1
|
Zedde M, Quatrale R, Cossu G, Sette MD, Pascarella R. The Role of the Claustrum in Parkinson's Disease and Vascular Parkinsonism: A Matter of Network? Life (Basel) 2025; 15:180. [PMID: 40003589 PMCID: PMC11855991 DOI: 10.3390/life15020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The mechanisms underlying extrapyramidal disorders and their anatomical substrate have been extensively investigated. Recently, the role of the claustrum in Parkinson's disease and other neurodegenerative conditions has been better detailed. The main aim of this review was to summarize the supporting evidence for the role of the claustrum in degenerative and vascular parkinsonism. METHODS The anatomy, biology, vascular supply, and connections of the claustrum in humans were identified and described, providing the substrate for the vascular involvement of the claustrum in large- and small-vessel disease. The vascular supply of the claustrum includes up to three different sources from a single artery, the middle cerebral artery, and it is known as territory with an intermediate hemodynamic risk. The connections of the claustrum make it a sensory integrator and a relevant point in several networks, from consciousness to movement planning. CONCLUSIONS The claustrum is still an incompletely explained structure. However, recent description of its multiple connections indicate that it is involved in several diseases, including Parkinson's disease. The evidence underlying its potential role in vascular parkinsonism is still scarce, but it might be a field warranting future investigations.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rocco Quatrale
- Dipartimento di Scienze Neurologiche, UOC di Neurologia—Ospedale dell’AngeloAULSS 3 Serenissima, 30174 Venice Mestre, Italy;
| | - Gianni Cossu
- Neurology Unit, Dept of Neuroscience, ARNAS Brotzu, 09047 Cagliari, Italy;
| | - Massimo Del Sette
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
2
|
Medina C, Ojea Ramos S, Depino AM, Romano AG, Krawczyk MC, Boccia MM. The role of the claustrum in the acquisition, consolidation and reconsolidation of memories in mice. Sci Rep 2024; 14:24409. [PMID: 39420041 PMCID: PMC11487015 DOI: 10.1038/s41598-024-74419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The claustrum is a brain structure that remains shrouded in mystery due to the limited understanding of its cellular structure, neural pathways, functionality and physiological aspects. Significant research has unveiled connections spanning from the claustrum to the entire cortex as well as subcortical areas. This widespread connectivity has led to speculations of its role in integrating information from different brain regions, possibly contributing to processes such as attention, consciousness, learning and memory. Our working hypothesis posits that claustrum neural activity contributes to the acquisition, consolidation and reconsolidation of long-term memories in mice. We found evidence in CF-1 mice of a decline in behavioral performance in an inhibitory avoidance task due to intra-claustral administration of 2% lidocaine immediately after a training session or memory recall. Nevertheless, this does not seem to be the case for the acquisition or retrieval of this type of memory, although its neural activity is significantly increased after training, evaluated through c-Fos expression. Moreover, inhibition of the claustrum's synaptic activity appears to impair the consolidation but not acquisition or retrieval of an unconditioned memory formed in a nose-poke habituation task.
Collapse
Affiliation(s)
- Candela Medina
- Facultad de Farmacia y Bioquímica (FFyB), Cátedra de Farmacología, Laboratorio de Neurofarmacología de los Procesos de Memoria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Departamento de Fisiologia, Biologia Molecular y Celular (DFBMC), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Amaicha M Depino
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Arturo G Romano
- Facultad de Ciencias Exactas y Naturales (FCEyN), Departamento de Fisiologia, Biologia Molecular y Celular (DFBMC), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - María C Krawczyk
- Facultad de Farmacia y Bioquímica (FFyB), Cátedra de Farmacología, Laboratorio de Neurofarmacología de los Procesos de Memoria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariano M Boccia
- Facultad de Farmacia y Bioquímica (FFyB), Cátedra de Farmacología, Laboratorio de Neurofarmacología de los Procesos de Memoria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Wendt J, Neubauer A, Hedderich DM, Schmitz‐Koep B, Ayyildiz S, Schinz D, Hippen R, Daamen M, Boecker H, Zimmer C, Wolke D, Bartmann P, Sorg C, Menegaux A. Human Claustrum Connections: Robust In Vivo Detection by DWI-Based Tractography in Two Large Samples. Hum Brain Mapp 2024; 45:e70042. [PMID: 39397271 PMCID: PMC11471578 DOI: 10.1002/hbm.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Despite substantial neuroscience research in the last decade revealing the claustrum's prominent role in mammalian forebrain organization, as evidenced by its extraordinarily widespread connectivity pattern, claustrum studies in humans are rare. This is particularly true for studies focusing on claustrum connections. Two primary reasons may account for this situation: First, the intricate anatomy of the human claustrum located between the external and extreme capsule hinders straightforward and reliable structural delineation. In addition, the few studies that used diffusion-weighted-imaging (DWI)-based tractography could not clarify whether in vivo tractography consistently and reliably identifies claustrum connections in humans across different subjects, cohorts, imaging methods, and connectivity metrics. To address these issues, we combined a recently developed deep-learning-based claustrum segmentation tool with DWI-based tractography in two large adult cohorts: 81 healthy young adults from the human connectome project and 81 further healthy young participants from the Bavarian longitudinal study. Tracts between the claustrum and 13 cortical and 9 subcortical regions were reconstructed in each subject using probabilistic tractography. Probabilistic group average maps and different connectivity metrics were generated to assess the claustrum's connectivity profile as well as consistency and replicability of tractography. We found, across individuals, cohorts, DWI-protocols, and measures, consistent and replicable cortical and subcortical ipsi- and contralateral claustrum connections. This result demonstrates robust in vivo tractography of claustrum connections in humans, providing a base for further examinations of claustrum connectivity in health and disease.
Collapse
Affiliation(s)
- Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Dennis M. Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Benita Schmitz‐Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Sevilay Ayyildiz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Rebecca Hippen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Marcel Daamen
- Department of Diagnostic and Interventional Radiology, Clinical Functional Imaging GroupUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Department of Diagnostic and Interventional Radiology, Clinical Functional Imaging GroupUniversity Hospital BonnBonnGermany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive CareUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
- Department of Psychiatry, School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| |
Collapse
|
4
|
Honda Y, Moriya-Ito K, Shimokawa T, Kobayashi Y. Connectivity of the Claustrum-Endopiriform Complex with the Presubiculum and Hippocampal Regions in the Common Marmoset (Callithrix jacchus). J Comp Neurol 2024; 532:e25666. [PMID: 39235159 DOI: 10.1002/cne.25666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/29/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
We have investigated the hippocampal connectivity of the marmoset presubiculum (PreS) and reported that major connections of PreS in the rat were conserved in the marmoset. Moreover, our results indicated the presence of several additional projections that were almost absent in the rat brain, but abundant in the marmoset, such as direct projections from CA1 to PreS. However, little is known about the connectivity between the frontal brain regions and PreS or hippocampal formation. Therefore, we investigated the distribution of cells of the origins and terminals of the presubicular and hippocampal projections in the marmoset frontal brain regions using the retrograde and anterograde tracer cholera toxin B subunit. In cases of tracer injections into all layers of PreS, many neurons and terminals were labeled in the claustrum-endopiriform (Cl-En) complex almost entirely along the rostrocaudal axis. Even in cases where the injection site involved the superficial (not deep) layers of PreS, labeled neurons and terminals were distributed over a wide rostrocaudal range of the Cl-En complex, but their number and density were significantly lower than the whole-layer injection cases. In cases where the injection site was confined to the hippocampal formation, labeled cells and terminals were localized at a restricted portion of the Cl-En complex. Here, we demonstrate for what we believe to be the first time the strong, reciprocal connections of the Cl-En complex with PreS and projections from the Cl-En complex to the hippocampal regions (CA1 and the subiculum) in the marmoset. Our findings indicate that the Cl-En complex may exert a strong influence on the cortical and subcortical outputs from PreS and, in turn, the entire memory circuitry in the marmoset brain.
