1
|
Vagiona AC, Notopoulou S, Zdráhal Z, Gonçalves-Kulik M, Petrakis S, Andrade-Navarro MA. Prediction of protein interactions with function in protein (de-)phosphorylation. PLoS One 2025; 20:e0319084. [PMID: 40029919 PMCID: PMC11875375 DOI: 10.1371/journal.pone.0319084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Protein-protein interactions (PPIs) form a complex network called "interactome" that regulates many functions in the cell. In recent years, there is an increasing accumulation of evidence supporting the existence of a hyperbolic geometry underlying the network representation of complex systems such as the interactome. In particular, it has been shown that the embedding of the human Protein-Interaction Network (hPIN) in hyperbolic space (H2) captures biologically relevant information. Here we explore whether this mapping contains information that would allow us to predict the function of PPIs, more specifically interactions related to post-translational modification (PTM). We used a random forest algorithm to predict PTM-related directed PPIs, concretely, protein phosphorylation and dephosphorylation, based on hyperbolic properties and centrality measures of the hPIN mapped in H2. To evaluate the efficacy of our algorithm, we predicted PTM-related PPIs of ataxin-1, a protein which is responsible for Spinocerebellar Ataxia type 1 (SCA1). Proteomics analysis in a cellular model revealed that several of the predicted PTM-PPIs were indeed dysregulated in a SCA1-related disease network. A compact cluster composed of ataxin-1, its dysregulated PTM-PPIs and their common upstream regulators may represent critical interactions for disease pathology. Thus, our algorithm may infer phosphorylation activity on proteins through directed PPIs.
Collapse
Affiliation(s)
- Aimilia-Christina Vagiona
- Faculty of Biology, Insitute of Organismic and Molecular Evolution, Johannes Gutenberg University, Biozentrum I, Mainz, Germany
| | - Sofia Notopoulou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mariane Gonçalves-Kulik
- Faculty of Biology, Insitute of Organismic and Molecular Evolution, Johannes Gutenberg University, Biozentrum I, Mainz, Germany
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Miguel A. Andrade-Navarro
- Faculty of Biology, Insitute of Organismic and Molecular Evolution, Johannes Gutenberg University, Biozentrum I, Mainz, Germany
| |
Collapse
|
2
|
Huré JB, Foucault L, Ghayad LM, Marie C, Vachoud N, Baudouin L, Azmani R, Ivljanin N, Arevalo-Nuevo A, Pigache M, Bouslama-Oueghlani L, Chemelle JA, Dronne MA, Terreux R, Hassan B, Gueyffier F, Raineteau O, Parras C. Pharmacogenomic screening identifies and repurposes leucovorin and dyclonine as pro-oligodendrogenic compounds in brain repair. Nat Commun 2024; 15:9837. [PMID: 39537633 PMCID: PMC11561360 DOI: 10.1038/s41467-024-54003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Oligodendrocytes are critical for CNS myelin formation and are involved in preterm-birth brain injury (PBI) and multiple sclerosis (MS), both of which lack effective treatments. We present a pharmacogenomic approach that identifies compounds with potent pro-oligodendrogenic activity, selected through a scoring strategy (OligoScore) based on their modulation of oligodendrogenic and (re)myelination-related transcriptional programs. Through in vitro neural and oligodendrocyte progenitor cell (OPC) cultures, ex vivo cerebellar explants, and in vivo mouse models of PBI and MS, we identify FDA-approved leucovorin and dyclonine as promising candidates. In a neonatal chronic hypoxia mouse model mimicking PBI, both compounds promote neural progenitor cell proliferation and oligodendroglial fate acquisition, with leucovorin further enhancing differentiation. In an adult MS model of focal de/remyelination, they improve lesion repair by promoting OPC differentiation while preserving the OPC pool. Additionally, they shift microglia from a pro-inflammatory to a pro-regenerative profile and enhance myelin debris clearance. These findings support the repurposing of leucovorin and dyclonine for clinical trials targeting myelin disorders, offering potential therapeutic avenues for PBI and MS.
