1
|
Kobayashi T, Shimba K, Narumi T, Asahina T, Kotani K, Jimbo Y. Revealing single-neuron and network-activity interaction by combining high-density microelectrode array and optogenetics. Nat Commun 2024; 15:9547. [PMID: 39528508 PMCID: PMC11555060 DOI: 10.1038/s41467-024-53505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The synchronous activity of neuronal networks is considered crucial for brain function. However, the interaction between single-neuron activity and network-wide activity remains poorly understood. This study explored this interaction within cultured networks of rat cortical neurons. Employing a combination of high-density microelectrode array recording and optogenetic stimulation, we established an experimental setup enabling simultaneous recording and stimulation at a precise single-neuron level that can be scaled to the level of the whole network. Leveraging our system, we identified a network burst-dependent response change in single neurons, providing a possible mechanism for the network-burst-dependent loss of information within the network and consequent cognitive impairment during epileptic seizures. Additionally, we directly recorded a leader neuron initiating a spontaneous network burst and characterized its firing properties, indicating that the bursting activity of hub neurons in the brain can initiate network-wide activity. Our study offers valuable insights into brain networks characterized by a combination of bottom-up self-organization and top-down regulation.
Collapse
Affiliation(s)
- Toki Kobayashi
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kenta Shimba
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Taiyo Narumi
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takahiro Asahina
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Kiyoshi Kotani
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Dong M, Coleman HA, Tonta MA, Xiong Z, Li D, Thomas S, Liu M, Fallon JB, Parkington HC, Forsythe JS. Rapid electrophoretic deposition of biocompatible graphene coatings for high-performance recording neural electrodes. NANOSCALE 2022; 14:15845-15858. [PMID: 36259692 DOI: 10.1039/d2nr04421h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrical and biological interfacial properties of invasive electrodes have a significant impact on the performance and longevity of neural recordings in the brain. In this study, we demonstrated rapid electrophoretic deposition and electrochemical reduction of graphene oxide (GO) on metal-based neural electrodes. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other characterizations confirmed the existence of a uniform and effectively reduced graphene oxide coating. Electrochemically reduced graphene oxide (ErGO) coated Pt/Ir neural electrodes exhibited 15.2-fold increase in charge storage capacity (CSC) and 90% decrease in impedance with only 3.8% increase in electrode diameter. Patch clamp electrophysiology and calcium imaging of primary rat hippocampus neurons cultured on ErGO demonstrated that there was no adverse impact on the functional development of neurons. Immunostaining showed a balanced growth of excitatory and inhibitory neurons, and astrocytes. Acute recordings from the auditory cortex and chronic recordings (19 days) from the somatosensory cortex found ErGO coating improved the performance of neural electrodes in signal-to-noise ratio (SNR) and amplitude of signals. The proposed approach not only provides an in-depth evaluation of the effect of ErGO coating on neural electrodes but also widens the coating methods of commercial neural electrodes.
Collapse
Affiliation(s)
- Miheng Dong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 250000, China
| | - Harold A Coleman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mary A Tonta
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Dan Li
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Sebastian Thomas
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Minsu Liu
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 250000, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - James B Fallon
- The Bionics Institute, East Melbourne, Victoria 3002, Australia
- Medical Bionics Department, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
3
|
Motanis H, Buonomano D. Decreased reproducibility and abnormal experience-dependent plasticity of network dynamics in Fragile X circuits. Sci Rep 2020; 10:14535. [PMID: 32884028 PMCID: PMC7471942 DOI: 10.1038/s41598-020-71333-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder associated with a broad range of neural phenotypes. Interpreting these findings has proven challenging because some phenotypes may reflect compensatory mechanisms or normal forms of plasticity differentially engaged by experiential differences. To help minimize compensatory and experiential influences, we used an ex vivo approach to study network dynamics and plasticity of cortical microcircuits. In Fmr1-/y circuits, the spatiotemporal structure of Up-states was less reproducible, suggesting alterations in the plasticity mechanisms governing network activity. Chronic optical stimulation revealed normal homeostatic plasticity of Up-states, however, Fmr1-/y circuits exhibited abnormal experience-dependent plasticity as they did not adapt to chronically presented temporal patterns in an interval-specific manner. These results, suggest that while homeostatic plasticity is normal, Fmr1-/y circuits exhibit deficits in the ability to orchestrate multiple forms of synaptic plasticity and to adapt to sensory patterns in an experience-dependent manner-which is likely to contribute to learning deficits.
