1
|
Chen YF, Tsao CY, Chen YT, Chang HC, Li WY, Chiang JL, Chen CFF, Chen CH, Gau SSF, Lee KY, Lee LJ, Wang YC. Altered odor perception in Dlgap2 mutant mice, a mouse model of autism spectrum disorder. Behav Brain Res 2025; 480:115365. [PMID: 39631506 DOI: 10.1016/j.bbr.2024.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Olfactory dysfunction has been observed in patients with Autism Spectrum Disorder (ASD). A microdeletion at the 8p23 terminal regions of chromosome 8p23 was identified in a Taiwanese patient with ASD, suggesting a potential association with mutations in the DLGAP2 gene. DLGAP2 is expressed in the olfactory bulb in rodents. The current study investigated olfactory phenotypes of Dlgap2 mutant mice. The results indicated that odor detection capabilities were comparable between wild-type (WT) and Dlgap2 mutant mice. However, homozygous mutant (Homo) mice showed less interest in sniffing odors of banana and almond but greater sniffing activity in response to bedding from unfamiliar cages. Notably, exposure to banana odor elicited significant c-fos expression in most olfaction-related brain regions of WT mice, while Homo mice did not show much increase in c-fos levels in major olfactory areas, which may correlate with their diminished sniffing behavior. Bedding stimuli induced pronounced c-fos expression in WT brains and some olfaction-related regions, including the olfactory bulb, amygdala, hypothalamus, and medial prefrontal cortex, in Homo mice. These mutants may still process olfactory signals from the bedding through a relatively narrow channel, which might elicit their interest, leading to increased sniffing behaviors that may compensate for their olfactory deficits. The DLGAP2 protein was absent in the olfactory bulb of Homo mice, and the levels of PSD95 and CaMKIIβ were also affected, indicating alterations in synaptic transmission and signaling within the olfactory system. This study evaluated olfactory perception in a mouse model of ASD, which may advance diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Fu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yuh-Tarng Chen
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wai-Yu Li
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jui-Lin Chiang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Fu Fred Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
2
|
Yang X, Huang YWA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 2025; 20:715-724. [PMID: 38886937 PMCID: PMC11433911 DOI: 10.4103/nrr.nrr-d-23-02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Tropomyosin receptor kinase B (TrkB) signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory. The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre- or postsynaptic TrkB resulting in the strengthening of synapses, reflected by long-term potentiation. Postsynaptically, the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca2+/calmodulin-dependent protein kinase II and phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation. In this review, we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders. A reduction of TrkB signaling has been observed in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression. Treatment with brain-derived neurotrophic factor is problematic, due to poor pharmacokinetics, low brain penetration, and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform. Although TrkB agonists and antibodies that activate TrkB are being intensively investigated, they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions. Targeting TrkB-postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Kim YE, Kim M, Kim S, Lee R, Ujihara Y, Marquez-Wilkins EM, Jiang YH, Yang E, Kim H, Lee C, Park C, Kim IH. Endothelial SHANK3 regulates tight junctions in the neonatal mouse blood-brain barrier through β-Catenin signaling. Nat Commun 2025; 16:1407. [PMID: 39915488 PMCID: PMC11802743 DOI: 10.1038/s41467-025-56720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability condition arising from a combination of genetic and environmental factors. Despite the blood-brain barrier (BBB) serving as a crucial gatekeeper, conveying environmental influences into the brain parenchyma, the contributions of BBB in ASD pathogenesis remain largely uncharted. Here we report that SHANK3, an ASD-risk gene, expresses in the BBB-forming brain endothelial cells (BECs) and regulates tight junctional (TJ) integrity essential for BBB's barrier function. Endothelium-specific Shank3 (eShank3) knockout (KO) neonatal mice exhibit male-specific BBB-hyperpermeability, reduced neuronal excitability, and impaired ultra-sonic communications. Although BBB permeability is restored during adult age, the male mutant mice display reduced neuronal excitability and impaired sociability. Further analysis reveals that the BBB-hyperpermeability is attributed to the β-Catenin imbalance triggered by eShank3-KO. These findings highlight a pathogenic mechanism stemming from the ASD-risk Shank3, emphasizing the significance of neonatal BECs in the BBB as a potential therapeutic target for ASD.
