1
|
Wang Z, Zhao Y, Wang Z, Sun N, Yu W, Feng Q, Kim HY, Ge F, Yang X, Guan X. Comparative analysis of functional network dynamics in high and low alcohol preference mice. Exp Neurol 2025; 389:115238. [PMID: 40189125 DOI: 10.1016/j.expneurol.2025.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Individual variability preference is a typical characteristic of alcohol drinking behaviors, with a higher risk for the development of alcohol use disorders (AUDs) in high alcohol preference (HP) populations. Here, we created a map of alcohol-related brain regions through c-Fos profiling, and comparatively investigated the differences of functional neural networks between the HP mice and low alcohol preference (LP) mice. We found that neuronal activity in some brain regions, such as ventral tegmental area (VTA), was altered in both HP and LP mice, indicating that these neurons were universally sensitive to alcohol. Most importantly, several brain regions, such as the prefrontal cortex and insular cortex, exhibited significantly higher c-Fos expression in HP mice than that in LP mice and displayed broader and stronger neural connections across brain networks, suggesting that these brain regions are the potential targets for individual alcohol preference. Graph theory-based analysis unraveled a decrease in brain modularity in HP networks, yet with more centralized connection patterns, and maintained higher communication efficiency and redundancy. Furthermore, LP mice switched the central network hubs, with the key differential network centered on nucleus accumbens shell (NAc Sh), nucleus accumbens core (NAc C), VTA, and anterior insular cortex (AIC), indicating that these brain regions and related neural circuits, such as NAc Sh-AIC may be involved in regulating individual alcohol preference. These results provide novel insights into the neural connections governing individual preferences to alcohol consumption, which may contribute to AUDs prediction and pharmacotherapy.
Collapse
Affiliation(s)
- Zilin Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingying Zhao
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nongyuan Sun
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Yu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quying Feng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Gujar VV, Daiwile AP, Palande V, Cadet JL. RNA sequencing analysis identifies sex differences in transcriptional signatures in the dorsal striatum of female and male rats after withdrawal from methamphetamine self-administration. Neurochem Int 2025; 187:105980. [PMID: 40280491 DOI: 10.1016/j.neuint.2025.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Significant methamphetamine (METH)-induced behavioral differences exist between the two sexes of humans and other animals. These dissimilarities may be related to sexual dimorphism in baseline molecular and biochemical mechanisms in brain reward neuroanatomical pathways. As a first step towards identifying sex-based differences in methamphetamine-induced transcriptional signatures, we used RNA sequencing analysis to measure genome-wide changes in gene expression in the dorsal striatum of rats that had self-administered METH. We trained rats to self-administer METH (0.1 mg/kg/infusion, i.v.) using two 3-hr daily sessions (with 30 min time out between sessions) for 20 days. Control rats self-administered saline under similar conditions. This was followed by drug seeking tests on withdrawal days 3 (WD3) and 30 (WD30). Behavioral results show that male rats took more METH than female rats. In both male and female rats, some animals escalated (high-takers) whereas others did not escalate (low-takers) their METH intake during the behavioral experiment. Rats were euthanized 24 h after the second drug seeking test. RNA was extracted from the dorsal striatum (dSTR) and used in RNA sequencing analysis. The data identified substantial baseline differences in gene expression between female and male control rats. In addition, METH use and withdrawal were associated with significant sex-related differences in changes in striatal gene expression, with minimal overlaps of altered mRNAs. Thus, the present results provide further supporting evidence for sexually dimorphic responses to METH exposure. These observations support the notion of sex-specific approaches to the treatment of patients who suffer from METH use disorder.
Collapse
Affiliation(s)
- Vaibhav V Gujar
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA
| | - Vikrant Palande
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Engeln M, Ahmed SH. Remission from addiction: erasing the wrong circuits or making new ones? Nat Rev Neurosci 2025; 26:115-130. [PMID: 39663409 DOI: 10.1038/s41583-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Chronic relapse is a hallmark of substance-use disorders (SUDs), but many people with SUDs do recover and eventually enter remission. Many preclinical studies in this field aim to identify interventions that can precipitate recovery by reversing or erasing the neuronal circuit changes caused by chronic drug use. A better understanding of remission from SUDs can also come from preclinical studies that model factors known to influence recovery in humans, such as the negative consequences of drug use and positive environmental influences. In this Perspective we discuss human neuroimaging studies that have provided information about recovery from SUDs and highlight mechanisms identified in preclinical studies - such as the reconfiguration of neuronal circuits - that could contribute to remission. We also analyse how studies of memory and forgetting can provide insights into the mechanisms of remission. Overall, we propose that remission can be driven by the introduction of new neuronal changes (which outcompete those induced by drugs) as well as by the erasure of drug-induced changes.
