1
|
Bohannon DG, Wellman LL, Kaul M, Galkina EV, Guo ML, Datta PK, Kim WK. Type-1-to-type-2 transition of brain microvascular pericytes induced by cytokines and disease-associated proteins: Role in neuroinflammation and blood-brain barrier disruption. J Cereb Blood Flow Metab 2025; 45:405-420. [PMID: 39473432 PMCID: PMC11563511 DOI: 10.1177/0271678x241296270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
While the concept of pericyte heterogeneity in the brain microvasculature is becoming more widely accepted, little is known about how they arise, or their functional contributions to the blood-brain barrier (BBB). We therefore set out to examine the distribution of subtypes of pericytes at the BBB and sought to elucidate some of their functional characteristics by examining their unique mRNA expression patterns. We demonstrate that type-1 pericytes (PC1) that are associated with young healthy brains and BBB homeostasis, can transition into type-2 pericytes (PC2) that are associated with disease and BBB breakdown, both in vitro and in vivo, in the presence of both endogenous and disease associated ligands. We identified PC1 and PC2 in single-cell RNA-sequencing from vascular enriched mouse brain and identified transcriptional differences between PC1 and PC2. PC2 showed increased expression of genes associated with phagocytosis and peripheral immune cell infiltration. On the contrary, PC1 displayed increased expression of genes involved in hedgehog signaling, which is known to promote tight junction formation at the BBB. Our data support the PC1-to-PC2 transition as an origin of PC diversity and suggest a functional role for PC1 in maintaining BBB homeostasis and PC2 in responding to pathological conditions.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Laurie L Wellman
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ming-Lei Guo
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Prasun K Datta
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
2
|
Dakal TC, Xiao F, Bhusal CK, Sabapathy PC, Segal R, Chen J, Bai X. Lipids dysregulation in diseases: core concepts, targets and treatment strategies. Lipids Health Dis 2025; 24:61. [PMID: 39984909 PMCID: PMC11843775 DOI: 10.1186/s12944-024-02425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/30/2024] [Indexed: 02/23/2025] Open
Abstract
Lipid metabolism is a well-regulated process essential for maintaining cellular functions and energy homeostasis. Dysregulation of lipid metabolism is associated with various conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. This review explores the mechanisms underlying lipid metabolism, emphasizing the roles of key lipid species such as triglycerides, phospholipids, sphingolipids, and sterols in cellular physiology and pathophysiology. It also examines the genetic and environmental factors contributing to lipid dysregulation and the challenges of diagnosing and managing lipid-related disorders. Recent advancements in lipid-lowering therapies, including PCSK9 inhibitors, ezetimibe, bempedoic acid, and olpasiran, provide promising treatment options. However, these advancements are accompanied by challenges related to cost, accessibility, and patient adherence. The review highlights the need for personalized medicine approaches to address the interplay between genetics and environmental factors in lipid metabolism. As lipidomics and advanced diagnostic tools continue to progress, a deeper understanding of lipid-related disorders could pave the way for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, 313001, India
| | - Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Chandra Kanta Bhusal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Rakesh Segal
- Aarupadai Veedu Medical College and Hospital, VMRF-DU, Pondicherry, 607402, India
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China.
| | - Xiaodong Bai
- Department of Plastic Surgery, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Del Rosario Hernandez T, Joshi NR, Gore SV, Kreiling JA, Creton R. Combining supervised and unsupervised analyses to quantify behavioral phenotypes and validate therapeutic efficacy in a triple transgenic mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597924. [PMID: 38895269 PMCID: PMC11185760 DOI: 10.1101/2024.06.07.597924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Behavioral testing is an essential tool for evaluating cognitive function and dysfunction in preclinical research models. This is of special importance in the study of neurological disorders such as Alzheimer's disease. However, the reproducibility of classic behavioral assays is frequently compromised by interstudy variation, leading to ambiguous conclusions about the behavioral markers characterizing the disease. Here, we identify age- and genotype-driven differences between 3xTg-AD and non-transgenic control mice using a low-cost, highly customizable behavioral assay that requires little human intervention. Through behavioral phenotyping combining both supervised and unsupervised behavioral classification methods, we are able to validate the preventative effects of the immunosuppressant cyclosporine A in a rodent model of Alzheimer's disease, as well as the partially ameliorating effects of candidate drugs nebivolol and cabozantinib.
Collapse
Affiliation(s)
- Thais Del Rosario Hernandez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Narendra R Joshi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
4
|
Wani I, Koppula S, Balda A, Thekkekkara D, Jamadagni A, Walse P, Manjula SN, Kopalli SR. An Update on the Potential of Tangeretin in the Management of Neuroinflammation-Mediated Neurodegenerative Disorders. Life (Basel) 2024; 14:504. [PMID: 38672774 PMCID: PMC11051149 DOI: 10.3390/life14040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation is the major cause of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Currently available drugs present relatively low efficacy and are not capable of modifying the course of the disease or delaying its progression. Identifying well-tolerated and brain-penetrant agents of plant origin could fulfil the pressing need for novel treatment techniques for neuroinflammation. Attention has been drawn to a large family of flavonoids in citrus fruits, which may function as strong nutraceuticals in slowing down the development and progression of neuroinflammation. This review is aimed at elucidating and summarizing the effects of the flavonoid tangeretin (TAN) in the management of neuroinflammation-mediated neurodegenerative disorders. A literature survey was performed using various resources, including ScienceDirect, PubMed, Google Scholar, Springer, and Web of Science. The data revealed that TAN exhibited immense neuroprotective effects in addition to its anti-oxidant, anti-diabetic, and peroxisome proliferator-activated receptor-γ agonistic effects. The effects of TAN are mainly mediated through the inhibition of oxidative and inflammatory pathways via regulating multiple signaling pathways, including c-Jun N-terminal kinase, phosphoinositide 3-kinase, mitogen-activated protein kinase, nuclear factor erythroid-2-related factor 2, extracellular-signal-regulated kinase, and CRE-dependent transcription. In conclusion, the citrus flavonoid TAN has the potential to prevent neuronal death mediated by neuroinflammatory pathways and can be developed as an auxiliary therapeutic agent in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Irshad Wani
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Sushruta Koppula
- College of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Republic of Korea;
| | - Aayushi Balda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ankush Jamadagni
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | - Prathamesh Walse
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | | | - Spandana Rajendra Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
5
|
Vilela WR, Ramalho LS, Bechara LRG, Cabral-Costa JV, Serna JDC, Kowaltowski AJ, Xavier GF, Ferreira JCB, de Bem AF. Metabolic dysfunction induced by HFD + L-NAME preferentially affects hippocampal mitochondria, impacting spatial memory in rats. J Bioenerg Biomembr 2024; 56:87-99. [PMID: 38374292 DOI: 10.1007/s10863-024-10005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
High-fat diet-induced metabolic changes are not restricted to the onset of cardiovascular diseases, but also include effects on brain functions related to learning and memory. This study aimed to evaluate mitochondrial markers and function, as well as cognitive function, in a rat model of metabolic dysfunction. Eight-week-old male Wistar rats were subjected to either a control diet or a two-hit protocol combining a high fat diet (HFD) with the nitric oxide synthase inhibitor L-NAME in the drinking water. HFD plus L-NAME induced obesity, hypertension, and increased serum cholesterol. These rats exhibited bioenergetic dysfunction in the hippocampus, characterized by decreased oxygen (O2) consumption related to ATP production, with no changes in H2O2 production. Furthermore, OPA1 protein expression was upregulated in the hippocampus of HFD + L-NAME rats, with no alterations in other morphology-related proteins. Consistently, HFD + L-NAME rats showed disruption of performance in the Morris Water Maze Reference Memory test. The neocortex did not exhibit either bioenergetic changes or alterations in H2O2 production. Calcium uptake rate and retention capacity in the neocortex of HFD + L-NAME rats were not altered. Our results indicate that hippocampal mitochondrial bioenergetic function is disturbed in rats exposed to a HFD plus L-NAME, thus disrupting spatial learning, whereas neocortical function remains unaffected.