Collapse
Affiliation(s)
- Yoshiko Honda
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiko Moriya-Ito
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tetsuya Shimokawa
- Division of Anatomy and Embryology, Department of Developmental Biology and Functional Genomics, Ehime University, Toon, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
5
|
Borra E, Ballestrazzi G, Biancheri D, Caminiti R, Luppino G. Involvement of the claustrum in the cortico-basal ganglia circuitry: connectional study in the non-human primate. Brain Struct Funct 2024; 229:1143-1164. [PMID: 38615290 PMCID: PMC11147942 DOI: 10.1007/s00429-024-02784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/15/2024]
Abstract
The claustrum is an ancient telencephalic subcortical structure displaying extensive, reciprocal connections with much of the cortex and receiving projections from thalamus, amygdala, and hippocampus. This structure has a general role in modulating cortical excitability and is considered to be engaged in different cognitive and motor functions, such as sensory integration and perceptual binding, salience-guided attention, top-down executive functions, as well as in the control of brain states, such as sleep and its interhemispheric integration. The present study is the first to describe in detail a projection from the claustrum to the striatum in the macaque brain. Based on tracer injections in different striatal regions and in different cortical areas, we observed a rough topography of the claustral connectivity, thanks to which a claustral zone projects to both a specific striatal territory and to cortical areas involved in a network projecting to the same striatal territory. The present data add new elements of complexity of the basal ganglia information processing mode in motor and non-motor functions and provide evidence for an influence of the claustrum on both cortical functional domains and cortico-basal ganglia circuits.
Collapse
Affiliation(s)
- Elena Borra
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy.
| | - Gemma Ballestrazzi
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| | - Dalila Biancheri
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| | - Roberto Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Giuseppe Luppino
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| |
Collapse
|
6
|
Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, Ishida Y, Koike M, Watanabe M, Isa T, Hioki H. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res 2023; 190:92-106. [PMID: 36574563 DOI: 10.1016/j.neures.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.
Collapse
Affiliation(s)
- Megumu Takahashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoyo Kobayashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Haruhi Mizuma
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuki Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
7
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
8
|
Ham GX, Augustine GJ. Topologically Organized Networks in the Claustrum Reflect Functional Modularization. Front Neuroanat 2022; 16:901807. [PMID: 35815332 PMCID: PMC9259979 DOI: 10.3389/fnana.2022.901807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Using genetic strategies and viral-based directional tracers, we investigated the topological location and output networks of claustrum (CLA) neuron populations projecting to either the retrosplenial cortex, primary motor cortex, or basolateral amygdala. We found that all three CLA neuron populations clearly reside in distinct topological locations within the CLA complex and project broadly to multiple downstream targets. Each neuron population projects to different targets, suggesting that each CLA subzone coordinates a unique set of brain-wide functions. Our findings establish that the claustrum complex encompasses at least three minimally overlapping networks that are compartmentalized into different topological subzones. Such modularity is likely to be important for CLA function.
Collapse
Affiliation(s)
| | - George J. Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Atilgan H, Doody M, Oliver DK, McGrath TM, Shelton AM, Echeverria-Altuna I, Tracey I, Vyazovskiy VV, Manohar SG, Packer AM. Human lesions and animal studies link the claustrum to perception, salience, sleep and pain. Brain 2022; 145:1610-1623. [PMID: 35348621 PMCID: PMC9166552 DOI: 10.1093/brain/awac114] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022] Open
Abstract
The claustrum is the most densely interconnected region in the human brain. Despite the accumulating data from clinical and experimental studies, the functional role of the claustrum remains unknown. Here, we systematically review claustrum lesion studies and discuss their functional implications. Claustral lesions are associated with an array of signs and symptoms, including changes in cognitive, perceptual and motor abilities; electrical activity; mental state; and sleep. The wide range of symptoms observed following claustral lesions do not provide compelling evidence to support prominent current theories of claustrum function such as multisensory integration or salience computation. Conversely, the lesions studies support the hypothesis that the claustrum regulates cortical excitability. We argue that the claustrum is connected to, or part of, multiple brain networks that perform both fundamental and higher cognitive functions. As a multifunctional node in numerous networks, this may explain the manifold effects of claustrum damage on brain and behaviour.
Collapse
Affiliation(s)
- Huriye Atilgan
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Max Doody
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David K. Oliver
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Thomas M. McGrath
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Andrew M. Shelton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | | | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and Merton College, University of Oxford, Oxford OX3 9DU, UK
| | | | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Adam M. Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
10
|
Pollard-Wright H. Feelings of Knowing - Fundamental Interoceptive Patterns (FoK-FIP): a magnetic monopole-like "pure mental" process fundamental to subjective feelings and self-awareness. Commun Integr Biol 2022; 15:1-54. [PMID: 35186178 PMCID: PMC8855850 DOI: 10.1080/19420889.2021.2023280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The Feelings of Knowing - Fundamental Interoceptive Patterns (FoK-FIP) is a transdisciplinary theory developed to explain elusive phenomena suspected to exist that do not easily lend themselves to empirical measurement. The FoK-FIP theory posits that specialized self-generated biomagnetism and "pure mental" process share similarities with the hypothetical elementary particle described in particle physics, magnetic monopoles with a magnetic charge. Feelings of Knowing (FoK) are "awareness charge" that are self-generated events. Fundamental Interoceptive Patterns (FIP) are restricted oscillatory magnetic fields that are FoK caused phenomena. Further, FoK produces "cognitive force," an observing ego representing specialized interoceptive awareness. Through embodied states, FoK-FIP acts as a "biological node," an informational processing unit in which physiological signals and an observing ego's sensations or feelings are centered. An observing ego cognitively broadcasts using specialized small magnetic signals and four phases of a narrowed range of interoceptive signals. By defining interoceptive signals (i.e., signals of the body's internal state) using FoK-FIP through cognitive broadcasting, an observing ego creates a world it projects around itself. This process is understood through the components map with interoceptive markers (IMs), a novel algorithm based on biological evolution. FoK-FIP-related predictions are described as are empirical studies to test aspects of the theory. The FoK-FIP theory details a path to wellbeing based on a sense of control and capacity for self-care. Mental stability is thought to change as a function of an observing ego's volitional reactions.
Collapse
Affiliation(s)
- Holly Pollard-Wright
- Institute of Electrical and Electronics Engineers (IEEE), The National Coalition of Independent Scholars (NCIS)
| |
Collapse
|
11
|
Differential distribution of inhibitory neuron types in subregions of claustrum and dorsal endopiriform nucleus of the short-tailed fruit bat. Brain Struct Funct 2022; 227:1615-1640. [PMID: 35188589 DOI: 10.1007/s00429-022-02459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
Abstract
Few brain regions have such wide-ranging inputs and outputs as the claustrum does, and fewer have posed equivalent challenges in defining their structural boundaries. We studied the distributions of three calcium-binding proteins-calretinin, parvalbumin, and calbindin-in the claustrum and dorsal endopiriform nucleus of the fruit bat, Carollia perspicillata. The proportionately large sizes of claustrum and dorsal endopiriform nucleus in Carollia brain afford unique access to these structures' intrinsic anatomy. Latexin immunoreactivity permits a separation of claustrum into core and shell subregions and an equivalent separation of dorsal endopiriform nucleus. Using latexin labeling, we found that the claustral shell in Carollia brain can be further subdivided into at least four distinct subregions. Calretinin and parvalbumin immunoreactivity reinforced the boundaries of the claustral core and its shell subregions with diametrically opposite distribution patterns. Calretinin, parvalbumin, and calbindin all colocalized with GAD67, indicating that these proteins label inhibitory neurons in both claustrum and dorsal endopiriform nucleus. Calretinin, however, also colocalized with latexin in a subset of neurons. Confocal microscopy revealed appositions that suggest synaptic contacts between cells labeled for each of the three calcium-binding proteins and latexin-immunoreactive somata in claustrum and dorsal endopiriform nucleus. Our results indicate significant subregional differences in the intrinsic inhibitory connectivity within and between claustrum and dorsal endopiriform nucleus. We conclude that the claustrum is structurally more complex than previously appreciated and that claustral and dorsal endopiriform nucleus subregions are differentially modulated by multiple inhibitory systems. These findings can also account for the excitability differences between claustrum and dorsal endopiriform nucleus described previously.
Collapse
|
12
|
Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022; 110:486-501.e7. [PMID: 34863367 PMCID: PMC8829966 DOI: 10.1016/j.neuron.2021.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.
