1
|
Ramadan YN, Alqifari SF, Alshehri K, Alhowiti A, Mirghani H, Alrasheed T, Aljohani F, Alghamdi A, Hetta HF. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol Neurobiol 2025:10.1007/s12035-025-04846-0. [PMID: 40234288 DOI: 10.1007/s12035-025-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
The current discovery that the gut microbiome, which contains roughly 100 trillion microbes, affects health and disease has catalyzed a boom in multidisciplinary research efforts focused on understanding this relationship. Also, it is commonly demonstrated that the gut and the CNS are closely related in a bidirectional pathway. A balanced gut microbiome is essential for regular brain activities and emotional responses. On the other hand, the CNS regulates the majority of GI physiology. Any disruption in this bidirectional pathway led to a progression of health problems in both directions, neurological and gastrointestinal diseases. In this review, we hope to shed light on the complicated connections of the microbiome-gut-brain axis and the critical roles of gut microbiome in the early development of the brain in order to get a deeper knowledge of microbiome-mediated pathological conditions and management options through rebalancing of gut microbiome.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Khaled Alshehri
- Department of Internal Medicine (Neurology), Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amirah Alhowiti
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Hyder Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal Aljohani
- Division of Medicine and Gastroenterology, Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of Medicine, Division of Psychiatry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Blair HJ, Morales L, Cryan JF, Aburto MR. Neuroglia and the microbiota-gut-brain axis. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:171-196. [PMID: 40122624 DOI: 10.1016/b978-0-443-19104-6.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Glial cells are key players in the regulation of nervous system functioning in both the central and enteric nervous systems. Glial cells are dynamic and respond to environmental cues to modulate their activity. Increasing evidence suggests that these signals include those originating from the gut microbiota, the community of microorganisms, including bacteria, viruses, archaea, and protozoa, that inhabit the gut. The gut microbiota and the brain communicate in a bidirectional manner across multiple signaling pathways and interfaces that together comprise the microbiota-gut-brain axis. Here, we detail the role of glial cells, including astrocytes, microglia, and oligodendrocytes in the central nervous system, and glial cells in the enteric nervous system along this gut-brain axis. We review what is known regarding the modulation of glia by microbial signals, in particular by microbial metabolites which signal to the brain through systemic circulation and via the vagus nerve. In addition, we highlight what is yet to be discovered regarding the role of other gut microbiota signaling pathways in glial cell modulation and the challenges of research in this area.
Collapse
Affiliation(s)
- Hugo J Blair
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorena Morales
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - María R Aburto
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Padiyar S, Nandakumar V, Kollikonda S, Karnati S, Sangwan N, Aly H. Maternal and infant microbiome and birth anthropometry. iScience 2024; 27:110312. [PMID: 39386758 PMCID: PMC11462025 DOI: 10.1016/j.isci.2024.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 10/12/2024] Open
Abstract
Preterm birth is the leading cause of neonatal mortality and morbidity. Microbiome dysbiosis in the mother and infant may contribute to their adverse outcomes. 16S rRNA amplicon sequencing was performed on all samples. Phyloseq, microbiomeSeq, and NetCoMi were utilized for bioinformatics analysis. Statistical tests included the Wilcoxon test, ANOVA, permutational multivariate analysis of variance (PERMANOVA), and linear regression. Statistical significance was set at p value <0.05. The establishment of an infant's microbiome most likely begins in utero and is influenced by the maternal microbiome. Infants' samples were enriched with Salmonella. There is a complex interplay among the microbial taxa noticeable at birth, exhibiting variability in interaction within the same host and across different hosts. Both maternal and infant microbiomes influence the anthropometric measures determined at birth, and a sex-based difference in correlation exists. This study highlights the potential role of maternal and infant microbiomes in improving pregnancy and neonatal outcomes.
