1
|
Eteleeb AM, Alves SS, Buss S, Shafi M, Press D, Garcia-Cairasco N, Benitez BA. Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes. Epilepsy Behav 2025; 168:110421. [PMID: 40250147 DOI: 10.1016/j.yebeh.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we leveraged high-throughput transcriptomic data from sporadic AD cases at different stages of cognitive impairment across multiple independent cohorts and brain regions to examine the role of epilepsy-causing genes. METHODS Epilepsy-causing genes were manually curated, and their expression levels were analyzed across bulk transcriptomic data from three AD cohorts and three brain regions. RNA-seq data from sporadic AD and control cases from the Knight ADRC, MSBB, and ROSMAP cohorts were processed and analyzed under the same analytical pipeline. An integrative clustering approach employing machine learning and multi-omics data was employed to identify molecularly defined profiles with different cognitive scores. RESULTS We found several epilepsy-associated genes/pathways significantly dysregulated in a group of AD patients with more severe cognitive impairment. We observed 15 genes consistently downregulated across the three cohorts, including sodium and potassium channels genes, suggesting that these genes play fundamental roles in cognitive function or AD progression. Notably, we found 25 of these genes dysregulated in earlier stages of AD and become worse with AD progression. CONCLUSION Our findings revealed that epilepsy-causing genes showed changes in the early and late stages of AD progression, suggesting that they might be playing a role in AD progression. We can not establish directionality or cause-effect with our findings. However, changes in the epilepsy-causing genes might underlie the presence of seizures in AD patients, which might be present before or concurrently with the initial stages of AD.
Collapse
Affiliation(s)
- Abdallah M Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, MO, United States of America; The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, United States of America
| | - Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Stephanie Buss
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Mouhsin Shafi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Daniel Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
2
|
Eteleeb AM, Alves SS, Buss S, Shafi M, Press D, Garcia-Cairasco N, Benitez BA. Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.02.25319900. [PMID: 39974070 PMCID: PMC11838929 DOI: 10.1101/2025.01.02.25319900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background & Objective Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we leveraged high-throughput transcriptomic data from sporadic AD cases at different stages of cognitive impairment across multiple independent cohorts and brain regions to examine the role of epilepsy-causing genes. Methods Epilepsy-causing genes were manually curated, and their expression levels were analyzed across bulk transcriptomic data from three AD cohorts and three brain regions. RNA-seq data from sporadic AD and control cases from the Knight ADRC, MSBB, and ROSMAP cohorts were processed and analyzed under the same analytical pipeline. An integrative clustering approach employing machine learning and multi-omics data was employed to identify molecularly defined profiles with different cognitive scores. Results We found several epilepsy-associated genes/pathways significantly dysregulated in a group of AD patients with more severe cognitive impairment. We observed 15 genes consistently downregulated across the three cohorts, including sodium and potassium channels, suggesting that these genes play fundamental roles in cognitive function or AD progression. Notably, we found 25 of these genes dysregulated in earlier stages of AD and become worse with AD progression. Conclusion Our findings showed that epilepsy-causing genes showed changes in the early and late stages of AD progression, suggesting that they might be playing a role in AD progression. We can not establish directionality or cause-effect with our findings. However, changes in the epilepsy-causing genes might underlie the presence of seizures in AD patients, which might be present before or concurrently with the initial stages of AD.
Collapse
Affiliation(s)
- Abdallah M. Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
| | - Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Stephanie Buss
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mouhsin Shafi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Bruno A. Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Michal Jazwinski S, Zhou X, Wang X, Zhang K, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Stereo-seq of the prefrontal cortex in aging and Alzheimer's disease. Nat Commun 2025; 16:482. [PMID: 39779708 PMCID: PMC11711495 DOI: 10.1038/s41467-024-54715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions. Notably, we identified genes highly upregulated in stressed neurons and nearby glial cells, where AD diminished stress-response interactions that promote Aβ clearance. Further, cell-type-specific co-expression analysis highlighted three neuronal modules linked to neuroprotection, protein dephosphorylation, and Aβ regulation, with all modules downregulated as AD progresses. We identified ZNF460 as a transcription factor regulating these modules, offering a potential therapeutic target. In summary, this spatial transcriptome atlas provides valuable insight into AD's molecular mechanisms.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA, 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, College of Integrated Health Sciences, University at Albany, Albany, NY, 12222, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA.