Collapse
Affiliation(s)
- Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eric A. Finkel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Daniel H. O’Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Lead contact,Correspondence:
| |
Collapse
|
13
|
Whatley BP, Winston JS, Allen LA, Vos SB, Jha A, Scott CA, Smith AL, Chowdhury FA, Bomanji JB, Lhatoo SD, Harper RM, Diehl B. Distinct Patterns of Brain Metabolism in Patients at Risk of Sudden Unexpected Death in Epilepsy. Front Neurol 2021; 12:623358. [PMID: 34899550 PMCID: PMC8651549 DOI: 10.3389/fneur.2021.623358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET). Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS. Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex. Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP.
Collapse
Affiliation(s)
- Benjamin P Whatley
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Division of Neurology, Dalhousie University, Halifax, NS, Canada
| | - Joel S Winston
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Wellcome Trust Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
| | - Luke A Allen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Sjoerd B Vos
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States.,Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Ashwani Jha
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Catherine A Scott
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - April-Louise Smith
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jamshed B Bomanji
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Samden D Lhatoo
- The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States.,Epilepsy Center, Neurological Institute, University Hospitals Case Medical Center, Cleveland, OH, United States.,Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, United States
| | - Ronald M Harper
- The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
14
|
Erwin SR, Bristow BN, Sullivan KE, Kendrick RM, Marriott B, Wang L, Clements J, Lemire AL, Jackson J, Cembrowski MS. Spatially patterned excitatory neuron subtypes and projections of the claustrum. eLife 2021; 10:68967. [PMID: 34397382 PMCID: PMC8367382 DOI: 10.7554/elife.68967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
The claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions. Using single-cell RNA-sequencing, we found that the claustrum comprises two excitatory neuron subtypes that are differentiable from the surrounding cortex. Multicolor retrograde tracing in conjunction with 12-channel multiplexed in situ hybridization revealed a core-shell spatial arrangement of these subtypes, as well as differential downstream targets. Thus, the claustrum comprises excitatory neuron subtypes with distinct molecular and projection properties, whose spatial patterns reflect the narrower and broader claustral extents debated in previous research. This subtype-specific heterogeneity likely shapes the functional complexity of the claustrum.
Collapse
Affiliation(s)
- Sarah R Erwin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Brianna N Bristow
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Kaitlin E Sullivan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Rennie M Kendrick
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Brian Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Brennan EKW, Jedrasiak-Cape I, Kailasa S, Rice SP, Sudhakar SK, Ahmed OJ. Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex. eLife 2021; 10:e62207. [PMID: 34170817 PMCID: PMC8233040 DOI: 10.7554/elife.62207] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG.
Collapse
Affiliation(s)
- Ellen KW Brennan
- Department of Psychology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | | | - Sameer Kailasa
- Department of Mathematics, University of MichiganAnn ArborUnited States
| | - Sharena P Rice
- Department of Psychology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | | | - Omar J Ahmed
- Department of Psychology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
- Michigan Center for Integrative Research in Critical Care, University of MichiganAnn ArborUnited States
- Kresge Hearing Research Institute, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| |
Collapse
|
16
|
Abstract
This article represents a transdisciplinary theory that attempts, in a nonmathematical way, to reconcile some contemporary concepts of physics with a novel theory of the mind. It represents a thought experiment that consolidates complexity by melding certain unifying natural science concepts into a coherent reality. The foundations of quantum mechanics and the cosmological mysteries of dark energy, dark matter, and normal matter non-dogmatically explained may be accessible to individuals other than those immersed in mathematical formulas. Through reasoning and models, terms are defined and illustrations provided, further clarifying concepts. In this theory, consciousness represents dynamic differences that come to an end. It exists through interdependent relationships between dark energy, focal points of dark matter (FPDMs), and normal matter with associated states of mind: pure awareness, pure mental state, and mental images state, respectively. Consciousness enables the emergence of an observing ego, a viewpoint that defines conscious events but which is not consciousness in and of itself. For topics described throughout the article, there is a mental and physical aspect that through relationship produces change that makes a difference. In this way, the reader, an 'observing ego,' with a human cognitive viewpoint, may bridge the 'gap' connecting the mental and physical domains. Although the theory can be developed mathematically in more detail, the main emphasis is to provide an intriguing explanation of how physics melds with 'mind,' thus laying the foundation for future explorations into how this theoretical framework of the mind reciprocates with other areas of science.
Collapse
|
17
|
Wong KLL, Nair A, Augustine GJ. Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Front Neural Circuits 2021; 15:658228. [PMID: 34054437 PMCID: PMC8155375 DOI: 10.3389/fncir.2021.658228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The claustrum is a thin sheet of neurons that is densely connected to many cortical regions and has been implicated in numerous high-order brain functions. Such brain functions arise from brain states that are influenced by neuromodulatory pathways from the cholinergic basal forebrain, dopaminergic substantia nigra and ventral tegmental area, and serotonergic raphe. Recent revelations that the claustrum receives dense input from these structures have inspired investigation of state-dependent control of the claustrum. Here, we review neuromodulation in the claustrum-from anatomical connectivity to behavioral manipulations-to inform future analyses of claustral function.
Collapse
Affiliation(s)
- Kelly L. L. Wong
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aditya Nair
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, United States
| | - George J. Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
18
|
Gamberini M, Passarelli L, Impieri D, Montanari G, Diomedi S, Worthy KH, Burman KJ, Reser DH, Fattori P, Galletti C, Bakola S, Rosa MGP. Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and Adjacent Areas). Cereb Cortex 2021; 31:4595-4611. [PMID: 33939798 DOI: 10.1093/cercor/bhab108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Montanari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David H Reser
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, Victoria 3842, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Holly PW. Interoception the foundation for: mind's sensing of 'self,' physiological responses, cognitive discrimination and dysregulation. Commun Integr Biol 2020; 13:198-213. [PMID: 33343801 PMCID: PMC7734082 DOI: 10.1080/19420889.2020.1846922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
This article presents a theory of mind whereby interoception (i.e., a sense of signals originating from the body) provides a transdisciplinary framework in which theories from diverse fields may be conformed to ideas from other areas of science. Through a science of interoception, the mind itself investigates the mind and thus can explore how the universe and consciousness came about and understand how interoceptive processing is shaped by experience. Interoception provides a metastable network that enables individuals to compute the significance of stimuli as physiological changes in its complex global context. Both sensory and much cognitive discrimination and integration are affected by the flow of interoceptive information that acts as cues whereby unconscious events may be correlated with conscious events and the reportable content of mental life. Heightened interoceptive sensitivity and individuals who show augmented interoceptive sensitivity are susceptible to a wide range of neuropsychiatric as well as general medical conditions. Physiological responses can be measured and interoceptive awareness cultivated to generate well-being and stress resilience in the treatment of emotional dysregulation and interoceptive abnormalities.
Collapse
|
21
|
Bruguier H, Suarez R, Manger P, Hoerder-Suabedissen A, Shelton AM, Oliver DK, Packer AM, Ferran JL, García-Moreno F, Puelles L, Molnár Z. In search of common developmental and evolutionary origin of the claustrum and subplate. J Comp Neurol 2020; 528:2956-2977. [PMID: 32266722 DOI: 10.1002/cne.24922] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
The human claustrum, a major hub of widespread neocortical connections, is a thin, bilateral sheet of gray matter located between the insular cortex and the striatum. The subplate is a largely transient cortical structure that contains some of the earliest generated neurons of the cerebral cortex and has important developmental functions to establish intra- and extracortical connections. In human and macaque some subplate cells undergo regulated cell death, but some remain as interstitial white matter cells. In mouse and rat brains a compact layer is formed, Layer 6b, and it remains underneath the cortex, adjacent to the white matter. Whether Layer 6b in rodents is homologous to primate subplate or interstitial white matter cells is still debated. Gene expression patterns, such as those of Nurr1/Nr4a2, have suggested that the rodent subplate and the persistent subplate cells in Layer 6b and the claustrum might have similar origins. Moreover, the birthdates of the claustrum and Layer 6b are similarly precocious in mice. These observations prompted our speculations on the common developmental and evolutionary origin of the claustrum and the subplate. Here we systematically compare the currently available data on cytoarchitecture, evolutionary origin, gene expression, cell types, birthdates, neurogenesis, lineage and migration, circuit connectivity, and cell death of the neurons that contribute to the claustrum and subplate. Based on their similarities and differences we propose a partially common early evolutionary origin of the cells that become claustrum and subplate, a likely scenario that is shared in these cell populations across all amniotes.