Collapse
Affiliation(s)
- Yong-Eun Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Minseong Kim
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Sunwhi Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Raham Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Yong-Hui Jiang
- Department of Genetics, Pediatrics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Changhoon Lee
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA.
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Flores-Prieto B, Manzo-Denes J, Hernández-Aguilar ME, Coria-Avila GA, Herrera-Covarrubias D, Aranda-Abreu GE, Rojas-Durán F, Pérez-Estudillo CA, Suárez-Medellín J, Toledo-Cárdenas MR. Effects of Valproic Acid Embryonic Exposure on Zebrafish: A Systematic Review and Meta-Analysis. NEUROSCI 2024; 5:650-665. [PMID: 39728678 DOI: 10.3390/neurosci5040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Exposure to valproic acid (VPA) during embryogenesis has become a valuable tool for modeling neurodevelopmental disorders in animal models such as zebrafish (Danio rerio). This article examines the effects of embryonic exposure to VPA in zebrafish on the basis of 39 articles sourced from PubMed and Google Scholar. We conducted a systematic review and meta-analysis to elucidate the common impacts of VPA exposure and reported that VPA significantly altered development at various levels. Behaviorally, zebrafish exposed to VPA exhibit notable changes in their social interaction patterns. Physiologically, VPA exposure leads to significant alterations, including decreased heart rates, increased mortality rates, and pronounced morphological abnormalities. Pharmacological exposure has been linked to neuroanatomical and neurochemical changes. At the genetic level, VPA exposure is associated with the differential expression of genes involved in neurodevelopment and neuronal function. The synthesized data from these studies underscore the utility of zebrafish as a model organism for investigating the effects of teratogen exposure on neurodevelopment.
Collapse
Affiliation(s)
| | - Jorge Manzo-Denes
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91070, Mexico
| | | | | | | | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91070, Mexico
| | | | - Jorge Suárez-Medellín
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91070, Mexico
| | | |
Collapse
|
5
|
Wankhede N, Kale M, Shukla M, Nathiya D, R R, Kaur P, Goyanka B, Rahangdale S, Taksande B, Upaganlawar A, Khalid M, Chigurupati S, Umekar M, Kopalli SR, Koppula S. Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects. Asian J Psychiatr 2024; 101:104241. [PMID: 39276483 DOI: 10.1016/j.ajp.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The integration of artificial intelligence (AI) into the diagnosis and treatment of autism spectrum disorder (ASD) represents a promising frontier in healthcare. This review explores the current landscape and future prospects of AI technologies in ASD diagnostics and interventions. AI enables early detection and personalized assessment of ASD through the analysis of diverse data sources such as behavioural patterns, neuroimaging, genetics, and electronic health records. Machine learning algorithms exhibit high accuracy in distinguishing ASD from neurotypical development and other developmental disorders, facilitating timely interventions. Furthermore, AI-driven therapeutic interventions, including augmentative communication systems, virtual reality-based training, and robot-assisted therapies, show potential in improving social interactions and communication skills in individuals with ASD. Despite challenges such as data privacy and interpretability, the future of AI in ASD holds promise for refining diagnostic accuracy, deploying telehealth platforms, and tailoring treatment plans. By harnessing AI, clinicians can enhance ASD care delivery, empower patients, and advance our understanding of this complex condition.