Collapse
Affiliation(s)
- Wembley R Vilela
- Department of Physiological Sciences, University of Brasilia, Federal District, Brasília, DF, 70910-900, Brazil
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, 22362, Sweden
| | - Lisley S Ramalho
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - João V Cabral-Costa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Gilberto F Xavier
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, SP, 05508- 090, Brazil
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, University of Brasilia, Federal District, Brasília, DF, 70910-900, Brazil.
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 85, Sweden.
| |
Collapse
|
6
|
Amin SN, Shaltout SA, El Gazzar WB, Abdel Latif NS, Al-Jussani GN, Alabdallat YJ, Albakri KA, Elberry DA. Impact of NMDA receptors block versus GABA-A receptors modulation on synaptic plasticity and brain electrical activity in metabolic syndrome. Adv Med Sci 2024; 69:176-189. [PMID: 38561071 DOI: 10.1016/j.advms.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Metabolic syndrome (MetS) is a common disorder associated with disturbed neurotransmitter homeostasis. Memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, was first used in Alzheimer's disease. Allopregnanolone (Allo), a potent positive allosteric modulator of the Gamma-Amino-Butyric Acid (GABA)-A receptors, decreases in neurodegenerative diseases. The study investigated the impact of Memantine versus Allo administration on the animal model of MetS to clarify whether the mechanism of abnormalities is related more to excitatory or inhibitory neurotransmitter dysfunction. MATERIALS AND METHODS Fifty-six male rats were allocated into 7 groups: 4 control groups, 1 MetS group, and 2 treated MetS groups. They underwent assessment of cognition-related behavior by open field and forced swimming tests, electroencephalogram (EEG) recording, serum markers confirming the establishment of MetS model and hippocampal Glial Fibrillary Acidic Protein (GFAP) and Brain-Derived Neurotrophic Factor (BDNF). RESULTS Allo improved anxiety-like behavior and decreased grooming frequency compared to Memantine. Both drugs increased GFAP and BDNF expression, improving synaptic plasticity and cognition-related behaviors. The therapeutic effect of Allo was more beneficial regarding lipid profile and anxiety. We reported progressive slowing of EEG waves in the MetS group with Memantine and Allo treatment with increased relative theta and decreased relative delta rhythms. CONCLUSIONS Both Allo and Memantine boosted the outcome parameters in the animal model of MetS. Allo markedly improved the anxiety-like behavior in the form of significantly decreased grooming frequency compared to the Memantine-treated groups. Both drugs were associated with increased hippocampal GFAP and BDNF expression, indicating an improvement in synaptic plasticity and so, cognition-related behaviors.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan; Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Sherif Ahmed Shaltout
- Department of Pharmacology, Public Health, and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan; Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Noha Samir Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University Cairo, Egypt; Department of Medical Pharmacology, Armed Forces College of Medicine, Cairo, Egypt
| | - Ghadah Nazar Al-Jussani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | | | - Dalia Azmy Elberry
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
8
|
Mai AS, Tan BJW, Sun QY, Tan EK. Association between Type 1 Diabetes Mellitus and Parkinson's Disease: A Mendelian Randomization Study. J Clin Med 2024; 13:561. [PMID: 38256693 PMCID: PMC10816052 DOI: 10.3390/jcm13020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
While much evidence suggests that type 2 diabetes mellitus increases the risk of Parkinson's disease (PD), the relationship between type 1 diabetes mellitus (T1DM) and PD is unclear. To study their association, we performed a two-sample Mendelian randomization (MR) using the following statistical methods: inverse variance weighting (IVW), MR-Egger, weight median, and weighted mode. Independent datasets with no sample overlap were retrieved from the IEU GWAS platform. All the MR methods found a lower risk of PD in T1DM (IVW-OR 0.93, 95% CI 0.91-0.96, p = 3.12 × 10-5; MR-Egger-OR 0.93, 95% CI 0.88-0.98, p = 1.45 × 10-2; weighted median-OR 0.93, 95% CI 0.89-0.98, p = 2.76 × 10-3; and weighted mode-OR 0.94, 95% CI 0.9-0.98, p = 1.58 × 10-2). The findings were then replicated with another independent GWAS dataset on T1DM (IVW-OR 0.97, 95% CI 0.95-0.99, p = 3.10 × 10-3; MR-Egger-OR 0.96, 95% CI 0.93-0.99, p = 1.08 × 10-2; weighted median-OR 0.97, 95% CI 0.94-0.99, p = 1.88 × 10-2; weighted mode-OR 0.97, 95% CI 0.94-0.99, p = 1.43 × 10-2). Thus, our study provides evidence that T1DM may have a protective effect on PD risk, though further studies are needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore 308433, Singapore
| | - Brendan Jen-Wei Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore 308433, Singapore
| | - Qiao-Yang Sun
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore 308433, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
9
|
König A, Outeiro TF. Diabetes and Parkinson's Disease: Understanding Shared Molecular Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2024; 14:917-924. [PMID: 38995799 PMCID: PMC11307096 DOI: 10.3233/jpd-230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 07/14/2024]
Abstract