Collapse
Affiliation(s)
- Jean-Baptiste Huré
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Litsa Maria Ghayad
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Corentine Marie
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Vachoud
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Lucas Baudouin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rihab Azmani
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Natalija Ivljanin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alvaro Arevalo-Nuevo
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Morgane Pigache
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julie-Anne Chemelle
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Marie-Aimée Dronne
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Raphaël Terreux
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Bassem Hassan
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Gueyffier
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
3
|
Scott V, Delatycki MB, Tai G, Corben LA. New and Emerging Drug and Gene Therapies for Friedreich Ataxia. CNS Drugs 2024; 38:791-805. [PMID: 39115603 PMCID: PMC11377510 DOI: 10.1007/s40263-024-01113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
The life shortening nature of Friedreich Ataxia (FRDA) demands the search for therapies that can delay, stop or reverse its relentless trajectory. This review provides a contemporary position of drug and gene therapies for FRDA currently in phase 1 clinical trials and beyond. Despite significant scientific advances in the specificity of both compounds and targets developed and investigated, challenges remain for the advancement of treatments in a limited recruitment population. Currently therapies focus on reducing oxidative stress and improving mitochondrial function, modulating frataxin controlled metabolic pathways and gene replacement and editing. Approval of omaveloxolone, the first treatment for individuals with FRDA aged 16 years and over, has created much excitement for both those living with FRDA and those that care for them. The process of approval of omaveloxolone by the US Food and Drug Administration highlighted the importance of sensitive outcome measures and the significant role of data from natural history studies.
Collapse
Affiliation(s)
- Varlli Scott
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Service, Parkville, VIC, Australia
| | - Geneieve Tai
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Paparella G, Stragà C, Pesenti N, Dal Molin V, Martorel GA, Merotto V, Genova C, Piazza A, Piccoli G, Panzeri E, Rufini A, Testi R, Martinuzzi A. A Pilot Phase 2 Randomized Trial to Evaluate the Safety and Potential Efficacy of Etravirine in Friedreich Ataxia Patients. CHILDREN (BASEL, SWITZERLAND) 2024; 11:958. [PMID: 39201893 PMCID: PMC11352957 DOI: 10.3390/children11080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND A drug repositioning effort supported the possible use of the anti-HIV drug etravirine as a disease-modifying drug for Friedreich ataxia (FRDA). Etravirine increases frataxin protein and corrects the biochemical defects in cells derived from FRDA patients. Because of these findings, and since etravirine displays a favorable safety profile, we conducted a pilot open-label phase 2 clinical trial assessing the safety and potential efficacy of etravirine in FRDA patients. METHODS Thirty-five patients were stratified into three severity groups and randomized to etravirine 200 mg/day or 400 mg/day. They were treated for 4 months. Safety endpoints were the number and type of adverse events and number of dropouts. Efficacy endpoints were represented by changes in peak oxygen uptake and workload as measured by incremental exercise test, SARA score, cardiac measures, measures of QoL and disability. Data were collected 4 months before the start of the treatment (T - 4), at the start (T0), at the end (T4) and 4 months after the termination of the treatment (T + 4). RESULTS Etravirine was reasonably tolerated, and adverse events were generally mild. Four months of etravirine treatment did not significantly increase the peak oxygen uptake but was associated with a change in the progression of the SARA score (p value < 0.001), compared to the 4 months pre- and post-treatment. It also significantly increased peak workload (p value = 0.021). No changes in the cardiac measures were observed. Health and QoL measures showed a worsening at the suspension of the drug. CONCLUSIONS In this open trial etravirine treatment was safe, reasonably well tolerated and appreciably improved neurological function and exercise performance. Even though a placebo effect cannot be ruled out, these results suggest that etravirine may represent a potential therapeutic agent in FRDA deserving testing in a randomized placebo-controlled clinical trial.
Collapse
Affiliation(s)
- Gabriella Paparella
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Cristina Stragà
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Nicola Pesenti
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, 20126 Milan, Milan, Italy
| | - Valentina Dal Molin
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Gian Antonio Martorel
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Vasco Merotto
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Cristina Genova
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Arianna Piazza
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Giuseppe Piccoli
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Elena Panzeri
- Department of Bosisio Parini, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Andrea Martinuzzi
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| |
Collapse
|
5
|
Vancheri C, Quatrana A, Morini E, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Testi R, Novelli G, Malisan F, Amati F. An RNA-seq study in Friedreich ataxia patients identified hsa-miR-148a-3p as a putative prognostic biomarker of the disease. Hum Genomics 2024; 18:50. [PMID: 38778374 PMCID: PMC11110315 DOI: 10.1186/s40246-024-00602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.