Collapse
Affiliation(s)
- Nitu Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Madhu Shukla
- Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Barkha Goyanka
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| |
Collapse
|
6
|
Janner DE, Poetini MR, Musachio EAS, Chaves NSG, Meichtry LB, Fernandes EJ, Mustafa MMD, De Carvalho AS, Gonçalves OH, Leimann FV, de Freitas RA, Prigol M, Guerra GP. Neurodevelopmental changes in Drosophila melanogaster are restored by treatment with lutein-loaded nanoparticles: Positive modulation of neurochemical and behavioral parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109998. [PMID: 39106915 DOI: 10.1016/j.cbpc.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), are characterized by persistent changes in communication and social interaction, as well as restricted and stereotyped patterns of behavior. The complex etiology of these disorders possibly combines the effects of multiple genes and environmental factors. Hence, exposure to insecticides such as imidacloprid (IMI) has been used to replicate the changes observed in these disorders. Lutein is known for its anti-inflammatory and antioxidant properties and is associated with neuroprotective effects. Therefore, the aim of this study was to evaluate the protective effect of lutein-loaded nanoparticles, along with their mechanisms of action, on Drosophila melanogaster offspring exposed to IMI-induced damage. To simulate the neurodevelopmental disorder model, flies were exposed to a diet containing IMI for 7 days. Posteriorly, their offspring were exposed to a diet containing lutein-loaded nanoparticles for a period of 24 h, and male and female flies were subjected to behavioral and biochemical evaluations. Treatment with lutein-loaded nanoparticles reversed the parameters of hyperactivity, aggressiveness, social interaction, repetitive movements, and anxiety in the offspring of flies exposed to IMI. It also protected markers of oxidative stress and cell viability, in addition to preventing the reduction of Nrf2 and Shank3 immunoreactivity. These results demonstrate that the damage induced by exposure to IMI was restored through treatment with lutein-loaded nanoparticles, elucidating lutein's mechanisms of action as a therapeutic agent, which, after further studies, can become a co-adjuvant in the treatment of neurodevelopmental disorders, such as ASD and ADHD.
Collapse
Affiliation(s)
- Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Nathalie Savedra Gomes Chaves
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Mustafa Munir Dahleh Mustafa
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Amarilis Santos De Carvalho
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | | | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
7
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
8
|
Li YX, Tan ZN, Li XH, Ma B, Adu Nti F, Lv XQ, Tian ZJ, Yan R, Man HY, Ma XM. Increased gene dosage of RFWD2 causes autistic-like behaviors and aberrant synaptic formation and function in mice. Mol Psychiatry 2024; 29:2496-2509. [PMID: 38503925 PMCID: PMC11412905 DOI: 10.1038/s41380-024-02515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.
Collapse
Affiliation(s)
- Yong-Xia Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Nei Tan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Boyu Ma
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Adu Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Qiang Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhen-Jun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA.
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
9
|
Guerra M, Medici V, La Sala G, Farini D. Unravelling the Cerebellar Involvement in Autism Spectrum Disorders: Insights into Genetic Mechanisms and Developmental Pathways. Cells 2024; 13:1176. [PMID: 39056758 PMCID: PMC11275240 DOI: 10.3390/cells13141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorders (ASDs) are complex neurodevelopmental conditions characterized by deficits in social interaction and communication, as well as repetitive behaviors. Although the etiology of ASD is multifactorial, with both genetic and environmental factors contributing to its development, a strong genetic basis is widely recognized. Recent research has identified numerous genetic mutations and genomic rearrangements associated with ASD-characterizing genes involved in brain development. Alterations in developmental programs are particularly harmful during critical periods of brain development. Notably, studies have indicated that genetic disruptions occurring during the second trimester of pregnancy affect cortical development, while disturbances in the perinatal and early postnatal period affect cerebellar development. The developmental defects must be viewed in the context of the role of the cerebellum in cognitive processes, which is now well established. The present review emphasizes the genetic complexity and neuropathological mechanisms underlying ASD and aims to provide insights into the cerebellar involvement in the disorder, focusing on recent advances in the molecular landscape governing its development in humans. Furthermore, we highlight when and in which cerebellar neurons the ASD-associated genes may play a role in the development of cortico-cerebellar circuits. Finally, we discuss improvements in protocols for generating cerebellar organoids to recapitulate the long period of development and maturation of this organ. These models, if generated from patient-induced pluripotent stem cells (iPSC), could provide a valuable approach to elucidate the contribution of defective genes to ASD pathology and inform diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), 00015 Monterotondo Scalo, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
10
|
Severino L, Kim J, Nam MH, McHugh TJ. From synapses to circuits: What mouse models have taught us about how autism spectrum disorder impacts hippocampal function. Neurosci Biobehav Rev 2024; 158:105559. [PMID: 38246230 DOI: 10.1016/j.neubiorev.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD's impact on hippocampal circuit function.
Collapse
Affiliation(s)
- Leandra Severino
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea.