Collapse
Affiliation(s)
- Hannah Bruguier
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Rodrigo Suarez
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Andrew M Shelton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David K Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Adam M Packer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - José L Ferran
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Zamudio, Spain.,IKERBASQUE Foundation, Bilbao, Spain
| | - Luis Puelles
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Pirone A, Lazzarini G, Lenzi C, Giannessi E, Miragliotta V. Immunolocalization of cannabinoid receptor 1 (CB1), monoglyceride lipase (MGL) and fatty-acid amide hydrolase 1 (FAAH) in the pig claustrum. J Chem Neuroanat 2020; 109:101843. [DOI: 10.1016/j.jchemneu.2020.101843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
|
23
|
The Mouse Claustrum Is Required for Optimal Behavioral Performance Under High Cognitive Demand. Biol Psychiatry 2020; 88:719-726. [PMID: 32456782 PMCID: PMC7554117 DOI: 10.1016/j.biopsych.2020.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND To achieve goals, organisms are often faced with complex tasks that require enhanced control of cognitive faculties for optimal performance. However, the neural circuit mechanisms underlying this ability are unclear. The claustrum is proposed to mediate a variety of functions ranging from sensory binding to cognitive control of action, but direct functional assessments of this telencephalic nucleus are lacking. METHODS Here, we employed the Gnb4 (guanine nucleotide-binding subunit beta-4) cre driver line in mice to selectively monitor and manipulate claustrum projection neurons during 1-choice versus 5-choice serial reaction time task performance. RESULTS Using fiber photometry, we found elevated claustrum activity prior to an expected cue during correct performance on the cognitively demanding 5-choice response assay relative to the less demanding 1-choice version of the task. Claustrum activity during reward acquisition was also enhanced when task demand was higher. Furthermore, optogenetically inhibiting the claustrum prior to the onset of the cue reduced choice accuracy on the 5-choice task but not on the 1-choice task. CONCLUSIONS These results suggest that the claustrum supports a cognitive control function necessary for optimal behavioral performance under cognitively demanding conditions.
Collapse
|
24
|
Reus-García MM, Sánchez-Campusano R, Ledderose J, Dogbevia GK, Treviño M, Hasan MT, Gruart A, Delgado-García JM. The Claustrum is Involved in Cognitive Processes Related to the Classical Conditioning of Eyelid Responses in Behaving Rabbits. Cereb Cortex 2020; 31:281-300. [PMID: 32885230 PMCID: PMC7727357 DOI: 10.1093/cercor/bhaa225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL–mPFC/CL–MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.
Collapse
Affiliation(s)
- M Mar Reus-García
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | | - Julia Ledderose
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.,Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Godwin K Dogbevia
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | - Mario Treviño
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara 44130, México
| | - Mazahir T Hasan
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratory of Memory Circuits, Achucarro Basque Center for Neuroscience, Leioa 48940, Spain.,Ikerbasque-Basque Foundation for Science, Bilbao 48013, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | |
Collapse
|
25
|
Identification of Mouse Claustral Neuron Types Based on Their Intrinsic Electrical Properties. eNeuro 2020; 7:ENEURO.0216-20.2020. [PMID: 32527746 PMCID: PMC7405070 DOI: 10.1523/eneuro.0216-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Although its dense connections with other brain areas suggests that the claustrum is involved in higher-order brain functions, little is known about the properties of claustrum neurons. Using whole-cell patch clamp recordings in acute brain slices of mice, we characterized the intrinsic electrical properties of more than 300 claustral neurons and used unsupervised clustering of these properties to define distinct cell types. Differences in intrinsic properties permitted separation of interneurons (INs) from projection neurons (PNs). Five subtypes of PNs could be further identified by differences in their adaptation of action potential (AP) frequency and amplitude, as well as their AP firing variability. Injection of retrogradely transported fluorescent beads revealed that PN subtypes differed in their projection targets: one projected solely to subcortical areas while three out of the remaining four targeted cortical areas. INs expressing parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP) formed a heterogenous group. PV-INs were readily distinguishable from VIP-INs and SST-INs, while the latter two were clustered together. To distinguish IN subtypes, an artificial neural network was trained to distinguish the properties of PV-INs, SST-INs, and VIP-INs, as independently identified through their expression of marker proteins. A user-friendly, machine-learning tool that uses intrinsic electrical properties to distinguish these eight different types of claustral cells was developed to facilitate implementation of our classification scheme. Systematic classification of claustrum neurons lays the foundation for future determinations of claustrum circuit function, which will advance our understanding of the role of the claustrum in brain function.
Collapse
|
26
|
Claustral Neurons Projecting to Frontal Cortex Mediate Contextual Association of Reward. Curr Biol 2020; 30:3522-3532.e6. [PMID: 32707061 DOI: 10.1016/j.cub.2020.06.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
The claustrum is a small nucleus, exhibiting vast reciprocal connectivity with cortical, subcortical, and midbrain regions. Recent studies, including ours, implicate the claustrum in salience detection and attention. In the current study, we develop an iterative functional investigation of the claustrum, guided by quantitative spatial transcriptional analysis. Using this approach, we identify a circuit involving dopamine-receptor expressing claustral neurons projecting to frontal cortex necessary for context association of reward. We describe the recruitment of claustral neurons by cocaine and their role in drug sensitization. In order to characterize the circuit within which these neurons are embedded, we apply chemo- and opto-genetic manipulation of increasingly specified claustral subpopulations. This strategy resolves the role of a defined network of claustrum neurons expressing dopamine D1 receptors and projecting to frontal cortex in the acquisition of cocaine conditioned-place preference and real-time optogenetic conditioned-place preference. In sum, our results suggest a role for a claustrum-to-frontal cortex circuit in the attribution of incentive salience, allocating attention to reward-related contextual cues.
Collapse
|
27
|
Abstract
The claustrum is one of the most widely connected regions of the forebrain, yet its function has remained obscure, largely due to the experimentally challenging nature of targeting this small, thin, and elongated brain area. However, recent advances in molecular techniques have enabled the anatomy and physiology of the claustrum to be studied with the spatiotemporal and cell type–specific precision required to eventually converge on what this area does. Here we review early anatomical and electrophysiological results from cats and primates, as well as recent work in the rodent, identifying the connectivity, cell types, and physiological circuit mechanisms underlying the communication between the claustrum and the cortex. The emerging picture is one in which the rodent claustrum is closely tied to frontal/limbic regions and plays a role in processes, such as attention, that are associated with these areas.
Collapse
Affiliation(s)
- Jesse Jackson
- Department of Physiology and Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jared B. Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Albert K. Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| |
Collapse
|
28
|
Chia Z, Augustine GJ, Silberberg G. Synaptic Connectivity between the Cortex and Claustrum Is Organized into Functional Modules. Curr Biol 2020; 30:2777-2790.e4. [PMID: 32531275 DOI: 10.1016/j.cub.2020.05.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
The widespread reciprocal connectivity between the claustrum and the neocortex has stimulated numerous hypotheses regarding its function; all of these suggest that the claustrum acts as a hub that connects multiple cortical regions via dense reciprocal synaptic pathways. Although the connectivity between the anterior cingulate cortex (ACC) and the claustrum has been proposed as an important pathway for top-down cognitive control, little is known about the synaptic inputs that drive claustrum cells projecting to the ACC. Here, we used multi-neuron patch clamp recordings, retrograde and anterograde viral labeling, and optogenetics in mouse claustrum to investigate cortical inputs and outputs of ACC-projecting claustrum (CLA-ACC) neurons. Both ipsilateral and contralateral cortical regions were found to provide synaptic input to CLA-ACC neurons. These cortical regions were predominantly frontal and limbic regions and not primary sensorimotor regions. We show that CLA-ACC neurons receive monosynaptic input from the insular cortex, thereby revealing a potential claustrum substrate mediating the Salience Network. In contrast, sensorimotor cortical regions preferentially targeted non CLA-ACC claustrum neurons. Using dual retrograde labeling of claustrum projection neurons, we show selectivity also in the cortical targets of CLA-ACC neurons: whereas CLA-ACC neurons co-projected mainly to other frontal regions, claustrum neurons projecting to primary sensorimotor cortices selectively targeted other sensorimotor regions. Our results show that both cortical inputs to and projections from CLA-ACC neurons are highly selective, suggesting an organization of cortico-claustral connectivity into functional modules that could be specialized for processing different types of information.