Collapse
Affiliation(s)
- Helen Motanis
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, 630 Charles E Young Dr S, Center for Health Sciences Building, Los Angeles, CA, 90095, USA
| | - Dean Buonomano
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, 630 Charles E Young Dr S, Center for Health Sciences Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Familiarity Detection and Memory Consolidation in Cortical Assemblies. eNeuro 2020; 7:ENEURO.0006-19.2020. [PMID: 32122957 PMCID: PMC7215585 DOI: 10.1523/eneuro.0006-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/30/2020] [Accepted: 02/20/2020] [Indexed: 01/12/2023] Open
Abstract
Humans have a large capacity of recognition memory (Dudai, 1997), a fundamental property of higher-order brain functions such as abstraction and generalization (Vogt and Magnussen, 2007). Familiarity is the first step towards recognition memory. We have previously demonstrated using unsupervised neural network simulations that familiarity detection of complex patterns emerges in generic cortical microcircuits with bidirectional synaptic plasticity. It is therefore meaningful to conduct similar experiments on biological neuronal networks to validate these results. Studies of learning and memory in dissociated rodent neuronal cultures remain inconclusive to date. Synchronized network bursts (SNBs) that occur spontaneously and periodically have been speculated to be an intervening factor. By optogenetically stimulating cultured cortical networks with random dot movies (RDMs), we were able to reduce the occurrence of SNBs, after which an ability for familiarity detection emerged: previously seen patterns elicited higher firing rates than novel ones. Differences in firing rate were distributed over the entire network, suggesting that familiarity detection is a system level property. We also studied the change in SNB patterns following familiarity encoding. Support vector machine (SVM) classification results indicate that SNBs may be facilitating memory consolidation of the learned pattern. In addition, using a novel network connectivity probing method, we were able to trace the change in synaptic efficacy induced by familiarity encoding, providing insights on the long-term impact of having SNBs in the cultures.
Collapse
|
5
|
|
6
|
Abstract
Most of the computations and tasks performed by the brain require the ability to tell time, and process and generate temporal patterns. Thus, there is a diverse set of neural mechanisms in place to allow the brain to tell time across a wide range of scales: from interaural delays on the order of microseconds to circadian rhythms and beyond. Temporal processing is most sophisticated on the scale of tens of milliseconds to a few seconds, because it is within this range that the brain must recognize and produce complex temporal patterns-such as those that characterize speech and music. Most models of timing, however, have focused primarily on simple intervals and durations, thus it is not clear whether they will generalize to complex pattern-based temporal tasks. Here, we review neurobiologically based models of timing in the subsecond range, focusing on whether they generalize to tasks that require placing consecutive intervals in the context of an overall pattern, that is, pattern timing.