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi Saitama, Japan.
| |
Collapse
|
11
|
Sharma AR, Batra G, Dhir N, Jain A, Modi T, Saini L, Thakur N, Mishra A, Singh RS, Singh A, Singla R, Prakash A, Goyal M, Bhatia A, Medhi B, Modi M. "Comparative evaluation of different chemical agents induced Autism Spectrum Disorder in experimental Wistar rats". Behav Brain Res 2024; 458:114728. [PMID: 37923221 DOI: 10.1016/j.bbr.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with uncertain etiology and pathophysiology. Several studies revealed that the commonly used animal models like Valproic Acid (VPA) and Propionic Acid (PPA) do not precisely represent the disease as the human patient does. The current study was conducted on different chemically (VPA, PPA, Poly I:C, Dioxin (2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)) & Chlorpyrifos (CPF)) induced ASD-like animal models and validated the best suitable experimental animal model, which would closely resemble with clinical features of the ASD. This validated model might help to explore the pathophysiology of ASD. This study included rat pups prenatally exposed to VPA, PPA, Poly I:C, Dioxin & CPF within GD9 to GD15 doses. The model groups were validated through developmental and behavioral parameters, Gene Expressions, Oxidative Stress, and Pro-inflammatory and Anti-inflammatory cytokines levels. Developmental and neurobehavioral parameters showed significant changes in model groups compared to the control. In oxidative stress parameters and neuro-inflammatory cytokines levels, model groups exhibited high oxidative stress and neuro-inflammation compared to control groups. Gene expression profile of ASD-related genes showed significant downregulation in model groups compared to the control group. Moreover, the Poly I:C group showed more significant results than other model groups. The comparison of available ASD-like experimental animal models showed that the Poly I:C induced model represented the exact pathophysiology of ASD as the human patient does. Poly I:C was reported in the maternal immune system activation via the inflammatory cytokines pathway, altering embryonic development and causing ASD in neonates.
Collapse
Affiliation(s)
- Amit Raj Sharma
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Gitika Batra
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Neha Dhir
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Ashish Jain
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Tanish Modi
- Clinical Trainee, Department of Neurology, PGIMER, Chandigarh, India
| | - Lokesh Saini
- All India Institute of Medical Sciences, Paediatric Neurology, Jodhpur, India
| | - Neetika Thakur
- Department of Endocrinology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Abhishek Mishra
- University of Minnesota Twin Cities, Department of Biomedical Sciences, USA
| | - Rahul Solomon Singh
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Rubal Singla
- University of Minnesota Twin Cities, Department of Biomedical Sciences, USA
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute Medical Education and Research, Chandigarh, India
| | - Manish Modi
- Department of Neurology, Post Graduate Institute Medical Education and Research, Chandigarh, India.
| |
Collapse
|
12
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Wright EB, Larsen EG, Coloma-Roessle CM, Hart HR, Bhattacharya MRC. Transmembrane protein 184B (TMEM184B) promotes expression of synaptic gene networks in the mouse hippocampus. BMC Genomics 2023; 24:559. [PMID: 37730546 PMCID: PMC10512654 DOI: 10.1186/s12864-023-09676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
In Alzheimer's Disease (AD) and other dementias, hippocampal synaptic dysfunction and loss contribute to the progression of memory impairment. Recent analysis of human AD transcriptomes has provided a list of gene candidates that may serve as drivers of disease. One such candidate is the membrane protein TMEM184B. To evaluate whether TMEM184B contributes to neurological impairment, we asked whether loss of TMEM184B in mice causes gene expression or behavior alterations, focusing on the hippocampus. Because one major risk factor for AD is age, we compared young adult (5-month-old) and aged (15-month-old) wild type and Tmem184b-mutant mice to assess the dual contributions of age and genotype. TMEM184B loss altered expression of pre- and post-synaptic transcripts by 5 months and continued through 15 months, specifically affecting genes involved in synapse assembly and neural development. Wnt-activated enhancer elements were enriched among differentially expressed genes, suggesting an intersection with this pathway. Few differences existed between young adult and aged mutants, suggesting that transcriptional effects of TMEM184B loss are relatively constant. To understand how TMEM184B disruption may impact behaviors, we evaluated memory using the novel object recognition test and anxiety using the elevated plus maze. Young adult Tmem184b-mutant mice show normal object discrimination, suggesting a lack of memory impairment at this age. However, mutant mice showed decreased anxiety, a phenotype seen in some neurodevelopmental disorders. Taken together, our data suggest that TMEM184B is required for proper synaptic gene expression and anxiety-related behavior and is more likely to be linked to neurodevelopmental disorders than to dementia.