Collapse
Affiliation(s)
- Zach Chia
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
29
|
Zhu J, Hafycz J, Keenan BT, Guo X, Pack A, Naidoo N. Acute Sleep Loss Upregulates the Synaptic Scaffolding Protein, Homer1a, in Non-canonical Sleep/Wake Brain Regions, Claustrum, Piriform and Cingulate Cortices. Front Neurosci 2020; 14:188. [PMID: 32231514 PMCID: PMC7083128 DOI: 10.3389/fnins.2020.00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/20/2020] [Indexed: 01/18/2023] Open
Abstract
Homer proteins are a component of the post-synaptic density of neurons that are necessary for the maintenance and consolidation of behavioral state. The dominant negative protein homer1a is rapidly increased by neuronal activity and sleep loss. Homer1a knockout mice with globally absent homer1a have reduced ability to sustain wakefulness during the active period. It is not known whether homer1a is required globally or in very specific brain regions or neurons for its role in maintaining wake. In this study, we examined the expression of homer1a, an immediate early gene involved in intracellular signaling cascades, in mice subjected to extended wakefulness. We found that mice displayed increased expression of homer1a in the claustrum, a brain region thought to be involved in consciousness, as well as the cingulate and piriform cortices compared to non-sleep deprived mice. In situ hybridization (ISH) studies also indicate that homer1a is not induced in the known wake promoting regions with sleep deprivation, but is instead upregulated primarily in the claustrum and piriform cortex. Examination of homer1a expression levels with recovery sleep after sleep deprivation indicate that baseline homer1a expression levels were restored. Further, we have identified that homer1a is upregulated in excitatory neurons of the claustrum suggesting that homer1a promotes wakefulness through activating excitatory neurons. This work identifies regions previously unknown to be involved in sleep regulation that respond to acute sleep deprivation or enhanced waking.
Collapse
Affiliation(s)
| | | | | | | | | | - Nirinjini Naidoo
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Norimoto H, Fenk LA, Li HH, Tosches MA, Gallego-Flores T, Hain D, Reiter S, Kobayashi R, Macias A, Arends A, Klinkmann M, Laurent G. A claustrum in reptiles and its role in slow-wave sleep. Nature 2020; 578:413-418. [DOI: 10.1038/s41586-020-1993-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
|
31
|
Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F. The Neural Correlates of Time: A Meta-analysis of Neuroimaging Studies. J Cogn Neurosci 2019; 31:1796-1826. [DOI: 10.1162/jocn_a_01459] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During the last two decades, our inner sense of time has been repeatedly studied with the help of neuroimaging techniques. These investigations have suggested the specific involvement of different brain areas in temporal processing. At least two distinct neural systems are likely to play a role in measuring time: One is mainly constituted of subcortical structures and is supposed to be more related to the estimation of time intervals below the 1-sec range (subsecond timing tasks), and the other is mainly constituted of cortical areas and is supposed to be more related to the estimation of time intervals above the 1-sec range (suprasecond timing tasks). Tasks can then be performed in motor or nonmotor (perceptual) conditions, thus providing four different categories of time processing. Our meta-analytical investigation partly confirms the findings of previous meta-analytical works. Both sub- and suprasecond tasks recruit cortical and subcortical areas, but subcortical areas are more intensely activated in subsecond tasks than in suprasecond tasks, which instead receive more contributions from cortical activations. All the conditions, however, show strong activations in the SMA, whose rostral and caudal parts have an important role not only in the discrimination of different time intervals but also in relation to the nature of the task conditions. This area, along with the striatum (especially the putamen) and the claustrum, is supposed to be an essential node in the different networks engaged when the brain creates our sense of time.
Collapse
Affiliation(s)
- Andrea Nani
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| |
Collapse
|
32
|
Baizer JS, Webster CJ, Baker JF. The Claustrum in the Squirrel Monkey. Anat Rec (Hoboken) 2019; 303:1439-1454. [DOI: 10.1002/ar.24253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 06/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - Charles J. Webster
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - James F. Baker
- Department of PhysiologyNorthwestern University Medical School Chicago Illinois
| |
Collapse
|
33
|
Abstract
Many studies suggest that social punishment is beneficial for cooperation and consequently maintaining the social norms in society. Neuroimaging and brain stimulation studies show that the brain regions which respond to violations of social norms, the understanding of the mind of others and the executive functions, are involved during social punishment. Despite the rising number of studies on social punishment, the concordant map of activations - the set of key regions responsible for the general brain response to social punishment - is still unknown. By using coordinate-based fMRI meta-analysis, the present study examined the concordant map of neural activations associated with various social punishment tasks. A total of 17 articles with 18 contrasts including 383 participants, equalling 191 foci were included in activation likelihood estimation (ALE) analysis. The majority of the studies (61%) employed the widely used neuroeconomic paradigms, such as fairness-related norm tasks (Ultimatum Game, third-party punishment game), while the remaining tasks reported criminal scenarios evaluation and social rejection tasks. The analysis revealed concordant activation in the bilateral claustrum, right interior frontal and left superior frontal gyri. This study provides an integrative view on brain responses to social punishment.
Collapse
|
34
|
Smith JB, Watson GDR, Liang Z, Liu Y, Zhang N, Alloway KD. A Role for the Claustrum in Salience Processing? Front Neuroanat 2019; 13:64. [PMID: 31275119 PMCID: PMC6594418 DOI: 10.3389/fnana.2019.00064] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
The claustrum (CLA) is a subcortical structure, present only in mammals, whose function remains uncertain. Previously, using resting-state functional magnetic resonance imaging (rs-fMRI) in awake head-fixed rats, we found evidence that the CLA is part of the rodent homolog of the default mode network (DMN; Smith et al., 2017). This network emerged as strong functional connections between the medial prefrontal cortex (mPFC), mediodorsal (MD) thalamus, and CLA in the awake state, which was not present following administration of isoflurane anesthesia. In the present report, we review evidence indicating that the rodent CLA also has connections with structures identified in the rodent homolog of the salience network (SN), a circuit that directs attention towards the most relevant stimuli among a multitude of sensory inputs (Seeley et al., 2007; Menon and Uddin, 2010). In humans, this circuit consists of functional connections between the anterior cingulate cortex (ACC) and a region that encompasses both the CLA and insular cortex. We further go on to review the similarities and differences between the functional and anatomical connections of the CLA and insula in rodents using both rs-fMRI and neuroanatomical tracing, respectively. We analyze in detail the connectivity of the CLA with the cingulate cortex, which is a major node in the SN and has been shown to modulate attention. When considered with other recent behavior and physiology studies, the data reveal a role for the CLA in salience-guided orienting. More specifically, we hypothesize that limbic information from mPFC, MD thalamus, and the basolateral amygdala (BLA) are integrated by the CLA to guide modality-related regions of motor and sensory cortex in directing attention towards relevant (i.e., salient) sensory events.
Collapse
Affiliation(s)
- Jared B Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Zhifeng Liang
- Laboratory for Comparative Neuroimaging, Institute for Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yikang Liu
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Nanyin Zhang
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Department of Biomedical Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, Millennium Science Complex, University Park, PA, United States.,Huck Institute of Life Sciences, Penn State University, Millennium Science Complex, University Park, PA, United States.,Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
35
|
Borroto-Escuela DO, Fuxe K. On the G Protein-Coupled Receptor Neuromodulation of the Claustrum. Neurochem Res 2019; 45:5-15. [PMID: 31172348 PMCID: PMC6942600 DOI: 10.1007/s11064-019-02822-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors modulate the synaptic glutamate and GABA transmission of the claustrum. The work focused on the transmitter–receptor relationships in the claustral catecholamine system and receptor–receptor interactions between kappa opioid receptors (KOR) and SomatostatinR2 (SSTR2) in claustrum. Methods used involved immunohistochemistry and in situ proximity ligation assay (PLA) using confocal microscopy. Double immunolabeling studies on dopamine (DA) D1 receptor (D1R) and tyrosine hydroxylase (TH) immunoreactivities (IR) demonstrated that D1R IR existed in almost all claustral and dorsal endopiriform nucleus (DEn) nerve cell bodies, known as glutamate projection neurons, and D4R IR in large numbers of nerve cell bodies of the claustrum and DEn. However, only a low to moderate density of TH IR nerve terminals was observed in the DEn versus de few scattered TH IR terminals found in the claustrum. These results indicated that DA D1R and D4R transmission in the rat operated via long distance DA volume transmission in the rat claustrum and DEn to modulate claustral-sensory cortical glutamate transmission. Large numbers of these glutamate projection neurons also expressed KOR and SSTR2 which formed KOR-SSTR2 heteroreceptor complexes using PLA. Such receptor–receptor interactions can finetune the activity of the glutamate claustral-sensory cortex projections from inhibition to enhancement of their sensory cortex signaling. This can give the sensory cortical regions significant help in deciding on the salience to be given to various incoming sensory stimuli.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden. .,Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, via Ca' le Suore 2, 61029, Urbino, Italy. .,Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100, Yaguajay, Cuba. .,Biomedicum, Solnavagen 9, 17177, Stockholm, Sweden.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden.