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Ramirez AM, Bertholim-Nasciben L, Moura S, Coombs LE, Rajabli F, DeRosa BA, Whitehead PG, Adams LD, Starks TD, Mena P, Illannes-Manrique M, Tejada SJ, Byrd GS, Caban-Holt A, Cuccaro M, McInerney K, Cornejo-Olivas M, Feliciano-Astacio B, Wang L, Robayo MC, Xu W, Jin F, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM, Young JI, Vance JM. Ancestral Genomic Functional Differences in Oligodendroglia: Implications for Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-5338140. [PMID: 39678342 PMCID: PMC11643296 DOI: 10.21203/rs.3.rs-5338140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background This study aims to elucidate ancestry-specific changes to the genomic regulatory architecture in induced pluripotent stem cell (iPSC)-derived oligodendroglia, focusing on their implications for Alzheimer's disease (AD). This work addresses the lack of diversity in previous iPSC studies by including ancestries that contribute to African American (European/African) and Hispanic/Latino populations (Amerindian/African/European). Methods We generated 12 iPSC lines-four African, four Amerindian, and four European- from both AD patients and non-cognitively impaired individuals, with varying APOE genotypes (APOE3/3 and APOE4/4). These lines were differentiated into neural spheroids containing oligodendrocyte lineage cells. Single-nuclei RNA sequencing and ATAC sequencing were employed to analyze transcriptional and chromatin accessibility profiles, respectively. Differential gene expression, chromatin accessibility, and Hi-C analyses were conducted, followed by pathway analysis to interpret the results. Results We identified ancestry-specific differences in gene expression and chromatin accessibility. Notably, numerous AD GWAS-associated genes were differentially expressed across ancestries. The largest number of differentially expressed genes (DEGs) were found in European vs. Amerindian and African vs. Amerindian iPSC-derived oligodendrocyte progenitor cells (OPCs). Pathway analysis of APOE4/4 carriers vs APOE3/3 carriers exhibited upregulation of a large number of disease and metabolic pathways in APOE4/4 individuals of all ancestries. Of particular interest was that APOE4/4 carriers had significantly upregulated cholesterol biosynthesis genes relative to APOE3/3 individuals across all ancestries, strongest in iOPCs. Comparison of iOPC and iOL transcriptome data with corresponding human frontal cortex data demonstrated a high correlation (R2 > 0.85). Conclusions This research emphasizes the importance of including diverse ancestries in AD research to uncover critical gene expression differences between populations and ancestries that may influence disease susceptibility and therapeutic interventions. The upregulation of cholesterol biosynthesis genes in APOE4/4 carriers of all three ancestries supports the concept that APOE4 may produce disease effects early in life, which could have therapeutic implications as we move forward towards specific therapy for APOE4 carriers. These findings and the high correlation between brain and iPSC-derived OPC and OL transcriptomes support the relevance of this approach as a model for disease study.
Collapse
Affiliation(s)
- Aura M Ramirez
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sofia Moura
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Lauren E Coombs
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Farid Rajabli
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Brooke A DeRosa
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Patrice G Whitehead
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Larry D Adams
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Takiyah D Starks
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Pedro Mena
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sergio J Tejada
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Goldie S Byrd
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Allison Caban-Holt
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Michael Cuccaro
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Katalina McInerney
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Mario Cornejo-Olivas
- Universidad Científica del Sur Facultad de Ciencias de la Salud: Universidad Cientifica del Sur Facultad de Ciencias de la Salud
| | | | - Liyong Wang
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Maria C Robayo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Wanying Xu
- Case Western Reserve University School of Medicine
| | - Fulai Jin
- Case Western Reserve University School of Medicine
| | | | - Anthony J Griswold
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Derek M Dykxhoorn
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Juan I Young
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Jeffery M Vance
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
5
|
Rahman MT, Saeed F, Bozdag S. Identifying Alzheimer's disease-associated genes using PhenoGeneRanker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623269. [PMID: 39605436 PMCID: PMC11601490 DOI: 10.1101/2024.11.12.623269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a neurogenerative disease that affects millions worldwide with no effective treatment. Several studies have been conducted to decipher to genomic underpinnings of AD. Due to its complex nature, many genes have been found to be associated with AD. Despite these findings, the pathophysiology of the disease is still elusive. To discover new putative AD-associated genes, in this study, we integrated multimodal gene and phenotype datasets of AD using network biology methods to prioritize potential AD-related genes. We constructed a multiplex heterogeneous network composed of patient and gene similarity networks utilizing phenotypic and omics datasets of AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We applied PhenoGeneRanker to traverse this network to discover potential AD-associated genes. To assess the impact of each network layer and seed gene, we also run PhenoGeneRanker on different variants of the network and seed genes. Our results showed that top-ranked genes captured several known AD-related genes and were enriched in Gene Ontology (GO) terms related to AD. We also observed that several top-ranked genes that are not in AD-associated gene list had literature supporting their potential relevance to AD.
