1
|
Matlyuba Jakhonkulovna S, Bahodirova Kamolovna G, Zokirov M, Umida Tajimuratovna B, Yumashev A, Shichiyakh R, Safarova NI, Nargiza Nusratovna A, Esanmuradova N, Muyassar Karimbaevna T, Lazizakhon A, Ishankulov A. Electrochemical biosensors for early detection of Alzheimer's disease. Clin Chim Acta 2025; 572:120278. [PMID: 40185381 DOI: 10.1016/j.cca.2025.120278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
In recent years, electrochemical biosensors have shown great promise as innovative tools for the early identification of Alzheimer's disease (AD), a neurodegenerative disorder that severely affects cognitive ability and overall quality of life. This comprehensive review aims to consolidate the latest research on the creation and implementation of electrochemical biosensors designed to detect AD-related biomarkers. We examine cutting-edge approaches to surface modification that enhance the attachment of biorecognition molecules, thus enabling the simultaneous identification of multiple biomarkers. This review emphasizes the crucial role that electrochemical biosensors play in the early diagnosis of Alzheimer's disease, highlighting their potential to revolutionize clinical practices by facilitating timely interventions. In the future, research efforts should concentrate on refining these technologies for widespread clinical adoption, ensuring that they meet the needs of both healthcare professionals and patients.
Collapse
Affiliation(s)
| | - Gulnoz Bahodirova Kamolovna
- Department of Scientific Research, Innovations and Scientific and Pedagogical Personnel Training International School of Finance Technology and Science (ISFT Institute), Uzbekistan
| | | | | | - Alexey Yumashev
- Department of Prosthetic Dentistry, Doctor of Medicine, Professor Sechenov First Moscow State Medical University, Russia
| | - Rustem Shichiyakh
- Department of Management, Candidate of Economic Sciences, Associate Professor. Kuban State Agrarian University named after I.T. Trubilin, Krasnodar, Russia
| | - Nasiba I Safarova
- Department of Otorhinolaryngology, Faculty of Postgraduate Education, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Nilufar Esanmuradova
- "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan; Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Tadjibaeva Muyassar Karimbaevna
- Department of Zoology, Human Morphophysiology and Nutrition (PhD), Nukus State Pedagogical Institute Named After Ajiniyaz, Uzbekistan
| | - Alidjanova Lazizakhon
- International Islamic Academy of Uzbekistan, Senior Lecturer of "UNESCO Chair on Religious Studies and the Comparative Study of World Religions", Kadiri st. 11, Tashkent, Uzbekistan
| | - Alisher Ishankulov
- Samarkand State University named after Sharof Rashidov, Uzbekistan; Kimyo International University in Tashkent, Branch Samarkand, Uzbekistan
| |
Collapse
|
2
|
Ren J, Wang Y, Wang Y, Zhang Y, Xing M, Deng S, Tong S, Wang L, Zheng C, Yang J, Ni G, Ming D. Dynamic changes of hippocampal dendritic spines in Alzheimer's disease mice among the different stages. Exp Neurol 2025; 390:115266. [PMID: 40246009 DOI: 10.1016/j.expneurol.2025.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptides and a progressive decline in cognitive function. Hippocampus as a crucial brain area for learning and memory, is also adversely affected by AD's pathology. The accumulation of Aβ is often associated with the loss of dendritic spines of the hippocampus. However, the dynamic alterations in dendritic spines throughout AD progression are not fully understood. To investigate it, we conducted in-vivo imaging in two mouse models representing the early and late stages of AD pathology: young mice injected with Aβ1-42 oligomers and APP/PS1 transgenic mice. In the early-stage AD model, imaging was conducted at third- and fifth- weeks post-injection. In the late-stage AD model, a four-month imaging began at 14 months old. The imaging results showed spine elimination in both models. Notably, acute Aβ exposure was linked to heightened spine loss on secondary dendrites, while in the late stage the primary effect was on tertiary dendrites. Concurrently, with the metabolism of Aβ, cognition recovered to some extent by five weeks post Aβ1-42 exposure. These findings suggested that dendritic spine plasticity was impaired during the development of AD, as evidenced by increasing spine loss at different levels. However, the cognitive recovery observed in early-stage AD model mice may indicate a compensatory structural reorganization, highlighting the potential of early intervention to mitigate disease progression. Our results provide novel insights into the neurotoxic effects of Aβ1-42 and may contribute to the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jing Ren
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yimeng Wang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yinuo Wang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yiping Zhang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Mu Xing
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Shouzhe Deng
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Siyi Tong
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Ling Wang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China
| | - Chenguang Zheng
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China
| | - Jiajia Yang
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China.
| | - Guangjian Ni
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China.
| | - Dong Ming
- Medical School of Tianjin University, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300392, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Athari SZ, Kazmi S, Vatandoust SM, Mahmoudi J, Farajdokht F, Hajihosseinlou F, Ghaderi P, Majdi A, Sadigh-Eteghad S. Varenicline Attenuates Memory Impairment in Amyloid-Beta-Induced Rat Model of Alzheimer's Disease. Neurochem Res 2025; 50:86. [PMID: 39869225 DOI: 10.1007/s11064-025-04338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an α4β2 nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function. This study aimed to evaluate varenicline's effect on memory and hippocampal activity in rat model of AD. Forty-eight adult male Wistar rats were randomly assigned to control, sham, AD, and varenicline (0.1, 1, and 3 mg/kg/po for 14 days) groups. AD was induced by intracerebroventricular (i.c.v.) injection of 4 µl amyloid-beta (Aβ)1-42 (1 µg/µl). Spatial learning and memory, hippocampal synaptic function, and CA1 electrophysiological activity were evaluated using appropriate methods. Barnes maze and T-maze behavioral tests revealed that varenicline, particularly at 1 mg/kg, significantly improved spatial memory compared to the AD group. Western blot analysis showed varenicline's ability to upregulate synaptic proteins PSD-95, synaptophysin, and GAP-43 in the hippocampus, with the most significant effects observed at 1 mg/kg. Electrophysiological recordings demonstrated that varenicline at 1 mg/kg enhanced hippocampal long-term potentiation (LTP), indicating improved synaptic plasticity. Single-unit recordings showed an increase in spike count with varenicline administration. These findings suggest that varenicline, particularly at 1 mg/kg, ameliorates memory deficits in AD rats possibly through modulation of synaptic proteins and enhancement of hippocampal LTP and electrical activity. Further investigations are warranted to elucidate varenicline's precise mechanisms of action in alleviating AD-induced cognitive deficits and its potential as a therapeutic intervention for AD-related cognitive impairment.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pedram Ghaderi
- Department of Functional and Clinical Anatomy, Medical University of Innsbruck, Innsbruck, Austria
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alireza Majdi
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Jones RM, DeRuiter RM, Deshmukh M, Dayton PA, Pinton GF. Non-invasive volumetric ultrasound localization microscopy detects vascular changes in mice with Alzheimer's disease. Theranostics 2025; 15:1110-1121. [PMID: 39776806 PMCID: PMC11700853 DOI: 10.7150/thno.99097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's Disease (AD) is the most common form of dementia and one of the leading causes of death. AD is known to be correlated to tortuosity in the microvasculature as well as decreases in blood flow throughout the brain. However, the mechanisms behind these changes and their causal relation to AD are poorly understood. Methods: Here, we use volumetric ultrasound localization microscopy (ULM) to non-invasively and quantitatively compare the microvascular morphology and flow dynamics of five wildtype (WT) and five APPNL-G-F Knock-in mice, a mouse model of AD, across a 1cmx1cmx1cm brain volume and in four specific brain regions: the hippocampal formation, thalamus, hypothalamus, and cerebral cortex. Results: Comparisons between groups showed a significant increase in tortuosity, as measured by the Sum of Angles Metric (SOAM), throughout the brain (p < 0.01) and the hypothalamus (p = 0.01), in mice with AD. While differences in mean velocity (p < 0.01) and blood flow (p=0.04) were detected across the whole brain, their effect size was small and no differences were detected in the four selected regions. There was a significant decrease in the linear log relationship between vessel diameter and blood flow, with AD mice experiencing a lower slope than WT mice across the whole brain volume (p = 0.02) and in the hippocampal formation (p = 0.05), a region affected by Amyloid Beta plaques in this mouse model. The AD mice had higher blood flows in smaller vessels and smaller blood flows in larger vessels than the WT mice. Conclusions: This preliminary demonstrates that the imaging technique can be used for non-invasive, longitudinal, volumetric assessment of AD, which may allow for investigation into the poorly understood microvascular degeneration associated with AD through time as well as the development of early diagnostic techniques.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Ryan M. DeRuiter
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Gianmarco F. Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| |
Collapse
|
5
|
Maisto N, Mango D. Nose to brain strategy coupled to nano vesicular system for natural products delivery: Focus on synaptic plasticity in Alzheimer's disease. J Pharm Anal 2024; 14:101057. [PMID: 39802402 PMCID: PMC11718335 DOI: 10.1016/j.jpha.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 01/16/2025] Open
Abstract
A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β (Aβ) in ex vivo and in vivo Alzheimer's disease (AD) models, suggesting a possible use in the treatment of this neurodegenerative disorder. However, several compounds, administered parenterally and orally, are unable to reach the brain due to the presence of the blood-brain barrier (BBB) which prevents the passage of external substances, such as proteins, peptides, or phytocompounds, representing a limit to the development of treatment for neurodegenerative diseases, such as AD. The combination of nano vesicular systems, as colloidal systems, and nose to brain (NtB) delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases, including the use of natural molecules in combination therapy for AD. Herein, we will provide an updated overview, examining the literature of the last 20 years and using specific keywords that provide evidence on natural products with the ability to restore synaptic plasticity alterations in AD models, and the possible application using safe and non-invasive strategies focusing on nano vesicular systems for NtB delivery.
