1
|
Moran CN, McGovern DP, Melnychuk M, Smeaton AF, Dockree PM. Oscillations of the Wandering Mind: Neural Evidence for Distinct Exploration/Exploitation Strategies in Younger and Older Adults. Hum Brain Mapp 2025; 46:e70174. [PMID: 40287841 PMCID: PMC12034160 DOI: 10.1002/hbm.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 04/29/2025] Open
Abstract
This study traced the neurophysiological signals of fluctuating attention and task-related processing to ascertain the mechanistic basis of transient strategic shifts between competing task focus and mind-wandering, as expressed by the 'exploitation/exploration' framework, and explored how they are differentially affected with age. Thirty-four younger (16 female, mean age 22 years) and 34 healthy older (20 female, mean age 71 years) adults performed the Gradual Contrast Change Detection task; monitoring a continuously presented flickering annulus for intermittent gradual contrast reductions and responding to experience sampling probes to discriminate the nature of their thoughts at discrete moments. Electroencephalography and pupillometry were concurrently recorded during target- and probe-related intervals. Older adults tracked the downward stimulus trajectory with greater sensory integrity (reduced target SSVEP amplitude) and demonstrated earlier initiation of evidence accumulation (earlier onset CPP), attenuated variability in the attentional signal (posterior alpha) and more robust phasic pupillary responses to the target, suggesting steadier attentional engagement with age. Younger adults only exhibited intermittent sensory encoding, indexed by greater variability in the sensory (SSVEP) and attentional (alpha) signals before mind-wandering relative to focused states. Attentional variability was accompanied by disrupted behavioural performance and reduced task-related neural processing, independent of age group. Together, this elucidates distinct performance strategies employed by both groups. Older adults suspended mind-wandering and implemented an exploitative oscillation strategy to circumvent their reduced cognitive resources and allay potential behavioural costs. Conversely, younger adults exhibited greater exploration through mind-wandering, utilising their greater cognitive resources to flexibly alternate between competing goal-directed and mind-wandering strategies, with limited costs.
Collapse
Affiliation(s)
- Catherine N. Moran
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
- School of Population HealthRCSI University of Medicine & Health SciencesDublinIreland
| | - David P. McGovern
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
- School of PsychologyDublin City UniversityDublinIreland
| | - Mike Melnychuk
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
| | - Alan F. Smeaton
- Insight Centre for Data AnalyticsDublin City UniversityDublinIreland
| | - Paul M. Dockree
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
| |
Collapse
|
2
|
Castellotti S, Castaldi E, Blini E, Arrighi R. Pupil size as a biomarker of cognitive (dys)functions: Toward a physiologically informed screening of mental states. Acta Psychol (Amst) 2025; 253:104720. [PMID: 39799929 DOI: 10.1016/j.actpsy.2025.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
The objective assessment of cognitive processes is of critical importance to understanding the mechanisms underlying various mental functions and dysfunctions. In recent years, the technological innovations related to the eye-tracking industry made the time right to organically integrate pupillometry in the assessment of cognitive profiles. Here, we review evidence showing that pupillometry offers a uniquely sensitive biomarker of the functioning of several distinct networks, cognitive functions, emotional states, and individual differences in their instantiation. We outline why and how pupillometry can be effectively exploited to enrich current research and behavioral paradigms, including those designed for clinical testing. By making the cases of anxiety disorders (both generalized and specific - e.g., generalized anxiety vs. math anxiety) and substance use disorders, we then exemplify how pupillometry can be leveraged to obtain clinically meaningful variables. We finally conclude by arguing that measuring pupil size has the potential to complement more traditional, but coarse assessment methods, to return a more graded, objective, and physiologically informed picture of cognitive functioning.
Collapse
Affiliation(s)
- Serena Castellotti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
3
|
Wu J, Toporek A, Lin Q, Goldstein FC, Loring DW, Kelberman MA, Weinshenker D, Levey AI, Lah JJ, Qiu D. Probing locus coeruleus functional network in healthy aging and its association with Alzheimer's disease biomarkers using pupillometry. Alzheimers Res Ther 2025; 17:53. [PMID: 40016783 PMCID: PMC11866666 DOI: 10.1186/s13195-025-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia, and the early detection of the disease-associated changes allows early interventions. The locus coeruleus (LC) has been reported to be the first brain region to develop tau pathology in AD. However, the functional brain network of the LC in both healthy aging and AD pathology is largely unknown due to technical difficulties associated with the small size of the LC. In this study, we used the measurement of spontaneous pupil constriction/dilation as a surrogate for LC activity to study LC brain network changes during healthy aging. METHODS Thirty-seven healthy younger and thirty-nine healthy older adults were included from the Emory Healthy Brain Study and underwent resting-state functional MRI while simultaneously tracking pupil diameter. The measurements of pupil diameter dynamics were used as reference signals in brain connectivity analysis. The connectivity of the identified networks was then compared between younger and older participants. Correlations of the identified regions with neuropsychological assessments and cerebrospinal fluid (CSF) biomarkers were also evaluated. RESULTS A brain network of 20 clusters associated with pupil diameter dynamics was identified, including the LC as well as brain regions functionally connected to the LC. The pupil diameter network was found to positively correlate with the salience network and negatively correlate with the central executive network. Functional connectivity decreased within the pupil diameter network with healthy aging. The pupil diameter connectivity was associated with memory, executive, and visuospatial functioning. CSF total tau closely correlated with pupil diameter network. CONCLUSIONS Pupil diameter dynamics provide valuable insights into LC-related processes. While they are not solely influenced by LC activity, spontaneous pupil constrictor/dilatory activity shows promise as a non-invasive approach to probe the LC network and warrants further studies to evaluate its value as an early biomarker of AD.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Aaron Toporek
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qixiang Lin
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Felicia C Goldstein
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - David W Loring
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Michael A Kelberman
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David Weinshenker
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA.
- Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Andrews R, Melnychuk M, Moran S, Walsh T, Boylan S, Dockree P. Paced Breathing Associated With Pupil Diameter Oscillations at the Same Rate and Reduced Lapses in Attention. Psychophysiology 2025; 62:e70003. [PMID: 39905564 PMCID: PMC11794674 DOI: 10.1111/psyp.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
A dynamical systems model proposes that respiratory, locus coeruleus-noradrenaline (LC-NA), and cortical attentional systems interact, producing emergent states of attention. We tested a prediction that fixing respiratory pace (versus spontaneous respiration) stabilizes oscillations in pupil diameter (LC-NA proxy) and attentional state. Primary comparisons were between 'Instructed Breath' (IB) and 'No Instructed Breath' (NIB) groups. Secondarily, we investigated the effects of shifting respiratory frequency in the IB group from 0.15 to 0.1-0.15 Hz in Experiment 1 (n = 55) and 0.15-0.1 Hz only in Experiment 2 (n = 48) (replication). In the Paced Auditory Cue Entrainment (PACE) task, participants heard two auditory tones, alternating higher and lower pitches, cycling continuously. Tones acted as a breath guide for IB and an attention monitor for both groups. Participants gave rhythmic mouse responses to the transition points between tones (left for high-to-low, right for low-to-high). We derived accuracy of mouse click timing (RTm), variability in click timing (RTVL), and counts of erroneously inverting the left/right rhythm (IRs and Switches). Despite no differences between groups in RTm or RTVL, IB committed significantly fewer IRs and switches, indicating less lapses in attention during paced breathing. Differences in behavioral metrics were present across tone cycle frequencies but not exclusive to IB, so breath frequency did not appear to have a specific effect. Pupil diameter oscillations in IB closely tracked the frequency of the instructed breathing, implicating LC-NA activity as being entrained by the breath intervention. We conclude that pacing respiratory frequency did stabilize attention, possibly through stabilizing fluctuations in LC-NA.