Aging is a major risk factor for Parkinson's disease (PD). Genetic mutations account for a small percentage of cases and the majority appears to be sporadic, with yet unclear causes. However, various environmental factors have been linked to an increased risk of developing PD and, therefore, understanding the complex interplay between genetic and environmental factors is crucial for developing effective disease-modifying therapies. Several studies identified a connection between type 2 diabetes (T2DM) and PD. T2DM is characterized by insulin resistance and failure of β-cells to compensate, leading to hyperglycemia and serious comorbidities. Both PD and T2DM share misregulated processes, including mitochondrial dysfunction, oxidative stress, chronic inflammation, altered proteostasis, protein aggregation, and misregulation of glucose metabolism. Chronic or recurring hyperglycemia is a T2DM hallmark and can lead to increased methylglyoxal (MGO) production, which is responsible for protein glycation. Glycation of alpha-synuclein (aSyn), a central player in PD pathogenesis, accelerates the deleterious aSyn effects. Interestingly, MGO blood plasma levels and aSyn glycation are significantly elevated in T2DM patients, suggesting a molecular mechanism underlying the T2DM - PD link. Compared to high constant glucose levels, glycemic variability (fluctuations in blood glucose levels), can be more detrimental for diabetic patients, causing oxidative stress, inflammation, and endothelial damage. Accordingly, it is imperative for future research to prioritize the exploration of glucose variability's influence on PD development and progression. This involves moving beyond the binary classification of patients as diabetic or non-diabetic, aiming to pave the way for the development of enhanced therapeutic interventions.
Collapse
Affiliation(s)
- Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
10
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
11
|
Kueck PJ, Morris JK, Stanford JA. Current Perspectives: Obesity and Neurodegeneration - Links and Risks. Degener Neurol Neuromuscul Dis 2023; 13:111-129. [PMID: 38196559 PMCID: PMC10774290 DOI: 10.2147/dnnd.s388579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Obesity is increasing in prevalence across all age groups. Long-term obesity can lead to the development of metabolic and cardiovascular diseases through its effects on adipose, skeletal muscle, and liver tissue. Pathological mechanisms associated with obesity include immune response and inflammation as well as oxidative stress and consequent endothelial and mitochondrial dysfunction. Recent evidence links obesity to diminished brain health and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Both AD and PD are associated with insulin resistance, an underlying syndrome of obesity. Despite these links, causative mechanism(s) resulting in neurodegenerative disease remain unclear. This review discusses relationships between obesity, AD, and PD, including clinical and preclinical findings. The review then briefly explores nonpharmacological directions for intervention.
Collapse
Affiliation(s)
- Paul J Kueck
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jill K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John A Stanford
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
12
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Rashid B, Glasser MF, Nichols T, Van Essen D, Juttukonda MR, Schwab NA, Greve DN, Yacoub E, Lovely A, Terpstra M, Harms MP, Bookheimer SY, Ances BM, Salat DH, Arnold SE. Cardiovascular and metabolic health is associated with functional brain connectivity in middle-aged and older adults: Results from the Human Connectome Project-Aging study. Neuroimage 2023; 276:120192. [PMID: 37247763 PMCID: PMC10330931 DOI: 10.1016/j.neuroimage.2023.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated with altered neural and cognitive health as well as increased risk of dementia and Alzheimer's disease in later life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) across a broad adult age-span (36-90+ years) from 930 volunteers in the Human Connectome Project Aging (HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may disrupt higher-order network integrity.
Collapse
Affiliation(s)
- Barnaly Rashid
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States.
| | - Matthew F Glasser
- Washington University School of Medicine, St. Louis, MO, United States
| | | | - David Van Essen
- Washington University School of Medicine, St. Louis, MO, United States
| | - Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | - Nadine A Schwab
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Allison Lovely
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | | | - Michael P Harms
- Washington University in St. Louis, St. Louis, MO, United States
| | | | - Beau M Ances
- Washington University School of Medicine, St. Louis, MO, United States; Washington University in St. Louis, St. Louis, MO, United States
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States.
| | - Steven E Arnold
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Czuba-Pakuła E, Głowiński S, Wójcik S, Lietzau G, Zabielska-Kaczorowska M, Kowiański P. The extent of damage to the blood-brain barrier in the hypercholesterolemic LDLR -/-/Apo E -/- double knockout mice depends on the animal's age, duration of pathology and brain area. Mol Cell Neurosci 2023; 125:103860. [PMID: 37182573 DOI: 10.1016/j.mcn.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
One of the effects of hypercholesterolemia (Hch) exerted on the central nervous system (CNS) is damage to the blood-brain barrier (BBB). Increased permeability of BBB results from structural changes in the vascular wall, loss of the tight junctions and barrier function, as well as alterations in the concentration of proteins located in the layers of the vascular wall. These changes occur in the course of metabolic and neurodegenerative diseases. The important role in the course of these processes is attributed to agrin, matrix metalloproteinase-9, and aquaporin-4. In this study, we aimed to determine: 1) the extent of Hch-induced damage to the BBB during maturation, and 2) the distribution of the above-mentioned markers in the vascular wall. Immunohistochemical staining and confocal microscopy were used for vascular wall protein assessment. The size of BBB damage was studied based on perivascular leakage of fluorescently labeled dextran. Three- and twelve-month-old male LDLR-/-/Apo E-/- double knockout mice (EX) developing Hch were used in the study. Age-matched male wild-type (WT) C57BL/6 mice were used as a control group. Differences in the concentration of studied markers coexisted with BBB disintegration, especially in younger mice. A relationship between the maturation of the vascular system and reduction of the BBB damage was also observed. We conclude that the extent of BBB permeability depends on animal age, duration of Hch, and brain region. These may explain different susceptibility of various brain areas to Hch, and different presentation of this pathology depending on age and its duration.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Sebastian Głowiński
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Zabielska-Kaczorowska
- Department of Physiology, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland.