Collapse
Affiliation(s)
- Elizabeth B Wright
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | - Erik G Larsen
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | | - Hannah R Hart
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | |
Collapse
|
14
|
Galgani A, Bartolini E, D’Amora M, Faraguna U, Giorgi FS. The Central Noradrenergic System in Neurodevelopmental Disorders: Merging Experimental and Clinical Evidence. Int J Mol Sci 2023; 24:5805. [PMID: 36982879 PMCID: PMC10055776 DOI: 10.3390/ijms24065805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this article is to highlight the potential role of the locus-coeruleus-noradrenergic (LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and sensitivity to perinatal damage make it an interesting target for translational research. Clinical data shows the involvement of the LC-NA system in several NdDs, suggesting a pathogenetic role in the development of such disorders. In this context, a new neuroimaging tool, LC Magnetic Resonance Imaging (MRI), has been developed to visualize the LC in vivo and assess its integrity, which could be a valuable tool for exploring morphological alterations in NdD in vivo in humans. New animal models may be used to test the contribution of the LC-NA system to the pathogenic pathways of NdD and to evaluate the efficacy of NA-targeting drugs. In this narrative review, we provide an overview of how the LC-NA system may represent a common pathophysiological and pathogenic mechanism in NdD and a reliable target for symptomatic and disease-modifying drugs. Further research is needed to fully understand the interplay between the LC-NA system and NdD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
- Tuscany PhD Programme in Neurosciences, 50121 Florence, Italy
| | - Marta D’Amora
- Department of Biology, University of Pisa, 56125 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| |
Collapse
|
15
|
Gong J, Jin Z, Chen H, He J, Zhang Y, Yang X. Super-resolution fluorescence microscopic imaging in pathogenesis and drug treatment of neurological disease. Adv Drug Deliv Rev 2023; 196:114791. [PMID: 37004939 DOI: 10.1016/j.addr.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Since super-resolution fluorescence microscopic technology breaks the diffraction limit that has existed for a long time in optical imaging, it can observe the process of synapses formed between nerve cells and the protein aggregation related to neurological disease. Thus, super-resolution fluorescence microscopic imaging has significantly impacted several industries, including drug development and pathogenesis research, and it is anticipated that it will significantly alter the future of life science research. Here, we focus on several typical super-resolution fluorescence microscopic technologies, introducing their benefits and drawbacks, as well as applications in several common neurological diseases, in the hope that their services will be expanded and improved in the pathogenesis and drug treatment of neurological diseases.
Collapse
|
16
|
Huang M, Qi Q, Xu T. Targeting Shank3 deficiency and paresthesia in autism spectrum disorder: A brief review. Front Mol Neurosci 2023; 16:1128974. [PMID: 36846568 PMCID: PMC9948097 DOI: 10.3389/fnmol.2023.1128974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction, and repetitive behaviors. Several studies have shown an association between cases of ASD and mutations in the genes of SH3 and multiple ankyrin repeat domain protein 3 (SHANK3). These genes encode many cell adhesion molecules, scaffold proteins, and proteins involved in synaptic transcription, protein synthesis, and degradation. They have a profound impact on all aspects of synaptic transmission and plasticity, including synapse formation and degeneration, suggesting that the pathogenesis of ASD may be partially attributable to synaptic dysfunction. In this review, we summarize the mechanism of synapses related to Shank3 in ASD. We also discuss the molecular, cellular, and functional studies of experimental models of ASD and current autism treatment methods targeting related proteins.
Collapse
Affiliation(s)
- Min Huang
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Qi Qi
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Tao Xu
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China,*Correspondence: Tao Xu,
| |
Collapse
|
17
|
Galineau L, Arlicot N, Dupont AC, Briend F, Houy-Durand E, Tauber C, Gomot M, Gissot V, Barantin L, Lefevre A, Vercouillie J, Roussel C, Roux S, Nadal L, Mavel S, Laumonnier F, Belzung C, Chalon S, Emond P, Santiago-Ribeiro MJ, Bonnet-Brilhault F. Glutamatergic synapse in autism: a complex story for a complex disorder. Mol Psychiatry 2023; 28:801-809. [PMID: 36434055 DOI: 10.1038/s41380-022-01860-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.