Collapse
Affiliation(s)
- Ralph Andrews
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Michael Melnychuk
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Sarah Moran
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Teigan Walsh
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Sophie Boylan
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Paul Dockree
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| |
Collapse
|
5
|
Nobukawa S, Shirama A, Takahashi T, Toda S. Recent trends in multiple metrics and multimodal analysis for neural activity and pupillometry. Front Neurol 2024; 15:1489822. [PMID: 39687402 PMCID: PMC11646859 DOI: 10.3389/fneur.2024.1489822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies focusing on neural activity captured by neuroimaging modalities have provided various metrics for elucidating the functional networks and dynamics of the entire brain. Functional magnetic resonance imaging (fMRI) can depict spatiotemporal functional neural networks and dynamic characteristics due to its excellent spatial resolution. However, its temporal resolution is limited. Neuroimaging modalities such as electroencephalography (EEG) and magnetoencephalography (MEG), which have higher temporal resolutions, are utilized for multi-temporal scale and multi-frequency-band analyzes. With this advantage, numerous EEG/MEG-bases studies have revealed the frequency-band specific functional networks involving dynamic functional connectivity and multiple temporal-scale time-series patterns of neural activity. In addition to analyzing neural data, the examination of behavioral data can unveil additional aspects of brain activity through unimodal and multimodal data analyzes performed using appropriate integration techniques. Among the behavioral data assessments, pupillometry can provide comprehensive spatial-temporal-specific features of neural activity. In this perspective, we summarize the recent progress in the development of metrics for analyzing neural data obtained from neuroimaging modalities such as fMRI, EEG, and MEG, as well as behavioral data, with a special focus on pupillometry data. First, we review the typical metrics of neural activity, emphasizing functional connectivity, complexity, dynamic functional connectivity, and dynamic state transitions of whole-brain activity. Second, we examine the metrics related to the time-series data of pupillary diameters and discuss the possibility of multimodal metrics that combine neural and pupillometry data. Finally, we discuss future perspectives on these multiple and multimodal metrics.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Chiba, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Fukui, Japan
- Uozu Shinkei Sanatorium, Uozu, Toyama, Japan
| | - Shigenobu Toda
- Department of Psychiatry, Shizuoka Psychiatric Medical Center, Shizuoka, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry, Showa University, Tokyo, Japan
| |
Collapse
|
6
|
Blini E, Arrighi R, Anobile G. Pupillary manifolds: uncovering the latent geometrical structures behind phasic changes in pupil size. Sci Rep 2024; 14:27306. [PMID: 39516679 PMCID: PMC11549318 DOI: 10.1038/s41598-024-78772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The size of the pupils reflects directly the balance of different branches of the autonomic nervous system. This measure is inexpensive, non-invasive, and has provided invaluable insights on a wide range of mental processes, from attention to emotion and executive functions. Two outstanding limitations of current pupillometry research are the lack of consensus in the analytical approaches, which vary wildly across research groups and disciplines, and the fact that, unlike other neuroimaging techniques, pupillometry lacks the dimensionality to shed light on the different sources of the observed effects. In other words, pupillometry provides an integrated readout of several distinct networks, but it is unclear whether each has a specific fingerprint, stemming from its function or physiological substrate. Here we show that phasic changes in pupil size are inherently low-dimensional, with modes that are highly consistent across behavioral tasks of very different nature, suggesting that these changes occur along pupillary manifolds that are highly constrained by the underlying physiological structures rather than functions. These results provide not only a unified approach to analyze pupillary data, but also the opportunity for physiology and psychology to refer to the same processes by tracing the sources of the reported changes in pupil size in the underlying biology.
Collapse
Affiliation(s)
- Elvio Blini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy.
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Via di San Salvi 12, Building 26, Florence, Italy
| |
Collapse
|
7
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Identifying the bioimaging features of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. Nat Commun 2024; 15:9657. [PMID: 39511186 PMCID: PMC11543808 DOI: 10.1038/s41467-024-53878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients show potential as biomarkers for brain degeneration. To investigate AD-specific PLR and its underlying neuromodulatory sources, we combine high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction (P c ) and post-illumination pupil dilation recovery (amplitude,P d , and time, T). TheP c -driven differential analysis reveals altered visual signal processing and reduced thalamocortical activation in AD mice in comparison with wild-type (WT) control mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlights multiple brain areas associated with AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Additionally, the brain-wide functional connectivity analysis highlights the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work integrates non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on brain-wide functional changes, including neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
Affiliation(s)
- Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Weitao Man
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
8
|
Freund B, Nair D, Bulacio J, Najm I, Taylor K, Moosa AN. Pupillary constriction on stimulation of the parietal cortex-A novel finding. Epileptic Disord 2024; 26:701-707. [PMID: 38943530 DOI: 10.1002/epd2.20252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/01/2024]
Abstract
Pupillary changes can be an important semiologic feature in focal epilepsy. Though the subcortical networks involving pupillomotor function have been described, cortical generators of pupillary dilation and constriction in humans are not well known. In this report, we describe a case of pupillary constriction occurring during seizures in a patient with drug resistant focal epilepsy. On stereoelectroencephalography, onset was noted within the posterior segment of the right intraparietal sulcus and direct cortical electrical stimulation of these electrode contacts reproduced pupillary constriction associated with habitual seizures. This is the first case report to describe ictal pupillary constriction during SEEG with confirmation of the cortical localization by direct cortical electrical stimulation. The posterior segment of the right intraparietal sulcus localization of pupillary constriction may aid in surgical evaluation patients with drug resistant focal epilepsy.
Collapse
Affiliation(s)
- Brin Freund
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Dileep Nair
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Juan Bulacio
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Imad Najm
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kenneth Taylor
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ahsan N Moosa
- Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Park S, Ha J, Kim L. Event-related pupillary response-based authentication system using eye-tracker add-on augmented reality glasses for individual identification. Front Physiol 2024; 15:1325784. [PMID: 39193438 PMCID: PMC11347300 DOI: 10.3389/fphys.2024.1325784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed at developing a noncontact authentication system using event-related pupillary response (ErPR) epochs in an augmented reality (AR) environment. Thirty participants were shown in a rapid serial visual presentation consisting of familiar and unknown human photographs. ErPR was compared with event-related potential (ERP). ERP and ErPR amplitudes for familiar faces were significantly larger compared with those for stranger faces. The ERP-based authentication system exhibited perfect accuracy using a linear support vector machine classifier. A quadratic discriminant analysis classifier trained using ErPR features achieved high accuracy (97%) and low false acceptance (0.03) and false rejection (0.03) rates. The correlation coefficients between ERP and ErPR amplitudes were 0.452-0.829, and the corresponding Bland-Altman plots showed a fairly good agreement between them. The ErPR-based authentication system allows noncontact authentication of persons without the burden of sensor attachment via low-cost, noninvasive, and easily implemented technology in an AR environment.
Collapse
Affiliation(s)
- Sangin Park
- Industry-Academy Cooperation Team, Hanyang University, Seoul, Republic of Korea
| | - Jihyeon Ha
- Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Laehyun Kim
- Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Meyer-Baese L, Morrissette AE, Wang Y, Le Chatelier B, Borden PY, Keilholz SD, Stanley GB, Jaeger D. Cortical Networks Relating to Arousal Are Differentially Coupled to Neural Activity and Hemodynamics. J Neurosci 2024; 44:e0298232024. [PMID: 38769007 PMCID: PMC11209646 DOI: 10.1523/jneurosci.0298-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Even in the absence of specific sensory input or a behavioral task, the brain produces structured patterns of activity. This organized activity is modulated by changes in arousal. Here, we use wide-field voltage imaging to establish how arousal relates to cortical network voltage and hemodynamic activity in spontaneously behaving head-fixed male and female mice expressing the voltage-sensitive fluorescent FRET sensor Butterfly 1.2. We find that global voltage and hemodynamic signals are both positively correlated with changes in arousal with a maximum correlation of 0.5 and 0.25, respectively, at a time lag of 0 s. We next show that arousal influences distinct cortical regions for both voltage and hemodynamic signals. These include a broad positive correlation across most sensory-motor cortices extending posteriorly to the primary visual cortex observed in both signals. In contrast, activity in the prefrontal cortex is positively correlated to changes in arousal for the voltage signal while it is a slight net negative correlation observed in the hemodynamic signal. Additionally, we show that coherence between voltage and hemodynamic signals relative to arousal is strongest for slow frequencies below 0.15 Hz and is near zero for frequencies >1 Hz. We finally show that coupling patterns are dependent on the behavioral state of the animal with correlations being driven by periods of increased orofacial movement. Our results indicate that while hemodynamic signals show strong relations to behavior and arousal, these relations are distinct from those observed by voltage activity.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | | | - Yunmiao Wang
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | | | - Peter Y Borden
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | - Shella D Keilholz
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | - Garrett B Stanley
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, Georgia 30322
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
11
|
Kim AJ, Nguyen K, Mather M. Eye movements reveal age differences in how arousal modulates saliency priority but not attention processing speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592619. [PMID: 38766110 PMCID: PMC11100628 DOI: 10.1101/2024.05.06.592619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The arousal-biased competition theory posits that inducing arousal increases attentional priority of salient stimuli while reducing priority of non-pertinent stimuli. However, unlike in young adults, older adults rarely exhibit shifts in priority under increased arousal, and prior studies have proposed different neural mechanisms to explain how arousal differentially modulates selective attention in older adults. Therefore, we investigated how the threat of unpredictable shock differentially modulates attentional control mechanisms in young and older adults by observing eye movements. Participants completed two oculomotor search tasks in which the salient distractor was typically captured by attention (singleton search) or proactively suppressed (feature search). We found that arousal did not modulate attentional priority for any stimulus among older adults nor affect the speed of attention processing in either age group. Furthermore, we observed that arousal modulated pupil sizes and found a correlation between evoked pupil responses and oculomotor function. Our findings suggest age differences in how the locus coeruleus-noradrenaline system interacts with neural networks of attention and oculomotor function.