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland; Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| |
Collapse
|
15
|
Datta A, Sarmah D, Kaur H, Chaudhary A, Vadak N, Borah A, Shah S, Wang X, Bhattacharya P. Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cell Mol Neurobiol 2023; 43:1019-1035. [PMID: 35751791 PMCID: PMC11414438 DOI: 10.1007/s10571-022-01242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Neurological disorders have complicated pathophysiology that may involve several genetic mutations. Conventional treatment has limitations as they only treat apparent symptoms. Although, personalized medicine is emerging as a promising neuro-intervention, lack of precision is the major pitfall. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is evolving as a technological platform that may overcome the therapeutic limitations towards precision medicine. In the future, targeting genes in neurological disorders may be the mainstay of modern therapy. The present review on CRISPR/Cas9 and its application in various neurological disorders may provide a platform for its future clinical relevance towards developing precise and personalized medicine.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Antra Chaudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Namrata Vadak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sudhir Shah
- Department of Neurology, SVPIMSR and NHL Municipal Medical College & Sterling Hospital, Ahmedabad, Gujarat, 380006, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
16
|
Rodriguez-Ortiz CJ, Thorwald MA, Rodriguez R, Mejias-Ortega M, Kieu Z, Maitra N, Hawkins C, Valenzuela J, Peng M, Nishiyama A, Ortiz RM, Kitazawa M. Angiotensin receptor blockade with olmesartan alleviates brain pathology in obese OLETF rats. Clin Exp Pharmacol Physiol 2023; 50:228-237. [PMID: 36398458 PMCID: PMC9898104 DOI: 10.1111/1440-1681.13738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Metabolic syndrome (MetS) is a rapidly increasing health concern during midlife and is an emerging risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). While angiotensin receptor blockers (ARB) are widely used for MetS-associated hypertension and kidney disease, its therapeutic potential in the brain during MetS are not well-described. Here, we tested whether treatment with ARB could alleviate the brain pathology and inflammation associated with MetS using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Here, we report that chronic ARB treatment with olmesartan (10 mg/kg/day by oral gavage for 6 weeks) partially but significantly ameliorated accumulation of oxidized and ubiquitinated proteins, astrogliosis and transformation to neurotoxic astrocytes in the brain of old OLETF rats, which otherwise exhibit the progression of these pathological hallmarks associated with MetS. Additionally, olmesartan treatment restored claudin-5 and ZO-1, markers of the structural integrity of the blood-brain barrier as well as synaptic protein PSD-95, which were otherwise decreased in old OLETF rats, particularly in the hippocampus, a critical region in cognition, memory and AD. These data demonstrate that the progression of MetS in OLETF rats is associated with deterioration of various aspects of neuronal integrity that may manifest neurodegenerative conditions and that overactivation of angiotensin receptor directly or indirectly contributes to these detriments. Thus, olmesartan treatment may slow or delay the onset of degenerative process in the brain and subsequent neurological disorders associated with MetS.
Collapse
Affiliation(s)
- Carlos J. Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| | - Max A. Thorwald
- Department of Molecular & Cell Biology, University of California, Merced
| | - Ruben Rodriguez
- Department of Molecular & Cell Biology, University of California, Merced
| | - Marina Mejias-Ortega
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
- Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Zanett Kieu
- Department of Molecular & Cell Biology, University of California, Merced
| | - Neilabjo Maitra
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| | - Charlesice Hawkins
- Department of Molecular & Cell Biology, University of California, Merced
| | - Joanna Valenzuela
- Department of Molecular & Cell Biology, University of California, Merced
| | - Marcus Peng
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, Japan
| | - Rudy M. Ortiz
- Department of Molecular & Cell Biology, University of California, Merced
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| |
Collapse
|
17
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
18
|
Alanko V, Gaminde-Blasco A, Quintela-López T, Loera-Valencia R, Solomon A, Björkhem I, Cedazo-Minguez A, Maioli S, Tabacaru G, Latorre-Leal M, Matute C, Kivipelto M, Alberdi E, Sandebring-Matton A. 27-hydroxycholesterol promotes oligodendrocyte maturation: Implications for hypercholesterolemia-associated brain white matter changes. Glia 2023; 71:1414-1428. [PMID: 36779429 DOI: 10.1002/glia.24348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
Oxidized cholesterol metabolite 27-hydroxycholesterol (27-OH) is a potential link between hypercholesterolemia and neurodegenerative diseases since unlike peripheral cholesterol, 27-OH is transported across the blood-brain barrier. However, the effects of high 27-OH levels on oligodendrocyte function remain unexplored. We hypothesize that during hypercholesterolemia 27-OH may impact oligodendrocytes and myelin and thus contribute to the disconnection of neural networks in neurodegenerative diseases. To test this idea, we first investigated the effects of 27-OH in cultured oligodendrocytes and found that it induces cell death of immature O4+ /GalC+ oligodendrocytes along with stimulating differentiation of PDGFR+ oligodendrocyte progenitors (OPCs). Next, transgenic mice with increased systemic 27-OH levels (Cyp27Tg) underwent behavioral testing and their brains were immunohistochemically stained and lysed for immunoblotting. Chronic exposure to 27-OH in mice resulted in increased myelin basic protein (MBP) but not 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) or myelin oligodendrocyte glycoprotein (MOG) levels in the corpus callosum and cerebral cortex. Intriguingly, we also found impairment of spatial learning suggesting that subtle changes in myelinated axons of vulnerable areas like the hippocampus caused by 27-OH may contribute to impaired cognition. Finally, we found that 27-OH levels in cerebrospinal fluid from memory clinic patients were associated with levels of the myelination regulating CNPase, independently of Alzheimer's disease markers. Thus, 27-OH promotes OPC differentiation and is toxic to immature oligodendrocytes as well as it subtly alters myelin by targeting oligodendroglia. Taken together, these data indicate that hypercholesterolemia-derived higher 27-OH levels change the oligodendrocytic capacity for appropriate myelin remodeling which is a crucial factor in neurodegeneration and aging.