Collapse
Affiliation(s)
- Nunzia Maisto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, 00185, Italy
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
| | - Dalila Mango
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, 00161, Italy
- School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
6
|
Wang S, Greenbaum J, Qiu C, Swerdlow RH, Haeri M, Gong Y, Shen H, Xiao H, Deng H. Gene interactions analysis of brain spatial transcriptome for Alzheimer's disease. Genes Dis 2024; 11:101337. [PMID: 39281834 PMCID: PMC11402150 DOI: 10.1016/j.gendis.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 09/18/2024] Open
Abstract
Recent studies have explored the spatial transcriptomics patterns of Alzheimer's disease (AD) brain by spatial sequencing in mouse models, enabling the identification of unique genome-wide transcriptomic features associated with different spatial regions and pathological status. However, the dynamics of gene interactions that occur during amyloid-β accumulation remain largely unknown. In this study, we performed analyses on ligand-receptor communication, transcription factor regulatory network, and spot-specific network to reveal the dependence and the dynamics of gene associations/interactions on spatial regions and pathological status with mouse and human brains. We first used a spatial transcriptomics dataset of the App NL-G-F knock-in AD and wild-type mouse model. We revealed 17 ligand-receptor pairs with opposite tendencies throughout the amyloid-β accumulation process and showed the specific ligand-receptor interactions across the hippocampus layers at different extents of pathological changes. We then identified nerve function related transcription factors in the hippocampus and entorhinal cortex, as well as genes with different transcriptomic association degrees in AD versus wild-type mice. Finally, another independent spatial transcriptomics dataset from different AD mouse models and human single-nuclei RNA-seq data/AlzData database were used for validation. This is the first study to identify various gene associations throughout amyloid-β accumulation based on spatial transcriptomics, establishing the foundations to reveal advanced and in-depth AD etiology from a novel perspective based on the comprehensive analyses of gene interactions that are spatio-temporal dependent.
Collapse
Affiliation(s)
- Shengran Wang
- Reproductive Medicine Center, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Russell H. Swerdlow
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mohammad Haeri
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
El Hajji S, Shiga Y, Belforte N, Solorio YC, Tastet O, D’Onofrio P, Dotigny F, Prat A, Arbour N, Fortune B, Di Polo A. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. SCIENCE ADVANCES 2024; 10:eadl5722. [PMID: 39110798 PMCID: PMC11305393 DOI: 10.1126/sciadv.adl5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.
Collapse
Affiliation(s)
- Sana El Hajji
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nicolas Belforte
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Philippe D’Onofrio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Florence Dotigny
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Ghorbandaiepour T, Sadroddiny E, Zahmatkesh M, Hassanzadeh G. Inhibition of hippocampal melatonin synthesis by siRNA induced learning and memory deficits in male rats. Horm Behav 2024; 164:105599. [PMID: 38964019 DOI: 10.1016/j.yhbeh.2024.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Melatonin, the multi-functional neurohormone, is synthesized in the extra-pineal tissues such as the hippocampus. The key enzyme in hippocampal melatonin synthesis is arylalkylamine-N-acetyltransferase (AANAT). The importance of melatonin synthesis in the hippocampus has not yet been determined. We investigated hippocampal AANAT role in cognitive function using gene silencing small interference RNA (siRNA) technology. The hippocampal local melatonin synthesis was inhibited by AANAT-siRNA injection. The time-gene silencing profile of AANAT-siRNA was obtained by RT-PCR technique. The cytotoxicity of siRNA dose was determined by MTT assay on the B65 neural cells. Animals received the selected dosage of AANAT-siRNA. Then, the spatial working memory (Y maze), object recognition memory and spatial reference memory (Morris's water maze, MWM) were evaluated. The anxiety-like behaviors were evaluated by the elevated plus maze. After one week, following the probe test of MWM, the rats were sacrificed for histological analysis. The hippocampal melatonin levels were measured using the liquid chromatography-mass spectrometry technique. The hippocampal melatonin levels in the AANAT-siRNA group decreased. Animals receiving the AANAT-siRNA showed deficits in spatial learning and working memory which were verified by increased escape latency and reduced spontaneous alternations, respectively. There was an increase in anxiety-like behaviors as well as a deficit in recognition memory in the AANAT-siRNA group. The Nissl staining and immunohistochemistry of activated caspase-3 showed the neuronal loss and cell apoptosis in hippocampal tissue of the AANAT-siRNA group. The 18F-FDG-PET imaging displayed lower glucose metabolism following the reduction in AANAT mRNA. Data suggest that the AANAT mRNA and hippocampal melatonin synthesis might be an essential factor for learning, memory and some aspects of cognition, as well as homeostasis of hippocampal cells.
Collapse
Affiliation(s)
- Tahereh Ghorbandaiepour
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Hassanzadeh
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Khamies SM, El-Yamany MF, Ibrahim SM. Canagliflozin Mitigated Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice: Role of AMPK/SIRT-1 Signaling Pathway in Modulating Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:39. [PMID: 39073453 DOI: 10.1007/s11481-024-10140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Sporadic Alzheimer's disease (SAD) represents a major health concern especially among elderly. Noteworthy, neuroinflammation and oxidative stress are highly implicated in AD pathogenesis resulting in enhanced disease progression. Moreover, most of the available anti-Alzheimer drugs have several adverse effects with variable efficacy, therefore new strategies, including agents with anti-inflammatory and antioxidant effects, are encouraged. Along these lines, canagliflozin (CAN), with its anti-inflammatory and anti-apoptotic activities, presents a promising candidate for AD treatment. Therefore, this study aimed to evaluate the therapeutic potential of CAN via regulation of AMPK/SIRT-1/BDNF/GSK-3β signaling pathway in SAD. SAD model was induced by intracerebroventricular streptozotocin injection (ICV-STZ;3 mg/kg, once), while CAN was administered (10 mg/kg/day, orally) to STZ-treated mice for 21 days. Behavioral tests, novel object recognition (NOR), Y-Maze, and Morris Water Maze (MWM) tests, histopathological examination, total adenosine monophosphate-activated protein kinase (T-AMPK) expression, p-AMPK, and silent information regulator-1 (SIRT-1) were evaluated. Furthermore, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3β (GSK-3β), acetylcholinesterase (AChE), Tau protein, insulin-degrading enzyme (IDE), nuclear factor erythroid-2 (Nrf-2), interleukin-6 (IL-6), nuclear factor kappa-B-p65 (NFκB-p65), beta-site APP cleaving enzyme 1 (BACE-1), and amyloid beta (Aβ) plaque were assessed. CAN restored STZ-induced cognitive deficits, confirmed by improved behavioral tests and histopathological examination. Besides, CAN halted STZ-induced neurotoxicity through activation of p-AMPK/SIRT-1/BDNF pathway, subsequently reduction of GSK-3β, Tau protein, AChE, NFκB-p65, IL-6, BACE-1, and Aβ plaque associated with increased IDE and Nrf-2. Consequentially, our findings assumed that CAN, via targeting p-AMPK/SIRT-1 pathway, combated neuroinflammation and oxidative stress in STZ-induced AD. Thus, this study highlighted the promising effect of CAN for treating AD.