Collapse
Affiliation(s)
- Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
4
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2025; 50:596-604. [PMID: 39300273 PMCID: PMC11735851 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
5
|
Quave CB, Vasquez AM, Aquino-Miranda G, Marín M, Bora EP, Chidomere CL, Zhang XO, Engelke DS, Do-Monte FH. Neural signatures of opioid-induced risk-taking behavior in the prelimbic prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578828. [PMID: 38370807 PMCID: PMC10871263 DOI: 10.1101/2024.02.05.578828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Opioid use disorder occurs alongside impaired risk-related decision-making, but the underlying neural correlates are unclear. We developed an approach-avoidance conflict task using a modified conditioned place preference procedure to study neural signals of risky opioid seeking in the prefrontal cortex, a region implicated in executive decision-making. Following morphine conditioned place preference, rats underwent a conflict test in which fear-inducing cat odor was introduced in the previously drug-paired side of the apparatus. While the saline-exposed control group avoided cat odor, the morphine group included two subsets of rats that either maintained a preference for the paired side despite the presence of cat odor (Risk-Takers) or exhibited increased avoidance (Risk-Avoiders), as revealed by K-means clustering. Single-unit recordings from the prelimbic cortex (PL) demonstrated decreased neuronal activity upon acute morphine exposure in both Risk-Takers and Risk-Avoiders, but this firing rate suppression was absent after repeated morphine administration. Risk-Avoiders also displayed distinct post-morphine excitation in PL which persisted across conditioning. During the preference test, subpopulations of PL neurons in all groups were either excited or inhibited when rats entered the paired side. Interestingly, the inhibition in PL activity was lost during the subsequent conflict test in both saline and Risk-Avoider groups, but persisted in Risk-Takers. Additionally, Risk-Takers showed an increase in the proportion of PL neurons displaying location-specific firing in the drug-paired side from the preference to the conflict test. Together, our results suggest that persistent PL inhibitory signaling in the drug-associated context during motivational conflict may underlie increased risk-taking behavior following opioid exposure.
Collapse
Affiliation(s)
- Cana B. Quave
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andres M. Vasquez
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Neuroscience, Rice University, Houston, TX 77005, USA
| | - Guillermo Aquino-Miranda
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Milagros Marín
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Esha P. Bora
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chinenye L. Chidomere
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xu O. Zhang
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas S. Engelke
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fabricio H. Do-Monte
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Marcus MM, Marsh SA, Arriaga M, Negus SS, Banks ML. Effects of pharmacological and environmental manipulations on choice between fentanyl and shock avoidance/escape in male and female rats under mutually exclusive and non-exclusive choice conditions. Neuropsychopharmacology 2024; 49:2011-2021. [PMID: 39103498 PMCID: PMC11480371 DOI: 10.1038/s41386-024-01939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Substance use disorders are defined by persistent drug consumption despite adverse consequences. Accordingly, we developed two fentanyl-vs-shock avoidance/escape choice procedures in which male and female rats responded under a fixed-ratio (FR)1:FR1 concurrent schedule of shock avoidance/escape and IV fentanyl under either mutually exclusive or non-exclusive choice conditions. Initial experiments using a discrete-trial procedure determined behavioral allocation between mutually exclusive shock avoidance/escape and different fentanyl doses (0.32-18 μg/kg/infusion; Experiment 1). Shock intensity (0.1-0.7 mA) and shock avoidance/escape response requirement (FR1-16) were also manipulated (Experiment 2). Next, we used a free-operant procedure in which shock avoidance/escape and fentanyl were continuously available under non-exclusive conditions, and response-shock (R-S) interval (30-1000 s) was manipulated (Experiment 3). Finally, we tested the hypothesis that extended-access fentanyl self-administration would produce fentanyl dependence, establish fentanyl withdrawal as an endogenous negative reinforcer, and increase fentanyl choice in both procedures (Experiments 4 and 5). The shock avoidance/escape contingency decreased fentanyl self-administration, and rats consistently chose shock avoidance/escape over fentanyl in both choice conditions. Decreasing shock intensity or increasing shock avoidance/escape response requirement failed to increase fentanyl choice, suggesting that fentanyl and shock avoidance/escape are independent economic commodities. Increasing the R-S interval increased fentanyl choice but failed to increase shock delivery. Extended fentanyl access engendered high fentanyl intake and opioid withdrawal signs but failed to increase fentanyl choice under either choice condition. These results suggest that neither positive fentanyl reinforcement nor negative reinforcement by fentanyl withdrawal is sufficient to reduce shock avoidance/escape-maintained responding and increase foot shock as an adverse consequence.