| |
Collapse
|
36
|
Dillingham CM, Mathiasen ML, Frost BE, Lambert MAC, Bubb EJ, Jankowski MM, Aggleton JP, O’Mara SM. The Anatomical Boundary of the Rat Claustrum. Front Neuroanat 2019; 13:53. [PMID: 31213993 PMCID: PMC6555083 DOI: 10.3389/fnana.2019.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
The claustrum is a subcortical nucleus that exhibits dense connectivity across the neocortex. Considerable recent progress has been made in establishing its genetic and anatomical characteristics, however, a core, contentious issue that regularly presents in the literature pertains to the rostral extent of its anatomical boundary. The present study addresses this issue in the rat brain. Using a combination of immunohistochemistry and neuroanatomical tract tracing, we have examined the expression profiles of several genes that have previously been identified as exhibiting a differential expression profile in the claustrum relative to the surrounding cortex. The expression profiles of parvalbumin (PV), crystallin mu (Crym), and guanine nucleotide binding protein (G protein), gamma 2 (Gng2) were assessed immunohistochemically alongside, or in combination with cortical anterograde, or retrograde tracer injections. Retrograde tracer injections into various thalamic nuclei were used to further establish the rostral border of the claustrum. Expression of all three markers delineated a nuclear boundary that extended considerably (∼500 μm) beyond the anterior horn of the neostriatum. Cortical retrograde and anterograde tracer injections, respectively, revealed distributions of cortically-projecting claustral neurons and cortical efferent inputs to the claustrum that overlapped with the gene marker-derived claustrum boundary. Finally, retrograde tracer injections into the thalamus revealed insular cortico-thalamic projections encapsulating a claustral area with strongly diminished cell label, that extended rostral to the striatum.
Collapse
Affiliation(s)
- Christopher M. Dillingham
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Bethany E. Frost
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Marie A. C. Lambert
- Faculty of Basic and Applied Sciences, University of Poitiers, Poitiers, France
| | - Emma J. Bubb
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Maciej M. Jankowski
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John P. Aggleton
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Shane M. O’Mara
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Vidyasagar TR, Levichkina E. An Integrated Neuronal Model of Claustral Function in Timing the Synchrony Between Cortical Areas. Front Neural Circuits 2019; 13:3. [PMID: 30804759 PMCID: PMC6371054 DOI: 10.3389/fncir.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that the function of the claustrum (CL) may be to orchestrate and integrate the activity of the different cortical areas that are involved in a particular function by boosting the synchronized oscillations that occur between these areas. We propose here a model of how this may be done, thanks to the unique synaptic morphology of the CL and its excitatory and inhibitory connections with most cortical areas. Using serial visual search as an example, we describe how the functional anatomy of the claustral connections can potentially execute the sequential activation of the representations of objects that are being processed serially. We also propose that cross-frequency coupling (CFC) between low frequency signals from CL and higher frequency oscillations in the cortical areas will be an efficient means of CL modulating neural activity across multiple brain regions in synchrony. This model is applicable to the wide range of functions one performs, from simple object recognition to reading and writing, listening to or performing music, etc.
Collapse
Affiliation(s)
- Trichur R. Vidyasagar
- Department of Optometry and Vision Science, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Research Council Centre of Excellence in Integrative Brain Function, University of Melbourne Node, Melbourne, VIC, Australia
| | - Ekaterina Levichkina
- Department of Optometry and Vision Science, University of Melbourne, Parkville, VIC, Australia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
38
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Hong CCH, Fallon JH, Friston KJ, Harris JC. Rapid Eye Movements in Sleep Furnish a Unique Probe Into Consciousness. Front Psychol 2018; 9:2087. [PMID: 30429814 PMCID: PMC6220670 DOI: 10.3389/fpsyg.2018.02087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/10/2018] [Indexed: 01/07/2023] Open
Abstract
The neural correlates of rapid eye movements (REMs) in sleep are extraordinarily robust; including REM-locked multisensory-motor integration and accompanying activation in the retrosplenial cortex, the supplementary eye field and areas encompassing cholinergic basal nucleus (Hong et al., 2009). The phenomenology of REMs speaks to the notion that perceptual experience in both sleep and wakefulness is a constructive process - in which we generate predictions of sensory inputs and then test those predictions through actively sampling the sensorium with eye movements. On this view, REMs during sleep may index an internalized active sampling or 'scanning' of self-generated visual constructs that are released from the constraints of visual input. If this view is correct, it renders REMs an ideal probe to study consciousness as "an exclusively internal affair" (Metzinger, 2009). In other words, REMs offer a probe of active inference - in the sense of predictive coding - when the brain is isolated from the sensorium in virtue of the natural blockade of sensory afferents during REM sleep. Crucially, REMs are temporally precise events that enable powerful inferences based on time series analyses. As a natural, task-free probe, (REMs) could be used in non-compliant subjects, including infants and animals. In short, REMs constitute a promising probe to study the ontogenetic and phylogenetic development of consciousness and perhaps the psychopathology of schizophrenia and autism, which have been considered in terms of aberrant predictive coding.
Collapse
Affiliation(s)
- Charles C.-H. Hong
- Patuxent Institution, Correctional Mental Health Center — Jessup, Jessup, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - James H. Fallon
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Karl J. Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - James C. Harris
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
40
|
Atlan G, Terem A, Peretz-Rivlin N, Sehrawat K, Gonzales BJ, Pozner G, Tasaka GI, Goll Y, Refaeli R, Zviran O, Lim BK, Groysman M, Goshen I, Mizrahi A, Nelken I, Citri A. The Claustrum Supports Resilience to Distraction. Curr Biol 2018; 28:2752-2762.e7. [PMID: 30122531 PMCID: PMC6485402 DOI: 10.1016/j.cub.2018.06.068] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
Abstract
A barrage of information constantly assaults our senses, of which only a fraction is relevant at any given point in time. However, the neural circuitry supporting the suppression of irrelevant sensory distractors is not completely understood. The claustrum, a circuit hub with vast cortical connectivity, is an intriguing brain structure, whose restrictive anatomy, thin and elongated, has precluded functional investigation. Here, we describe the use of Egr2-CRE mice to access genetically defined claustral neurons. Utilizing conditional viruses for anterograde axonal labeling and retrograde trans-synaptic tracing, we validated this transgenic model for accessing the claustrum and extended the known repertoire of claustral input/output connectivity. Addressing the function of the claustrum, we inactivated CLEgr2+ neurons, chronically as well as acutely, in mice performing an automated two-alternative forced-choice behavioral task. Strikingly, inhibition of CLEgr2+ neurons did not significantly impact task performance under varying delay times and cue durations, but revealed a selective role for the claustrum in supporting performance in the presence of an irrelevant auditory distractor. Further investigation of behavior, in the naturalistic maternal pup-retrieval task, replicated the result of sensitization to an auditory distractor following inhibition of CLEgr2+ neurons. Initiating investigation into the underlying mechanism, we found that activation of CLEgr2+ neurons modulated cortical sensory processing, suppressing tone representation in the auditory cortex. This functional study, utilizing selective genetic access, implicates the claustrum in supporting resilience to distraction, a fundamental aspect of attention.