Collapse
Affiliation(s)
- Sara M Khamies
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Menoufia University, Menoufia, 32511, Egypt
| | - Mohammed F El-Yamany
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Sherehan M Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
10
|
Basir HS, Mirazi N, Komaki A, Hosseini A. Cacao consumption improves passive avoidance memory impairment in a rat model of Alzheimer's disease: the role of hippocampal synaptic plasticity and oxidative stress. Front Pharmacol 2024; 15:1379264. [PMID: 38756381 PMCID: PMC11096498 DOI: 10.3389/fphar.2024.1379264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) causes progressive loss of cognitive function and synaptic plasticity, which is the most common form of dementia. The present study was designed to scrutinize the effects of cacao on passive avoidance memory function and to identify the roles of hippocampal synaptic plasticity and oxidative stress in an AD rat model induced by unilateral intracerebroventricular (UICV) injection of amyloid-beta (Aβ). Methods: Oral administration of cacao (500 mg/kg/ day) was given for 2 consecutive months. A memory retention test was conducted 24 h after passive avoidance training was completed. Subsequently, the amplitude of population spike (PS) and slope of field excitatory postsynaptic potentials (fEPSPs) were assessed at hippocampal long-term potentiation (LTP) in perforant pathway-dentate gyrus (PP-DG) synapses. Moreover, total thiol group (TTG) and malondialdehyde (MDA) concentrations were evaluated in the plasma. Furthermore, compact Aβ plaques were detected in the hippocampal DG by performing Congo red staining. Results: As a result of AD induction, passive avoidance memory was impaired; also, reduced fEPSP slopes, PS amplitudes, and content of TTG, and increase in MDA levels in the rats were observed. In contrast, cacao treatment ameliorated passive avoidance memory impairment, improved hippocampal LTP impairment, modulated oxidative-antioxidative status, and delayed Aβ plaques production in AD rats. Disscussion: Conclusively, cacao alleviates Aβ-induced cognitive deficit, probably by the amelioration of hippocampal LTP impairment, modulation of oxidative-antioxidative status, and inhibition of Aβ plaque accumulation.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Scheinman SB, Tseng KY, Alford S, Tai LM. Higher Neuronal Facilitation and Potentiation with APOE4 Suppressed by Angiotensin II. Mol Neurobiol 2024; 61:120-131. [PMID: 37589833 PMCID: PMC10843153 DOI: 10.1007/s12035-023-03556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aβ are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Zhong P, Cao Q, Yan Z. Distinct and Convergent Alterations of Entorhinal Cortical Circuits in Two Mouse Models for Alzheimer's Disease and Related Disorders. J Alzheimers Dis 2024; 98:1121-1131. [PMID: 38489190 PMCID: PMC11432142 DOI: 10.3233/jad-231413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background The impairment of neural circuits controlling cognitive processes has been implicated in the pathophysiology of Alzheimer's disease and related disorders (ADRD). However, it is largely unclear what circuits are specifically changed in ADRD, particularly at the early stage. Objective Our goal of this study is to reveal the functional changes in the circuit of entorhinal cortex (EC), an interface between neocortex and hippocampus, in AD. Methods Electrophysiological, optogenetic and chemogenetic approaches were used to examine and manipulate entorhinal cortical circuits in amyloid-β familial AD model (5×FAD) and tauopathy model (P301S Tau). Results We found that, compared to wild-type mice, electrical stimulation of EC induced markedly smaller responses in subiculum (hippocampal output) of 5×FAD mice (6-month-old), suggesting that synaptic communication in the EC to subiculum circuit is specifically blocked in this AD model. In addition, optogenetic stimulation of glutamatergic terminals from prefrontal cortex (PFC) induced smaller responses in EC of 5×FAD and P301S Tau mice (6-month-old), suggesting that synaptic communication in the PFC to EC pathway is compromised in both ADRD models. Chemogenetic activation of PFC to EC pathway did not affect the bursting activity of EC neurons in 5×FAD mice, but partially restored the diminished EC neuronal activity in P301S Tau mice. Conclusions These data suggest that 5×FAD mice has a specific impairment of short-range hippocampal gateway (EC to subiculum), which may be caused by amyloid-β deposits; while two ADRD models have a common impairment of long-range cortical to hippocampal circuit (PFC to EC), which may be caused by microtubule/tau-based transport deficits. These circuit deficits provide a pathophysiological basis for unique and common impairments of various cognitive processes in ADRD conditions.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Qing Cao
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
13
|
Roddick KM, Schellinck HM, Brown RE. Serial reversal learning in an olfactory discrimination task in 3xTg-AD mice. Learn Mem 2023; 30:310-319. [PMID: 37977821 PMCID: PMC10750865 DOI: 10.1101/lm.053840.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Male and female 3xTg-AD mice between 5 and 24 mo of age and their B6129F2/J wild-type controls were tested on a series of 18 olfactory discrimination and reversal tasks in an operant olfactometer. All mice learned the odor discriminations and reversals to a criterion of 85% correct, but the 3xTg-AD mice made fewer errors than the B6129F2/J mice in the odor discriminations and in the first six reversal learning tasks. Many mice showed evidence of near errorless learning, and on the reversal tasks the 3xTg-AD mice showed more instances of near errorless learning than the B6129F2/J mice. There was no evidence of an age effect on odor discrimination, but there was a decrease in errorless reversal learning in aged B6129F2/J mice. In long-term memory tests, there was an increase in the number of errors made but no genotype difference. The high level of performance indicates that the mice were able to develop a "learning to learn" strategy. The finding that the 3xTg-AD mice outperformed their littermate controls provides an example of paradoxical functional facilitation in these mice.
Collapse
Affiliation(s)
- Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Heather M Schellinck
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
14
|
Jiménez-Herrera R, Contreras A, Djebari S, Mulero-Franco J, Iborra-Lázaro G, Jeremic D, Navarro-López J, Jiménez-Díaz L. Systematic characterization of a non-transgenic Aβ 1-42 amyloidosis model: synaptic plasticity and memory deficits in female and male mice. Biol Sex Differ 2023; 14:59. [PMID: 37716988 PMCID: PMC10504764 DOI: 10.1186/s13293-023-00545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND The amyloid-β (Aβ) cascade is one of the most studied theories linked to AD. In multiple models, Aβ accumulation and dyshomeostasis have shown a key role in AD onset, leading to excitatory/inhibitory imbalance, the impairments of synaptic plasticity and oscillatory activity, and memory deficits. Despite the higher prevalence of Alzheimer's disease (AD) in women compared to men, the possible sex difference is scarcely explored and the information from amyloidosis transgenic mice models is contradictory. Thus, given the lack of data regarding the early stages of amyloidosis in female mice, the aim of this study was to systematically characterize the effect of an intracerebroventricular (icv.) injection of Aβ1-42 on hippocampal-dependent memory, and on associated activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse, in both male and female mice. METHODS To do so, we evaluated long term potentiation (LTP) with ex vivo electrophysiological recordings as well as encoding and retrieval of spatial (working, short- and long-term) and exploratory habituation memories using Barnes maze and object location, or open field habituation tasks, respectively. RESULTS Aβ1-42 administration impaired all forms of memory evaluated in this work, regardless of sex. This effect was displayed in a long-lasting manner (up to 17 days post-injection). LTP was inhibited at a postsynaptic level, both in males and females, and a long-term depression (LTD) was induced for the same prolonged period, which could underlie memory deficits. CONCLUSIONS In conclusion, our results provide further evidence on the shifting of LTP/LTD threshold due to a single icv. Aβ1-42 injection, which underly cognitive deficits in the early stages of AD. These long-lasting cognitive and functional alterations in males and females validate this model for the study of early amyloidosis in both sexes, thus offering a solid alternative to the inconsistence of amyloidosis transgenic mice models.