Collapse
Affiliation(s)
- Madison M Marcus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Samuel A Marsh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michelle Arriaga
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
7
|
Honeycutt SC, Lichte DD, Gilles-Thomas EA, Mukherjee A, Loney GC. Acute nicotine administration reduces the efficacy of punishment in curbing remifentanil consumption in a seeking-taking chain schedule of reinforcement. Psychopharmacology (Berl) 2024; 241:2003-2014. [PMID: 38775944 DOI: 10.1007/s00213-024-06613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/12/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE Nicotine dependence is highly comorbid with opioid use disorders (OUDs). The use of nicotine-containing products increases the propensity to misuse prescription opioids and addressing both nicotine and opioid use simultaneously is more efficacious for treatment of OUDs than treating opioid use alone. OBJECTIVES Given this extreme comorbidity, further elucidation of the effects of nicotine as a factor in promoting vulnerability to development of OUDs is needed. Here, we sought to further explore the effects of nicotine administration on operant self-administration of remifentanil (RMF), a fast-acting synthetic µ-opioid receptor agonist, using a heterogenous seeking-taking chain schedule of reinforcement in unpunished and punished conditions. METHODS Male and female rats received nicotine (0.4 mg/kg) or saline prior to operant self-administration sessions. These sessions consisted of pressing a 'seeking' lever to gain access to a 'taking' lever that could be pressed for delivery of 3.2 µg/kg RMF. After acquisition, continued drug seeking/taking was punished through contingent delivery of foot-shock. RESULTS Nicotine, relative to saline, increased RMF consumption. Furthermore, nicotine treatment resulted in significantly higher seeking responses and cycles completed, and this effect became more pronounced during punished sessions as nicotine-treated rats suppressed RMF seeking significantly less than controls. Nicotine treatment functionally reduced the efficacy of foot-shock punishment as a deterrent of opioid-seeking. CONCLUSIONS Nicotine administration enhanced both appetitive and consummatory responding for RMF and engendered a punishment-insensitive phenotype for RMF that was less impacted by contingent administration of foot-shock punishment. These findings provide further support for the hypothesis that nicotine augments vulnerability for addiction-like behaviors for opioids.
Collapse
Affiliation(s)
- Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA.
| |
Collapse
|
8
|
Engeln M, Ahmed SH. The multiple faces of footshock punishment in animal research on addiction. Neurobiol Learn Mem 2024; 213:107955. [PMID: 38944108 DOI: 10.1016/j.nlm.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Continued drug use despite negative consequences is a hallmark of addiction commonly modelled in rodents using punished drug intake. Over the years, addiction research highlighted two subpopulations of punishment sensitive and resistant animals. While helpful to interrogate the neurobiology of drug-related behaviors, these procedures carry some weaknesses that need to be recognized and eventually defused. Mainly focusing on footshock-related work, we will first discuss the criteria used to define punishment-resistant animals and how their relative arbitrariness may impact our findings. With the overarching goal of improving our interpretation of the punishment-resistant phenotype, we will evaluate how tailored punishment protocols may better apprehend resistance to punishment, and how testing the robustness of punishment resistance could yield new results and strengthen interpretations. Second, we will question whether and to what extent punishment sensitivity, as currently defined, is reflective of abstinence and suggest that punishment resistance is, in fact, a prerequisite to model abstinence from addiction. Again, we will examine how challenging the robustness of the punishment-sensitive phenotype may help to better characterize it. Finally, we will evaluate whether diminished relapse-like behavior after repeated punishment-induced abstinence could not only contribute to better understand the mechanisms of abstinence, but also uniquely model progressive recovery (i.e., after repeated failed attempts at recovery) which is the norm in people with addiction. Altogether, by questioning the strengths and weaknesses of our models, we would like to open discussions on the different ways we interpret punishment sensitivity and resistance and the aspects that remain to be explored.