Collapse
Affiliation(s)
- Andy Jeesu Kim
- University of Southern California, School of Gerontology
| | | | - Mara Mather
- University of Southern California, School of Gerontology
| |
Collapse
|
12
|
Ebrahimi SM, Tuunanen J, Saarela V, Honkamo M, Huotari N, Raitamaa L, Korhonen V, Helakari H, Järvelä M, Kaakinen M, Eklund L, Kiviniemi V. Synchronous functional magnetic resonance eye imaging, video ophthalmoscopy, and eye surface imaging reveal the human brain and eye pulsation mechanisms. Sci Rep 2024; 14:2250. [PMID: 38278832 PMCID: PMC10817967 DOI: 10.1038/s41598-023-51069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
The eye possesses a paravascular solute transport pathway that is driven by physiological pulsations, resembling the brain glymphatic pathway. We developed synchronous multimodal imaging tools aimed at measuring the driving pulsations of the human eye, using an eye-tracking functional eye camera (FEC) compatible with magnetic resonance imaging (MRI) for measuring eye surface pulsations. Special optics enabled integration of the FEC with MRI-compatible video ophthalmoscopy (MRcVO) for simultaneous retinal imaging along with functional eye MRI imaging (fMREye) of the BOLD (blood oxygen level dependent) contrast. Upon optimizing the fMREye parameters, we measured the power of the physiological (vasomotor, respiratory, and cardiac) eye and brain pulsations by fast Fourier transform (FFT) power analysis. The human eye pulsated in all three physiological pulse bands, most prominently in the respiratory band. The FFT power means of physiological pulsation for two adjacent slices was significantly higher than in one-slice scans (RESP1 vs. RESP2; df = 5, p = 0.045). FEC and MRcVO confirmed the respiratory pulsations at the eye surface and retina. We conclude that in addition to the known cardiovascular pulsation, the human eye also has respiratory and vasomotor pulsation mechanisms, which are now amenable to study using non-invasive multimodal imaging of eye fluidics.
Collapse
Affiliation(s)
- Seyed-Mohsen Ebrahimi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland.
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland.
| | - Johanna Tuunanen
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Ville Saarela
- Department of Ophthalmology and Medical Research Center, Oulu University Hospital and Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Marja Honkamo
- Department of Ophthalmology and Medical Research Center, Oulu University Hospital and Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Finland Oulu University Hospital, 90029, Oulu, Finland.
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90220, Oulu, Finland.
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
13
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Mapping the bioimaging marker of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572613. [PMID: 38187675 PMCID: PMC10769340 DOI: 10.1101/2023.12.20.572613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients may be used as biomarkers of brain degeneration. To characterize AD-specific PLR and its underlying neuromodulatory sources, we combined high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction ( P c ) and post-illumination pupil dilation recovery (amplitude, P d , and time, T ). The P c -driven differential analysis revealed altered visual signal processing coupled with reduced thalamocortical activation in AD mice compared with the wild-type normal mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlighted multiple brain areas related to AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Also, brain-wide functional connectivity analysis highlighted the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work combined non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
|
14
|
Citrenbaum C, Corlier J, Ngo D, Vince-Cruz N, Wilson A, Wilke S, Krantz D, Tadayonnejad R, Ginder N, Levitt J, Lee JH, Strouse T, Corse A, Vyas P, Leuchter AF. Pretreatment pupillary reactivity is associated with outcome of Repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder (MDD). J Affect Disord 2023; 339:412-417. [PMID: 37437737 DOI: 10.1016/j.jad.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Pre-treatment biomarkers for outcome of repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder (MDD) have proven elusive. One promising family of biomarkers involves the autonomic nervous system (ANS), which is dysregulated in individuals with MDD. METHODS We examined the relationship between the pre-treatment pupillary light reflex (PLR) and rTMS outcome in 51 MDD patients. Outcome was measured as the percent change in the 30-item Inventory of Depressive Symptomatology Self Rated (IDS-SR) score from baseline to treatment 30. RESULTS Patients showed significant improvement with rTMS treatment. There was a significant correlation between baseline pupillary Constriction Amplitude (CA) and clinical improvement over the treatment course (R = 0.41, p = 0.003). LIMITATIONS We examined a limited number of subjects who received heterogeneous treatment protocols. Almost all patients in the study received psychotropic medications concomitant with rTMS treatment. CONCLUSION PLR measured before treatment may be a predictive biomarker for clinical improvement from rTMS in subjects with MDD.
Collapse
Affiliation(s)
- Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Doan Ngo
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Wilson
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Scott Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - David Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA; Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nathaniel Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - John H Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Thomas Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Corse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | | | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| |
Collapse
|
15
|
Zou L, Herold F, Ludyga S, Kamijo K, Müller NG, Pontifex MB, Heath M, Kuwamizu R, Soya H, Hillman CH, Ando S, Alderman BL, Cheval B, Kramer AF. Look into my eyes: What can eye-based measures tell us about the relationship between physical activity and cognitive performance? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:568-591. [PMID: 37148971 PMCID: PMC10466196 DOI: 10.1016/j.jshs.2023.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND There is a growing interest to understand the neurobiological mechanisms that drive the positive associations of physical activity and fitness with measures of cognitive performance. To better understand those mechanisms, several studies have employed eye-based measures (e.g., eye movement measures such as saccades, pupillary measures such as pupil dilation, and vascular measures such as retinal vessel diameter) deemed to be proxies for specific neurobiological mechanisms. However, there is currently no systematic review providing a comprehensive overview of these studies in the field of exercise-cognition science. Thus, this review aimed to address that gap in the literature. METHODS To identify eligible studies, we searched 5 electronic databases on October 23, 2022. Two researchers independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX scale, for interventional studies) and the critical appraisal tool from the Joanna Briggs Institute (for cross-sectional studies). RESULTS Our systematic review (n = 35 studies) offers the following main findings: (a) there is insufficient evidence available to draw solid conclusions concerning gaze-fixation-based measures; (b) the evidence that pupillometric measures, which are a proxy for the noradrenergic system, can explain the positive effect of acute exercise and cardiorespiratory fitness on cognitive performance is mixed; (c) physical training- or fitness-related changes of the cerebrovascular system (operationalized via changes in retinal vasculature) are, in general, positively associated with cognitive performance improvements; (d) acute and chronic physical exercises show a positive effect based on an oculomotor-based measure of executive function (operationalized via antisaccade tasks); and (e) the positive association between cardiorespiratory fitness and cognitive performance is partly mediated by the dopaminergic system (operationalized via spontaneous eye-blink rate). CONCLUSION This systematic review offers confirmation that eye-based measures can provide valuable insight into the neurobiological mechanisms that may drive positive associations between physical activity and fitness and measures of cognitive performance. However, due to the limited number of studies utilizing specific methods for obtaining eye-based measures (e.g., pupillometry, retinal vessel analysis, spontaneous eye blink rate) or investigating a possible dose-response relationship, further research is necessary before more nuanced conclusions can be drawn. Given that eye-based measures are economical and non-invasive, we hope this review will foster the future application of eye-based measures in the field of exercise-cognition science.
