y, Song N, Ge R, Dai Y. Serotonergic Modulation of Persistent Inward Currents in Serotonergic Neurons of Medulla in ePet-EYFP Mice. Front Neural Circuits 2021; 15:657445. [PMID: 33889077 PMCID: PMC8055846 DOI: 10.3389/fncir.2021.657445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Serotonergic (5-HT) neurons in the medulla play multiple functional roles associated with many symptoms and motor activities. The descending serotonergic pathway from medulla is essential for initiating locomotion. However, the ionic properties of 5-HT neurons in the medulla remain unclear. Using whole-cell patch-clamp technique, we studied the biophysical and modulatory properties of persistent inward currents (PICs) in 5-HT neurons of medulla in ePet-EYFP transgenic mice (P3–P6). PICs were recorded by a family of voltage bi-ramps (10-s duration, 40-mV peak step), and the ascending and descending PICs were mirrored to analyze the PIC hysteresis. PICs were found in 77% of 5-HT neurons (198/258) with no significant difference between parapyramidal region (n = 107) and midline raphe nuclei (MRN) (n = 91) in either PIC onset (−47.4 ± 10 mV and −48.7 ± 7 mV; P = 0.44) or PIC amplitude (226.9 ± 138 pA and 259.2 ± 141 pA; P = 0.29). Ninety-six percentage (191/198) of the 5-HT neurons displayed counterclockwise hysteresis and four percentage (7/198) exhibited the clockwise hysteresis. The composite PICs could be differentiated as calcium component (Ca_PIC) by bath application of nimodipine (25 μM), sodium component (Na_PIC) by tetrodotoxin (TTX, 2 μM), and TTX- and dihydropyridine-resistance component (TDR_PIC) by TTX and nimodipine. Ca_PIC, Na_PIC and TDR_PIC all contributed to upregulation of excitability of 5-HT neurons. 5-HT (15 μM) enhanced the PICs, including a 26% increase in amplitude of the compound currents of Ca_PIC and TDR_PIC (P < 0.001, n = 9), 3.6 ± 5 mV hyperpolarization of Na_PIC and TDR_PIC onset (P < 0.05, n = 12), 30% increase in amplitude of TDR_PIC (P < 0.01), and 2.0 ± 3 mV hyperpolarization of TDR_PIC onset (P < 0.05, n = 18). 5-HT also facilitated repetitive firing of 5-HT neurons through modulation of composite PIC, Na_PIC and TDR_PIC, and Ca_PIC and TDR_PIC, respectively. In particular, the high voltage-activated TDR_PIC facilitated the repetitive firing in higher membrane potential, and this facilitation could be amplified by 5-HT. Morphological data analysis indicated that the dendrites of 5-HT neurons possessed dense spherical varicosities intensively crossing 5-HT neurons in medulla. We characterized the PICs in 5-HT neurons and unveiled the mechanism underlying upregulation of excitability of 5-HT neurons through serotonergic modulation of PICs. This study provided insight into channel mechanisms responsible for the serotonergic modulation of serotonergic neurons in brainstem.
Collapse
Affiliation(s)
- Yi Cheng
- School of Physical Education, Yunnan University, Kunming, China
| | - Nan Song
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
28
|
Young CE, Tong Q. Corticotropin Releasing Hormone Signaling in the Bed Nuclei of the Stria Terminalis as a Link to Maladaptive Behaviors. Front Neurosci 2021; 15:642379. [PMID: 33867924 PMCID: PMC8044981 DOI: 10.3389/fnins.2021.642379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
The bed nuclei of the stria terminalis (BST) is a limbic region in the extended amygdala that is heavily implicated in anxiety processing and hypothalamic-adrenal-pituitary (HPA) axis activation. The BST is complex, with many nuclei expressing different neurotransmitters and receptors involved in a variety of signaling pathways. One neurotransmitter that helps link its functions is corticotropin releasing hormone (CRH). BST CRH neuron activation may cause both anxiogenic and anxiolytic effects in rodents, and CRH neurons interact with other neuron types to influence anxiety-like responses as well as alcohol and drug–seeking behavior. This review covers the link between BST CRH neurons and thirteen other neurotransmitters and receptors and analyzes their effect on rodent behavior. Additionally, it covers the translational potential of targeting CRH signaling pathways for the treatment of human mental health disorders. Given the massive impact of anxiety, mood, and substance use disorders on our society, further research into BST CRH signaling is critical to alleviate the social and economic burdens of those disorders.