Collapse
Affiliation(s)
- Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
9
|
Maddern XJ, Walker LC, Anversa RG, Lawrence AJ, Campbell EJ. Understanding sex differences and the translational value of models of persistent substance use despite negative consequences. Neurobiol Learn Mem 2024; 213:107944. [PMID: 38825163 DOI: 10.1016/j.nlm.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Persistent substance use despite negative consequences is a key facet of substance use disorder. The last decade has seen the preclinical field adopt the use of punishment to model adverse consequences associated with substance use. This has largely involved the pairing of drug use with either electric foot shock or quinine, a bitter tastant. Whilst at face value, these punishers may model aspects of the physical and psychological consequences of substance use, such models are yet to assist the development of approved medications for treatment. This review discusses progress made with animal models of punishment to understand the behavioral consequences of persistent substance use despite negative consequences. We highlight the importance of examining sex differences, especially when the behavioral response to punishment changes following drug exposure. Finally, we critique the translational value these models provide for the substance use disorder field.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
10
|
De Almeida SS, Drinkuth CR, Sartor GC. Comparing withdrawal- and anxiety-like behaviors following oral and subcutaneous oxycodone administration in C57BL/6 mice. Behav Pharmacol 2024; 35:269-279. [PMID: 38847447 PMCID: PMC11226370 DOI: 10.1097/fbp.0000000000000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Excessive prescribing and misuse of prescription opioids, such as oxycodone, significantly contributed to the current opioid crisis. Although oxycodone is typically consumed orally by humans, parenteral routes of administration have primarily been used in preclinical models of oxycodone dependence. To address this issue, more recent studies have used oral self-administration procedures to study oxycodone seeking and withdrawal in rodents. Behavioral differences, however, following oral oxycodone intake versus parenteral oxycodone administration remain unclear. Thus, the goal of the current studies was to compare anxiety- and withdrawal-like behaviors using established opioid dependence models of either home cage oral intake of oxycodone (0.5 mg/ml) or repeated subcutaneous (s.c.) injections of oxycodone (10 mg/kg) in male and female mice. Here, mice received 10 days of oral or s.c. oxycodone administration, and following 72 h of forced abstinence, anxiety- and withdrawal-like behaviors were measured using elevated zero maze, open field, and naloxone-induced precipitated withdrawal procedures. Global withdrawal scores were increased to a similar degree following oral and s.c. oxycodone use, while both routes of oxycodone administration had minimal effects on anxiety-like behaviors. When examining individual withdrawal-like behaviors, mice receiving s.c. oxycodone exhibited more paw tremors and jumps during naloxone-induced precipitated withdrawal compared with oral oxycodone mice. These results indicate that both models of oxycodone administration are sufficient to elevate global withdrawal scores, but, when compared with oral consumption, s.c. oxycodone injections yielded more pronounced effects on some withdrawal-like behaviors.
Collapse
Affiliation(s)
| | | | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269
| |
Collapse
|
11
|
Cayir S, Zhornitsky S, Barzegary A, Sotomayor-Carreño E, Sarfo-Ansah W, Funaro MC, Matuskey D, Angarita G. A review of the kappa opioid receptor system in opioid use. Neurosci Biobehav Rev 2024; 162:105713. [PMID: 38733895 DOI: 10.1016/j.neubiorev.2024.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The kappa opioid receptor (KOR) system is implicated in dysphoria and as an "anti-reward system" during withdrawal from opioids. However, no clear consensus has been made in the field, as mixed findings have been reported regarding the relationship between the KOR system and opioid use. This review summarizes the studies to date on the KOR system and opioids. A systematic scoping review was reported following PRISMA guidelines and conducted based on the published protocol. Comprehensive searches of several databases were done in the following databases: MEDLINE, Embase, PsycINFO, Web of Science, Scopus, and Cochrane. We included preclinical and clinical studies that tested the administration of KOR agonists/antagonists or dynorphin and/or measured dynorphin levels or KOR expression during opioid intoxication or withdrawal from opioids. One hundred studies were included in the final analysis. Preclinical administration of KOR agonists decreased drug-seeking/taking behaviors and opioid withdrawal symptoms. KOR antagonists showed mixed findings, depending on the agent and/or type of withdrawal symptom. Administration of dynorphins attenuated opioid withdrawal symptoms both in preclinical and clinical studies. In the limited number of available studies, dynorphin levels were found to increase in cerebrospinal fluid (CSF) and peripheral blood lymphocytes (PBL) of opioid use disorder subjects (OUD). In animals, dynorphin levels and/or KOR expression showed mixed findings during opioid use. The KOR/dynorphin system appears to have a multifaceted and complex nature rather than simply functioning as an anti-reward system. Future research in well-controlled study settings is necessary to better understand the clinical role of the KOR system in opioid use.
Collapse
Affiliation(s)
- Salih Cayir
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA
| | - Simon Zhornitsky
- Department of Psychology, Southern Connecticut State University, New Haven, CT 06515, USA
| | - Alireza Barzegary
- Islamic Azad University Tehran Medical Sciences School of Medicine, Iran
| | | | | | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT 06510, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Gustavo Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA.
| |
Collapse
|
12
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
13
|
McNally GP, Jean-Richard-Dit-Bressel P, Millan EZ, Lawrence AJ. Pathways to the persistence of drug use despite its adverse consequences. Mol Psychiatry 2023; 28:2228-2237. [PMID: 36997610 PMCID: PMC10611585 DOI: 10.1038/s41380-023-02040-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
The persistence of drug taking despite its adverse consequences plays a central role in the presentation, diagnosis, and impacts of addiction. Eventual recognition and appraisal of these adverse consequences is central to decisions to reduce or cease use. However, the most appropriate ways of conceptualizing persistence in the face of adverse consequences remain unclear. Here we review evidence that there are at least three pathways to persistent use despite the negative consequences of that use. A cognitive pathway for recognition of adverse consequences, a motivational pathway for valuation of these consequences, and a behavioral pathway for responding to these adverse consequences. These pathways are dynamic, not linear, with multiple possible trajectories between them, and each is sufficient to produce persistence. We describe these pathways, their characteristics, brain cellular and circuit substrates, and we highlight their relevance to different pathways to self- and treatment-guided behavior change.