Collapse
Affiliation(s)
- Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany.
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise, and Health, University of Basel, Basel 4052, Switzerland
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya 466-8666, Japan
| | - Notger G Müller
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London ON, N6A 3K7, Canada; Graduate Program in Neuroscience, University of Western Ontario, London ON, N6A 3K7, Canada
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Department of Psychology, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08854, USA
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva 1205, Switzerland; Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva 1205, Switzerland
| | - Arthur F Kramer
- Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA 02115, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
16
|
Lloyd B, de Voogd LD, Mäki-Marttunen V, Nieuwenhuis S. Pupil size reflects activation of subcortical ascending arousal system nuclei during rest. eLife 2023; 12:e84822. [PMID: 37367220 PMCID: PMC10299825 DOI: 10.7554/elife.84822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Neuromodulatory nuclei that are part of the ascending arousal system (AAS) play a crucial role in regulating cortical state and optimizing task performance. Pupil diameter, under constant luminance conditions, is increasingly used as an index of activity of these AAS nuclei. Indeed, task-based functional imaging studies in humans have begun to provide evidence of stimulus-driven pupil-AAS coupling. However, whether there is such a tight pupil-AAS coupling during rest is not clear. To address this question, we examined simultaneously acquired resting-state fMRI and pupil-size data from 74 participants, focusing on six AAS nuclei: the locus coeruleus, ventral tegmental area, substantia nigra, dorsal and median raphe nuclei, and cholinergic basal forebrain. Activation in all six AAS nuclei was optimally correlated with pupil size at 0-2 s lags, suggesting that spontaneous pupil changes were almost immediately followed by corresponding BOLD-signal changes in the AAS. These results suggest that spontaneous changes in pupil size that occur during states of rest can be used as a noninvasive general index of activity in AAS nuclei. Importantly, the nature of pupil-AAS coupling during rest appears to be vastly different from the relatively slow canonical hemodynamic response function that has been used to characterize task-related pupil-AAS coupling.
Collapse
Affiliation(s)
- Beth Lloyd
- Institute of Psychology, Leiden UniversityLeidenNetherlands
| | - Lycia D de Voogd
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University NijmegenNijmegenNetherlands
- Behavioural Science Institute, Radboud UniversityNijmegenNetherlands
| | | | | |
Collapse
|
17
|
Demiral ŞB, Kure Liu C, Benveniste H, Tomasi D, Volkow ND. Activation of brain arousal networks coincident with eye blinks during resting state. Cereb Cortex 2023:6991186. [PMID: 36653022 DOI: 10.1093/cercor/bhad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Eye-blinking has been implicated in arousal and attention. Here we test the hypothesis that blinking-moments represent arousal surges associated with activation of the ascending arousal network (AAN) and its thalamic projections. For this purpose, we explored the temporal relationship between eye-blinks and fMRI BOLD activity in AAN and thalamic nuclei, as well as whole brain cluster corrected activations during eyes-open, resting-state fMRI scanning. We show that BOLD activations in the AAN nuclei peaked prior to the eye blinks and in thalamic nuclei peaked prior to and during the blink, consistent with the role of eye blinking in arousal surges. Additionally, we showed visual cortex peak activation prior to the eye blinks, providing further evidence of the visual cortex's role in arousal, and document cerebellar peak activation post eye blinks, which might reflect downstream engagement from arousal surges.
Collapse
Affiliation(s)
- Şükrü Barış Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA
| | - Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, CT 06510, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA.,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Kronemer SI, Aksen M, Ding JZ, Ryu JH, Xin Q, Ding Z, Prince JS, Kwon H, Khalaf A, Forman S, Jin DS, Wang K, Chen K, Hu C, Agarwal A, Saberski E, Wafa SMA, Morgan OP, Wu J, Christison-Lagay KL, Hasulak N, Morrell M, Urban A, Todd Constable R, Pitts M, Mark Richardson R, Crowley MJ, Blumenfeld H. Human visual consciousness involves large scale cortical and subcortical networks independent of task report and eye movement activity. Nat Commun 2022; 13:7342. [PMID: 36446792 PMCID: PMC9707162 DOI: 10.1038/s41467-022-35117-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
The full neural circuits of conscious perception remain unknown. Using a visual perception task, we directly recorded a subcortical thalamic awareness potential (TAP). We also developed a unique paradigm to classify perceived versus not perceived stimuli using eye measurements to remove confounding signals related to reporting on conscious experiences. Using fMRI, we discovered three major brain networks driving conscious visual perception independent of report: first, increases in signal detection regions in visual, fusiform cortex, and frontal eye fields; and in arousal/salience networks involving midbrain, thalamus, nucleus accumbens, anterior cingulate, and anterior insula; second, increases in frontoparietal attention and executive control networks and in the cerebellum; finally, decreases in the default mode network. These results were largely maintained after excluding eye movement-based fMRI changes. Our findings provide evidence that the neurophysiology of consciousness is complex even without overt report, involving multiple cortical and subcortical networks overlapping in space and time.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Mark Aksen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Julia Z Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jun Hwan Ryu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Qilong Xin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Zhaoxiong Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jacob S Prince
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Hunki Kwon
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Aya Khalaf
- Department of Neurology, Yale University, New Haven, CT, USA
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Sarit Forman
- Department of Neurology, Yale University, New Haven, CT, USA
| | - David S Jin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Kevin Wang
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Kaylie Chen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Claire Hu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Akshar Agarwal
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Erik Saberski
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Syed Mohammad Adil Wafa
- Department of Neurology, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Owen P Morgan
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jia Wu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | | | | | | | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Lee K, Horien C, O’Connor D, Garand-Sheridan B, Tokoglu F, Scheinost D, Lake EM, Constable RT. Arousal impacts distributed hubs modulating the integration of brain functional connectivity. Neuroimage 2022; 258:119364. [PMID: 35690257 PMCID: PMC9341222 DOI: 10.1016/j.neuroimage.2022.119364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Even when subjects are at rest, it is thought that brain activity is organized into distinct brain states during which reproducible patterns are observable. Yet, it is unclear how to define or distinguish different brain states. A potential source of brain state variation is arousal, which may play a role in modulating functional interactions between brain regions. Here, we use simultaneous resting state functional magnetic resonance imaging (fMRI) and pupillometry to study the impact of arousal levels indexed by pupil area on the integration of large-scale brain networks. We employ a novel sparse dictionary learning-based method to identify hub regions participating in between-network integration stratified by arousal, by measuring k-hubness, the number (k) of functionally overlapping networks in each brain region. We show evidence of a brain-wide decrease in between-network integration and inter-subject variability at low relative to high arousal, with differences emerging across regions of the frontoparietal, default mode, motor, limbic, and cerebellum networks. State-dependent changes in k-hubness relate to the actual patterns of network integration within these hubs, suggesting a brain state transition from high to low arousal characterized by global synchronization and reduced network overlaps. We demonstrate that arousal is not limited to specific brain areas known to be directly associated with arousal regulation, but instead has a brain-wide impact that involves high-level between-network communications. Lastly, we show a systematic change in pairwise fMRI signal correlation structures in the arousal state-stratified data, and demonstrate that the choice of global signal regression could result in different conclusions in conventional graph theoretical analysis and in the analysis of k-hubness when studying arousal modulations. Together, our results suggest the presence of global and local effects of pupil-linked arousal modulations on resting state brain functional connectivity.