Collapse
Affiliation(s)
- Raquel Jiménez-Herrera
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ana Contreras
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Jaime Mulero-Franco
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Guillermo Iborra-Lázaro
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Danko Jeremic
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Juan Navarro-López
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
15
|
Reekes TH, Devinney MJ, Berger M. Amyloid beta and postoperative delirium: partners in crime or strangers in the dark? Br J Anaesth 2023; 131:205-208. [PMID: 37330308 DOI: 10.1016/j.bja.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023] Open
Abstract
Postoperative delirium is a particularly debilitating complication of surgery and perioperative care. Although the aetiology of postoperative delirium is not entirely understood, recent evidence suggests that Alzheimer's disease and related dementias pathology plays an important role in the development of postoperative delirium. A recent study evaluating postoperative changes in plasma beta amyloid (Aβ) levels found increased Aβ across the postoperative period, but the association with postoperative delirium incidence and severity was variable. These findings support the idea that Alzheimer's disease and related dementias pathology in combination with blood-brain barrier dysfunction and neuroinflammation may impart risk for postoperative delirium.
Collapse
Affiliation(s)
- Tyler H Reekes
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Liu J, Liu S, Zeng L, Tsilioni I. Amyloid Beta Peptides Lead to Mast Cell Activation in a Novel 3D Hydrogel Model. Int J Mol Sci 2023; 24:12002. [PMID: 37569378 PMCID: PMC10419190 DOI: 10.3390/ijms241512002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease and the world's primary cause of dementia among the elderly population. The aggregation of toxic amyloid-beta (Aβ) is one of the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as one of the major features of AD, which involves a network of interactions between immune cells. The mast cell (MC) is an innate immune cell type known to serve as a first responder to pathological changes and crosstalk with microglia and neurons. Although an increased number of mast cells were found near the sites of Aβ deposition, how mast cells are activated in AD is not clear. We developed a 3D culture system to culture MCs and investigated the activation of MCs by Aβ peptides. Because collagen I is the major component of extracellular matrix (ECM) in the brain, we encapsulated human LADR MCs in gels formed by collagen I. We found that 3D-cultured MCs survived and proliferated at the same level as MCs in suspension. Additionally, they can be induced to secrete inflammatory cytokines as well as MC proteases tryptase and chymase by typical MC activators interleukin 33 (IL-33) and IgE/anti-IgE. Culturing with peptides Aβ1-42, Aβ1-40, and Aβ25-35 caused MCs to secrete inflammatory mediators, with Aβ1-42 inducing the maximum level of activation. These data indicate that MCs respond to amyloid deposition to elicit inflammatory responses and demonstrate the validity of collagen gel as a model system to investigate MCs in a 3D environment to understand neuroinflammation in AD.
Collapse
Affiliation(s)
- Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| | - Sihan Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
- Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Program in Pharmacology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Orthopaedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; (J.L.)
| |
Collapse
|
17
|
Rastogi V, Jain A, Kumar P, Yadav P, Porwal M, Chaturvedi S, Chandra P, Verma A. A critical review on the role of nanotheranostics mediated approaches for targeting β amyloid in Alzheimer's. J Drug Target 2023:1-20. [PMID: 37459647 DOI: 10.1080/1061186x.2023.2238250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Alzheimer's is one of the most common neurodegenerative illnesses that affect brain cellular function. In this disease, the neurons in the brain are considered to be decaying steadily but consistently by the accumulation of amyloid mass, particularly the β-amyloids, amyloid proteins, and Tau proteins. The most responsible amyloid-proteins are amyloid-40 and amyloid-42, which have a high probability of accumulating in excess over the brain cell, interfering with normal brain cell function and triggering brain cell death. The advancement of pharmaceutical sciences leads to the development of Nanotheranostics technology, which may be used to diagnose and treat Alzheimer's. They are the colloidal nanoparticles functionalised with the therapeutic moiety as well as a diagnostic moiety. This article discusses the prognosis of Alzheimer's, various nanotheranostics approaches (nanoparticles, quantum dots, aptamers, dendrimers, etc), and their recent advancement in managing Alzheimer's. Also, various in-vitro and in-vivo diagnostic methodologies were discussed with respect to nanotheranostics.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Anjali Jain
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Prashant Kumar
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Pragya Yadav
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Mayur Porwal
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Phool Chandra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| |
Collapse
|
18
|
Tsai CL, Chou KH, Lee PL, Liang CS, Kuo CY, Lin GY, Lin YK, Hsu YC, Ko CA, Yang FC, Lin CP. Shared alterations in hippocampal structural covariance in subjective cognitive decline and migraine. Front Aging Neurosci 2023; 15:1191991. [PMID: 37409010 PMCID: PMC10318340 DOI: 10.3389/fnagi.2023.1191991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Subjective cognitive decline (SCD) and migraine are often comorbid. Hippocampal structural abnormalities have been observed in individuals with both SCD and migraine. Given the known structural and functional heterogeneity along the long axis (anterior to posterior) of the hippocampus, we aimed to identify altered patterns of structural covariance within hippocampal subdivisions associated with SCD and migraine comorbidities. Methods A seed-based structural covariance network analysis was applied to examine large-scale anatomical network changes of the anterior and posterior hippocampus in individuals with SCD, migraine and healthy controls. Conjunction analyses were used to identify shared network-level alterations in the hippocampal subdivisions in individuals with both SCD and migraine. Results Altered structural covariance integrity of the anterior and posterior hippocampus was observed in the temporal, frontal, occipital, cingulate, precentral, and postcentral areas in individuals with SCD and migraine compared with healthy controls. Conjunction analysis revealed that, in both SCD and migraine, altered structural covariance integrity was shared between the anterior hippocampus and inferior temporal gyri and between the posterior hippocampus and precentral gyrus. Additionally, the structural covariance integrity of the posterior hippocampus-cerebellum axis was associated with the duration of SCD. Conclusion This study highlighted the specific role of hippocampal subdivisions and specific structural covariance alterations within these subdivisions in the pathophysiology of SCD and migraine. These network-level changes in structural covariance may serve as potential imaging signatures for individuals who have both SCD and migraine.
Collapse
Affiliation(s)
- Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Pei-Lin Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chen-Yuan Kuo
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-An Ko
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
19
|
Scheinman SB, Tseng KY, Alford S, Tai LM. Higher Neuronal Facilitation and Potentiation with APOE4 Suppressed by Angiotensin II. RESEARCH SQUARE 2023:rs.3.rs-2960437. [PMID: 37292788 PMCID: PMC10246245 DOI: 10.21203/rs.3.rs-2960437/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aβ are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.
Collapse
Affiliation(s)
| | - Kuei Y Tseng
- University of Illinois at Chicago College of Medicine
| | - Simon Alford
- University of Illinois at Chicago College of Medicine
| | - Leon M Tai
- University of Illinois at Chicago College of Medicine
| |
Collapse
|
20
|
Spatial and Temporal Protein Modules Signatures Associated with Alzheimer Disease in 3xTg-AD Mice Are Restored by Early Ubiquinol Supplementation. Antioxidants (Basel) 2023; 12:antiox12030747. [PMID: 36978996 PMCID: PMC10044705 DOI: 10.3390/antiox12030747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Despite its robust proteopathic nature, the spatiotemporal signature of disrupted protein modules in sporadic Alzheimer’s disease (AD) brains remains poorly understood. This considered oxidative stress contributes to AD progression and early intervention with coenzyme Q10 or its reduced form, ubiquinol, delays the progression of the disease. Using MALDI–MSI and functional bioinformatic analysis, we have developed a protocol to express how deregulated protein modules arise from hippocampus and cortex in the AD mice model 3xTG-AD in an age-dependent manner. This strategy allowed us to identify which modules can be efficiently restored to a non-pathological condition by early intervention with ubiquinol. Indeed, an early deregulation of proteostasis-related protein modules, oxidative stress and metabolism has been observed in the hippocampus of 6-month mice (early AD) and the mirrored in cortical regions of 12-month mice (middle/late AD). This observation has been validated by IHC using mouse and human brain sections, suggesting that these protein modules are also affected in humans. The emergence of disrupted protein modules with AD signature can be prevented by early dietary intervention with ubiquinol in the 3xTG-AD mice model.