Collapse
Affiliation(s)
- Vilma Alanko
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Adhara Gaminde-Blasco
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Tania Quintela-López
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Raúl Loera-Valencia
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Alina Solomon
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Graziella Tabacaru
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - María Latorre-Leal
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Matute
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Elena Alberdi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Anna Sandebring-Matton
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
19
|
Pleiotrophin deficiency protects against high-fat diet-induced neuroinflammation: Implications for brain mitochondrial dysfunction and aberrant protein aggregation. Food Chem Toxicol 2023; 172:113578. [PMID: 36566969 DOI: 10.1016/j.fct.2022.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Metabolic Syndrome (MetS) is a risk factor for the development of neurodegenerative diseases. Neuroinflammation associated with MetS may contribute significantly to neurodegeneration. Pleiotrophin (PTN) is a neurotrophic factor that modulates neuroinflammation and is a key player in regulating energy metabolism and thermogenesis, suggesting that PTN could be important in the connection between MetS and neuroinflammation. We have now used a high-fat diet (HFD)-induced obesity model in Ptn-/- mice. HFD and Ptn deletion caused alterations in circulating hormones including GIP, leptin and resistin. HFD produced in Ptn+/+ mice a neuroinflammatory state as observed in cerebral quantifications of proinflammatory markers, including Il1β, Tnfα and Ccl2. The upregulation of neuroinflammatory markers was prevented in Ptn-/- mice. Changes induced by HFD in genes related to mitochondrial biogenesis and dynamics were less pronounced in the brain of Ptn-/- mice and were accompanied by significant increases in the protein expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I and IV. HFD-induced changes in genes related to the elimination of protein aggregates were also less pronounced in the brain of Ptn-/- mice. This study provides substantial evidence that Ptn deletion protects against HFD-induced neuroinflammation, mitochondrial dysfunction, and aberrant protein aggregation, prominent features in neurodegenerative diseases.
Collapse
|
20
|
Yu H, Sun T, He X, Wang Z, Zhao K, An J, Wen L, Li JY, Li W, Feng J. Association between Parkinson's Disease and Diabetes Mellitus: From Epidemiology, Pathophysiology and Prevention to Treatment. Aging Dis 2022; 13:1591-1605. [PMID: 36465171 PMCID: PMC9662283 DOI: 10.14336/ad.2022.0325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson's disease (PD) are both age-related diseases of global concern being among the most common chronic metabolic and neurodegenerative diseases, respectively. While both diseases can be genetically inherited, environmental factors play a vital role in their pathogenesis. Moreover, DM and PD have common underlying molecular mechanisms, such as misfolded protein aggregation, mitochondrial dysfunction, oxidative stress, chronic inflammation, and microbial dysbiosis. Recently, epidemiological and experimental studies have reported that DM affects the incidence and progression of PD. Moreover, certain antidiabetic drugs have been proven to decrease the risk of PD and delay its progression. In this review, we elucidate the epidemiological and pathophysiological association between DM and PD and summarize the antidiabetic drugs used in animal models and clinical trials of PD, which may provide reference for the clinical translation of antidiabetic drugs in PD treatment.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhen Wang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Kaidong Zhao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia-Yi Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Wen Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
21
|
Van Bergen NJ, Walvekar AS, Patraskaki M, Sikora T, Linster CL, Christodoulou J. Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency. J Inherit Metab Dis 2022; 45:1028-1038. [PMID: 35866541 PMCID: PMC9804276 DOI: 10.1002/jimd.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
The central cofactors NAD(P)H are prone to damage by hydration, resulting in formation of redox-inactive derivatives designated NAD(P)HX. The highly conserved enzymes NAD(P)HX dehydratase (NAXD) and NAD(P)HX epimerase (NAXE) function to repair intracellular NAD(P)HX. Recently, pathogenic variants in both the NAXD and NAXE genes were associated with rapid deterioration and death after an otherwise trivial fever, infection, or illness in young patients. As more patients are identified, distinct clinical features are emerging depending on the location of the pathogenic variant. In this review, we carefully catalogued the clinical features of all published NAXD deficiency patients and found distinct patterns in clinical presentations depending on which subcellular compartment is affected by the enzymatic deficiency. Exon 1 of NAXD contains a mitochondrial propeptide, and a unique cytosolic isoform is initiated from an alternative start codon in exon 2. NAXD deficiency patients with variants that affect both the cytosolic and mitochondrial isoforms present with neurological defects, seizures and skin lesions. Interestingly, patients with NAXD variants exclusively affecting the mitochondrial isoform present with myopathy, moderate neuropathy and a cardiac presentation, without the characteristic skin lesions, seizures or neurological degeneration. This suggests that cytosolic NAD(P)HX repair may protect from neurological damage, whereas muscle fibres may be more sensitive to mitochondrial NAD(P)HX damage. A deeper understanding of the clinical phenotype may facilitate rapid identification of new cases and allow earlier therapeutic intervention. Niacin-based therapies are promising, but advances in disease modelling for both NAXD and NAXE deficiency may identify more specific compounds as targeted treatments. In this review, we found distinct patterns in the clinical presentations of NAXD deficiency patients based on the location of the pathogenic variant, which determines the subcellular compartment that is affected by the enzymatic deficiency.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Adhish S. Walvekar
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Myrto Patraskaki
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Tim Sikora
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Carole L. Linster
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Victorian Clinical Genetics ServicesRoyal Children's HospitalMelbourneVictoriaAustralia
| |
Collapse
|
22
|
Chan MF, Ganesh A, Mahadevan S, Shamli SA, Al-Waili K, Al-Mukhaini S, Al-Rasadi K, Al-Adawi S. A Comprehensive Neuropsychological Study of Familial Hypercholesterolemia and Its Relationship with Psychosocial Functioning: A Biopsychosocial Approach. Brain Sci 2022; 12:brainsci12091127. [PMID: 36138863 PMCID: PMC9496838 DOI: 10.3390/brainsci12091127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND: Over the past few years, there has been an increasing interest in viewing the diagnosis of familial hypercholesterolemia (FH) through the lens of the biopsychosocial model. However, other than a few epidemiological surveys, there is a dearth of studies from emerging economies that have examined FH using the biological, psychological, and socio-environmental facets of the aforementioned model. AIM. The three aims of the current study were as follows: (i) to examine the psychosocial status among patients with genetically confirmed FH, (ii) to compare their intellectual capacity and cognitive outcomes with a reference group, and (iii) to examine the relationship between health literacy and cognitive functioning. METHOD: Consecutive FH patients referred to the lipid clinic at a tertiary care center for an expert opinion were recruited into this study conducted from September 2019 to March 2020. Information regarding psychosocial functioning, health literacy, quality of life, and affective ranges was surveyed. Indices of current reasoning ability and cognition (attention and concentration, memory, and executive functioning) were compared with a socio-demographically-matched reference group. The current hypothesis also explored the impact of FH on health literacy and cognition. RESULT: A total of 70 participants out of 106 (response rate: 66.0%) initially agreed to participate. However, 18 out of 70 dropped out of the study, yielding a final total of 52 FH patients. With 27 (51.9%) males and 25 (48.1%) females, the mean participant age stood at 37.2 years (SD = 9.2), ranging from 21 to 52 years of age. In the psychosocial data, thirty-two percent (n = 17) of them had anxiety (HADS ≥ 8), and twenty-five percent (n = 13) had depressive symptoms (HADS ≥ 8). The performance of the FH patients was significantly impaired compared to the control group on the indices of current reasoning ability and all domains of cognitive functioning. In the univariate analysis conducted to compare cognitive functioning with health literacy status, only indices of attention and concentration emerged as being significant. CONCLUSION: The current study indicates that the FH population is marked with impediments in biopsychosocial functioning, including indices tapping into the integrity of health literacy, quality of life, affective ranges, and higher functioning such as cognition and current reasoning ability when compared with a socio-demographically-matched reference group. The present results support the hypothesis that chronic diseases vis-à-vis the sequelae of coronary artery disease can potentially impede biopsychosocial functioning.