Collapse
Affiliation(s)
- Gavan P McNally
- School of Psychology, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | | | - E Zayra Millan
- School of Psychology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
14
|
Extended access to fentanyl vapor self-administration leads to addiction-like behaviors in mice: Blood chemokine/cytokine levels as potential biomarkers. ADDICTION NEUROSCIENCE 2023; 5:100057. [PMID: 36683829 PMCID: PMC9851134 DOI: 10.1016/j.addicn.2022.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rodent models are useful for understanding the mechanisms that underlie opioid addiction, but most preclinical studies have focused on rewarding and consummatory aspects of opioids without components of dependence-induced escalation of drug taking or seeking. We characterized several opioid-related behaviors in mice using a model of vaporized fentanyl self-administration. Male and female C57BL/6J mice were assigned to short-access (ShA; 1 h, nondependent) or long-access (LgA; 6 h, dependent) fentanyl vapor self-administration and subsequently tested in a battery of behavioral tests, followed by blood collection during withdrawal. Compared with mice in the ShA group, mice in the LgA group escalated their fentanyl intake, were more motivated to work to obtain the drug, exhibited greater hyperalgesia, and exhibited greater signs of naloxone-precipitated withdrawal. Principal component analysis indicated the emergence of two independent behavioral constructs: "intake/motivation" and "hyperalgesia/punished seeking." In mice in the LgA condition only, "hyperalgesia/punished seeking" was associated with plasma levels of proinflammatory interleukin-17 (IL-17), chemokine (C-C motif) ligand 4 (CCL-4), and tumor necrosis factor α (TNF-α). Overall, the results suggest that extended access to opioids leads to addiction-like behavior, and some constructs that are associated with addiction-like behavior may be associated with levels of the proinflammatory cytokines/chemokines IL-17, TNF-α, and CCL-4 in blood.
Collapse
|
15
|
Morales-Medina JC, Pugliese N, Di Cerbo A, Zizzadoro C, Iannitti T. Evidence for Endogenous Opioid Dependence Related to Latent Sensitization in a Rat Model of Chronic Inflammatory Pain. Int J Mol Sci 2023; 24:ijms24032812. [PMID: 36769126 PMCID: PMC9917357 DOI: 10.3390/ijms24032812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Studies performed in a mouse model of chronic inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA) have shown that constitutive activation of the endogenous opioid signaling, besides serving as a mechanism of endogenous analgesia that tonically represses pain sensitization, also generates a state of endogenous opioid dependence. Since species-related differences concerning pain biology and addictive behaviors occur between mice and rats, the present study explored whether the coexistence of endogenous opioid analgesia and endogenous opioid dependence also characterizes a homologous rat model. To this aim, CFA-injured Wistar rats were treated with either 3 mg/kg or 10 mg/kg of the opioid receptor inverse agonist naltrexone (NTX) during the pain remission phase and monitored for 60 min for possible withdrawal behaviors. At 3 mg/kg, NTX, besides inducing the reinstatement of mechanical allodynia, also caused a distinct appearance of ptosis, with slight but nonsignificant changes to the occurrence of teeth chatters and rearing. On the other hand, 10 mg/kg of NTX failed to unmask pain sensitization and induced significantly lower levels of ptosis than 3 mg/kg. Such an NTX-related response pattern observed in the rat CFA model seems to differ substantially from the pattern previously described in the mouse CFA model. This supports the knowledge that mice and rats are not identical in terms of pharmacological response and stresses the importance of choosing the appropriate species for preclinical pain research purposes depending on the scientific question being asked.
Collapse
Affiliation(s)
- Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, Tlaxcala 90000, Mexico
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
- Correspondence: (A.D.C.); (C.Z.)