Collapse
Affiliation(s)
- Swetha Padiyar
- Neonatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Swapna Kollikonda
- Department of Obstetrics & Gynecology, Cleveland Clinic, Cleveland, OH, USA
| | - Sreenivas Karnati
- Division of Neonatology, Cleveland Clinic Children’s, Cleveland, OH, USA
| | - Naseer Sangwan
- Shared Laboratory Resources (SLR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hany Aly
- Division of Neonatology, Cleveland Clinic Children’s, Cleveland, OH, USA
| |
Collapse
|
4
|
Sha C, Jin Z, Ku SY, Kogosov AS, Yu S, Bergese SD, Hsieh H. Necrotizing Enterocolitis and Neurodevelopmental Impairments: Microbiome, Gut, and Brain Entanglements. Biomolecules 2024; 14:1254. [PMID: 39456187 PMCID: PMC11505939 DOI: 10.3390/biom14101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
There is significant communication and interdependence among the gut, the microbiome, and the brain during development. Diseases, such as necrotizing enterocolitis (NEC), highlight how injury to the immature gastrointestinal tract leads to long-term neurological consequences, due to vulnerabilities of the brain in the early stages of life. A better understanding of the developing gut-microbiota-brain axis is needed to both prevent and treat the devastating consequences of these disease processes. The gut-microbiota-brain axis is a bidirectional communication pathway that includes metabolic, nervous, endocrine, and immune components. In this review, we discuss gut development, microbiome colonization and maturation, and the interactions that influence neurodevelopment in the context of NEC. We describe the components of the gut-brain axis and how the microbiome is an integral member of this relationship. Finally, we explore how derangements within the microbiome and gut-microbiota-brain axis affect the normal development and function of the other systems and long-term neurodevelopmental consequences for patients.
Collapse
Affiliation(s)
- Cuilee Sha
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA;
- Center for Nervous System Disorders, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA;
| | - Stella Y. Ku
- Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Ann S. Kogosov
- Renaissance School of Medicine, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Sun Yu
- Department of Surgery, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA;
| | - Helen Hsieh
- Center for Nervous System Disorders, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- Department of Surgery, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Lai MY, Chang YH, Lee CC. The impact of gut microbiota on morbidities in preterm infants. Kaohsiung J Med Sci 2024; 40:780-788. [PMID: 39073226 DOI: 10.1002/kjm2.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The gut microbiota undergoes substantial development from birth, and its development in the initial years of life has a potentially lifelong effect on the health of the individual. However, various factors can disrupt the development of the gut microbiota, leading to a condition known as dysbiosis, particularly in preterm infants. Current studies involving adults have suggested that the gut microbiota not only influences the gut but also has multidimensional effects on remote organs; these pathways are often referred to as the gut-organ axis. Imbalance of the gut microbiota may lead to the development of multiple diseases. Recent studies have revealed that gut dysbiosis in preterm infants may cause several acute morbidities-such as necrotizing enterocolitis, late-onset sepsis, bronchopulmonary dysplasia, and retinopathy of prematurity-and it may also influence long-term outcomes including neurodevelopment and somatic growth. This review mainly presents the existing evidence regarding the relationships between the gut microbiota and these morbidities in preterm infants and explores the role of the gut-organ axis in these morbidities. This paper thus offers insights into the future perspectives on microbiota interventions for promoting the health of preterm infants.