Collapse
Affiliation(s)
- Moon Fai Chan
- Department of Family Medicine and Public Health, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Aishwarya Ganesh
- Department of Behavioural Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Sangeetha Mahadevan
- Department of Behavioural Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | | | - Khalid Al-Waili
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Al-Khoud, Muscat 123, Oman
| | - Suad Al-Mukhaini
- Directorate of Nursing, Sultan Qaboos University Hospital, Al-Khoud, Muscat 123, Oman
| | - Khalid Al-Rasadi
- Medical Research Center, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Samir Al-Adawi
- Department of Behavioural Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
- Correspondence: ; Tel.: +968-99380246
| |
Collapse
|
23
|
Circulating Lipocalin-2 level is positively associated with cognitive impairment in patients with metabolic syndrome. Sci Rep 2022; 12:4635. [PMID: 35302058 PMCID: PMC8931051 DOI: 10.1038/s41598-022-08286-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The association between Lipocalin-2 (LCN2) and cognition in patients with metabolic syndrome (MetS) has not been thoroughly investigated. We aimed to evaluate whether serum LCN2 levels are associated with the alteration of cognitive function in patients with MetS. The total of 191 non-demented participants with MetS were enrolled onto the study in 2015, and a cohort study was conducted in a subpopulation in 2020. After adjustment for sex, age, waist circumference, creatinine levels, and HbA1C, an association between the higher serum LCN2 levels and the lower Montreal cognitive assessment (MoCA) scores was observed (B = − 0.045; 95%CI − 0.087, − 0.004; p 0.030). A total of 30 participants were followed-up in 2020. Serum LCN2 levels were decreased in correlation with age (23.31 ± 12.32 ng/ml in 2015 and 15.98 ± 11.28 ng/ml in 2020, p 0.024), while other metabolic parameters were unchanged. Magnetic resonance imaging studies were conducted on a subsample of patients in 2020 (n = 15). Associations between high serum LCN2 levels from 2015 and 2020 and changes in brain volume of hippocampus and prefrontal cortex from 2020 have been observed. These findings suggest a relationship between changes of the level of circulating LCN2, cognitive impairment, and changes in brain volume in patients with MetS. However, further investigation is still needed to explore the direct effect of circulating LCN2 on the cognition of MetS patients.
Collapse
|
24
|
Skoug C, Holm C, Duarte JMN. Hormone-sensitive lipase is localized at synapses and is necessary for normal memory functioning in mice. J Lipid Res 2022; 63:100195. [PMID: 35300984 PMCID: PMC9026619 DOI: 10.1016/j.jlr.2022.100195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 10/31/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is mainly present in adipose tissue where it hydrolyses diacylglycerol. Although expression of HSL has also been reported in the brain, its presence in different cellular compartments is uncertain, and its role in regulating brain lipid metabolism remains hitherto unexplored. We hypothesized HSL might play a role in regulating the availability of bioactive lipids necessary for neuronal function, and therefore investigated whether dampening HSL activity could lead to brain dysfunction. In mice, we found HSL protein and enzymatic activity throughout the brain, both localized within neurons and enriched in synapses. HSL-null mice were then analyzed using a battery of behavioral tests. Relative to wild-type littermates, HSL-null mice showed impaired short- and long-term memory, yet preserved exploratory behaviurs. Molecular analysis of the cortex and hippocampus showed increased expression of genes involved in glucose utilization in the hippocampus, but not cortex, of HSL-null mice compared to controls. Furthermore, lipidomics analyses indicated an impact of HSL deletion on the profile of bioactive lipids, including a decrease in endocannabinoids and eicosanoids that are known to modulate neuronal activity, cerebral blood flow, and inflammation processes. Accordingly, mild increases in the expression of pro-inflammatory cytokines in HSL mice compared to littermates were suggestive of low-grade inflammation. We conclude that HSL has a homeostatic role in maintaining pools of lipids required for normal brain function. It remains to be tested, however, whether the recruitment of HSL for the synthesis of these lipids occurs during increased neuronal activity, or whether HSL participates in neuroinflammatory responses.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Sweden.