Collapse
Affiliation(s)
- Chiara Vancheri
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Muscular and Neurodegenerative Diseases Laboratory, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Elena Morini
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, 00131, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Neuromed Institute, IRCCS, Pozzilli, 86077, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Florence Malisan
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| | - Francesca Amati
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| |
Collapse
|
6
|
Hay Mele B, Rossetti F, Cubellis MV, Monticelli M, Andreotti G. Drug Repurposing and Lysosomal Storage Disorders: A Trick to Treat. Genes (Basel) 2024; 15:290. [PMID: 38540351 PMCID: PMC10970111 DOI: 10.3390/genes15030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
Rare diseases, or orphan diseases, are defined as diseases affecting a small number of people compared to the general population. Among these, we find lysosomal storage disorders (LSDs), a cluster of rare metabolic diseases characterized by enzyme mutations causing abnormal glycolipid storage. Drug repositioning involves repurposing existing approved drugs for new therapeutic applications, offering advantages in cost, time savings, and a lower risk of failure. We present a comprehensive analysis of existing drugs, their repurposing potential, and their clinical implications in the context of LSDs, highlighting the necessity of mutation-specific approaches. Our review systematically explores the landscape of drug repositioning as a means to enhance LSDs therapies. The findings advocate for the strategic repositioning of drugs, accentuating its role in expediting the discovery of effective treatments. We conclude that drug repurposing represents a viable pathway for accelerating therapeutic discovery for LSDs, emphasizing the need for the careful evaluation of drug efficacy and toxicity in disease-specific contexts.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
| | - Federica Rossetti
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
| | - Maria Vittoria Cubellis
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
- Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy
| | - Maria Monticelli
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (B.H.M.); (F.R.); (M.V.C.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| |
Collapse
|
7
|
Luffarelli R, Panarello L, Quatrana A, Tiano F, Fortuni S, Rufini A, Malisan F, Testi R, Condò I. Interferon Gamma Enhances Cytoprotective Pathways via Nrf2 and MnSOD Induction in Friedreich's Ataxia Cells. Int J Mol Sci 2023; 24:12687. [PMID: 37628866 PMCID: PMC10454386 DOI: 10.3390/ijms241612687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.
Collapse
Affiliation(s)
- Riccardo Luffarelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Luca Panarello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Francesca Tiano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Silvia Fortuni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| |
Collapse
|
8
|
Buesch K, Zhang R. A systematic review of disease prevalence, health-related quality of life, and economic outcomes associated with Friedreich's Ataxia. Curr Med Res Opin 2022; 38:1739-1749. [PMID: 35983717 DOI: 10.1080/03007995.2022.2112870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Friedreich ataxia (FA) is a rare, inherited neuromuscular disease characterized by an early onset and progressive limb and gait ataxia. Currently, there are no approved treatments for FA. It is important to understand the burden of FA, including its extent and the most salient elements. The objective of this study is therefore to systematically review the literature regarding the aspects of prevalence, health-related quality of life (HRQoL), and economic outcomes that are associated with FA, and to subsequently identify relevant knowledge gaps. METHODS Three systematic literature reviews were conducted to assess publications regarding FA prevalence, HRQoL, and economic outcomes. Search strategies were implemented in MEDLINE (Ovid) and EMBASE databases; study selection and quality assessment were conducted using current best practices. For each review, study characteristics and findings were summarized. RESULTS A total of 36 studies were included. Review of prevalence studies (n = 22) indicated variation in the number of cases by region, and many regions were not represented at all. Regarding HRQoL (n = 12 studies), physical domains were consistently impacted, although findings regarding other domains and overall HRQoL were less clear. Cost studies (n = 2) encompassed 4 regions and revealed that costs related to the provision of care, including non-medical direct costs and indirect costs, accounted for the majority of FA-related costs. DISCUSSION Findings from this systematic review revealed several knowledge gaps that would preclude the conduct of a robust assessment of the benefits and outcomes associated with a disease-modifying FA therapy. Additional understanding regarding patient and caregiver HRQoL and costs is required.
Collapse
|