Collapse
Affiliation(s)
- Mei-Yin Lai
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Chi ZC. Recent studies on gut-brain axis and irritable bowel syndrome. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:468-483. [DOI: 10.11569/wcjd.v32.i7.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
7
|
Yang KL, Yen TA, Lin FJ, Hsu CN, Wang CC. Antibiotic use and risk of autism spectrum disorder and attention-deficit/hyperactivity disorder: a population-based cohort study. Child Adolesc Psychiatry Ment Health 2024; 18:82. [PMID: 38992772 PMCID: PMC11241894 DOI: 10.1186/s13034-024-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND The gut microbiota is believed to influence neurodevelopment through the gut-brain axis, but prior studies have shown inconsistent results regarding early childhood antibiotic exposure and subsequent risk of autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). The purpose of this study was to evaluate the hypothesis that exposure to antibacterial agents in the first 2 years of life increases the risk of ASD and/or ADHD. METHODS This was a retrospective cohort study using 2003-2019 data from the National Health Insurance Research Database in Taiwan. Livebirths born between 2004 and 2016 were identified and separated into singleton, full sibling, and exposure-discordant sibling pair cohorts. The exposure group included children who filled at least one prescription for antibacterial agents between 0 and 2 years old in outpatient settings. The outcome, ASD and/or ADHD, was defined by at least one inpatient or outpatient diagnosis. The maximum follow-up age was 15 years in this study. Potential neonatal, maternal and paternal confounders were adjusted for. Cox proportional hazards models were used to estimate the relative event risk. RESULTS The final sample contained 946,581 children in the singleton cohort, 1,142,693 children in the full sibling cohort, and 352,612 children in the exposure-discordant sibling pair cohort. Antibiotic exposure marginally increased the risk of ASD and/or ADHD in the singleton cohort (adjusted hazard ratio [aHR]: 1.06, 95% confidence interval [CI]: 1.04-1.07) and in the full sibling cohort (aHR: 1.03, 95% CI: 1.01-1.04). A slight decrease in the risk of ASD and/or ADHD was observed in the exposure-discordant sibling pair cohort (aHR: 0.92, 95% CI: 0.90-0.94). CONCLUSIONS The results suggest that early life antibiotic exposure has minimal impact on the risk of ASD and/or ADHD. Given that the estimated effects are marginal and close to null, concerns about ASD and/or ADHD risk increase should not postpone or deter timely and reasonable antibiotic use.
Collapse
Affiliation(s)
- Kai-Lin Yang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-An Yen
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Fang-Ju Lin
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chuan Wang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
9
|
Otaru N, Pugin B, Plüss S, Hojsak I, Braegger C, Lacroix C. A pilot case-control study on the fecal microbiota of pediatric functional abdominal pain-not otherwise specified and the role of early life stress. MICROBIOME RESEARCH REPORTS 2024; 3:32. [PMID: 39421253 PMCID: PMC11485736 DOI: 10.20517/mrr.2023.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Background: Gut microbial features and the role of early life stress in pediatric functional abdominal pain-not otherwise specified (FAP-NOS) have never been investigated before. Here, we hypothesize that early life stress is more prevalent in FAP-NOS compared to healthy controls and that fecal microbial profiles and related metabolites differ between groups. Methods: In an international multicenter case-control study, FAP-NOS patients (n = 40) were compared to healthy controls (n = 55). Stool samples and demographic and clinical data including early life traumatic events and antibiotics treatments were collected from children aged four to twelve years. Fecal microbial profiles were assessed with 16S rRNA gene amplicon sequencing. Microbial metabolite concentrations in fecal supernatant, including short-chain fatty acids and amino acids, were detected via liquid chromatography. Results: Microbial richness was increased in FAP-NOS compared to healthy controls and microbial composition (unweighted UniFrac) differed between groups. Three distinct amplicon sequencing variants and two distinct species were enriched in FAP-NOS compared to controls, with no observed changes at higher taxonomic levels. No differences in microbial metabolites and early life stress were observed between groups. Conclusion: The presented hypothesis could not be proven, with no observed differences in occurrence of early life stress, and fecal microbial metabolic profiles between pediatric FAP-NOS and healthy controls. Pediatric FAP-NOS patients exhibited mild differences in the fecal microbial community compared with controls. Further large-scale studies with high-resolution techniques are warranted to address the biological relevance of present observations.