Collapse
Affiliation(s)
- Claire Emily Young
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qingchun Tong
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Neurobiology and Anatomy of McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center & UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
29
|
Paul N, Raymond J, Lumbreras S, Bartsch D, Weber T, Lau T. Activation of the glucocorticoid receptor rapidly triggers calcium-dependent serotonin release in vitro. CNS Neurosci Ther 2021; 27:753-764. [PMID: 33715314 PMCID: PMC8193689 DOI: 10.1111/cns.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Aims Glucocorticoids rapidly provoke serotonin (5‐HT) release in vivo. We aimed to investigate molecular mechanisms of glucocorticoid receptor (GR)‐triggered 5‐HT release. Methods Employing 1C11 cells to model 5‐HT neurotransmission, immunofluorescence and Pearson's Correlation Coefficient were used to analyze colocalization of GR, 5‐HT, vesicle membrane protein synaptotagmin 1 and vesicle dye FM4‐64FX. FFN511 and FM4‐64FX dyes as well as calcium imaging were used to visualize vesicular 5‐HT release upon application of GR agonist dexamethasone, GR antagonist mifepristone and voltage‐gated calcium channel (VGCC) inhibitors. Results GR, 5‐HT, synaptotagmin 1 and FM4‐64FX showed overlapping staining patterns, with Pearson's Correlation Coefficient indicating colocalization. Similarly to potassium chloride, dexamethasone caused a release of FFN511 and uptake of FM4‐64FX, indicating vesicular 5‐HT release. Mifepristone, calcium depletion and inhibition of L‐type VGCC significantly diminished dexamethasone‐induced vesicular 5‐HT release. Conclusions In close proximity to 5‐HT releasing sites, activated GR rapidly triggers L‐type VGCC‐dependent vesicular 5‐HT release. These findings provide a better understanding of the interrelationship between glucocorticoids and 5‐HT release.
Collapse
Affiliation(s)
- Nicolas Paul
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Justine Raymond
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Transgenic Models, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tillmann Weber
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,MEDIAN Klinik Wilhelmsheim, Oppenweiler, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
30
|
Sun X, Zu Y, Li X, Zhao S, Sun X, Li L, Zhang X, Wang W, Liang Y, Wang W, Liang X, Gao M, Sun C, Guan X, Tang M. Corticosterone-induced Hippocampal 5-HT Responses were Muted in Depressive-like State. ACS Chem Neurosci 2021; 12:845-856. [PMID: 33586968 DOI: 10.1021/acschemneuro.0c00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interactions between the hypothalamic-pituitary-adrenal axis and the central 5-HT system in the depressive state remain largely unknown. The present study investigated corticosterone (CORT) regulations of extracellular 5-HT in the hippocampal CA3 in a mouse model of depression. Basal dialysate 5-HT, true extracellular 5-HT, 5-HT reuptake efficiency, and time courses of dialysate 5-HT following CORT injections at 10, 20, and 40 mg/kg were determined at baseline, depressive-like state and after subsequent fluoxetine (FLX) treatment using in vivo microdialysis in male C57BL/6 mice. Behavioral tests were used to determine behavioral phenotypes and therapeutic responses to FLX. Depressed mice showed decreased extracellular 5-HT, increased 5-HT reuptake efficiency, and absence of the increase in dialysate 5-HT response to CORT injections, which were all reversed in FLX-responsive mice. Surprisingly, the FLX nonresponsive mice continued to worsen behaviorally and exhibited lower extracellular 5-HT and higher 5-HT reuptake efficiency. Our study indicates that abolished-CORT induced 5-HT response, decreased extracellular 5-HT, and increased 5-HT reuptake efficiency might be the signature features associated with depressive-like state. Increased 5-HT reuptake efficiency was one of the underlying mechanisms, with target effectors remaining to be explored. The findings in the FLX nonresponsive mice suggest distinct neuromechanisms, which might be genetically predetermined.