| |
Collapse
|
25
|
Garcia-Serrano AM, Mohr AA, Philippe J, Skoug C, Spégel P, Duarte JMN. Cognitive Impairment and Metabolite Profile Alterations in the Hippocampus and Cortex of Male and Female Mice Exposed to a Fat and Sugar-Rich Diet are Normalized by Diet Reversal. Aging Dis 2022; 13:267-283. [PMID: 35111373 PMCID: PMC8782561 DOI: 10.14336/ad.2021.0720] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes impacts on brain metabolism, structure, and function. Alterations in brain metabolism have been observed in obesity and diabetes models induced by exposure to diets rich in saturated fat and/or sugar and have been linked to memory impairment. However, it remains to be determined whether brain dysfunction induced by obesogenic diets results from permanent brain alterations. We tested the hypothesis that an obesogenic diet (high-fat and high-sucrose diet; HFHSD) causes reversible changes in hippocampus and cortex metabolism and alterations in behavior. Mice were exposed to HFHSD for 24 weeks or for 16 weeks followed by 8 weeks of diet normalization. Development of the metabolic syndrome, changes in behavior, and brain metabolite profiles by magnetic resonance spectroscopy (MRS) were assessed longitudinally. Control mice were fed an ingredient-matched low-fat and low-sugar diet. Mice fed the HFHSD developed obesity, glucose intolerance and insulin resistance, with a more severe phenotype in male than female mice. Relative to controls, both male and female HFHSD-fed mice showed increased anxiety-like behavior, impaired memory in object recognition tasks, but preserved working spatial memory as evaluated by spontaneous alternation in a Y-maze. Alterations in the metabolite profiles were observed both in the hippocampus and cortex but were more distinct in the hippocampus. HFHSD-induced metabolic changes included altered levels of lactate, glutamate, GABA, glutathione, taurine, N-acetylaspartate, total creatine and total choline. Notably, HFHSD-induced metabolic syndrome, anxiety, memory impairment, and brain metabolic alterations recovered upon diet normalization for 8 weeks. In conclusion, cortical and hippocampal derangements induced by long-term HFHSD consumption are reversible rather than being the result of permanent tissue damage.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Adélaïde A Mohr
- 3Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juliette Philippe
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Peter Spégel
- 4Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund Sweden
| | - João M N Duarte
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Jansson D, Wang M, Thomas RG, Erickson MA, Peskind ER, Li G, Iliff J. Markers of Cerebrovascular Injury, Inflammation, and Plasma Lipids Are Associated with Alzheimer's Disease Cerebrospinal Fluid Biomarkers in Cognitively Normal Persons. J Alzheimers Dis 2022; 86:813-826. [PMID: 35124650 PMCID: PMC10010435 DOI: 10.3233/jad-215400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifactorial process that takes years to manifest clinically. We propose that brain-derived indicators of cerebrovascular dysfunction and inflammation would inform on AD-related pathological processes early in, and perhaps prior to neurodegenerative disease development. OBJECTIVE Define the relationship between cerebrospinal fluid (CSF) markers of cerebrovascular dysfunction and neuroinflammation with AD CSF biomarkers in cognitively normal individuals. METHODS Analytes were measured from CSF and plasma collected at baseline from two randomized control trials. We performed Pearson correlation analysis (adjusting for age, sex, APOE haplotype, and education) between markers of central nervous system (CNS) barrier disruption, cerebrovascular dysfunction, CSF inflammatory cytokines and chemokines, and plasma lipid levels. We then developed a statistical prediction model using machine learning to test the ability of measured CSF analytes and blood lipid profiles to predict CSF AD biomarkers (total tau, phospho-tau (181), Aβ42) in this clinical population. RESULTS Our analysis revealed a significant association between markers of CNS barrier dysfunction and markers of cerebrovascular dysfunction, acute inflammatory responses, and CSF inflammatory cytokines. There was a significant association of blood lipid profiles with cerebrovascular injury markers, and CSF inflammatory cytokine levels. Using machine learning, we show that combinations of blood lipid profiles, CSF markers of CNS barrier disruption, cerebrovascular dysfunction and CSF inflammatory cytokines predict CSF total tau, p-tau, and, to a lesser extent, Aβ42 in cognitively normal subjects. CONCLUSION This suggests that these parallel pathological processes may contribute to the development of AD-related neuropathology in the absence of clinical manifestations.
Collapse
Affiliation(s)
- Deidre Jansson
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA
| | - Marie Wang
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA
| | - Ronald G Thomas
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center (GRECC), VA Puget Sound Healthcare System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA
| | - Ge Li
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA.,Geriatrics Research Education and Clinical Center (GRECC), VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Jeffrey Iliff
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
27
|
Weller AE, Ferraro TN, Doyle GA, Reiner BC, Crist RC, Berrettini WH. Single Nucleus Transcriptome Data from Alzheimer's Disease Mouse Models Yield New Insight into Pathophysiology. J Alzheimers Dis 2022; 90:1233-1247. [PMID: 36213995 DOI: 10.3233/jad-220391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND 5XFAD humanized mutant mice and Trem2 knockout (T2KO) mice are two mouse models relevant to the study of Alzheimer's disease (AD)-related pathology. OBJECTIVE To determine hippocampal transcriptomic and polyadenylation site usage alterations caused by genetic mutations engineered in 5XFAD and T2KO mice. METHODS Employing a publicly available single-nucleus RNA sequencing dataset, we used Seurat and Sierra analytic programs to identify differentially expressed genes (DEGs) and differential transcript usage (DTU), respectively, in hippocampal cell types from each of the two mouse models. We analyzed cell type-specific DEGs further using Ingenuity Pathway Analysis (IPA). RESULTS We identified several DEGs in both neuronal and glial cell subtypes in comparisons of wild type (WT) versus 5XFAD and WT versus T2KO mice, including Ttr, Fth1, Pcsk1n, Malat1, Rpl37, Rtn1, Sepw1, Uba52, Mbp, Arl6ip5, Gm26917, Vwa1, and Pgrmc1. We also observed DTU in common between the two comparisons in neuronal and glial subtypes, specifically in the genes Prnp, Rbm4b, Pnisr, Opcml, Cpne7, Adgrb1, Gabarapl2, Ubb, Ndfip1, Car11, and Stmn4. IPA identified three statistically significant canonical pathways that appeared in multiple cell types and that overlapped between 5XFAD and T2KO comparisons to WT, including 'FXR/RXR Activation', 'LXR/RXR Activation', and 'Acute Phase Response Signaling'. CONCLUSION DEG, DTU, and IPA findings, derived from two different mouse models of AD, highlight the importance of energy imbalance and inflammatory processes in specific hippocampal cell types, including subtypes of neurons and glial cells, in the development of AD-related pathology. Additional studies are needed to further characterize these findings.