Collapse
|
21
|
Nakatsu D, Kunishige R, Taguchi Y, Shinozaki-Narikawa N, Osaka K, Yokomizo K, Ishida M, Takei S, Yamasaki S, Hagiya K, Hattori K, Tsukamoto T, Murata M, Kano F. BMP4-SMAD1/5/9-RUNX2 pathway activation inhibits neurogenesis and oligodendrogenesis in Alzheimer's patients' iPSCs in senescence-related conditions. Stem Cell Reports 2023; 18:688-705. [PMID: 36764297 PMCID: PMC10031282 DOI: 10.1016/j.stemcr.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
In addition to increasing β-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Rina Kunishige
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kishiko Osaka
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kayo Yokomizo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Mami Ishida
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shunsuke Takei
- System Development Department, Technology Solutions Sector, Healthcare Business Unit, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Shoko Yamasaki
- Mathematical Sciences Research Laboratory, Research & Development Division, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Keita Hagiya
- Fujifilm Corporation, 7-3 Akasaka 9, Minato-ku, Tokyo 107-0052, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
22
|
Kang JY, Kim JM, Park SK, Lee HL, Heo HJ. A Mixture of Artemisia argyi and Saururus chinensis Improves PM 2.5-Induced Cognitive Dysfunction by Regulating Oxidative Stress and Inflammatory Response in the Lung and Brain. PLANTS (BASEL, SWITZERLAND) 2023; 12:1230. [PMID: 36986919 PMCID: PMC10059966 DOI: 10.3390/plants12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
This study was performed to investigate the improving effect of a mixture of Artemisia argyi and Saururus chinensis (AASC) on cognitive dysfunction in mice with long-term exposure to fine particles (particulate matter smaller than 2.5 µm: PM2.5). The main compounds of AASC were identified as dicaffeoylquinic acid isomers of A. argyi and a quercetin-3-glucoside of S. chinesis. As a result of behavioral tests for the evaluation of cognitive function, it was confirmed that cognitive dysfunction was induced in the PM2.5 exposure group, and a tendency to improve in the AASC group was confirmed. Increased oxidative stress and inflammatory response and mitochondrial dysfunction were observed in the brain and lung tissues of the PM group. Damage to the brain and lung affected the accumulation of amyloid beta (Aβ) in the brain. It increased Aβ and induced the cholinergic dysfunction, hyperphosphorylation of the tau protein, and activation of apoptosis, leading to cognitive impairment. However, AASC suppressed brain and lung oxidative stress and inflammation, thereby suppressing brain Aβ expression. Consequently, this study shows the potential that a steady intake of plant resources with antioxidant and anti-inflammatory activity could prevent cognitive impairment caused by PM2.5.
Collapse
Affiliation(s)
- Jin-Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seon-Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Korea Food Research institute, Wanju-Gun 55365, Republic of Korea
| | - Hyo-Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho-Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
23
|
Ganeshpurkar A, Singh R, Tripathi P, Alam Q, Krishnamurthy S, Kumar A, Singh SK. Effect of sulfonamide derivatives of phenylglycine on scopolamine-induced amnesia in rats. IBRAIN 2023; 9:13-31. [PMID: 37786521 PMCID: PMC10529173 DOI: 10.1002/ibra.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease responsible for dementia and other neuropsychiatric symptoms. In the present study, compounds 30 and 33, developed earlier in our laboratory as selective butyrylcholinesterase inhibitors, were tested against scopolamine-induced amnesia to evaluate their pharmacodynamic effect. The efficacy of the compounds was determined by behavioral experiments using the Y-maze and the Barnes maze and neurochemical testing. Both compounds reduced the effect of scopolamine treatment in the behavioral tasks at a dose of 20 mg/kg. The results of the neurochemical experiment indicated a reduction in cholinesterase activity in the prefrontal cortex and the hippocampus. The levels of antioxidant enzymes superoxide dismutase and catalase were restored compared to the scopolamine-treated groups. The docking study on rat butyrylcholinesterase (BChE) indicated tight binding, with free energies of -9.66 and -10.23 kcal/mol for compounds 30 and 33, respectively. The two aromatic amide derivatives of 2-phenyl-2-(phenylsulfonamido) acetic acid produced stable complexes with rat BChE in the molecular dynamics investigation.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Ravi Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pratigya Tripathi
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Qadir Alam
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Neurotherapeutics LaboratoryIndian Institute of Technology (Banaras Hindu University)VaranasiUttar PradeshIndia
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Sushil K. Singh
- Department of Pharmaceutical Engineering and Technology, Pharmaceutical Chemistry Research Laboratory IIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
24
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
25
|
Qiu T, Zeng Q, Zhang Y, Luo X, Xu X, Li X, Shen Z, Li K, Wang C, Huang P, Zhang M, Dai S, Xie F. Altered functional connectivity pattern of hippocampal subfields in individuals with objectively-defined subtle cognitive decline and its association with cognition and cerebrospinal fluid biomarkers. Eur J Neurosci 2022; 56:6227-6238. [PMID: 36342704 PMCID: PMC10100315 DOI: 10.1111/ejn.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that in the preclinical phase of Alzheimer's disease (AD), subtle cognitive changes can be detected using sensitive neuropsychological measures, and have proposed the concept of objectively-defined subtle cognitive decline (Obj-SCD). We aimed to assess the functional alteration of hippocampal subfields in individuals with Obj-SCD and its association with cognition and pathological biomarkers. Forty-two participants with cognitively normal (CN), 29 with Obj-SCD, and 55 with mild cognitive impairment (MCI) were retrospectively collected from the ADNI database. Neuropsychological performance, functional MRI, and cerebrospinal fluid (CSF) data were obtained. We calculated the seed-based functional connectivity (FC) of hippocampal subfields (cornu ammonis1 [CA1], CA2/3/dentate gyrus [DG], and subiculum) with whole-brain voxels. Additionally, we analyzed the correlation between FC values of significantly altered regions and neuropsychological performance and CSF biomarkers. The Obj-SCD group showed lower FC between left CA1-CA2/3/DG and right thalamus and higher FC between right subiculum and right superior parietal gyrus (SPG) compared with the CN and MCI groups. In the Obj-SCD group, FC values between left CA2/3/DG and right thalamus were positively associated with Auditory Verbal Learning Test (AVLT) recognition (r = 0.395, p = 0.046) and CSF Aβ1-42 levels (r = 0.466, p = 0.019), and FC values between left CA1 and right thalamus were positively correlated with CSF Aβ1-42 levels (r = 0.530, p = 0.006). Taken together, dysfunction in CA1-CA2/3/DG subregions suggests subtle cognitive impairment and AD-specific pathological changes in individuals with Obj-SCD. Additionally, increased subiculum connectivity may indicate early functional compensation for subtle cognitive changes.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Qingze Zeng
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yusong Zhang
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Xiao Luo
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaopei Xu
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaodong Li
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Zhujing Shen
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Kaicheng Li
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Chao Wang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shouping Dai
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Fei Xie
- Department of Equipment and Medical EngineeringLinyi People's HospitalLinyiChina
| | | |
Collapse
|
26
|
Infantino R, Boccella S, Scuteri D, Perrone M, Ricciardi F, Vitale R, Bonsale R, Parente A, Allocca I, Virtuoso A, De Luca C, Belardo C, Amodeo P, Gentile V, Cirillo G, Bagetta G, Luongo L, Maione S, Guida F. 2-pentadecyl-2-oxazoline prevents cognitive and social behaviour impairments in the Amyloid β-induced Alzheimer-like mice model: Bring the α2 adrenergic receptor back into play. Biomed Pharmacother 2022; 156:113844. [DOI: 10.1016/j.biopha.2022.113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022] Open
|
27
|
Zhang X, Kang X, Du L, Zhang L, Huang Y, Wang J, Wang S, Chang Y, Liu Y, Zhao Y. Tanshinone IIA loaded chitosan nanoparticles decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Free Radic Biol Med 2022; 193:81-94. [PMID: 36195161 DOI: 10.1016/j.freeradbiomed.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that characterized by the accumulation of β-amyloid peptide (Aβ). Overexpressions of Aβ could induce oxidative stress that might be a key insult to initiate the cascades of Aβ accumulation. As a result, anti-oxidative stress and attenuating Aβ accumulation might be one promising intervention for AD treatment. Tanshinone IIA (Tan IIA), a major component of lipophilic tanshinones in Danshen, is proven to be effective in several diseases, including AD. Due to the poor solubility in water, the clinical application of Tan IIA was limited. Therefore, a great number of nanoparticles were designed to overcome this issue. In the current study, we choose chitson as delivery carrier to load Tanshinone IIA (CS@Tan IIA) and explore the protective effects of CS@Tan IIA on the CL2006 strain, a transgenic C. elegans of AD model organism. Compared with Tan IIA monomer, CS@Tan IIA could significantly prolong the lifespan and attenuate the AD-like symptoms, including reducing paralysis and the Aβ deposition by inhibiting the oxidative stress. The mechanism study showed that the protection of CS@Tan IIA was attenuated by knockdown of daf-16 gene, but not skn-1. The results indicated that DAF-16/SOD-3 pathway was required in the protective effects of CS@Tan IIA. Besides DAF-16/SOD-3 pathway, the Tan IIA-loaded CS nanoparticles might protect the C. elegans against the AD insults via promoting autophagy. All the results consistently suggested that coating by chitosan could improve the solubility of Tan IIA and effectively enhance the protective effects of Tan IIA on AD, which might provide a potential drug loading approach for the hydrophobic drugs as Tan IIA.