Collapse
Affiliation(s)
- Most Tahmina Rahman
- Department of Computer Science and Engineering, University of North Texas, 1155 Union Circle #311366 Denton, Texas 76203, United States
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #311366 Denton, Texas 76203, United States
- Center for Computational Life Sciences, University of North Texas, 1155 Union Circle #311366 Denton, Texas 76203, United States
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8 Street, CASE 354 Miami, Florida 33199, United States
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, 1155 Union Circle #311366 Denton, Texas 76203, United States
- Department of Mathematics, University of North Texas, 1155 Union Circle #311366 Denton, Texas 76203, United States
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #311366 Denton, Texas 76203, United States
- Center for Computational Life Sciences, University of North Texas, 1155 Union Circle #311366 Denton, Texas 76203, United States
| | | |
Collapse
|
6
|
Deng Z, Lee A, Lin T, Taneja S, Kowdley D, Leung JH, Hill M, Tao T, Fitzgerald J, Yu L, Blakeslee JJ, Townsend K, Weil ZM, Parquette JR, Ziouzenkova O. Amino Acid Compound 2 (AAC2) Treatment Counteracts Insulin-Induced Synaptic Gene Expression and Seizure-Related Mortality in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11689. [PMID: 39519239 PMCID: PMC11546384 DOI: 10.3390/ijms252111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes is a major risk factor for Alzheimer's disease (AD). Amino acid compound 2 (AAC2) improves glycemic and cognitive functions in diabetic mouse models through mechanisms distinct from insulin. Our goal was to compare the effects of AAC2, insulin, and their nanofiber-forming combination on early asymptomatic AD pathogenesis in APP/PS1 mice. Insulin, but not AAC2 or the combination treatment (administered intraperitoneally every 48 h for 120 days), increased seizure-related mortality, altered the brain fat-to-lean mass ratio, and improved specific cognitive functions in APP/PS1 mice. NanoString and pathway analysis of cerebral gene expression revealed dysregulated synaptic mechanisms, with upregulation of Bdnf and downregulation of Slc1a6 in insulin-treated mice, correlating with insulin-induced seizures. In contrast, AAC2 promoted the expression of Syn2 and Syp synaptic genes, preserved brain composition, and improved survival. The combination of AAC2 and insulin counteracted free insulin's effects. None of the treatments influenced canonical amyloidogenic pathways. This study highlights AAC2's potential in regulating synaptic gene expression in AD and insulin-induced contexts related to seizure activity.
Collapse
Affiliation(s)
- Zhijie Deng
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
- Department of Food and Nutrition, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Sagarika Taneja
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Marykate Hill
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| | - Tianyi Tao
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.T.); (K.T.)
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (Z.M.W.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Joshua J. Blakeslee
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Columbus, OH 43210, USA;
| | - Kristy Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.T.); (K.T.)
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (Z.M.W.)
- Department of Neuroscience, WVU Rockefeller Neuroscience Institute, West Virginia University, Biomedical Research Center (BMRC), Morgantown, WV 26506, USA
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (T.L.); (S.T.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (Z.D.); or (A.L.); (D.K.); (J.H.L.); (M.H.)
| |
Collapse
|
7
|
Huang J, Sun C, Zhu Q, Wu G, Cao Y, Shi J, He S, Jiang L, Liao J, Li L, Zhong C, Lu Y. Phenotyping of FGF12A V52H mutation in mouse implies a complex FGF12 network. Neurobiol Dis 2024; 200:106637. [PMID: 39142611 DOI: 10.1016/j.nbd.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.