Collapse
Affiliation(s)
- Andrew E Weller
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas N Ferraro
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Glenn A Doyle
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C Crist
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Pachura N, Kupczyński R, Sycz J, Kuklińska A, Zwyrzykowska-Wodzińska A, Wińska K, Owczarek A, Kuropka P, Nowaczyk R, Bąbelewski P, Szumny A. Biological Potential and Chemical Profile of European Varieties of Ilex. Foods 2021; 11:foods11010047. [PMID: 35010173 PMCID: PMC8750822 DOI: 10.3390/foods11010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Plants of the genus Ilex are widespread throughout the world, with its best-known representative being Ilex paraguraiensis from South America. The European species Ilex aquifolium shows similarities in its terpenoid, sugar and phenolic acid profiles. Using aqueous extracts of Ilex aquifolium as a supplement in Wistar rats showed that, despite the lack of caffeine, it had strong hypocholesterolemic effects. In addition, a reduction in oxidative lipid degradation and a decrease in hepatic steatosis in histopathological studies were observed. The results of this study suggest that extracts from the European species Ilex aquifolium may have potential as an alternative treatment for hyperlipidemia.
Collapse
Affiliation(s)
- Natalia Pachura
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.S.); (K.W.); (A.S.)
- Correspondence:
| | - Robert Kupczyński
- Department of Environment, Animal Hygiene and Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (R.K.); (A.K.); (A.Z.-W.)
| | - Jordan Sycz
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.S.); (K.W.); (A.S.)
| | - Agata Kuklińska
- Department of Environment, Animal Hygiene and Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (R.K.); (A.K.); (A.Z.-W.)
| | - Anna Zwyrzykowska-Wodzińska
- Department of Environment, Animal Hygiene and Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (R.K.); (A.K.); (A.Z.-W.)
| | - Katarzyna Wińska
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.S.); (K.W.); (A.S.)
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lódź, Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Piotr Kuropka
- Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland; (P.K.); (R.N.)
| | - Renata Nowaczyk
- Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland; (P.K.); (R.N.)
| | - Przemysław Bąbelewski
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24A, 50-363 Wroclaw, Poland;
| | - Antoni Szumny
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.S.); (K.W.); (A.S.)
| |
Collapse
|
29
|
Cisternas P, Gherardelli C, Salazar P, Inestrosa NC. Disruption of Glucose Metabolism in Aged Octodon degus: A Sporadic Model of Alzheimer's Disease. Front Integr Neurosci 2021; 15:733007. [PMID: 34707484 PMCID: PMC8542902 DOI: 10.3389/fnint.2021.733007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the most common cause of dementia. Although transgenic Alzheimer's disease (AD) animal models have greatly contributed to our understanding of the disease, therapies tested in these animals have resulted in a high rate of failure in preclinical trials for AD. A promising model is Octodon degus (degu), a Chilean rodent that spontaneously develops AD-like neuropathology. Previous studies have reported that, during aging, degus exhibit a progressive decline in cognitive function, reduced neuroinflammation, and concomitant increases in the number and size of amyloid β (Aβ) plaques in several brain regions. Importantly, in humans and several AD models, a correlation has been shown between brain dysfunction and neuronal glucose utilization impairment, a critical aspect considering the high-energy demand of the brain. However, whether degus develop alterations in glucose metabolism remains unknown. In the present work, we measured several markers of glucose metabolism, namely, glucose uptake, ATP production, and glycolysis and pentose phosphate pathway (PPP) flux, in hippocampal slices from degus of different ages. We found a significant decrease in hippocampal glucose metabolism in aged degus, caused mainly by a drop in glucose uptake, which in turn, reduced ATP synthesis. Moreover, we observed a negative correlation between age and PPP flux. Together, our data further support the use of degus as a model for studying the neuropathology involved in sporadic AD-like pathology and as a potentially valuable tool in the search for effective treatments against the disease.
Collapse
Affiliation(s)
- Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Salazar
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
30
|
Gao X, Xu Y. Therapeutic Effects of Natural Compounds and Small Molecule Inhibitors Targeting Endoplasmic Reticulum Stress in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:745011. [PMID: 34540853 PMCID: PMC8440892 DOI: 10.3389/fcell.2021.745011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by progressive cognitive impairment and memory loss. So far, the pathogenesis of AD has not been fully understood. Research have shown that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in the occurrence and development of AD. Furthermore, various studies, both in vivo and in vitro, have shown that targeting ER stress and ER stress-mediated apoptosis contribute to the recovery of AD. Thus, targeting ER stress and ER stress-mediated apoptosis may be effective for treating AD. In this review, the molecular mechanism of ER stress and ER stress-mediated apoptosis, as well as the therapeutic effects of some natural compounds and small molecule inhibitors targeting ER stress and ER stress-mediated apoptosis in AD will be introduced.
Collapse
Affiliation(s)
- Xun Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
31
|
Li A, Tyson J, Patel S, Patel M, Katakam S, Mao X, He W. Emerging Nanotechnology for Treatment of Alzheimer's and Parkinson's Disease. Front Bioeng Biotechnol 2021; 9:672594. [PMID: 34113606 PMCID: PMC8185219 DOI: 10.3389/fbioe.2021.672594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of the two most common neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's Disease (AD), are expected to rise alongside the progressive aging of society. Both PD and AD are classified as proteinopathies with misfolded proteins α-synuclein, amyloid-β, and tau. Emerging evidence suggests that these misfolded aggregates are prion-like proteins that induce pathological cell-to-cell spreading, which is a major driver in pathogenesis. Additional factors that can further affect pathology spreading include oxidative stress, mitochondrial damage, inflammation, and cell death. Nanomaterials present advantages over traditional chemical or biological therapeutic approaches at targeting these specific mechanisms. They can have intrinsic properties that lead to a decrease in oxidative stress or an ability to bind and disaggregate fibrils. Additionally, nanomaterials enhance transportation across the blood-brain barrier, are easily functionalized, increase drug half-lives, protect cargo from immune detection, and provide a physical structure that can support cell growth. This review highlights emergent nanomaterials with these advantages that target oxidative stress, the fibrillization process, inflammation, and aid in regenerative medicine for both PD and AD.
Collapse
Affiliation(s)
- Amanda Li
- Washington University School of Medicine, St. Louis, MO, United States
| | - Joel Tyson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Shivni Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meer Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sruthi Katakam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, China
| |
Collapse
|
32
|
Inflammasome NLRP3 Potentially Links Obesity-Associated Low-Grade Systemic Inflammation and Insulin Resistance with Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22115603. [PMID: 34070553 PMCID: PMC8198882 DOI: 10.3390/ijms22115603] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.
Collapse
|
33
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|