Collapse
Affiliation(s)
- Gal Atlan
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Anna Terem
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | - Kamini Sehrawat
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ben Jerry Gonzales
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Guy Pozner
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Gen-Ichi Tasaka
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Yael Goll
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ori Zviran
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Groysman
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Adi Mizrahi
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
41
|
Claustral structural connectivity and cognitive impairment in drug naïve Parkinson’s disease. Brain Imaging Behav 2018; 13:933-944. [DOI: 10.1007/s11682-018-9907-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Mallikarjun PK, Lalousis PA, Dunne TF, Heinze K, Reniers RLEP, Broome MR, Farmah B, Oyebode F, Wood SJ, Upthegrove R. Aberrant salience network functional connectivity in auditory verbal hallucinations: a first episode psychosis sample. Transl Psychiatry 2018; 8:69. [PMID: 29581420 PMCID: PMC5913255 DOI: 10.1038/s41398-018-0118-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/20/2017] [Accepted: 01/15/2018] [Indexed: 01/15/2023] Open
Abstract
Auditory verbal hallucinations (AVH) often lead to distress and functional disability, and are frequently associated with psychotic illness. Previously both state and trait magnetic resonance imaging (MRI) studies of AVH have identified activity in brain regions involving auditory processing, language, memory and areas of default mode network (DMN) and salience network (SN). Current evidence is clouded by research mainly in participants on long-term medication, with chronic illness and by choice of seed regions made 'a priori'. Thus, the aim of this study was to elucidate the intrinsic functional connectivity in patients presenting with first episode psychosis (FEP). Resting state functional MRI data were available from 18 FEP patients, 9 of whom also experienced AVH of sufficient duration in the scanner and had symptom capture functional MRI (sc fMRI), together with 18 healthy controls. Symptom capture results were used to accurately identify specific brain regions active during AVH; including the superior temporal cortex, insula, precuneus, posterior cingulate and parahippocampal complex. Using these as seed regions, patients with FEP and AVH showed increased resting sb-FC between parts of the SN and the DMN and between the SN and the cerebellum, but reduced sb-FC between the claustrum and the insula, compared to healthy controls.It is possible that aberrant activity within the DMN and SN complex may be directly linked to impaired salience appraisal of internal activity and AVH generation. Furthermore, decreased intrinsic functional connectivity between the claustrum and the insula may lead to compensatory over activity in parts of the auditory network including areas involved in DMN, auditory processing, language and memory, potentially related to the complex and individual content of AVH when they occur.
Collapse
Affiliation(s)
- Pavan Kumar Mallikarjun
- 0000 0004 1936 7486grid.6572.6Institute for Mental Health, University of Birmingham, Birmingham, UK ,0000 0004 1936 7486grid.6572.6College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK ,Forward Thinking Birmingham, Birmingham, UK
| | | | - Thomas Frederick Dunne
- 0000 0004 1936 7486grid.6572.6College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kareen Heinze
- 0000 0004 1936 7486grid.6572.6Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Renate LEP Reniers
- 0000 0004 1936 7486grid.6572.6Institute for Mental Health, University of Birmingham, Birmingham, UK ,0000 0004 1936 7486grid.6572.6College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Matthew R. Broome
- 0000 0004 1936 7486grid.6572.6Institute for Mental Health, University of Birmingham, Birmingham, UK ,Forward Thinking Birmingham, Birmingham, UK ,0000 0004 1936 8948grid.4991.5University of Oxford, Oxford, UK
| | | | - Femi Oyebode
- 0000 0004 1936 7486grid.6572.6College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK ,Birmingham and Solihull Mental Health Foundation Trust, Birmingham, UK
| | - Stephen J Wood
- 0000 0004 1936 7486grid.6572.6Institute for Mental Health, University of Birmingham, Birmingham, UK ,grid.488501.0Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia ,0000 0001 2179 088Xgrid.1008.9Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK. .,College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. .,Forward Thinking Birmingham, Birmingham, UK.
| |
Collapse
|
43
|
A pilot study of the role of the claustrum in attention and seizures in rats. Epilepsy Res 2018; 140:97-104. [PMID: 29324357 DOI: 10.1016/j.eplepsyres.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The claustrum has been implicated in consciousness, and MRIs of patients with status epilepticus have shown increased claustral signal intensity. In an attempt to investigate the role of claustrum in cognition and seizures, we (1) assessed the effect of high-frequency stimulation (HFS) of the claustrum on performance in the operant chamber; (2) studied interclaustral and claustrohippocampal connectivity through cerebro-cerebral evoked potentials (CCEPs); and (3) investigated the role of claustrum in kainate-induced (KA) seizures. METHODS Adult male Sprague-Dawley rats were trained in operant conditioning and implanted with electrodes in bilateral claustra and hippocampi. Claustrum HFS (50 Hz) was delivered bilaterally and unilaterally with increasing intensities from 50 to 1000 μA, and performance scores were assessed. CCEPs were studied by averaging the responses to bipolar stimulations, 1-ms wide pulses at 0.1 Hz to the claustrum. KA seizures were analyzed on video-EEG recordings. RESULTS Generalized Estimating Equations analysis revealed that claustral stimulation reduced task performance scores relative to rest sessions (bilateral: -15.8 percentage points, p < 0.0001; unilateral: -15.2, p < 0.0001). With some stimulations, the rats showed a stimulus-locked decrease in attentiveness and, occasionally, an inability to complete the operant task. CCEPs demonstrated interclaustral and claustrohippocampal connectivity. Some KA seizures appeared to originate from the claustrum. CONCLUSIONS Findings from the operant conditioning task suggest stimulation of the claustrum can alter attention or awareness. CCEPs demonstrated connectivity between the two claustra and between the claustrum and the hippocampi. Such connectivity may be part of the circuitry that underlies the alteration of awareness in limbic seizures. Lastly, KA seizures showed early involvement of the claustrum, a finding that also supports a possible role of the claustrum in the alteration of consciousness that accompanies dyscognitive seizures.
Collapse
|
44
|
Abstract
Background The claustrum (CLA) has been discussed as central to integrated conscious percepts, although recent evidence has emphasized a role in detecting sensory novelty or in amplifying correlated cortical inputs. Objective We report that many neurons in the macaque CLA are ensheathed in perineuronal nets (PNNs), which contribute to synaptic stability and enhance neuronal excitability, among other properties. Design We visualized PNNs by wisteria floribunda agglutinin (WFA) immunohistochemistry, and quantified these in comparison these to parvalbumin+ (PV) subsets and total neurons. Results PNNs ensheath about 11% of the total neurons. These are a range of large, medium, and small neurons, likely corresponding to PV+ and/or other inhibitory interneurons. The PNNs were themselves heterogeneous, consisting of lattice-like, weakly labeled, and diffuse subtypes, and showed some regional preference for the medial CLA. Conclusion The abundant neuronal labeling by PNNs in the CLA suggests an important and nuanced role for inhibition, consistent with recent physiological studies of claustrocortical circuitry. For comparison, diversified inhibition in the reticular nucleus of the thalamus (a pan-inhibitory nucleus, with extensive cortical input) exerts a spectrum of control at different local and global spatiotemporal scales. Further investigation of PNN+ neurons in the macaque CLA offers a potentially important new approach to CLA function, relevant to the human brain both in normal and diseased conditions.
Collapse
Affiliation(s)
- Mihovil Pletikos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA. 02118
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA. 02118
| |
Collapse
|
45
|
Fillinger C, Yalcin I, Barrot M, Veinante P. Efferents of anterior cingulate areas 24a and 24b and midcingulate areas 24a' and 24b' in the mouse. Brain Struct Funct 2017; 223:1747-1778. [PMID: 29209804 DOI: 10.1007/s00429-017-1585-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
The anterior cingulate cortex (ACC), constituted by areas 25, 32, 24a and 24b in rodents, plays a major role in cognition, emotion and pain. In a previous study, we described the afferents of areas 24a and 24b and those of areas 24a' and 24b' of midcingulate cortex (MCC) in mice and highlighted some density differences among cingulate inputs (Fillinger et al., Brain Struct Funct 222:1509-1532, 2017). To complete this connectome, we analyzed here the efferents of ACC and MCC by injecting anterograde tracers in areas 24a/24b of ACC and 24a'/24b' of MCC. Our results reveal a common projections pattern from both ACC and MCC, targeting the cortical mantle (intracingulate, retrosplenial and parietal associative cortex), the non-cortical basal forebrain, (dorsal striatum, septum, claustrum, basolateral amygdala), the hypothalamus (anterior, lateral, posterior), the thalamus (anterior, laterodorsal, ventral, mediodorsal, midline and intralaminar nuclei), the brainstem (periaqueductal gray, superior colliculus, pontomesencephalic reticular formation, pontine nuclei, tegmental nuclei) and the spinal cord. In addition to an overall denser ACC projection pattern compared to MCC, our analysis revealed clear differences in the density and topography of efferents between ACC and MCC, as well as between dorsal (24b/24b') and ventral (24a/24a') areas, suggesting a common functionality of these two cingulate regions supplemented by specific roles of each area. These results provide a detailed analysis of the efferents of the mouse areas 24a/24b and 24a'/24b' and achieve the description of the cingulate connectome, which bring the anatomical basis necessary to address the roles of ACC and MCC in mice.