Collapse
Affiliation(s)
- Jianyu Huang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chongyang Sun
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ge Wu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Cao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiarui Shi
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu He
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Luyao Jiang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianxiang Liao
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lin Li
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Cheng Zhong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yi Lu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
8
|
Dey A, Ghosh S, Rajendran RL, Bhuniya T, Das P, Bhattacharjee B, Das S, Mahajan AA, Samant A, Krishnan A, Ahn BC, Gangadaran P. Alzheimer's Disease Pathology and Assistive Nanotheranostic Approaches for Its Therapeutic Interventions. Int J Mol Sci 2024; 25:9690. [PMID: 39273645 PMCID: PMC11395116 DOI: 10.3390/ijms25179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.
Collapse
Affiliation(s)
- Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India;
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Tiyasa Bhuniya
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India;
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India;
| | - Bidyabati Bhattacharjee
- Department of Life Sciences, Jain (Deemed-to-be) University, Bangalore 560078, Karnataka, India;
| | - Sagnik Das
- Department of Microbiology, St Xavier’s College (Autonomous), Kolkata 700016, West Bengal, India;
| | - Atharva Anand Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai 410210, Maharashtra, India
| | - Anushka Samant
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Orissa, India;
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa;
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
9
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Jazwinski SM, Zhou X, Wang X, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Spatial Dissection of the Distinct Cellular Responses to Normal Aging and Alzheimer's Disease in Human Prefrontal Cortex at Single-Nucleus Resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24306783. [PMID: 38826275 PMCID: PMC11142279 DOI: 10.1101/2024.05.21.24306783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Aging significantly elevates the risk for Alzheimer's disease (AD), contributing to the accumulation of AD pathologies, such as amyloid-β (Aβ), inflammation, and oxidative stress. The human prefrontal cortex (PFC) is highly vulnerable to the impacts of both aging and AD. Unveiling and understanding the molecular alterations in PFC associated with normal aging (NA) and AD is essential for elucidating the mechanisms of AD progression and developing novel therapeutics for this devastating disease. In this study, for the first time, we employed a cutting-edge spatial transcriptome platform, STOmics® SpaTial Enhanced Resolution Omics-sequencing (Stereo-seq), to generate the first comprehensive, subcellular resolution spatial transcriptome atlas of the human PFC from six AD cases at various neuropathological stages and six age, sex, and ethnicity matched controls. Our analyses revealed distinct transcriptional alterations across six neocortex layers, highlighted the AD-associated disruptions in laminar architecture, and identified changes in layer-to-layer interactions as AD progresses. Further, throughout the progression from NA to various stages of AD, we discovered specific genes that were significantly upregulated in neurons experiencing high stress and in nearby non-neuronal cells, compared to cells distant from the source of stress. Notably, the cell-cell interactions between the neurons under the high stress and adjacent glial cells that promote Aβ clearance and neuroprotection were diminished in AD in response to stressors compared to NA. Through cell-type specific gene co-expression analysis, we identified three modules in excitatory and inhibitory neurons associated with neuronal protection, protein dephosphorylation, and negative regulation of Aβ plaque formation. These modules negatively correlated with AD progression, indicating a reduced capacity for toxic substance clearance in AD subject samples. Moreover, we have discovered a novel transcription factor, ZNF460, that regulates all three modules, establishing it as a potential new therapeutic target for AD. Overall, utilizing the latest spatial transcriptome platform, our study developed the first transcriptome-wide atlas with subcellular resolution for assessing the molecular alterations in the human PFC due to AD. This atlas sheds light on the potential mechanisms underlying the progression from NA to AD.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S. Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
10
|
Yaghmaeian Salmani B, Lahti L, Gillberg L, Jacobsen JK, Mantas I, Svenningsson P, Perlmann T. Transcriptomic atlas of midbrain dopamine neurons uncovers differential vulnerability in a Parkinsonism lesion model. eLife 2024; 12:RP89482. [PMID: 38587883 PMCID: PMC11001297 DOI: 10.7554/elife.89482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Midbrain dopamine (mDA) neurons comprise diverse cells with unique innervation targets and functions. This is illustrated by the selective sensitivity of mDA neurons of the substantia nigra compacta (SNc) in patients with Parkinson's disease, while those in the ventral tegmental area (VTA) are relatively spared. Here, we used single nuclei RNA sequencing (snRNA-seq) of approximately 70,000 mouse midbrain cells to build a high-resolution atlas of mouse mDA neuron diversity at the molecular level. The results showed that differences between mDA neuron groups could best be understood as a continuum without sharp differences between subtypes. Thus, we assigned mDA neurons to several 'territories' and 'neighborhoods' within a shifting gene expression landscape where boundaries are gradual rather than discrete. Based on the enriched gene expression patterns of these territories and neighborhoods, we were able to localize them in the adult mouse midbrain. Moreover, because the underlying mechanisms for the variable sensitivities of diverse mDA neurons to pathological insults are not well understood, we analyzed surviving neurons after partial 6-hydroxydopamine (6-OHDA) lesions to unravel gene expression patterns that correlate with mDA neuron vulnerability and resilience. Together, this atlas provides a basis for further studies on the neurophysiological role of mDA neurons in health and disease.