Collapse
Affiliation(s)
- Xianan Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yi Zu
- Department of Academic Quality Assurance, China Medical University, Shenyang 110122, China
| | - Xiang Li
- Department of Pharmacy, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women’s and Children’s Hospital, Shenyang 110011, China
| | - Lu Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xinjing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wei Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuezhu Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingqi Gao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chi Sun
- Department of Academic Quality Assurance, China Medical University, Shenyang 110122, China
| | - Xue Guan
- Department of Academic Quality Assurance, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
31
|
Jansch C, Ziegler GC, Forero A, Gredy S, Wäldchen S, Vitale MR, Svirin E, Zöller JEM, Waider J, Günther K, Edenhofer F, Sauer M, Wischmeyer E, Lesch KP. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna) 2021; 128:225-241. [PMID: 33560471 PMCID: PMC7914246 DOI: 10.1007/s00702-021-02303-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sina Gredy
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maria Rosaria Vitale
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Evgeniy Svirin
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Johanna E M Zöller
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Katharina Günther
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
- Institute of Molecular Regenerative Medicine, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
32
|
Vahid-Ansari F, Albert PR. Rewiring of the Serotonin System in Major Depression. Front Psychiatry 2021; 12:802581. [PMID: 34975594 PMCID: PMC8716791 DOI: 10.3389/fpsyt.2021.802581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.
Collapse
Affiliation(s)
- Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
33
|
Sowa J, Hess G. Prenatal stress-related alterations in synaptic transmission and 5-HT 7 receptor-mediated effects in the rat dorsal raphe nucleus are ameliorated by the 5-HT 7 receptor antagonist SB 269970. Eur J Neurosci 2020; 52:3295-3305. [PMID: 32402149 DOI: 10.1111/ejn.14778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 11/30/2022]
Abstract
Early life adversity exerts a detrimental influence on developing brain neuronal networks and its consequences may include mental health disorders. In rats, prenatal stress may lead to anxiety and depressive-like behavior in the offspring. Several lines of evidence implicated an involvement of prenatal stress in alterations of the brain serotonergic system functions, but the effects of prenatal stress on its core, the dorsal raphe nucleus (DRN), still remain incompletely understood. The present study was aimed at finding whether prenatal stress induces modifications in the glutamatergic and GABAergic inputs to DRN projection cells and whether it affects DRN 5-HT7 receptors, which modulate activity of these synapses. Prenatal stress resulted in an increase in basal frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and in a decrease in basal frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from putative projection neurons in DRN slices ex vivo. While there were no changes in the excitability of DRN projection neurons, the 5-HT7 receptor-mediated reduction in the sEPSC frequency and rise in the sIPSC frequency, seen in control rats, were largely absent in slices obtained from prenatally stressed rats. Repeated administration of SB 269970, a 5-HT7 receptor antagonist, resulted in a reversal of prenatal stress-induced alterations in 5-HT7 receptor-mediated effects on the sEPSC/sIPSC frequency. Moreover, the treatment reversed prenatal stress-induced alterations in basal excitatory transmission and partially reversed the effect of stress on basal inhibitory transmission in the DRN.