Collapse
Affiliation(s)
- Kangjoo Lee
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06520, United States.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale University
School of Medicine, New Haven, CT 06520, United States
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New
Haven, CT 06520, United States
| | | | - Fuyuze Tokoglu
- Department of Radiology and Bioimaging Sciences, Yale
University School of Medicine, New Haven, CT 06520, United States
| | - Dustin Scheinost
- Department of Radiology and Bioimaging Sciences, Yale
University School of Medicine, New Haven, CT 06520, United States,Department of Biomedical Engineering, Yale University, New
Haven, CT 06520, United States,The Child Study Center, Yale University School of Medicine,
New Haven, CT 06520, United States,Department of Statistics and Data Science, Yale University,
New Haven, CT 06511, United States
| | - Evelyn M.R. Lake
- Department of Radiology and Bioimaging Sciences, Yale
University School of Medicine, New Haven, CT 06520, United States
| | - R. Todd Constable
- Department of Radiology and Bioimaging Sciences, Yale
University School of Medicine, New Haven, CT 06520, United States,Department of Biomedical Engineering, Yale University, New
Haven, CT 06520, United States,Department of Neurosurgery, Yale University School of
Medicine, New Haven, CT 06520, United States
| |
Collapse
|
20
|
Visual guidance can help with the use of a robotic exoskeleton during human walking. Sci Rep 2022; 12:3881. [PMID: 35273244 PMCID: PMC8913727 DOI: 10.1038/s41598-022-07736-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Walking is an important activity that supports the health-related quality of life, and for those who need assistance, robotic devices are available to help. Recent progress in wearable robots has identified the importance of customizing the assistance provided by the robot to the individual, resulting in robot adaptation to the human. However, current implementations minimize the role of human adaptation to the robot, for example, by the users modifying their movements based on the provided robot assistance. This study investigated the effect of visual feedback to guide the users in adapting their movements in response to wearable robot assistance. The visual feedback helped the users reduce their metabolic cost of walking without any changes in robot assistance in a given time. In a case with the initially metabolic expensive (IMExp) exoskeleton condition, both training methods helped reduce the metabolic cost of walking. The results suggest that visual feedback training is helpful to use the exoskeleton for various conditions. Without feedback, the training is helpful only for the IMExp exoskeleton condition. This result suggests visual feedback training can be useful to facilitate the use of non-personalized, generic assistance, where the assistance is not tuned for each user, in a relatively short time.
Collapse
|
21
|
Montefusco-Siegmund R, Schwalm M, Rosales Jubal E, Devia C, Egaña JI, Maldonado PE. Alpha EEG Activity and Pupil Diameter Coupling during Inactive Wakefulness in Humans. eNeuro 2022; 9:ENEURO.0060-21.2022. [PMID: 35365504 PMCID: PMC9014982 DOI: 10.1523/eneuro.0060-21.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Variations in human behavior correspond to the adaptation of the nervous system to different internal and environmental demands. Attention, a cognitive process for weighing environmental demands, changes over time. Pupillary activity, which is affected by fluctuating levels of cognitive processing, appears to identify neural dynamics that relate to different states of attention. In mice, for example, pupil dynamics directly correlate with brain state fluctuations. Although, in humans, alpha-band activity is associated with inhibitory processes in cortical networks during visual processing, and its amplitude is modulated by attention, conclusive evidence linking this narrowband activity to pupil changes in time remains sparse. We hypothesize that, as alpha activity and pupil diameter indicate attentional variations over time, these two measures should be comodulated. In this work, we recorded the electroencephalographic (EEG) and pupillary activity of 16 human subjects who had their eyes fixed on a gray screen for 1 min. Our study revealed that the alpha-band amplitude and the high-frequency component of the pupil diameter covariate spontaneously. Specifically, the maximum alpha-band amplitude was observed to occur ∼300 ms before the peak of the pupil diameter. In contrast, the minimum alpha-band amplitude was noted to occur ∼350 ms before the trough of the pupil diameter. The consistent temporal coincidence of these two measurements strongly suggests that the subject's state of attention, as indicated by the EEG alpha amplitude, is changing moment to moment and can be monitored by measuring EEG together with the diameter pupil.
Collapse
Affiliation(s)
- Rodrigo Montefusco-Siegmund
- Instituto de Aparato Locomotor y Rehabilitación, Human Cognitive Neurophysiology and Behaviour Laboratory, Facultad de Medicina, Universidad Austral de Chile, Valdivia, 5111815, Chile
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Eduardo Rosales Jubal
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Christ Devia
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile
| | - José I Egaña
- Departamento de Anestesiología y Medicina Perioperatoria, Facultad de Medicina, Universidad de Chile, Santiago, 8380456, Chile
| | - Pedro E Maldonado
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
22
|
DiNuzzo M, Mangia S, Moraschi M, Mascali D, Hagberg GE, Giove F. Perception is associated with the brain's metabolic response to sensory stimulation. eLife 2022; 11:71016. [PMID: 35225790 PMCID: PMC9038191 DOI: 10.7554/elife.71016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
| | - Marta Moraschi
- Department of Radiation Oncology, University of Rome, Rome, Italy
| | - Daniele Mascali
- Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
23
|
Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, Staab J, Indovina I, Bianciardi M. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neuroimage 2022; 250:118925. [PMID: 35074504 DOI: 10.1016/j.neuroimage.2022.118925] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus - alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease.
Collapse
Affiliation(s)
- Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy; Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Jeffrey Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, MN, United States
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
24
|
Zhou C, Guo T, Bai X, Wu J, Gao T, Guan X, Liu X, Gu L, Huang P, Xuan M, Gu Q, Xu X, Zhang B, Zhang M. Locus coeruleus degeneration is associated with disorganized functional topology in Parkinson's disease. Neuroimage Clin 2022; 32:102873. [PMID: 34749290 PMCID: PMC8578042 DOI: 10.1016/j.nicl.2021.102873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/07/2021] [Accepted: 10/30/2021] [Indexed: 10/26/2022]
Abstract
Degeneration of the locus coeruleus (LC) is recognized as a critical hallmark of Parkinson's disease (PD). Recent studies have reported that noradrenaline produced from the LC has critical effects on brain functional organization. However, it is unknown if LC degeneration in PD contributes to cognitive/motor manifestations through modulating brain functional organization. This study enrolled 94 PD patients and 68 healthy controls, and LC integrity was measured using the contrast-to-noise ratio of the LC (CNRLC) calculated from T1-weighted magnetic resonance imaging. We used graph-theory-based network analysis to characterize brain functional organization. The relationships among LC degeneration, network disruption, and cognitive/motor manifestations in PD were assessed. Whether network disruption was a mediator between LC degeneration and cognitive/motor impairments was assessed further. In addition, an independent PD subgroup (n = 35) having functional magnetic resonance scanning before and after levodopa administration was enrolled to evaluate whether LC degeneration-related network deficiencies were independent of dopamine deficiency. We demonstrated that PD patients have significant LC degeneration compared to healthy controls. CNRLC was positively correlated with Montreal Cognitive Assessment score and the nodal efficiency (NE) of several cognitive-related regions. Lower NE of the superior temporal gyrus was a mediator between LC degeneration and cognitive impairment in PD. However, levodopa treatment could not normalize the reduced NE of the superior temporal gyrus (mediator). In conclusion, we provided evidence for the relationship between LC degeneration and extensive network disruption in PD, and highlight the role of network disorganization in LC degeneration-related cognitive impairment.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - JingJing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| |
Collapse
|
25
|
Groot JM, Csifcsák G, Wientjes S, Forstmann BU, Mittner M. Catching Wandering Minds with Tapping Fingers: Neural and Behavioral Insights into Task-unrelated Cognition. Cereb Cortex 2022; 32:4447-4463. [PMID: 35034114 PMCID: PMC9574234 DOI: 10.1093/cercor/bhab494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
When the human mind wanders, it engages in episodes during which attention is focused on self-generated thoughts rather than on external task demands. Although the sustained attention to response task is commonly used to examine relationships between mind wandering and executive functions, limited executive resources are required for optimal task performance. In the current study, we aimed to investigate the relationship between mind wandering and executive functions more closely by employing a recently developed finger-tapping task to monitor fluctuations in attention and executive control through task performance and periodical experience sampling during concurrent functional magnetic resonance imaging (fMRI) and pupillometry. Our results show that mind wandering was preceded by increases in finger-tapping variability, which was correlated with activity in dorsal and ventral attention networks. The entropy of random finger-tapping sequences was related to activity in frontoparietal regions associated with executive control, demonstrating the suitability of this paradigm for studying executive functioning. The neural correlates of behavioral performance, pupillary dynamics, and self-reported attentional state diverged, thus indicating a dissociation between direct and indirect markers of mind wandering. Together, the investigation of these relationships at both the behavioral and neural level provided novel insights into the identification of underlying mechanisms of mind wandering.