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy
- Correspondence: (A.D.C.); (C.Z.)
| | - Tommaso Iannitti
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
16
|
Samson KR, Xu W, Kortagere S, España RA. Intermittent access to oxycodone decreases dopamine uptake in the nucleus accumbens core during abstinence. Addict Biol 2022; 27:e13241. [PMID: 36301217 PMCID: PMC10262085 DOI: 10.1111/adb.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
A major obstacle in treating opioid use disorder is the persistence of drug seeking or craving during periods of abstinence, which is believed to contribute to relapse. Dopamine transmission in the mesolimbic pathway is posited to contribute to opioid reinforcement, but the processes by which dopamine influences drug seeking have not been completely elucidated. To examine whether opioid seeking during abstinence is associated with alterations in dopamine transmission, female and male rats self-administered oxycodone under an intermittent access schedule of reinforcement. Following self-administration, rats underwent a forced abstinence period, and cue-induced seeking tests were conducted to assess oxycodone seeking. One day following the final seeking test, rats were sacrificed to perform ex vivo fast scan cyclic voltammetry and western blotting in the nucleus accumbens. Rats displayed reduced dopamine uptake rate on abstinence day 2 and abstinence day 15, compared to oxycodone-naïve rats. Further, on abstinence day 15, rats had reduced phosphorylation of the dopamine transporter. Additionally, local application of oxycodone to the nucleus accumbens reduced dopamine uptake in oxycodone-naïve rats and in rats during oxycodone abstinence, on abstinence day 2 and abstinence day 15. These observations suggest that abstinence from oxycodone results in dysfunctional dopamine transmission, which may contribute to sustained oxycodone seeking during abstinence.
Collapse
Affiliation(s)
- Kyle R. Samson
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| | - Wei Xu
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Sandhya Kortagere
- Drexel University College of Medicine, Department of Microbiology and Immunology
| | - Rodrigo A. España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy
| |
Collapse
|
17
|
Mathieson E, Irving C, Koberna S, Nicholson M, Otto MW, Kantak KM. Role of preexisting inhibitory control deficits vs. drug use history in mediating insensitivity to aversive consequences in a rat model of polysubstance use. Psychopharmacology (Berl) 2022; 239:2377-2394. [PMID: 35391547 PMCID: PMC8989405 DOI: 10.1007/s00213-022-06134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/30/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The nature and predictors of insensitivity to aversive consequences of heroin + cocaine polysubstance use are not well characterized. OBJECTIVES Translational methods incorporating a tightly controlled animal model of drug self-administration and measures of inhibitory control and avoidance behavior might be helpful for clarifying this issue. METHODS The key approach for distinguishing potential contributions of pre-existing inhibitory control deficits vs. drug use history in meditating insensitivity to aversive consequences was comparison of two rat strains: Wistar (WIS/Crl), an outbred strain, and the spontaneously hypertensive rat (SHR/NCrl), an inbred strain shown previously to exhibit heightened cocaine and heroin self-administration and poor inhibitory control relative to WIS/Crl. RESULTS In separate tasks, SHR/NCrl displayed greater impulsive action and compulsive-like behavior than WIS/Crl prior to drug exposure. Under two different schedules of drug delivery, SHR/NCrl self-administered more cocaine than WIS/Crl, but self-administered a similar amount of heroin + cocaine as WIS/Crl. When half the session cycles were punished by random foot shock, SHR/NCrl initially were less sensitive to punishment than WIS/Crl when self-administering cocaine, but were similarly insensitive to punishment when self-administering heroin + cocaine. Based on correlation analyses, only trait impulsivity predicted avoidance capacity in rats self-administering cocaine and receiving yoked-saline. In contrast, only amount of drug use predicted avoidance capacity in rats self-administering heroin + cocaine. Additionally, baseline drug seeking and taking predicted punishment insensitivity in rats self-administering cocaine or heroin + cocaine. CONCLUSIONS Based on the findings revealed in this animal model, human laboratory research concerning the nature and predictors of insensitivity to aversive consequences in heroin and cocaine polysubstance vs. monosubstance users is warranted.
Collapse
Affiliation(s)
- Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Carolyn Irving
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Sarah Koberna
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Megan Nicholson
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Michael W Otto
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
18
|
Prenatal Opioid Exposure Impairs Endocannabinoid and Glutamate Transmission in the Dorsal Striatum. eNeuro 2022; 9:ENEURO.0119-22.2022. [PMID: 35396255 PMCID: PMC9034757 DOI: 10.1523/eneuro.0119-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The opioid crisis has contributed to a growing population of children exposed to opioids during fetal development; however, many of the long-term effects of opioid exposure on development are unknown. We previously demonstrated that opioids have deleterious effects on endocannabinoid plasticity at glutamate synapses in the dorsal striatum of adolescent rodents, but it is unclear whether prenatal opioid exposure produces similar neuroadaptations. Using a mouse model of prenatal methadone exposure (PME), we performed proteomics, phosphoproteomics, and patch-clamp electrophysiology in the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) to examine synaptic functioning in adolescent PME offspring. PME impacted the proteome and phosphoproteome in a region- and sex-dependent manner. Many proteins and phosphorylated proteins associated with glutamate transmission were differentially abundant in PME offspring, which was associated with reduced glutamate release in the DLS and altered the rise time of excitatory events in the DMS. Similarly, the intrinsic excitability properties of DMS neurons were significantly affected by PME. Last, pathway analyses revealed an enrichment in retrograde endocannabinoid signaling in the DLS, but not in the DMS, of males. Electrophysiology studies confirmed that endocannabinoid-mediated synaptic depression was impaired in the DLS, but not DMS, of PME-males. These results indicate that PME induces persistent neuroadaptations in the dorsal striatum and could contribute to the aberrant behavioral development described in offspring with prenatal opioid exposure.