Collapse
Affiliation(s)
- Joanna Sowa
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
34
|
Fan M, Lu D, You R, Chen C, Lu Y, Wu Y, Shen H, Feng S. Highly sensitive detection of tryptophan (Trp) in serum based on diazo-reaction coupling with Surface-Enhanced Raman Scattering and colorimetric assay. Anal Chim Acta 2020; 1119:52-59. [DOI: 10.1016/j.aca.2020.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
|
35
|
Janušonis S, Detering N, Metzler R, Vojta T. Serotonergic Axons as Fractional Brownian Motion Paths: Insights Into the Self-Organization of Regional Densities. Front Comput Neurosci 2020; 14:56. [PMID: 32670042 PMCID: PMC7328445 DOI: 10.3389/fncom.2020.00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
All vertebrate brains contain a dense matrix of thin fibers that release serotonin (5-hydroxytryptamine), a neurotransmitter that modulates a wide range of neural, glial, and vascular processes. Perturbations in the density of this matrix have been associated with a number of mental disorders, including autism and depression, but its self-organization and plasticity remain poorly understood. We introduce a model based on reflected Fractional Brownian Motion (FBM), a rigorously defined stochastic process, and show that it recapitulates some key features of regional serotonergic fiber densities. Specifically, we use supercomputing simulations to model fibers as FBM-paths in two-dimensional brain-like domains and demonstrate that the resultant steady state distributions approximate the fiber distributions in physical brain sections immunostained for the serotonin transporter (a marker for serotonergic axons in the adult brain). We suggest that this framework can support predictive descriptions and manipulations of the serotonergic matrix and that it can be further extended to incorporate the detailed physical properties of the fibers and their environment.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nils Detering
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Thomas Vojta
- Department of Physics, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
36
|
Li X, Sun X, Sun J, Zu Y, Zhao S, Sun X, Li L, Zhang X, Wang W, Liang Y, Wang W, Liang X, Sun C, Guan X, Tang M. Depressive-like state sensitizes 5-HT 1A and 5-HT 1B auto-receptors in the dorsal raphe nucleus sub-system. Behav Brain Res 2020; 389:112618. [PMID: 32360167 DOI: 10.1016/j.bbr.2020.112618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Dorsal raphe (DR) and median raphe (MR) 5-HT neurons are two distinct sub-systems known to be regulated by 5-HT1A and 5-HT1B auto-receptors. Whether the auto-receptors in each sub-system are functionally altered in depressive-like state remains unknown. The present study is aimed to study a specific circuit (DR-ventral hippocampus and MR-dorsal hippocampus) within each sub-system to investigate changes in receptor sensitivity in the pathogenesis of depression. A mouse model of depression was developed through the social defeat paradigm, and was then treated with fluoxetine (FLX). 5-HT1A auto-receptor in the neuronal cell body (DR or MR) and 5-HT1B auto-receptor in the axonal terminal (ventral or dorsal hippocampus) were directly targeted by local perfusion of antagonists (5-HT1A: WAY100635; 5-HT1B: GR127935) through reverse microdialysis. Time courses of dialysate 5-HT measured at the axonal terminal were subsequently determined for each circuit. At baseline, 5-HT1A and 5-HT1B antagonists dose-dependently increased dialysate 5-HT, with sub-circuit specificity. In the depressive-like state, greater increases in dialysate 5-HT were observed only in the DR-ventral hippocampus circuit following local delivery of both antagonists, which were then fully restored following the FLX treatment. In contrast, no changes were observed in the MR-dorsal hippocampus circuit. Our results demonstrate differential changes in sensitivities of 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus and MR-dorsal hippocampus circuits. 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus circuit are sensitized in the depressive-like state. Taken together, these results suggest that the DR sub-system maybe the neural substrate mediating depressive phenotypes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xianan Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jing Sun
- Department of Outpatient, Rocket Force University of Engineering Clinic Affiliated to 986 Hospital of Air Force, Xi'an, 710043, China
| | - Yi Zu
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital, Shenyang, 110011, China
| | - Lu Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinjing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuezhu Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chi Sun
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Xue Guan
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
37
|