Collapse
Affiliation(s)
| | - Laura Lahti
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Jesper Kjaer Jacobsen
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
- Department of Neurology, Karolinska University HospitalStockholmSweden
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| |
Collapse
|
11
|
Godfrey RK, Alsop E, Bjork RT, Chauhan BS, Ruvalcaba HC, Antone J, Gittings LM, Michael AF, Williams C, Hala'ufia G, Blythe AD, Hall M, Sattler R, Van Keuren-Jensen K, Zarnescu DC. Modelling TDP-43 proteinopathy in Drosophila uncovers shared and neuron-specific targets across ALS and FTD relevant circuits. Acta Neuropathol Commun 2023; 11:168. [PMID: 37864255 PMCID: PMC10588218 DOI: 10.1186/s40478-023-01656-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- R Keating Godfrey
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611, USA.
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Reed T Bjork
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Brijesh S Chauhan
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA
| | - Hillary C Ruvalcaba
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Jerry Antone
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Allison F Michael
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christi Williams
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Grace Hala'ufia
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Alexander D Blythe
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Megan Hall
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA.
| |
Collapse
|
12
|
Liu B, Lv LL, Liu P, Xu YY, Guo M, Liu J, Shi JS. Proteomic analysis of anti-aging effects of Dendrobium nobile Lindl. alkaloids in aging-accelerated SAMP8 mice. Exp Gerontol 2023; 177:112198. [PMID: 37150330 DOI: 10.1016/j.exger.2023.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Senescence-accelerated mouse prone 8 (SAMP8) mice exhibit cognitive defects and neuron loss with aging, and were used to study anti-aging effects of Dendrobium nobile alkaloids (DNLA). DNLA (20 and 40 mg/kg) were orally administered to SAMP8 mice from 6 to 10 months of age. At 10-month of age, behavioral tests via Y-maze and Open-field and neuron damage via Nissl staining were evaluated. Protein was extracted and subjected to phosphorylated proteomic analysis followed by bioinformatic analysis. The cognitive deficits and neuron loss in hippocampus and cortex of aged SAMP8 mice were improved by DNLA. Hippocampal proteomic analysis revealed 196 differentially expressed protein/genes in SAMP8 compared to age-matched senescence-accelerated resistant SAMR1 mice. Gene Oncology enriched the tubulin binding, microtubule binding, and other activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed endocytosis, mRNA surveillance, tight junction, protein processing in endoplasmic reticulum, aldosterone synthesis and secretion, and glucagon signaling pathway changes. Upregulated protein/genes in the hippocampus of SAMP8 mice, such as Lmtk3, Usp10, Dzip1, Csnk2b, and Rtn1, were attenuated by DNLA; whereas downregulated protein/genes, such as Kctd16, Psd3, Bsn, Atxn2l, and Kif1a, were rescued by DNLA. The aberrant protein/gene expressions of SAMP8 mice were correlated with transcriptome changes of Alzheimer's disease in the Gene Expression Omnibus (GEO) database, and the scores were attenuated by DNLA. Thus, DNLA improved cognitive dysfunction and ameliorated neuronal injury in aged SAMP8 mice, and attenuated aberrant protein/gene expressions.
Collapse
Affiliation(s)
- Bo Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Ling-Li Lv
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China; Guizhou Health Vocational College, China
| | - Ping Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China; Department of Clinical Pharmacology, Zunyi Medical University, China
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Mian Guo
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, China
| | - Jie Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Jing-Shan Shi
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|