Collapse
Affiliation(s)
- Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoxuan Kang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jihan Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China.
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuming Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Medicinal Herbs and Their Derived Ingredients Protect against Cognitive Decline in In Vivo Models of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231911311. [PMID: 36232612 PMCID: PMC9569503 DOI: 10.3390/ijms231911311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.
Collapse
|
29
|
Maharjan S, Tsai AP, Lin PB, Ingraham C, Jewett MR, Landreth GE, Oblak AL, Wang N. Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging. Front Neurosci 2022; 16:964654. [PMID: 36061588 PMCID: PMC9428354 DOI: 10.3389/fnins.2022.964654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the age-dependent microstructure changes in 5xFAD mice using high-resolution diffusion tensor imaging (DTI). Methods The 5xFAD mice at 4, 7.5, and 12 months and the wild-type controls at 4 months were scanned at 9.4T using a 3D echo-planar imaging (EPI) pulse sequence with the isotropic spatial resolution of 100 μm. The b-value was 3000 s/mm2 for all the diffusion MRI scans. The samples were also acquired with a gradient echo pulse sequence at 50 μm isotropic resolution. The microstructure changes were quantified with DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD). The conventional histology was performed to validate with MRI findings. Results The FA values (p = 0.028) showed significant differences in the cortex between wild-type (WT) and 5xFAD mice at 4 months, while hippocampus, anterior commissure, corpus callosum, and fornix showed no significant differences for either FA and MD. FA values of 5xFAD mice gradually decreased in cortex (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) and fornix (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) with aging. Both FA (p = 0.029) and MD (p = 0.037) demonstrated significant differences in corpus callosum between 4 and 12 months age old. FA and MD were not significantly different in the hippocampus or anterior commissure. The age-dependent microstructure alterations were better captured by FA when compared to MD. Conclusion FA showed higher sensitivity to monitor amyloid deposition in 5xFAD mice. DTI may be utilized as a sensitive biomarker to monitor beta-amyloid progression for preclinical studies.
Collapse
Affiliation(s)
- Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Megan R. Jewett
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN, United States
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- *Correspondence: Nian Wang,
| |
Collapse
|
30
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
31
|
Autobiographical Memory Loss in Alzheimer’s disease: The role of the Reminiscence Bump. Cortex 2022; 150:137-148. [DOI: 10.1016/j.cortex.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
|
32
|
Tudor A, Vasile AI, Trifu SC, Cristea MB. Morphological classification and changes in dementia (Review). Exp Ther Med 2022; 23:33. [PMID: 34824641 PMCID: PMC8611489 DOI: 10.3892/etm.2021.10955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022] Open
Abstract
The progressive functional decline that involves both cognitive and neuropsychiatric symptoms characteristic to dementia is one of the leading research topics. The risk for dementia is an intertwined mix between aging, genetic risk factors, and environmental influences. APOEε4, which is one of the apolipoprotein E (APOE) alleles, is the major genetic risk factor for late-onset of the most common form of dementia, Alzheimer's. Advances in machine learning have led to the development of artificial intelligence (AI) algorithms to help diagnose dementia by magnetic resonance imaging (MRI) in order to detect it in the preclinical stage. The basis of the determinations starts from the morphometry of cerebral atrophies. The present review focused on MRI techniques which are a leading tool in identifying cortical atrophy, white matter dysfunctionalities, cerebral vessel quality (as a factor for cognitive impairment) and metabolic asymmetries. In addition, a brief overview of Alzheimer's disease was presented and recent neuroimaging in the field of dementia with an emphasis on structural MR imaging and more powerful methods such as diffusion tensor imaging, quantitative susceptibility mapping, and magnetic transfer imaging were explored in order to propose a simple systematic approach for the diagnosis and treatment of dementia.
Collapse
Affiliation(s)
- Alexandra Tudor
- Department of Psychiatry, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Antonia Ioana Vasile
- Department of General Medicine, Medical Military Institute, 010919 Bucharest, Romania
| | - Simona Corina Trifu
- Department of Clinical Neurosciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai Bogdan Cristea
- Department of Morphological Sciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
33
|
Khorani M, Bobe G, Matthews DG, Magana AA, Caruso M, Gray NE, Quinn JF, Stevens JF, Soumyanath A, Maier CS. The Impact of the hAPP695SW Transgene and Associated Amyloid-β Accumulation on Murine Hippocampal Biochemical Pathways. J Alzheimers Dis 2021; 85:1601-1619. [DOI: 10.3233/jad-215084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) peptide in the brain. Objective: Gain a better insight into alterations in major biochemical pathways underlying AD. Methods: We compared metabolomic profiles of hippocampal tissue of 20-month-old female Tg2576 mice expressing the familial AD-associated hAPP695SW transgene with their 20-month-old wild type female littermates. Results: The hAPP695SW transgene causes overproduction and accumulation of Aβ in the brain. Out of 180 annotated metabolites, 54 metabolites differed (30 higher and 24 lower in Tg2576 versus wild-type hippocampal tissue) and were linked to the amino acid, nucleic acid, glycerophospholipid, ceramide, and fatty acid metabolism. Our results point to 1) heightened metabolic activity as indicated by higher levels of urea, enhanced fatty acid β-oxidation, and lower fatty acid levels; 2) enhanced redox regulation; and 3) an imbalance of neuro-excitatory and neuro-inhibitory metabolites in hippocampal tissue of aged hAPP695SW transgenic mice. Conclusion: Taken together, our results suggest that dysregulation of multiple metabolic pathways associated with a concomitant shift to an excitatory-inhibitory imbalance are contributing mechanisms of AD-related pathology in the Tg2576 mouse.
Collapse
Affiliation(s)
- Mona Khorani
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Donald G. Matthews
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Armando Alcazar Magana
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
34
|
Imai Y, Koseki Y, Hirano M, Nakamura S. Nutrigenomic Studies on the Ameliorative Effect of Enzyme-Digested Phycocyanin in Alzheimer's Disease Model Mice. Nutrients 2021; 13:nu13124431. [PMID: 34959983 PMCID: PMC8707209 DOI: 10.3390/nu13124431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, and the cognitive impairments associated with this degenerative disease seriously affect daily life. Nutraceuticals for the prevention or delay of AD are urgently needed. It has been increasingly observed that phycocyanin (PC) exerts neuroprotective effects. AD model mice intracerebroventricularly injected with amyloid beta-peptide 25–35 (Aβ25–35) at 10 nmol/head displayed significant cognitive impairment in the spontaneous alternation test. Cognitive impairment was significantly ameliorated in mice treated with 750 mg/kg of enzyme-digested (ED) PC by daily oral administration for 22 consecutive days. Application of DNA microarray data on hippocampal gene expression to nutrigenomics studies revealed that oral EDPC counteracted the aberrant expression of 35 genes, including Prnp, Cct4, Vegfd (Figf), Map9 (Mtap9), Pik3cg, Zfand5, Endog, and Hbq1a. These results suggest that oral administration of EDPC ameliorated cognitive impairment in AD model mice by maintaining and/or restoring normal gene expression patterns in the hippocampus.