De Oliveira Sergio T, Frias AT, Vilela-Costa HH, De Oliveira DC, Zuardi AW, Zangrossi H. Serotonin mediates the panicolytic-like effect of oxytocin in the dorsal periaqueductal gray. J Psychopharmacol 2020; 34:383-390. [PMID: 32108540 DOI: 10.1177/0269881120907960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION AND OBJECTIVES Oxytocin (OT) has been widely linked to positive social interactions, and there is great interest in OT as a therapy for a variety of neuropsychiatric conditions. Recent evidence also suggests that OT can play an important role in the mediation of anxiety-associated defensive responses, including a role for serotonin (5-HT) neurotransmission in this action. However, it is presently unknown whether OT additionally regulates the expression of panic-related behaviors, such as escape, by acting in the dorsal periaqueductal gray (dPAG), a key panic-regulating area. This study aimed to investigate the consequence of OT injection in the dPAG on escape expression and whether facilitation of 5-HT neurotransmission in this midbrain area is implicated in this action. METHODS Male Wistar rats were injected with OT in the dPAG and tested for escape expression in the elevated T-maze (ETM) and dPAG electrical stimulation tests. Using the latter test, OT's effect was also investigated after previous intra-dPAG injection of the OT receptor antagonist atosiban, the preferential antagonists of 5-HT1A and 5-HT2A receptors, WAY-100635 and ketanserin, respectively, or systemic pretreatment with the 5-HT synthesis inhibitor p-CPA. RESULTS OT impaired escape expression in the two tests used, suggesting a panicolytic-like effect. In the ETM, the peptide also facilitated inhibitory avoidance acquisition, indicating an anxiogenic effect. Previous administration of atosiban, WAY-100635, ketanserin, or p-CPA counteracted OT's anti-escape effect. CONCLUSIONS OT and 5-HT in the dPAG interact in the regulation of panic- and anxiety-related defensive responses. These findings open new perspectives for the development of novel therapeutic strategies for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Heloisa Helena Vilela-Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Danielle Cg De Oliveira
- Department of Neurosciences and Behavior, Division of Psychiatry, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavior, Division of Psychiatry, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Terao T, Ishii N, Hirakawa H, Aoshima E. Is the bell-shaped dose-response curve of the selective serotonin reuptake inhibitor due to 5-HT 1A auto-receptors? Med Hypotheses 2020; 140:109681. [PMID: 32208294 DOI: 10.1016/j.mehy.2020.109681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022]
Abstract
A dose-response curve is a plot of drug efficacy versus dose. Interestingly, some antidepressants show a bell-shaped dose-response curve where increasing dose leads to increasing efficacy only up to a point, whereupon further increases lead to decreasing efficacy. Here, we propose that the first part of the curve reflects the basic, uncomplicated dose-response relationship of these antidepressants whereas the second, decreasing part remains to be explained. Our hypothesis is that a negative feedback pathway through 5-HT1A auto-receptors decreases the efficacy of selective serotonin reuptake inhibitors with increasing dose, thereby creating the second, anomalous part of the dose-response curve. This effect can also account for the so-called therapeutic window of such antidepressants.
Collapse
Affiliation(s)
- Takeshi Terao
- Department of Neuropsychiatry, Oita University, Faculty of Medicine, Oita, Japan.
| | - Nobuyoshi Ishii
- Department of Neuropsychiatry, Oita University, Faculty of Medicine, Oita, Japan
| | - Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University, Faculty of Medicine, Oita, Japan
| | | |
Collapse
|
39
|
Hernández-Mendoza GA, Aguirre-Olivas D, González-Gutiérrez M, Leal HJ, Qureshi N, Treviño-Palacios CG, Peón J, De-Miguel FF. Fluorescence of serotonin in the visible spectrum upon multiphotonic photoconversion. BIOMEDICAL OPTICS EXPRESS 2020; 11:1432-1448. [PMID: 32206420 PMCID: PMC7075609 DOI: 10.1364/boe.380412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 06/01/2023]
Abstract
The vital molecule serotonin modulates the functioning of the nervous system. The chemical characteristics of serotonin provide multiple advantages for its study in living or fixed tissue. Serotonin has the capacity to emit fluorescence directly and indirectly through chemical intermediates in response to mono- and multiphoton excitation. However, the fluorescent emissions are multifactorial and their dependence on the concentration, excitation wavelength and laser intensity still need a comprehensive study. Here we studied the fluorescence of serotonin excited multiphotonically with near-infrared light. Experiments were conducted in a custom-made multiphoton microscope coupled to a monochromator and a photomultiplier that collected the emissions. We show that the responses of serotonin to multiphoton stimulation are highly non-linear. The well-known violet emission having a 340 nm peak was accompanied by two other emissions in the visible spectrum. The best excitor wavelength to produce both emissions was 700 nm. A green emission with a ∼ 500 nm peak was similar to a previously described fluorescence in response to longer excitation wavelengths. A new blue emission with a ∼ 405 nm peak was originated from the photoconversion of serotonin to a relatively stable product. Such a reaction could be reproduced by irradiation of serotonin with high laser power for 30 minutes. The absorbance of the new compound expanded from ∼ 315 to ∼ 360 nm. Excitation of the irradiated solution monophotonically with 350 nm or biphotonically with 700 nm similarly generated the 405 nm blue emission. Our data are presented quantitatively through the design of a single geometric chart that combines the intensity of each emission in response to the serotonin concentration, excitation wavelengths and laser intensity. The autofluorescence of serotonin in addition to the formation of the two compounds emitting in the visible spectrum provides diverse possibilities for the quantitative study of the dynamics of serotonin in living tissue.