Collapse
Affiliation(s)
- Josephine M Groot
- Department of Psychology, UiT – The Arctic University of Norway, Tromsø 9037 , Norway
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 1018 WB , The Netherlands
| | - Gábor Csifcsák
- Department of Psychology, UiT – The Arctic University of Norway, Tromsø 9037 , Norway
| | - Sven Wientjes
- Department of Experimental Psychology, University of Ghent, Ghent 9000 , Belgium
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 1018 WB , The Netherlands
| | - Matthias Mittner
- Address correspondence to Matthias Mittner, Department of Psychology, UiT – The Arctic University of Norway, Huginbakken 32, 9037 Tromsø, Norway.
| |
Collapse
|
26
|
Tramonti Fantozzi MP, De Cicco V, De Cicco D, d'Ascanio P, Cataldo E, Bruschini L, Faraguna U, Manzoni D. Chewing and Cognitive Improvement: The Side Matters. Front Syst Neurosci 2022; 15:749444. [PMID: 35002642 PMCID: PMC8734061 DOI: 10.3389/fnsys.2021.749444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chewing improves cognitive performance, which is impaired in subjects showing an asymmetry in electromyographic (EMG) masseter activity during clenching. In these subjects, the simultaneous presence of an asymmetry in pupil size (anisocoria) at rest indicates an imbalance in Ascending Reticular Activating System (ARAS) influencing arousal and pupil size. The aim of the present study was to verify whether a trigeminal EMG asymmetry may bias the stimulating effect of chewing on cognition. Cognitive performance and pupil size at rest were recorded before and after 1 min of unilateral chewing in 20 subjects with anisocoria, showing an EMG asymmetry during clenching. Unilateral chewing stimulated performance mainly when it occurred on the side of lower EMG activity (and smaller pupil size). Following chewing on the hypotonic side, changes in cognitive performance were negatively and positively correlated with those in anisocoria and pupil size, respectively. We propose that, following chewing on the hypotonic side, the arousing effects of trigeminal stimulation on performance are enhanced by a rebalancing of ARAS structures. At variance, following chewing on the hypertonic side, the arousing effect of trigeminal stimulation could be partially or completely prevented by the simultaneous increase in ARAS imbalance.
Collapse
Affiliation(s)
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Davide De Cicco
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Paola d'Ascanio
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Luca Bruschini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Lapborisuth P, Koorathota S, Wang Q, Sajda P. Integrating neural and ocular attention reorienting signals in virtual reality. J Neural Eng 2022; 18:066052. [PMID: 34937017 DOI: 10.1088/1741-2552/ac4593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Objective.Reorienting is central to how humans direct attention to different stimuli in their environment. Previous studies typically employ well-controlled paradigms with limited eye and head movements to study the neural and physiological processes underlying attention reorienting. Here, we aim to better understand the relationship between gaze and attention reorienting using a naturalistic virtual reality (VR)-based target detection paradigm.Approach.Subjects were navigated through a city and instructed to count the number of targets that appeared on the street. Subjects performed the task in a fixed condition with no head movement and in a free condition where head movements were allowed. Electroencephalography (EEG), gaze and pupil data were collected. To investigate how neural and physiological reorienting signals are distributed across different gaze events, we used hierarchical discriminant component analysis (HDCA) to identify EEG and pupil-based discriminating components. Mixed-effects general linear models (GLM) were used to determine the correlation between these discriminating components and the different gaze events time. HDCA was also used to combine EEG, pupil and dwell time signals to classify reorienting events.Main results.In both EEG and pupil, dwell time contributes most significantly to the reorienting signals. However, when dwell times were orthogonalized against other gaze events, the distributions of the reorienting signals were different across the two modalities, with EEG reorienting signals leading that of the pupil reorienting signals. We also found that the hybrid classifier that integrates EEG, pupil and dwell time features detects the reorienting signals in both the fixed (AUC = 0.79) and the free (AUC = 0.77) condition.Significance.We show that the neural and ocular reorienting signals are distributed differently across gaze events when a subject is immersed in VR, but nevertheless can be captured and integrated to classify target vs. distractor objects to which the human subject orients.
Collapse
Affiliation(s)
- Pawan Lapborisuth
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Sharath Koorathota
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
- Department of Radiology , Columbia University Irving Medical Center, New York, NY 10032, United States of America
- Department of Electrical Engineering , Columbia University, New York, NY 10027, United States of America
- Data Science Institute, Columbia University , New York, NY 10027, United States of America
| |
Collapse
|
28
|
Ferencová N, Višňovcová Z, Bona Olexová L, Tonhajzerová I. Eye pupil – a window into central autonomic regulation via emotional/cognitive processing. Physiol Res 2021. [DOI: 10.33549//physiolres.934749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
If the eyes are windows into the soul, then the pupils represent at least the gateway to the brain and can provide a unique insight into the human mind from several aspects. The changes in the pupil size primarily mediated by different lighting conditions are controlled by the autonomic nervous system regulated predominantly at the subcortical level. Specifically, parasympathetically-linked pupillary constriction is under the Edinger-Westphal nucleus control and sympathetically-mediated pupillary dilation is regulated from the posterior hypothalamic nuclei. However, the changes in the pupil size can be observed at resting state even under constant lighting, these pupillary changes are mediated by global arousal level as well as by various cognitive factors. In this context, autonomic pathways modulating changes in the pupil size in response to the different light levels can be influenced by multiple central descending inputs driving pupillary changes under steady lighting conditions. Moreover, as the pupillary response is involved in emotional (task-evoked pupillary dilation as an index of emotional arousal) and cognitive (task-evoked pupillary dilation as an index of cognitive workload) stimulation, it can be used to detect the impact of mutual subcortical and cortical structures (i.e. overlapping brain structures included in autonomic, emotional and cognitive regulation) on the pupillary innervation system. Thus, complex understanding of the baseline pupil size´ and pupillary dynamics´ mechanisms may provide an important insight into the central nervous system functioning pointing to the pupillometry as a promising tool in the clinical application.
Collapse
Affiliation(s)
| | | | | | - I Tonhajzerová
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| |
Collapse
|
29
|
Ferencová N, Višňovcová Z, Bona Olexová L, Tonhajzerová I. Eye pupil - a window into central autonomic regulation via emotional/cognitive processing. Physiol Res 2021; 70:S669-S682. [PMID: 35199551 DOI: 10.33549/physiolres.934749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
If the eyes are windows into the soul, then the pupils represent at least the gateway to the brain and can provide a unique insight into the human mind from several aspects. The changes in the pupil size primarily mediated by different lighting conditions are controlled by the autonomic nervous system regulated predominantly at the subcortical level. Specifically, parasympathetically-linked pupillary constriction is under the Edinger-Westphal nucleus control and sympathetically-mediated pupillary dilation is regulated from the posterior hypothalamic nuclei. However, the changes in the pupil size can be observed at resting state even under constant lighting, these pupillary changes are mediated by global arousal level as well as by various cognitive factors. In this context, autonomic pathways modulating changes in the pupil size in response to the different light levels can be influenced by multiple central descending inputs driving pupillary changes under steady lighting conditions. Moreover, as the pupillary response is involved in emotional (task-evoked pupillary dilation as an index of emotional arousal) and cognitive (task-evoked pupillary dilation as an index of cognitive workload) stimulation, it can be used to detect the impact of mutual subcortical and cortical structures (i.e. overlapping brain structures included in autonomic, emotional and cognitive regulation) on the pupillary innervation system. Thus, complex understanding of the baseline pupil size´ and pupillary dynamics´ mechanisms may provide an important insight into the central nervous system functioning pointing to the pupillometry as a promising tool in the clinical application.