Collapse
Affiliation(s)
- Nize Otaru
- Nutrition Research Unit, University Children’s Hospital Zürich, Zürich 8032, Switzerland
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Benoît Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children’s Hospital Zagreb, Zagreb 10000, Croatia
- University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Christian Braegger
- Nutrition Research Unit, University Children’s Hospital Zürich, Zürich 8032, Switzerland
- Authors contributed equally
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
- Authors contributed equally
| |
Collapse
|
10
|
Otaru N, Kourouma L, Pugin B, Constancias F, Braegger C, Mansuy IM, Lacroix C. Transgenerational effects of early life stress on the fecal microbiota in mice. Commun Biol 2024; 7:670. [PMID: 38822061 PMCID: PMC11143345 DOI: 10.1038/s42003-024-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined. Here we show that early postnatal stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life, including abundance of eight amplicon sequencing variants (ASVs). Further effects on fecal microbial composition, structure (weighted Jaccard index), and abundance of 16 ASVs are detected in the progeny across two generations. These effects are not accompanied by changes in bacterial metabolites in any generation. These results suggest that changes in the fecal microbial community induced by early life traumatic stress can be perpetuated from exposed parent to the offspring.
Collapse
Affiliation(s)
- Nize Otaru
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Lola Kourouma
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland
| | - Benoit Pugin
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Florentin Constancias
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland
| | - Christian Braegger
- Nutrition Research Unit, University Children's Hospital Zürich, Zürich, Switzerland
| | - Isabelle M Mansuy
- Department of Health Science and Technology of the ETH Zurich, Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Zurich, Switzerland.
- Center for Neuroscience Zürich, ETH and University Zürich, Zurich, Switzerland.
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Laue HE, Bonham KS, Coker MO, Moroishi Y, Pathmasiri W, McRitchie S, Sumner S, Hoen AG, Karagas MR, Klepac-Ceraj V, Madan JC. Prospective association of the infant gut microbiome with social behaviors in the ECHO consortium. Mol Autism 2024; 15:21. [PMID: 38760865 PMCID: PMC11101342 DOI: 10.1186/s13229-024-00597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Identifying modifiable risk factors of autism spectrum disorders (ASDs) may inform interventions to reduce financial burden. The infant/toddler gut microbiome is one such feature that has been associated with social behaviors, but results vary between cohorts. We aimed to identify consistent overall and sex-specific associations between the early-life gut microbiome and autism-related behaviors. METHODS Utilizing the Environmental influences on Children Health Outcomes (ECHO) consortium of United States (U.S.) pediatric cohorts, we gathered data on 304 participants with fecal metagenomic sequencing between 6-weeks to 2-years postpartum (481 samples). ASD-related social development was assessed with the Social Responsiveness Scale (SRS-2). Linear regression, PERMANOVA, and Microbiome Multivariable Association with Linear Models (MaAsLin2) were adjusted for sociodemographic factors. Stratified models estimated sex-specific effects. RESULTS Genes encoding pathways for synthesis of short-chain fatty acids were associated with higher SRS-2 scores, indicative of ASDs. Fecal concentrations of butyrate were also positively associated with ASD-related SRS-2 scores, some of which may be explained by formula use. LIMITATIONS The distribution of age at outcome assessment differed in the cohorts included, potentially limiting comparability between cohorts. Stool sample collection methods also differed between cohorts. Our study population reflects the general U.S. population, and thus includes few participants who met the criteria for being at high risk of developing ASD. CONCLUSIONS Our study is among the first multicenter studies in the U.S. to describe prospective microbiome development from infancy in relation to neurodevelopment associated with ASDs. Our work contributes to clarifying which microbial features associate with subsequent diagnosis of neuropsychiatric outcomes. This will allow for future interventional research targeting the microbiome to change neurodevelopmental trajectories.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA, 02481, USA
| | - Modupe O Coker
- School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Wimal Pathmasiri
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan McRitchie
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Sumner
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne G Hoen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA, 02481, USA.