Collapse
Affiliation(s)
- Guillermo A. Hernández-Mendoza
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, 04510, D. F., Mexico
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Dilia Aguirre-Olivas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, 04510, D. F., Mexico
| | - Mario González-Gutiérrez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Héctor J. Leal
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Naser Qureshi
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Carlos G. Treviño-Palacios
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, 72840 Tonantzintla, Puebla, Mexico
| | - Jorge Peón
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Francisco F. De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, 04510, D. F., Mexico
| |
Collapse
|
40
|
Shen J, Li DL, Tan XX, Tao WW, Xie CJ, Shi XG, Wang Y. A transcranial sonography study of brainstem and its association with depression in idiopathic generalized epilepsy with tonic-clonic seizures. Epilepsy Behav 2020; 102:106589. [PMID: 31726317 DOI: 10.1016/j.yebeh.2019.106589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 09/22/2019] [Indexed: 01/18/2023]
Abstract
Brainstem raphe (BR) hypoechogenicity in transcranial sonography (TCS) has been depicted in patients with depression. But, up to date, the association of BR alterations in TCS with depression in patients with epilepsy has never been reported. This study was to investigate the possible role of BR examination via TCS in patients with idiopathic generalized epilepsy with tonic-clonic seizures (IGE-TCS) and depression. Forty-six patients with IGE-TCS and 45 healthy controls were recruited. Echogenicity of the caudate nuclei (CN), lentiform nuclei (LN), substantia nigra (SN), and BR and widths of the lateral ventricle (LV) frontal horns and the third ventricle (TV) were assessed via TCS. The determination of depression was based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV), and depression severity measured by Chinese version Neurological Disorders Depression Inventory for Epilepsy (C-NDDI-E) and Beck Depression Inventory-II (BDI-II). The width of TV in patients with epilepsy was found significantly larger than that in healthy controls (p = 0.001), but there was no significant difference in TV width between patients with IGE-TCS with and without depression. There were no significant differences between patients with IGE-TCS and healthy controls in LV frontal horn width, as well as in SN, CN, LN, and BR echogenicity. Here, it seems that patients with IGE-TCS were detected with smaller SN echogenic area compared with controls though they had no statistical significance. Patients with IGE-TCS with hypoechogenic BR had significantly higher C-NDDI-E and BDI-II scores than those with normal BR signal, and most patients with IGE-TCS with depression exhibited hypoechogenic BR, but few patients with IGE-TCS without depression exhibited hypoechogenic BR. In conclusion, BR echogenic signal alterations in TCS can be a biomarker for depression in epilepsy, but it might not be associated with epilepsy itself. The alterations of SN echogenic area and TV width in TCS may reflect a potential role of SN and diencephalon structure in the pathogenesis of epilepsy, which needs to be further elucidated.