Collapse
|
19
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Addiction and the cerebellum with a focus on actions of opioid receptors. Neurosci Biobehav Rev 2021; 131:229-247. [PMID: 34555385 DOI: 10.1016/j.neubiorev.2021.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 01/19/2023]
Abstract
Increasing evidence suggests that the cerebellum could play a role in the higher cognitive processes involved in addiction as the cerebellum contains anatomical and functional pathways to circuitry controlling motivation and saliency. In addition, the cerebellum exhibits a widespread presence of receptors, including opioid receptors which are known to play a prominent role in synaptic and circuit mechanisms of plasticity associated with drug use and development of addiction to opioids and other drugs of abuse. Further, the presence of perineural nets (PNNs) in the cerebellum which contain proteins known to alter synaptic plasticity could contribute to addiction. The role the cerebellum plays in processes of addiction is likely complex, and could depend on the particular drug of abuse, the pattern of use, and the stage of the user within the addiction cycle. In this review, we discuss functional and structural modifications shown to be produced in the cerebellum by opioids that exhibit dependency-inducing properties which provide support for the conclusion that the cerebellum plays a role in addiction.
Collapse
|
21
|
Nguyen JD, Grant Y, Taffe MA. Paradoxical changes in brain reward status during oxycodone self-administration in a novel test of the negative reinforcement hypothesis. Br J Pharmacol 2021; 178:3797-3812. [PMID: 33948939 PMCID: PMC8387405 DOI: 10.1111/bph.15520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The extra medical use of, and addiction to, prescription opioid analgesics is a growing health problem. To characterize how prescription opioid abuse develops, this study investigated the affective consequences of escalating prescription opioid use using intracranial self-stimulation (ICSS) reward and oxycodone intravenous self-administration (IVSA) models. EXPERIMENTAL APPROACH Male Wistar rats were given access to oxycodone IVSA (0.15 mg·kg-1 per infusion, i.v.) in short-access (ShA; 1 h) or long-access (LgA; 12 h) sessions for five sessions per week followed by intermittent 60-h discontinuations from drug access, a novel explicit test of the negative reinforcement hypothesis. Separate groups were first trained in the ICSS procedure and then in oxycodone IVSA in 11-h LgA sessions. KEY RESULTS Rats given LgA to oxycodone escalated their responding more than ShA rats, with further significant increases observed following each 60-h discontinuation. Presession brain reward thresholds increased with sequential daily LgA IVSA sessions, consistent with a growing negative affective state consequent to successive daily intoxication/abstinence cycles. A 1-h oxycodone IVSA interval was sufficient to normalize these elevated reward thresholds, as was, paradoxically, a 60-h weekend abstinence. The increase in ICSS thresholds was attenuated in a group treated with the long-acting κ-opioid antagonist norbinaltorphimine prior to IVSA training. CONCLUSION AND IMPLICATIONS Changes in brain reward function during escalation of oxycodone self-administration are driven by an interplay between κ-opioid receptor-mediated negative affective state associated with escalated oxycodone intake and dynamic restoration of brain reward status during longer periods of abstinence.
Collapse
Affiliation(s)
- Jacques D. Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Michael A. Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
22
|
Blackwood CA, McCoy MT, Ladenheim B, Cadet JL. Oxycodone self-administration activates the mitogen-activated protein kinase/ mitogen- and stress-activated protein kinase (MAPK-MSK) signaling pathway in the rat dorsal striatum. Sci Rep 2021; 11:2567. [PMID: 33510349 PMCID: PMC7843984 DOI: 10.1038/s41598-021-82206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
To identify signaling pathways activated by oxycodone self-administration (SA), Sprague–Dawley rats self-administered oxycodone for 20 days using short—(ShA, 3 h) and long-access (LgA, 9 h) paradigms. Animals were euthanized 2 h after SA cessation and dorsal striata were used in post-mortem molecular analyses. LgA rats escalated their oxycodone intake and separated into lower (LgA-L) or higher (LgA-H) oxycodone takers. LgA-H rats showed increased striatal protein phosphorylation of ERK1/2 and MSK1/2. Histone H3, phosphorylated at serine 10 and acetylated at lysine 14 (H3S10pK14Ac), a MSK1/2 target, showed increased abundance only in LgA-H rats. RT-qPCR analyses revealed increased AMPA receptor subunits, GluA2 and GluA3 mRNAs, in the LgA-H rats. GluA3, but not GluA2, mRNA expression correlated positively with changes in pMSK1/2 and H3S10pK14Ac. These findings suggest that escalated oxycodone SA results in MSK1/2-dependent histone phosphorylation and increases in striatal gene expression. These observations offer potential avenues for interventions against oxycodone addiction.