Collapse
Affiliation(s)
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France
| | - Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frederic Briend
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Emmanuelle Houy-Durand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Gomot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | | | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Lydie Nadal
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| |
Collapse
|
18
|
Kim Y, Ko TH, Jin C, Zhang Y, Kang HR, Ma R, Li H, Choi JI, Han K. The emerging roles of Shank3 in cardiac function and dysfunction. Front Cell Dev Biol 2023; 11:1191369. [PMID: 37187620 PMCID: PMC10175600 DOI: 10.3389/fcell.2023.1191369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Shank3 is a member of the Shank family proteins (Shank1-3), which are abundantly present in the postsynaptic density (PSD) of neuronal excitatory synapses. As a core scaffold in the PSD, Shank3 plays a critical role in organizing the macromolecular complex, ensuring proper synaptic development and function. Clinically, various mutations of the SHANK3 gene are causally associated with brain disorders such as autism spectrum disorders and schizophrenia. However, recent in vitro and in vivo functional studies and expression profiling in various tissues and cell types suggest that Shank3 also plays a role in cardiac function and dysfunction. For example, Shank3 interacts with phospholipase Cβ1b (PLCβ1b) in cardiomyocytes, regulating its localization to the sarcolemma and its role in mediating Gq-induced signaling. In addition, changes in cardiac morphology and function associated with myocardial infarction and aging have been investigated in a few Shank3 mutant mouse models. This review highlights these results and potential underlying mechanisms, and predicts additional molecular functions of Shank3 based on its protein interactors in the PSD, which are also highly expressed and function in the heart. Finally, we provide perspectives and possible directions for future studies to better understand the roles of Shank3 in the heart.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul, Republic of Korea
| | - Chunmei Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Huiling Li
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jong-Il Choi, ; Kihoon Han,
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jong-Il Choi, ; Kihoon Han,
| |
Collapse
|
19
|
Chhabra S, Nardi L, Leukel P, Sommer CJ, Schmeisser MJ. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front Psychiatry 2023; 14:1110525. [PMID: 36970280 PMCID: PMC10030619 DOI: 10.3389/fpsyt.2023.1110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.
Collapse
Affiliation(s)
- Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| |
Collapse
|
20
|
Ersoy N, Acikgoz B, Aksu I, Kiray A, Bagriyanik HA, Kiray M. The Effects of Prenatal and Postnatal Exposure to 50-Hz and 3 mT Electromagnetic Field on Rat Testicular Development. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010071. [PMID: 36676695 PMCID: PMC9867318 DOI: 10.3390/medicina59010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Background and objectives: It has been shown that electromagnetic fields (EMFs) have negative effects on the reproductive system. The biological effects of EMF on the male reproductive system are controversial and vary depending on the frequency and exposure time. Although a limited number of studies have focused on the structural and functional effects of EMF, the effects of prenatal and postnatal EMF exposure on testes are not clear. We aimed to investigate the effects of 50-Hz, 3-mT EMF exposure (5 days/wk, 4 h/day) during pre- and postnatal periods on testis development. Materials and Methods: Pups from three groups of Sprague-Dawley pregnant rats were used: Sham, EMF-28 (EMF-exposure applied during pregnancy and until postnatal day 28), EMF-42 (EMF-exposure applied during pregnancy and until postnatal day 42). The testis tissues and blood samples of male offspring were collected on the postnatal day 42. Results: Morphometric analyses showed a decrease in seminiferous tubule diameter as a result of testicular degeneration in the EMF-42 group. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were decreased in the EMF-42 group. Lipid peroxidation levels were increased in both EMF groups, while antioxidant levels were decreased only in the EMF-28 group. We found decreased levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF1) in the EMF-42 group, and decreased levels of the SRC homology 3 (SH3) and multiple ankyrin repeat domain (SHANK3) in the EMF-28 group in the testis tissue. Conclusions: EMF exposure during pre- and postnatal periods may cause deterioration in the structure and function of testis and decrease in growing factors that would affect testicular functions in male rat pups. In addition to the oxidative stress observed in testis, decreased SHANK3, VEGF, and IGF1 protein levels suggests that these proteins may be mediators in testis affected by EMF exposure. This study shows that EMF exposure during embryonic development and adolescence can cause apoptosis and structural changes in the testis.