Collapse
Affiliation(s)
- Yasuyuki Imai
- Health Care Technical G., Chiba Plants, DIC Corporation, Ichihara 290-8585, Chiba, Japan; (Y.I.); (Y.K.)
| | - Yurino Koseki
- Health Care Technical G., Chiba Plants, DIC Corporation, Ichihara 290-8585, Chiba, Japan; (Y.I.); (Y.K.)
| | - Makoto Hirano
- R&D Institute, Intelligence & Technology Lab, Inc., Kaizu 503-0628, Gifu, Japan;
| | - Shin Nakamura
- R&D Institute, Intelligence & Technology Lab, Inc., Kaizu 503-0628, Gifu, Japan;
- Biomedical Institute, NPO Primate Agora, Kaizu 503-0628, Gifu, Japan
- Correspondence: ; Tel.: +81-(0)-584-54-0015
| |
Collapse
|
35
|
Significance of GABA A Receptor for Cognitive Function and Hippocampal Pathology. Int J Mol Sci 2021; 22:ijms222212456. [PMID: 34830337 PMCID: PMC8623595 DOI: 10.3390/ijms222212456] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
The hippocampus is a primary area for contextual memory, known to process spatiotemporal information within a specific episode. Long-term strengthening of glutamatergic transmission is a mechanism of contextual learning in the dorsal cornu ammonis 1 (CA1) area of the hippocampus. CA1-specific immobilization or blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor delivery can impair learning performance, indicating a causal relationship between learning and receptor delivery into the synapse. Moreover, contextual learning also strengthens GABAA (gamma-aminobutyric acid) receptor-mediated inhibitory synapses onto CA1 neurons. Recently we revealed that strengthening of GABAA receptor-mediated inhibitory synapses preceded excitatory synaptic plasticity after contextual learning, resulting in a reduced synaptic excitatory/inhibitory (E/I) input balance that returned to pretraining levels within 10 min. The faster plasticity at inhibitory synapses may allow encoding a contextual memory and prevent cognitive dysfunction in various hippocampal pathologies. In this review, we focus on the dynamic changes of GABAA receptor mediated-synaptic currents after contextual learning and the intracellular mechanism underlying rapid inhibitory synaptic plasticity. In addition, we discuss that several pathologies, such as Alzheimer’s disease, autism spectrum disorders and epilepsy are characterized by alterations in GABAA receptor trafficking, synaptic E/I imbalance and neuronal excitability.
Collapse
|
36
|
Nakai T, Yamada K, Mizoguchi H. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. Int J Mol Sci 2021; 22:5549. [PMID: 34074018 PMCID: PMC8197360 DOI: 10.3390/ijms22115549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
37
|
Adetuyi BO, Farombi EO. 6-Gingerol, an active constituent of ginger, attenuates lipopolysaccharide-induced oxidation, inflammation, cognitive deficits, neuroplasticity, and amyloidogenesis in rat. J Food Biochem 2021; 45:e13660. [PMID: 33624846 DOI: 10.1111/jfbc.13660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
This study examined the protective effect of 6-Gingerol (6G) against lipopolysaccharide (LPS)-induced cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation. Male rats were allocated into six groups in this manner; Group I placed on normal saline only. Group II was treated for 7 days with LPS alone intraperitoneally at 250 µg/kg body weight (bw). Group III received 6G alone at 50 mg/kg bw orally for 14 days. Groups IV and V received 6G at 20 and 50 mg/kg bw for 7 days, respectively, and LPS for another 7 days to induce neurotoxicity. Group VI received 5 mg/kg bw of donepezil for 7 days and LPS for 7 days. Pretreatment with 20 and 50 mg/kg bw of 6G protected against LPS-mediated learning and memory function, and also locomotor and motor deficits. Besides, 20 and 50 mg/kg bw 6G mitigated LPS-induced alteration in markers of oxidative stress. Furthermore, induction of amyloidogenesis associated with disruption of histoarchitecture and high expression of interleukin 1β, inducible nitric oxide synthase, amyloid precursor protein (APP), β-secretase 1, and brain-derived neurotrophic factor by LPS was mitigated by the two doses of 6G in the rat hippocampus and cerebral cortex region of the brain. 6G pretreatment at the two doses mitigated LPS-mediated histopathological changes in the hippocampus and cerebral cortex of rats. Overall, our results demonstrate that the protective effect of 6G is mediated through the reversal of neurobehavioral deficit, oxidative stress, inflammation, and amyloidogenesis, thus making 6G a possible chemoprophylactic agent against brain injury as a result of LPS exposure. PRACTICAL APPLICATIONS: In the search for a holistic prevention of inflammation-associated neurodegeneration, nutraceuticals are becoming prominent. Hence, this study presents 6G, an active constituent of ginger, as a chemoprotective, antioxidant, and anti-inflammatory agent, which is able to ameliorate cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation in LPS-induced rat model of neuroinflammation.
Collapse
Affiliation(s)
- Babatunde Oluwafemi Adetuyi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer Olatunde Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
38
|
Deng L, Gupta VK, Wu Y, Pushpitha K, Chitranshi N, Gupta VB, Fitzhenry MJ, Moghaddam MZ, Karl T, Salekdeh GH, Graham SL, Haynes PA, Mirzaei M. Mouse model of Alzheimer's disease demonstrates differential effects of early disease pathology on various brain regions. Proteomics 2021; 21:e2000213. [PMID: 33559908 DOI: 10.1002/pmic.202000213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
Different parts of the brain are affected distinctively in various stages of the Alzheimer's disease (AD) pathogenesis. Identifying the biochemical changes in specific brain regions is key to comprehend the neuropathological mechanisms in early pre-symptomatic phases of AD. Quantitative proteomics profiling of four distinct areas of the brain of young APP/PS1 mouse model of AD was performed followed by biochemical pathway enrichment analysis. Findings revealed fundamental compositional and functional shifts even in the early stages of the disease. This novel study highlights unique proteome and biochemical pathway alterations in specific regions of the brain that underlie the early stages of AD pathology and will provide a framework for future longitudinal studies. The proteomics data were deposited into the ProteomeXchange Consortium via PRIDE with the identifier PXD019192.
Collapse
Affiliation(s)
- Liting Deng
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yunqi Wu
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Veer B Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, New South Wales, Australia
| | | | - Tim Karl
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Effect of Acupuncture Stimulation of Hegu (LI4) and Taichong (LR3) on the Resting-State Networks in Alzheimer's Disease: Beyond the Default Mode Network. Neural Plast 2021; 2021:8876873. [PMID: 33747074 PMCID: PMC7960059 DOI: 10.1155/2021/8876873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
It was reported that acupuncture could treat Alzheimer's disease (AD) with the potential mechanisms remaining unclear. The aim of the study is to explore the effect of the combination stimulus of Hegu (LI4) and Taichong (LR3) on the resting-state brain networks in AD, beyond the default network (DMN). Twenty-eight subjects including 14 AD patients and 14 healthy controls (HCs) matched by age, gender, and educational level were recruited in this study. After the baseline resting-state MRI scans, the manual acupuncture stimulation was performed for 3 minutes, and then, another 10 minutes of resting-state fMRI scans was acquired. In addition to the DMN, five other resting-state networks were identified by independent component analysis (ICA), including left frontal parietal network (lFPN), right frontal parietal network (rFPN), visual network (VN), sensorimotor network (SMN), and auditory network (AN). And the impaired connectivity in the lFPN, rFPN, SMN, and VN was found in AD patients compared with those in HCs. After acupuncture, significantly decreased connectivity in the right middle frontal gyrus (MFG) of rFPN (P = 0.007) was identified in AD patients. However, reduced connectivity in the right inferior frontal gyrus (IFG) (P = 0.047) and left superior frontal gyrus (SFG) (P = 0.041) of lFPN and some regions of the SMN (the left inferior parietal lobula (P = 0.004), left postcentral gyrus (PoCG) (P = 0.001), right PoCG (P = 0.032), and right MFG (P = 0.010)) and the right MOG of VN (P = 0.003) was indicated in HCs. In addition, after controlling for the effect of acupuncture on HCs, the functional connectivity of the right cerebellum crus I, left IFG, and left angular gyrus (AG) of lFPN showed to be decreased, while the left MFG of IFPN and the right lingual gyrus of VN increased in AD patients. These findings might have some reference values for the interpretation of the combination stimulus of Hegu (LI4) and Taichong (LR3) in AD patients, which could deepen our understanding of the potential mechanisms of acupuncture on AD.