Collapse
Affiliation(s)
- Christopher A Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
23
|
Salisbury AJ, Blackwood CA, Cadet JL. Prolonged Withdrawal From Escalated Oxycodone Is Associated With Increased Expression of Glutamate Receptors in the Rat Hippocampus. Front Neurosci 2021; 14:617973. [PMID: 33536871 PMCID: PMC7848144 DOI: 10.3389/fnins.2020.617973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
People suffering from opioid use disorder (OUD) exhibit cognitive dysfunctions. Here, we investigated potential changes in the expression of glutamate receptors in rat hippocampi at 2 h and 31 days after the last session of oxycodone self-administration (SA). RNA extracted from the hippocampus was used in quantitative polymerase chain reaction analyses. Rats, given long-access (9 h per day) to oxycodone (LgA), took significantly more drug than rats exposed to short-access (3 h per day) (ShA). In addition, LgA rats could be further divided into higher oxycodone taking (LgA-H) or lower oxycodone taking (LgA-L) groups, based on a cut-off of 50 infusions per day. LgA rats, but not ShA, rats exhibited incubation of oxycodone craving. In addition, LgA rats showed increased mRNA expression of GluA1-3 and GluN2a-c subunits as well as Grm3, Grm5, Grm6, and Grm8 subtypes of glutamate receptors after 31 days but not after 2 h of stopping the SA experiment. Changes in GluA1-3, Grm6, and Grm8 mRNA levels also correlated with increased lever pressing (incubation) after long periods of withdrawal from oxycodone. More studies are needed to elucidate the molecular mechanisms involved in altering the expression of these receptors during withdrawal from oxycodone and/or incubation of drug seeking.
Collapse
Affiliation(s)
| | | | - Jean Lud Cadet
- National Institute on Drug Abuse, Molecular Neuropsychiatry Branch, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
24
|
Blum K, Cadet JL, Gold MS. Psychostimulant use disorder emphasizing methamphetamine and the opioid -dopamine connection: Digging out of a hypodopaminergic ditch. J Neurol Sci 2021; 420:117252. [PMID: 33279726 DOI: 10.1016/j.jns.2020.117252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Approved food and drug administration (FDA) medications to treat Psychostimulant Use Disorder (PUD) are needed. Both acute and chronic neurological deficits related to the neurophysiological effects of these powerfully addictive drugs can cause stroke and alterations in mood and cognition. OBJECTIVE This article presents a brief review of the psychiatric and neurobiological sequelae of methamphetamine use disorder, some known neurogenetic associations impacted by psychostimulants, and explores treatment modalities and outcomes. HYPOTHESIS The authors propose that gentle D2 receptor stimulation accomplished via some treatment modalities can induce dopamine release, causing alteration of D2-directed mRNA and thus enhanced function of D2 receptors in the human. This proliferation of D2 receptors, in turn, will induce the attenuation of craving behavior, especially in genetically compromised high-risk populations. DISCUSSION A better understanding of the involvement of molecular neurogenetic opioid, mesolimbic dopamine, and psychostimulant connections in "wanting" supports this hypothesis. While both scientific and, clinical professionals search for an FDA approved treatment for PUD the induction of dopamine homeostasis, via activation of the brain reward circuitry, offers treatment for underlying neurotransmitter functional deficits, potential prophylaxis, and support for recovery efforts. CONCLUSION Dopamine regulation may help people dig out of their hypodopaminergia ditch.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA, Baltimore, MD, United States of America.
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, United States of America
| | - Mark S Gold
- Department of Psychiatry, Washington University, St Louis, MO, United States of America.
| |
Collapse
|
25
|
Barker JS, Hines RM. Regulation of GABA A Receptor Subunit Expression in Substance Use Disorders. Int J Mol Sci 2020; 21:ijms21124445. [PMID: 32580510 PMCID: PMC7352578 DOI: 10.3390/ijms21124445] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABAARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABAARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABAAR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABAAR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABAAR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.
Collapse
|
26
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|