Collapse
Affiliation(s)
- N Ferencová
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | |
Collapse
|
30
|
Causse M, Lepron E, Mandrick K, Peysakhovich V, Berry I, Callan D, Rémy F. Facing successfully high mental workload and stressors: An fMRI study. Hum Brain Mapp 2021; 43:1011-1031. [PMID: 34738280 PMCID: PMC8764488 DOI: 10.1002/hbm.25703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The present fMRI study aimed at highlighting patterns of brain activations and autonomic activity when confronted with high mental workload and the threat of auditory stressors. Twenty participants performed a complex cognitive task in either safe or aversive conditions. Our results showed that increased mental workload induced recruitment of the lateral frontoparietal executive control network (ECN), along with disengagement of medial prefrontal and posterior cingulate regions of the default mode network (DMN). Mental workload also elicited an increase in heart rate and pupil diameter. Task performance did not decrease under the threat of stressors, most likely due to efficient inhibition of auditory regions, as reflected by a large decrement of activity in the superior temporal gyri. The threat of stressors was also accompanied with deactivations of limbic regions of the salience network (SN), possibly reflecting emotional regulation mechanisms through control from dorsal medial prefrontal and parietal regions, as indicated by functional connectivity analyses. Meanwhile, the threat of stressors induced enhanced ECN activity, likely for improved attentional and cognitive processes toward the task, as suggested by increased lateral prefrontal and parietal activations. These fMRI results suggest that measuring the balance between ECN, SN, and DMN recruitment could be used for objective mental state assessment. In this sense, an extra recruitment of task‐related regions and a high ratio of lateral versus medial prefrontal activity may represent a relevant marker of increased but efficient mental effort, while the opposite may indicate a disengagement from the task due to mental overload and/or stressors.
Collapse
Affiliation(s)
| | - Evelyne Lepron
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| | | | | | - Isabelle Berry
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| | - Daniel Callan
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | - Florence Rémy
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| |
Collapse
|
31
|
Poudel GR, Hawes S, Innes CRH, Parsons N, Drummond SPA, Caeyensberghs K, Jones RD. RoWDI: rolling window detection of sleep intrusions in the awake brain using fMRI. J Neural Eng 2021; 18. [PMID: 34592721 DOI: 10.1088/1741-2552/ac2bb9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Objective.Brief episodes of sleep can intrude into the awake human brain due to lack of sleep or fatigue-compromising the safety of critical daily tasks (i.e. driving). These intrusions can also introduce artefactual activity within functional magnetic resonance imaging (fMRI) experiments, prompting the need for an objective and effective method of removing them.Approach.We have developed a method to track sleep-like events in awake humans via rolling window detection of intrusions (RoWDI) of fMRI signal template. These events can then be used in voxel-wise event-related analysis of fMRI data. To test this approach, we generated a template of fMRI activity associated with transition to sleep via simultaneous fMRI and electroencephalogram (EEG) (N= 10). RoWDI was then used to identify sleep-like events in 20 individuals performing a cognitive task during fMRI after a night of partial sleep deprivation. This approach was further validated in an independent fMRI dataset (N= 56).Main results.Our method (RoWDI) was able to infer frequent sleep-like events during the cognitive task performed after sleep deprivation. The sleep-like events were associated with on average of 20% reduction in pupil size and prolonged response time. The blood-oxygen-level-dependent activity during the sleep-like events covered thalami-cortical regions, which although spatially distinct, co-existed with, task-related activity. These key findings were validated in the independent dataset.Significance.RoWDI can reliably detect spontaneous sleep-like events in the human brain. Thus, it may also be used as a tool to delineate and account for neural activity associated with wake-sleep transitions in both resting-state and task-related fMRI studies.
Collapse
Affiliation(s)
- Govinda R Poudel
- Mary Mackillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Stephanie Hawes
- Mary Mackillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Carrie R H Innes
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas Parsons
- Cognitive Neuroscience Unit, School of Psychology, Deakins University, Melbourne, Australia
| | - Sean P A Drummond
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Karen Caeyensberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakins University, Melbourne, Australia
| | - Richard D Jones
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
32
|
Fietz J, Pöhlchen D, Binder FP, Czisch M, Sämann PG, Spoormaker VI. Pupillometry tracks cognitive load and salience network activity in a working memory functional magnetic resonance imaging task. Hum Brain Mapp 2021; 43:665-680. [PMID: 34622518 PMCID: PMC8720183 DOI: 10.1002/hbm.25678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 01/29/2023] Open
Abstract
The diameter of the human pupil tracks working memory processing and is associated with activity in the frontoparietal network. At the same time, recent neuroimaging research has linked human pupil fluctuations to activity in the salience network. In this combined functional magnetic resonance imaging (fMRI)/pupillometry study, we recorded the pupil size of healthy human participants while they performed a blockwise organized working memory task (N‐back) inside an MRI scanner in order to monitor the pupil fluctuations associated neural activity during working memory processing. We first confirmed that mean pupil size closely followed working memory load. Combining this with fMRI data, we focused on blood oxygen level dependent (BOLD) correlates of mean pupil size modeled onto the task blocks as a parametric modulation. Interrogating this modulated task regressor, we were able to retrieve the frontoparietal network. Next, to fully exploit the within‐block dynamics, we divided the blocks into 1 s time bins and filled these with corresponding pupil change values (first‐order derivative of pupil size). We found that pupil change within N‐back blocks was positively correlated with BOLD amplitudes in the areas of the salience network (namely bilateral insula, and anterior cingulate cortex). Taken together, fMRI with simultaneous measurement of pupil parameters constitutes a valuable tool to dissect working memory subprocesses related to both working memory load and salience of the presented stimuli.
Collapse
Affiliation(s)
- Julia Fietz
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Florian P Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | -
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Victor I Spoormaker
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
33
|
Pandey P, Ray S. Pupil dynamics: A potential proxy of neural preparation for goal-directed eye movement. Eur J Neurosci 2021; 54:6587-6607. [PMID: 34510602 DOI: 10.1111/ejn.15453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
The pupils reflexively constrict or dilate to regulate the influx of light on the retinae. Pupillary light reflex (PLR) is susceptible to many non-visual cognitive processes including covert orientation of attention and planning rapid saccadic eye movement. The frontal eye field (FEF) and superior colliculus (SC), which also send projections to the PLR pathway, are two important areas in primate's brain for planning saccade and orientation of attention. The saccadic reaction time (SRT) and the rate of increase in activity of movement neurons in these areas are inversely correlated. This study addressed how pupil dynamics, activity in the FEF and SC and SRT are related in a saccadic decision-making task. The rate of visually evoked pupil constriction was found inversely related to SRT. This was further verified by simulating a homeomorphic biomechanical model of pupillary muscle plants, wherein we projected signals similar to build-up activity in the FEF and SC to the parasympathetic (constriction) and sympathetic (dilation) division of the PLR pathway, respectively. A striking similarity between simulated and observed dynamics of pupil constriction suggests that PLR is a potential proxy of saccade planning by movement neurons in the FEF and SC. Indistinguishable pupil dynamics when planned saccades were elicited versus when they were cancelled eliminated the possibility that the obligatory pre-saccadic shift of attention alone influenced the rate of pupil constriction. Our study envisages a mechanism of how the oculomotor system influences the autonomic activity in an attempt to timely minimize saccadic visual transients by regulating the influx of light.
Collapse
Affiliation(s)
- Pragya Pandey
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| |
Collapse
|
34
|
Mäki-Marttunen V. Pupil-based States of Brain Integration across Cognitive States. Neuroscience 2021; 471:61-71. [PMID: 34303781 DOI: 10.1016/j.neuroscience.2021.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023]
Abstract
Arousal is a potent mechanism that provides the brain with functional flexibility and adaptability to external conditions. Within the wake state, arousal levels driven by activity in the neuromodulatory systems are related to specific signatures of neural activation and brain synchrony. However, direct evidence is still lacking on the varying effects of arousal on macroscopic brain characteristics and across a variety of cognitive states in humans. Using a concurrent fMRI-pupillometry approach, we used pupil size as a proxy for arousal and obtained patterns of brain integration associated with increasing arousal levels. We carried out this analysis on resting-state data and data from two attentional tasks implicating different cognitive processes. We found that an increasing level of arousal was related to a state of increased brain integration. This effect was prominent in the salience, visual and default-mode networks in all conditions, while other regions showed task-specificity. Increased integration in the salience network was also related to faster pupil dilation in the two attentional tasks. Furthermore, task performance was related to arousal level, with lower accuracy at higher level of arousal. Taken together, our study provides evidence in humans for pupil size as an index of brain network state, and supports the role of arousal as a switch that drives brain coordination in specific brain regions according to the cognitive state.