Collapse
|
40
|
Hazafa A, Batool A, Ahmad S, Amjad M, Chaudhry SN, Asad J, Ghuman HF, Khan HM, Naeem M, Ghani U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci 2021; 264:118679. [PMID: 33130077 DOI: 10.1016/j.lfs.2020.118679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Humanin (HN) is a small mitochondrial-derived cytoprotective polypeptide encoded by mtDNA. HN exhibits protective effects in several cell types, including leukocytes, germ cells, neurons, tissues against cellular stress conditions and apoptosis through regulating various signaling mechanisms, such as JAK/STAT pathway and interaction of BCL-2 family of protein. HN is an essential cytoprotective peptide in the human body that regulates mitochondrial functions under stress conditions. The present review aims to evaluate HN peptide's antiapoptotic activities as a potential therapeutic target in the treatment of cancer, diabetes mellitus, male infertility, bone-related diseases, cardiac diseases, and brain diseases. Based on in vitro and in vivo studies, HN significantly suppressed the apoptosis during the treatment of bone osteoporosis, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. According to accumulated data, it is concluded that HN exerts the proapoptotic activity of TNF-α in cancer, which makes HN as a novel therapeutic agent in the treatment of cancer and suggested that along with HN, the development of another mitochondrial-derived peptide could be a viable therapeutic option against different oxidative stress and apoptosis-related diseases.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saeed Ahmad
- Centre of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Muhammad Amjad
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jamal Asad
- Department of Biochemistry, University of Health Sciences Lahore, Pakistan
| | - Hasham Feroz Ghuman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Usman Ghani
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
41
|
Koszła O, Sołek P, Woźniak S, Kędzierska E, Wróbel TM, Kondej M, Archała A, Stępnicki P, Biała G, Matosiuk D, Kaczor AA. The Antipsychotic D2AAK1 as a Memory Enhancer for Treatment of Mental and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8849. [PMID: 33238370 PMCID: PMC7700684 DOI: 10.3390/ijms21228849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
The treatment of memory impairments associated with the central nervous system diseases remains an unmet medical need with social and economic implications. Here we show, that a multi-target ligand of aminergic G protein-coupled receptors with antipsychotic activity in vivo (D2AAK1) stimulates neuron growth and survival and promotes neuron integrity. We focused on the multilevel evaluation of the D2AAK1-related effects on neurons in terms of behavioral, cellular, molecular, and biochemical features in vivo and in vitro, such as memory-related responses, locomotor activity, tissue sections analysis, metabolic activity, proliferation level, neurons morphology, and proteins level involved in intracellular signaling pathways. In silico studies indicate that activation of calcium/calmodulin-dependent protein kinase I (CaMKI) may underline some of the observed activities of the compound. Furthermore, the compound increases hippocampal neuron proliferation via the activation of neurotrophic factors and cooperating signals responsible for cell growth and proliferation. D2AAK1 improves memory and learning processes in mice after both acute and chronic administration. D2AAK1 also causes an increase in the number of hippocampal pyramidal neurons after chronic administration. Because of its neuroprotective properties and pro-cognitive activity in behavioral studies D2AAK1 has the potential for the treatment of memory disturbances in neurodegenerative and mental diseases.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Przemysław Sołek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszow, Poland;
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (E.K.); (G.B.)
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Aneta Archała
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland;
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (E.K.); (G.B.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (S.W.); (T.M.W.); (M.K.); (P.S.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
42
|
Sharif M, Noroozian M, Hashemian F. Do serum GDNF levels correlate with severity of Alzheimer's disease? Neurol Sci 2020; 42:2865-2872. [PMID: 33215334 DOI: 10.1007/s10072-020-04909-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A growing body of evidence that glial cell line-derived neurotrophic factor (GDNF) levels are probably involved in pathogenesis and disease course of Alzheimer's disease (AD) suggested that its blood levels could potentially be used as a biomarker of AD. The aim of this study was to compare serum GDNF levels in patients with AD and age-matched controls. METHODS Serum concentrations of GDNF were compared in 25 AD patients and 25 healthy volunteers using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). Severity of the disease in AD patients was assessed using Functional Assessment Staging (FAST). Cognitive assessment of the patients was done using the Mini-Mental State Examination (MMSE). RESULTS Mean GDNF levels were found to be 2.45 ± 0.93 ng/ml in AD patients and 4.61 ± 3.39 ng/ml in age-matched controls. There was a statistically significant difference in GDNF serum levels in patients with AD compared to age-matched controls (p = 0.001). Moreover, GDNF serum levels were significantly correlated with disease severity (p < 0.001) and cognitive impairment (p < 0.001). CONCLUSION This study showed that serum levels of GDNF are significantly decreased in AD patients in comparison with age-matched controls, thus suggesting a potential role of GDNF as a disease biomarker. However, a comprehensive study of changes in serum levels of multiple neurotrophic factors reflective of different neurobiological pathways in large-scale population studies is recommended.
Collapse
Affiliation(s)
- Maryam Sharif
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran
| | - Maryam Noroozian
- Memory and Behavioral Neurology Division, Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Hashemian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran.
| |
Collapse
|
43
|
Furutama D, Matsuda S, Yamawaki Y, Hatano S, Okanobu A, Memida T, Oue H, Fujita T, Ouhara K, Kajiya M, Mizuno N, Kanematsu T, Tsuga K, Kurihara H. IL-6 Induced by Periodontal Inflammation Causes Neuroinflammation and Disrupts the Blood-Brain Barrier. Brain Sci 2020; 10:brainsci10100679. [PMID: 32992470 PMCID: PMC7599694 DOI: 10.3390/brainsci10100679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Periodontal disease (PD) is a risk factor for systemic diseases, including neurodegenerative diseases. The role of the local and systemic inflammation induced by PD in neuroinflammation currently remains unclear. The present study investigated the involvement of periodontal inflammation in neuroinflammation and blood–brain barrier (BBB) disruption. Methods: To induce PD in mice (c57/BL6), a ligature was placed around the second maxillary molar. Periodontal, systemic, and neuroinflammation were assessed based on the inflammatory cytokine mRNA or protein levels using qPCR and ELISA. The BBB permeability was evaluated by the mRNA levels and protein levels of tight junction-related proteins in the hippocampus using qPCR and immunofluorescence. Dextran tracing in the hippocampus was also conducted to examine the role of periodontal inflammation in BBB disruption. Results: The TNF-α, IL-1β, and IL-6 levels markedly increased in gingival tissue 1 week after ligation. The IL-6 serum levels were also increased by ligature-induced PD. In the hippocampus, the IL-1β mRNA expression levels were significantly increased by ligature-induced PD through serum IL-6. The ligature-induced PD decreased the claudin 5 expression levels in the hippocampus, and the neutralization of IL-6 restored its levels. The extravascular 3-kDa dextran levels were increased by ligature-induced PD. Conclusions: These results suggest that the periodontal inflammation-induced expression of IL-6 is related to neuroinflammation and BBB disruption in the hippocampus, ultimately leading to cognitive impairment. Periodontal therapy may protect against neurodegenerative diseases.
Collapse
Affiliation(s)
- Daisuke Furutama
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
- Correspondence: ; Tel.: +81-082-257-5663
| | - Yosuke Yamawaki
- Department of Advanced Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka 815-8511, Japan;
| | - Saki Hatano
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Ai Okanobu
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Takumi Memida
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Hiroshi Oue
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (H.O.); (K.T.)
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Takashi Kanematsu
- Laboratory of Cell Biology and Pharmacology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (H.O.); (K.T.)
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| |
Collapse
|
44
|
O'Connor M, Shentu YP, Wang G, Hu WT, Xu ZD, Wang XC, Liu R, Man HY. Acetylation of AMPA Receptors Regulates Receptor Trafficking and Rescues Memory Deficits in Alzheimer's Disease. iScience 2020; 23:101465. [PMID: 32861999 PMCID: PMC7476873 DOI: 10.1016/j.isci.2020.101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease (AD), decreases in the amount and synaptic localization of AMPA receptors (AMPARs) result in weakened synaptic activity and dysfunction in synaptic plasticity, leading to impairments in cognitive functions. We have previously found that AMPARs are subject to lysine acetylation, resulting in higher AMPAR stability and protein accumulation. Here we report that AMPAR acetylation was significantly reduced in AD and neurons with Aβ incubation. We identified p300 as the acetyltransferase responsible for AMPAR acetylation and found that enhancing GluA1 acetylation ameliorated Aβ-induced reductions in total and cell-surface AMPARs. Importantly, expression of acetylation mimetic GluA1 (GluA1-4KQ) in APP/PS1 mice rescued impairments in synaptic plasticity and memory. These findings indicate that Aβ-induced reduction in AMPAR acetylation and stability contributes to synaptopathy and memory deficiency in AD, suggesting that AMPAR acetylation may be an effective molecular target for AD therapeutics.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Yang-Ping Shentu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guan Wang
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Wen-Ting Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen-Dong Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., L-603, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, USA
| |
Collapse
|