Collapse
Affiliation(s)
- Clémentine Fillinger
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, CNRS UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, CNRS UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, CNRS UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, CNRS UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg, France. .,Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
46
|
Jankowski MM, Islam MN, O'Mara SM. Dynamics of spontaneous local field potentials in the anterior claustrum of freely moving rats. Brain Res 2017; 1677:101-117. [DOI: 10.1016/j.brainres.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
|
47
|
Landzhov B, Hinova-Palova D, Edelstein L, Dzhambazova E, Brainova I, Georgiev GP, Ivanova V, Paloff A, Ovtscharoff W. Comparative investigation of neuronal nitric oxide synthase immunoreactivity in rat and human claustrum. J Chem Neuroanat 2017; 86:1-14. [DOI: 10.1016/j.jchemneu.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/22/2023]
|
48
|
Wassersug R, Wibowo E. Non-pharmacological and non-surgical strategies to promote sexual recovery for men with erectile dysfunction. Transl Androl Urol 2017; 6:S776-S794. [PMID: 29238658 PMCID: PMC5715194 DOI: 10.21037/tau.2017.04.09] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022] Open
Abstract
Erectile dysfunction (ED), the most commonly reported sexual problem for men, reduces the quality of life for both patients and their partners. Even when physiologically effective, long-term adherence to ED treatments is poor. We review here the implication of having patients' partners involved in ED treatment, starting with treatment selection. We suggest that having partners engaged from the outset may promote an erotic association of the treatment with the partner, i.e., conceptually linking the aid to the sexual pleasure that the partner provides. We hypothesize that this erotic association should enhance the sexual aid's effectiveness and might potentially help improve long-term adherence. The primary focus of this review, though, is non-pharmacological and non-surgical options for maintaining sexual activity for men with ED. Though not ED treatments per se, anecdotal data suggest that these options may be effective for some patients and their partners in regaining a satisfying sex life. The aids discussed include external penile prostheses, penile sleeves, and penile support devices. These devices can allow men to participate in penetrative sexual intercourse despite moderate to severe ED. External penile prostheses can be personalized so they match in size and shape a man's normal full erection. Penile sleeves can similarly be customized with a lumen that fits best a patient's penis for optimal tactile stimulation. We review how multi-sensory integration can enhance sexual arousal for men who use such devices, allowing them to achieve orgasm despite intractable ED. Patients are not always advised within ED clinics about these options nor why and how they can facilitate non-erection dependent sexual recovery. Clinicians need to be aware of these devices and their positive attributes, so they can objectively counsel and encourage couples to explore their use as an alternative to more invasive treatments. The most commonly promoted non-medical ED aid offered to patients is the vacuum erection device. We discuss how erections achieved with the vacuum erection device have a "hinge effect", that is an underappreciated barrier to the effectiveness of the erection. With a hinged erection, the penis points downward rather than upward. We show how the normal kinematics of the penis during coitus is not strictly linear (i.e., not uniaxial; not just in-and-out), and is impeded by hinging. Positional adjustment, such as the receptive partner being on top, may help overcome this problem for some couples. Lastly, we suggest that, in the case where ED can be anticipated from a pending medical treatment, such as a prostatectomy, pre-habilitative approaches may potentially improve adherence to sexual aid use in the long-term. In conclusion, non-pharmacological and non-surgical options for sexual recovery are available. Scientific studies on the effectiveness of these interventions in restoring satisfying sex are warranted.
Collapse
Affiliation(s)
- Richard Wassersug
- Australian Research Centre in Sex, Health and Society, La Trobe University, Melbourne, Australia
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Erik Wibowo
- British Columbia Cancer Agency, Vancouver, Canada
| |
Collapse
|
49
|
Pirone A, Miragliotta V, Ciregia F, Giannessi E, Cozzi B. The catecholaminergic innervation of the claustrum of the pig. J Anat 2017; 232:158-166. [PMID: 28967096 DOI: 10.1111/joa.12706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 01/26/2023] Open
Abstract
Over the past decades, the number of studies employing the pig brain as a model for neurochemical studies has dramatically increased. The key translational features of the pig brain are the similarities with the cortical and subcortical structures of the human brain. In addition, the caudalmost part of the pig claustrum (CL) is characterized by a wide enlargement called posterior puddle, an ideal structure for physiological recordings. Several hypotheses have been proposed for CL function, the key factor being its reciprocal connectivity with most areas of the cerebral cortex and selected subcortical structures. However, afferents from the brainstem could also be involved. The brainstem is the main source of catecholaminergic axons that play an important neuromodulatory action in different brain functions. To study a possible role of the CL in catecholaminergic pathways, we analyzed the presence and the distribution of afferents immunostained with antibodies against tyrosine hydroxylase (TH) and dopamine betahydroxylase (DBH) in the pig CL. Here we show that the CL contains significant TH immunoreactive axons contacting perikarya, whereas projections staining for DBH are very scarce. Our findings hint at the possibility that brainstem catecholaminergic afferents project to the CL, suggesting (i) a possible role of this nucleus in functions controlled by brainstem structures; and, consequently, (ii) its potential involvement in the pathophysiology of neurodegenerative pathologies, including Parkinson's disease (PD).
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| |
Collapse
|
50
|
Organization of the Claustrum-to-Entorhinal Cortical Connection in Mice. J Neurosci 2017; 37:269-280. [PMID: 28077707 DOI: 10.1523/jneurosci.1360-16.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/17/2023] Open
Abstract
The claustrum, a subcortical structure situated between the insular cortex and striatum, is reciprocally connected with almost all neocortical regions. Based on this connectivity, the claustrum has been postulated to integrate multisensory information and, in turn, coordinate widespread cortical activity. Although studies have identified how sensory information is mapped onto the claustrum, the function of individual topographically arranged claustro-cortical pathways has been little explored. Here, we investigated the organization and function of identified claustro-cortical pathways in mice using multiple anatomical and optogenetic techniques. Retrograde and anterograde tracing demonstrated that the density of anterior claustrum-to-cortical projection differs substantially depending on the target cortical areas. One of the major targets was the medial entorhinal cortex (MEC) and the MEC-projecting claustral neurons were largely segregated from the neurons projecting to primary cortices M1, S1, or V1. Exposure to a novel environment induced c-Fos expression in a substantial number of MEC-projecting claustral neurons and some M1/S1/V1-projecting claustral neurons. Optogenetic silencing of the MEC-projecting claustral neurons during contextual fear conditioning impaired later memory retrieval without affecting basal locomotor activity or anxiety-related behavior. These results suggest that the dense, anterior claustro-MEC pathway that is largely separated from other claustro-cortical pathways is activated by novel context and modulates the MEC function in contextual memory. SIGNIFICANCE STATEMENT The claustrum is a poorly understood subcortical structure reciprocally connected with widespread neocortical regions. We investigated the organization and function of identified claustro-cortical projections in mice using pathway-specific approaches. Anatomical tracing showed that the density of anterior claustrum-to-cortical projection is dependent on the target cortical areas and that the medial entorhinal cortex (MEC) is one of the major projection targets. Novel context exposure activated multiple claustro-cortical pathways and a large fraction of the activated neurons projected to the MEC. Optogenetic silencing of the claustro-MEC pathway during contextual fear learning suppressed subsequent memory retrieval. These results suggest that the dense claustro-MEC pathway is activated by novel context and modulates MEC function in contextual memory.
Collapse
|