Collapse
Affiliation(s)
- Nicholas F Hardy
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095
| | - Dean V Buonomano
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
7
|
Yada Y, Kanzaki R, Takahashi H. State-Dependent Propagation of Neuronal Sub-Population in Spontaneous Synchronized Bursts. Front Syst Neurosci 2016; 10:28. [PMID: 27065820 PMCID: PMC4815764 DOI: 10.3389/fnsys.2016.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/14/2016] [Indexed: 01/05/2023] Open
Abstract
Repeating stable spatiotemporal patterns emerge in synchronized spontaneous activity in neuronal networks. The repertoire of such patterns can serve as memory, or a reservoir of information, in a neuronal network; moreover, the variety of patterns may represent the network memory capacity. However, a neuronal substrate for producing a repertoire of patterns in synchronization remains elusive. We herein hypothesize that state-dependent propagation of a neuronal sub-population is the key mechanism. By combining high-resolution measurement with a 4096-channel complementary metal-oxide semiconductor (CMOS) microelectrode array (MEA) and dimensionality reduction with non-negative matrix factorization (NMF), we investigated synchronized bursts of dissociated rat cortical neurons at approximately 3 weeks in vitro. We found that bursts had a repertoire of repeating spatiotemporal patterns, and different patterns shared a partially similar sequence of sub-population, supporting the idea of sequential structure of neuronal sub-populations during synchronized activity. We additionally found that similar spatiotemporal patterns tended to appear successively and periodically, suggesting a state-dependent fluctuation of propagation, which has been overlooked in existing literature. Thus, such a state-dependent property within the sequential sub-population structure is a plausible neural substrate for performing a repertoire of stable patterns during synchronized activity.
Collapse
Affiliation(s)
- Yuichiro Yada
- Research Center for Advanced Science and Technology, The University of TokyoTokyo, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of TokyoTokyo, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of TokyoTokyo, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of TokyoTokyo, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of TokyoTokyo, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of TokyoTokyo, Japan
| |
Collapse
|
8
|
Zhao M, Alleva R, Ma H, Daniel AGS, Schwartz TH. Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res 2015; 116:15-26. [PMID: 26354163 PMCID: PMC4567692 DOI: 10.1016/j.eplepsyres.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/14/2015] [Indexed: 12/01/2022]
Abstract
Epilepsy affects roughly 1% of the population worldwide. Although effective treatments with antiepileptic drugs are available, more than 20% of patients have seizures that are refractory to medical therapy and many patients experience adverse effects. Hence, there is a continued need for novel therapies for those patients. A new technique called "optogenetics" may offer a new hope for these refractory patients. Optogenetics is a technology based on the combination of optics and genetics, which can control or record neural activity with light. Following delivery of light-sensitive opsin genes such as channelrhodopsin-2 (ChR2), halorhodopsin (NpHR), and others into brain, excitation or inhibition of specific neurons in precise brain areas can be controlled by illumination at different wavelengths with very high temporal and spatial resolution. Neuromodulation with the optogenetics toolbox have already been shown to be effective at treating seizures in animal models of epilepsy. This review will outline the most recent advances in epilepsy research with optogenetic techniques and discuss how this technology can contribute to our understanding and treatment of epilepsy in the future.
Collapse
Affiliation(s)
- Mingrui Zhao
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Rose Alleva
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Andy G S Daniel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Otolaryngology, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
9
|
Abstract
The ability to process complex spatiotemporal information is a fundamental process underlying the behavior of all higher organisms. However, how the brain processes information in the temporal domain remains incompletely understood. We have explored the spatiotemporal information-processing capability of networks formed from dissociated rat E18 cortical neurons growing in culture. By combining optogenetics with microelectrode array recording, we show that these randomly organized cortical microcircuits are able to process complex spatiotemporal information, allowing the identification of a large number of temporal sequences and classification of musical styles. These experiments uncovered spatiotemporal memory processes lasting several seconds. Neural network simulations indicated that both short-term synaptic plasticity and recurrent connections are required for the emergence of this capability. Interestingly, NMDA receptor function is not a requisite for these short-term spatiotemporal memory processes. Indeed, blocking the NMDA receptor with the antagonist APV significantly improved the temporal processing ability of the networks, by reducing spontaneously occurring network bursts. These highly synchronized events have disastrous effects on spatiotemporal information processing, by transiently erasing short-term memory. These results show that the ability to process and integrate complex spatiotemporal information is an intrinsic property of generic cortical networks that does not require specifically designed circuits.
Collapse
|