Collapse
Affiliation(s)
- Nevin Ersoy
- Department of Histology&Embryology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Health Sciences Institute, Dokuz Eylul University, 35330 Izmir, Turkey
- Izmir Biomedicine and Genom Center, 35330 Izmir, Turkey
| | - Burcu Acikgoz
- Health Sciences Institute, Dokuz Eylul University, 35330 Izmir, Turkey
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Ilkay Aksu
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Amac Kiray
- Department of Anatomy, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Husnu Alper Bagriyanik
- Department of Histology&Embryology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Izmir Biomedicine and Genom Center, 35330 Izmir, Turkey
| | - Muge Kiray
- Department of Physiology, Medical Faculty, Dokuz Eylul University, 35330 Izmir, Turkey
- Correspondence:
| |
Collapse
|
21
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
22
|
Diamanti T, Prete R, Battista N, Corsetti A, De Jaco A. Exposure to Antibiotics and Neurodevelopmental Disorders: Could Probiotics Modulate the Gut-Brain Axis? Antibiotics (Basel) 2022; 11:1767. [PMID: 36551423 PMCID: PMC9774196 DOI: 10.3390/antibiotics11121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In order to develop properly, the brain requires the intricate interconnection of genetic factors and pre-and postnatal environmental events. The gut-brain axis has recently raised considerable interest for its involvement in regulating the development and functioning of the brain. Consequently, alterations in the gut microbiota composition, due to antibiotic administration, could favor the onset of neurodevelopmental disorders. Literature data suggest that the modulation of gut microbiota is often altered in individuals affected by neurodevelopmental disorders. It has been shown in animal studies that metabolites released by an imbalanced gut-brain axis, leads to alterations in brain function and deficits in social behavior. Here, we report the potential effects of antibiotic administration, before and after birth, in relation to the risk of developing neurodevelopmental disorders. We also review the potential role of probiotics in treating gastrointestinal disorders associated with gut dysbiosis after antibiotic administration, and their possible effect in ameliorating neurodevelopmental disorder symptoms.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
23
|
Hsieh MY, Tuan LH, Chang HC, Wang YC, Chen CH, Shy HT, Lee LJ, Gau SSF. Altered synaptic protein expression, aberrant spine morphology, and impaired spatial memory in Dlgap2 mutant mice, a genetic model of autism spectrum disorder. Cereb Cortex 2022; 33:4779-4793. [PMID: 36169576 DOI: 10.1093/cercor/bhac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
A microdeletion of approximately 2.4 Mb at the 8p23 terminal region has been identified in a Taiwanese autistic boy. Among the products transcribed/translated from genes mapped in this region, the reduction of DLGAP2, a postsynaptic scaffold protein, might be involved in the pathogenesis of autism spectrum disorder (ASD). DLGAP2 protein was detected in the hippocampus yet abolished in homozygous Dlgap2 knockout (Dlgap2 KO) mice. In this study, we characterized the hippocampal phenotypes in Dlgap2 mutant mice. Dlgap2 KO mice exhibited impaired spatial memory, indicating poor hippocampal function in the absence of DLGAP2. Aberrant expressions of postsynaptic proteins, including PSD95, SHANK3, HOMER1, GluN2A, GluR2, mGluR1, mGluR5, βCAMKII, ERK1/2, ARC, BDNF, were noticed in Dlgap2 mutant mice. Further, the spine density was increased in Dlgap2 KO mice, while the ratio of mushroom-type spines was decreased. We also observed a thinner postsynaptic density thickness in Dlgap2 KO mice at the ultrastructural level. These structural changes found in the hippocampus of Dlgap2 KO mice might be linked to impaired hippocampus-related cognitive functions such as spatial memory. Mice with Dlgap2 deficiency, showing signs of intellectual disability, a common co-occurring condition in patients with ASD, could be a promising animal model which may advance our understanding of ASD.
Collapse
Affiliation(s)
- Ming-Yen Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|