Collapse
Affiliation(s)
- Verónica Mäki-Marttunen
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Pieter de la Court, Wassenaarseweg 52, 2333 AK Leiden, Netherlands.
| |
Collapse
|
35
|
Breton-Provencher V, Drummond GT, Sur M. Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits 2021; 15:638007. [PMID: 34163331 PMCID: PMC8215268 DOI: 10.3389/fncir.2021.638007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
The locus coeruleus (LC), a small brainstem nucleus, is the primary source of the neuromodulator norepinephrine (NE) in the brain. The LC receives input from widespread brain regions, and projects throughout the forebrain, brainstem, cerebellum, and spinal cord. LC neurons release NE to control arousal, but also in the context of a variety of sensory-motor and behavioral functions. Despite its brain-wide effects, much about the role of LC-NE in behavior and the circuits controlling LC activity is unknown. New evidence suggests that the modular input-output organization of the LC could enable transient, task-specific modulation of distinct brain regions. Future work must further assess whether this spatial modularity coincides with functional differences in LC-NE subpopulations acting at specific times, and how such spatiotemporal specificity might influence learned behaviors. Here, we summarize the state of the field and present new ideas on the role of LC-NE in learned behaviors.
Collapse
Affiliation(s)
| | | | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
36
|
Disentangling the Association between the Insula and the Autonomic Nervous System. J Neurosci 2021; 41:3051-3053. [PMID: 33827971 DOI: 10.1523/jneurosci.2225-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
|
37
|
Poirier C, Hamed SB, Garcia-Saldivar P, Kwok SC, Meguerditchian A, Merchant H, Rogers J, Wells S, Fox AS. Beyond MRI: on the scientific value of combining non-human primate neuroimaging with metadata. Neuroimage 2021; 228:117679. [PMID: 33359343 PMCID: PMC7903159 DOI: 10.1016/j.neuroimage.2020.117679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Sharing and pooling large amounts of non-human primate neuroimaging data offer new exciting opportunities to understand the primate brain. The potential of big data in non-human primate neuroimaging could however be tremendously enhanced by combining such neuroimaging data with other types of information. Here we describe metadata that have been identified as particularly valuable by the non-human primate neuroimaging community, including behavioural, genetic, physiological and phylogenetic data.
Collapse
Affiliation(s)
- Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle 6, UK.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Pamela Garcia-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), Shanghai Changning Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 77030
| | - Sara Wells
- Centre for Macaques, MRC Harwell Institute, Porton Down, Salisbury, United Kingdom
| | - Andrew S Fox
- California National Primate Research Center, Department of Psychology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
38
|
Mayeli A, Al Zoubi O, Misaki M, Stewart JL, Zotev V, Luo Q, Phillips R, Fischer S, Götz M, Paulus MP, Refai H, Bodurka J. Integration of Simultaneous Resting-State Electroencephalography, Functional Magnetic Resonance Imaging, and Eye-Tracker Methods to Determine and Verify Electroencephalography Vigilance Measure. Brain Connect 2020; 10:535-546. [PMID: 33112650 DOI: 10.1089/brain.2019.0731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Introduction: Concurrent electroencephalography and resting-state functional magnetic resonance imaging (rsfMRI) have been widely used for studying the (presumably) awake and alert human brain with high temporal/spatial resolution. Although rsfMRI scans are typically collected while individuals are instructed to focus their eyes on a fixated cross, objective and verified experimental measures to quantify degree of vigilance are not readily available. Electroencephalography (EEG) is the modality extensively used for estimating vigilance, especially during eyes-closed resting state. However, pupil size measured using an eye-tracker device could provide an indirect index of vigilance. Methods: Three 12-min resting scans (eyes open, fixating on the cross) were collected from 10 healthy control participants. We simultaneously collected EEG, fMRI, physiological, and eye-tracker data and investigated the correlation between EEG features, pupil size, and heart rate. Furthermore, we used pupil size and EEG features as regressors to find their correlations with blood-oxygen-level-dependent fMRI measures. Results: EEG frontal and occipital beta power (FOBP) correlates with pupil size changes, an indirect index for locus coeruleus activity implicated in vigilance regulation (r = 0.306, p < 0.001). Moreover, FOBP also correlated with heart rate (r = 0.255, p < 0.001), as well as several brain regions in the anticorrelated network, including the bilateral insula and inferior parietal lobule. Discussion: In this study, we investigated whether simultaneous EEG-fMRI combined with eye-tracker measurements can be used to determine EEG signal feature associated with vigilance measures during eyes-open rsfMRI. Our results support the conclusion that FOBP is an objective measure of vigilance in healthy human subjects. Impact statement We revealed an association between electroencephalography frontal and occipital beta power (FOBP) and pupil size changes during an eyes-open resting state, which supports the conclusion that FOBP could serve as an objective measure of vigilance in healthy human subjects. The results were validated by using simultaneously recorded heart rate and functional magnetic resonance imaging (fMRI). Interestingly, independently verified heart rate changes can also provide an easy-to-determine measure of vigilance during resting-state fMRI. These findings have important implications for an analysis and interpretation of dynamic resting-state fMRI connectivity studies in health and disease.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| | - Obada Al Zoubi
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Qingfei Luo
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | | | | | | | - Hazem Refai
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, Oklahoma, USA
| |
Collapse
|
39
|
Joshi S, Gold JI. Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn Sci 2020; 24:466-480. [PMID: 32331857 PMCID: PMC7271902 DOI: 10.1016/j.tics.2020.03.005] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Cognitively driven pupil modulations reflect certain underlying brain functions. What do these reflections tell us? Here, we review findings that have identified key roles for three neural systems: cortical modulation of the pretectal olivary nucleus (PON), which controls the pupillary light reflex; the superior colliculus (SC), which mediates orienting responses, including pupil changes to salient stimuli; and the locus coeruleus (LC)-norepinephrine (NE) neuromodulatory system, which mediates relationships between pupil-linked arousal and cognition. We discuss how these findings can inform the interpretation of pupil measurements in terms of activation of these neural systems. We also highlight caveats, open questions, and key directions for future experiments for improving these interpretations in terms of the underlying neural dynamics throughout the brain.
Collapse
Affiliation(s)
- Siddhartha Joshi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Abstract
The pupil responds reflexively to changes in brightness and focal distance to maintain the smallest pupil (and thus the highest visual acuity) that still allows sufficient light to reach the retina. The pupil also responds to a wide variety of cognitive processes, but the functions of these cognitive responses are still poorly understood. In this review, I propose that cognitive pupil responses, like their reflexive counterparts, serve to optimize vision. Specifically, an emphasis on central vision over peripheral vision results in pupil constriction, and this likely reflects the fact that central vision benefits most from the increased visual acuity provided by small pupils. Furthermore, an intention to act with a bright stimulus results in preparatory pupil constriction, which allows the pupil to respond quickly when that bright stimulus is subsequently brought into view. More generally, cognitively driven pupil responses are likely a form of sensory tuning: a subtle adjustment of the eyes to optimize their properties for the current situation and the immediate future. Expected final online publication date for the Annual Review of Vision Science, Volume 6 is September 15, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, 9712TS Groningen, The Netherlands;
| |
Collapse
|
41
|
Liu TT, Falahpour M. Vigilance Effects in Resting-State fMRI. Front Neurosci 2020; 14:321. [PMID: 32390792 PMCID: PMC7190789 DOI: 10.3389/fnins.2020.00321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/18/2020] [Indexed: 12/02/2022] Open
Abstract
Measures of resting-state functional magnetic resonance imaging (rsfMRI) activity have been shown to be sensitive to cognitive function and disease state. However, there is growing evidence that variations in vigilance can lead to pronounced and spatially widespread differences in resting-state brain activity. Unless properly accounted for, differences in vigilance can give rise to changes in resting-state activity that can be misinterpreted as primary cognitive or disease-related effects. In this paper, we examine in detail the link between vigilance and rsfMRI measures, such as signal variance and functional connectivity. We consider how state changes due to factors such as caffeine and sleep deprivation affect both vigilance and rsfMRI measures and review emerging approaches and methodological challenges for the estimation and interpretation of vigilance effects.
Collapse
Affiliation(s)
- Thomas T. Liu
- Center for Functional MRI, University of California, San Diego, La Jolla, CA, United States
- Departments of Radiology, Psychiatry, and Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Maryam Falahpour
- Center for Functional MRI, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|