Collapse
Affiliation(s)
- Jie Shen
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Dong-Lin Li
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xiu-Xiu Tan
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Wei-Wei Tao
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Cheng-Juan Xie
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Xue-Gong Shi
- Department of Echocardiography, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Yu Wang
- Department of Neurology, Epilepsy and Headache Group, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China; Department of Neurology, the Fourth Affiliated Hospital of Anhui Medical University, Huaihai Avenue 100, Hefei 230000, China.
| |
Collapse
|
41
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Olivier JDA, Olivier B. Antidepressants and Sexual Dysfunctions: a Translational Perspective. CURRENT SEXUAL HEALTH REPORTS 2019. [DOI: 10.1007/s11930-019-00205-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Milosavljevic N. How Does Light Regulate Mood and Behavioral State? Clocks Sleep 2019; 1:319-331. [PMID: 33089172 PMCID: PMC7445808 DOI: 10.3390/clockssleep1030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The idea that light affects mood and behavioral state is not new. However, not much is known about the particular mechanisms and circuits involved. To fully understand these, we need to know what properties of light are important for mediating changes in mood as well as what photoreceptors and pathways are responsible. Increasing evidence from both human and animal studies imply that a specialized class of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), plays an important role in the light-regulated effects on mood and behavioral state, which is in line with their well-established roles in other non-visual responses (pupillary light reflex and circadian photoentrainment). This paper reviews our current understanding on the mechanisms and paths by which the light information modulates behavioral state and mood.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
44
|
Zhang S, Lv F, Yuan Y, Fan C, Li J, Sun W, Hu J. Whole-Brain Mapping of Monosynaptic Afferent Inputs to Cortical CRH Neurons. Front Neurosci 2019; 13:565. [PMID: 31213976 PMCID: PMC6558184 DOI: 10.3389/fnins.2019.00565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) is a critical neuropeptide modulating the mammalian stress response. It is involved in many functional activities within various brain regions, among which there is a subset of CRH neurons occupying a considerable proportion of the cortical GABAergic interneurons. Here, we utilized rabies virus-based monosynaptic retrograde tracing system to map the whole-brain afferent presynaptic partners of the CRH neurons in the anterior cingulate cortex (ACC). We find that the ACC CRH neurons integrate information from the cortex, thalamus, hippocampal formation, amygdala, and also several other midbrain and hindbrain nuclei. Furthermore, our results reveal that ACC CRH neurons receive direct inputs from two neuromodulatory systems, the basal forebrain cholinergic neurons and raphe serotoninergic neurons. These findings together expand our knowledge about the connectivity of the cortical GABAergic neurons and also provide a basis for further investigation of the circuit function of cortical CRH neurons.
Collapse
Affiliation(s)
- Shouhua Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lv
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu Fan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Jiang Li
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Wenzhi Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Chinese Institute for Brain Research, Beijing, China
| | - Ji Hu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
45
|
Vahid-Ansari F, Zhang M, Zahrai A, Albert PR. Overcoming Resistance to Selective Serotonin Reuptake Inhibitors: Targeting Serotonin, Serotonin-1A Receptors and Adult Neuroplasticity. Front Neurosci 2019; 13:404. [PMID: 31114473 PMCID: PMC6502905 DOI: 10.3389/fnins.2019.00404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is the most prevalent mental illness contributing to global disease burden. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are the first-line treatment for MDD, but are only fully effective in 30% of patients and require weeks before improvement may be seen. About 30% of SSRI-resistant patients may respond to augmentation or switching to another antidepressant, often selected by trial and error. Hence a better understanding of the causes of SSRI resistance is needed to provide models for optimizing treatment. Since SSRIs enhance 5-HT, in this review we discuss new findings on the circuitry, development and function of the 5-HT system in modulating behavior, and on how 5-HT neuronal activity is regulated. We focus on the 5-HT1A autoreceptor, which controls 5-HT activity, and the 5-HT1A heteroreceptor that mediates 5-HT actions. A series of mice models now implicate increased levels of 5-HT1A autoreceptors in SSRI resistance, and the requirement of hippocampal 5-HT1A heteroreceptor for neurogenic and behavioral response to SSRIs. We also present clinical data that show promise for identifying biomarkers of 5-HT activity, 5-HT1A regulation and regional changes in brain activity in MDD patients that may provide biomarkers for tailored interventions to overcome or bypass resistance to SSRI treatment. We identify a series of potential strategies including inhibiting 5-HT auto-inhibition, stimulating 5-HT1A heteroreceptors, other monoamine systems, or cortical stimulation to overcome SSRI resistance.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Brain and Mind Research Institute, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|