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Departments of Pediatrics and Psychiatry, One Medical Center Drive, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.
| |
Collapse
|
12
|
Zhang S, Wang Z, Jiang J, Feng G, Fan S. Lactobacillus reuteri's multifaceted role in mitigating ionizing radiation-induced injury in Drosophila melanogaster. Food Funct 2024; 15:3522-3538. [PMID: 38465872 DOI: 10.1039/d3fo05422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The numerous beneficial probiotic properties of Lactobacillus reuteri (L. reuteri) include decreasing metabolic syndrome, preventing disorders linked to oxidative stress, improving gut flora imbalances, controlling immunological function, and extending life span. Exposure to ionizing radiation is closely associated with several disorders. We examined the protective and salvaging effects of L. reuteri on ionizing radiation-induced injury to the intestinal tract, reproductive system, and nervous system of Drosophila melanogaster. We also examined its effects on lifespan, antioxidant capacity, progeny development, and behavioral aspects to assess the interaction between L. reuteri and ionizing radiation-induced injury. The findings demonstrated that L. reuteri improved the median survival time following irradiation and greatly extended its lifespan. In addition, it raised SOD activity, reduced ROS levels in intestinal epithelial cells, and increased the quantity of intestinal stem cells. Furthermore, L. reuteri enhanced the adult male flies' capacity to move. It also successfully safeguarded the generations' growth and development. L. reuteri dramatically enhanced expression of the AMPKα gene and regulated expression of its pathway-related gene, mTOR, as well as the autophagy-related genes Atg1 and Atg5 in female Drosophila exposed to irradiation. Notably, no prior reports have been made on the possible effects of L. reuteri on injuries caused by irradiation. As a result, our research offers important new information regarding L. reuteri's possible role as a shield against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Songling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Zhaoyu Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| |
Collapse
|
13
|
Dong TS, Mayer E. Advances in Brain-Gut-Microbiome Interactions: A Comprehensive Update on Signaling Mechanisms, Disorders, and Therapeutic Implications. Cell Mol Gastroenterol Hepatol 2024; 18:1-13. [PMID: 38336171 PMCID: PMC11126987 DOI: 10.1016/j.jcmgh.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
The complex, bidirectional interactions between the brain, the gut, and the gut microbes are best referred to as the brain gut microbiome system. Animal and clinical studies have identified specific signaling mechanisms within this system, with gut microbes communicating to the brain through neuronal, endocrine, and immune pathways. The brain, in turn, modulates the composition and function of the gut microbiota through the autonomic nervous system, regulating gut motility, secretion, permeability, and the release of hormones impacting microbial gene expression. Perturbations at any level of these interactions can disrupt the intricate balance, potentially contributing to the pathogenesis of intestinal, metabolic, neurologic, and psychiatric disorders. Understanding these interactions and their underlying mechanisms holds promise for identifying biomarkers, as well as novel therapeutic targets, and for developing more effective treatment strategies for these complex disorders. Continued research will advance our knowledge of this system, with the potential for improved understanding and management of a wide range of disorders. This review provides an update on the current state of knowledge regarding this system, with a focus on recent advancements and emerging research areas.
Collapse
Affiliation(s)
- Tien S Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, California; Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Emeran Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, California; Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
14
|
Gan Y, Chen Y, Zhong H, Liu Z, Geng J, Wang H, Wang W. Gut microbes in central nervous system development and related disorders. Front Immunol 2024; 14:1288256. [PMID: 38343438 PMCID: PMC10854220 DOI: 10.3389/fimmu.2023.1288256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
The association between gut microbiota and central nervous system (CNS) development has garnered significant research attention in recent years. Evidence suggests bidirectional communication between the CNS and gut microbiota through the brain-gut axis. As a long and complex process, CNS development is highly susceptible to both endogenous and exogenous factors. The gut microbiota impacts the CNS by regulating neurogenesis, myelination, glial cell function, synaptic pruning, and blood-brain barrier permeability, with implication in various CNS disorders. This review outlines the relationship between gut microbiota and stages of CNS development (prenatal and postnatal), emphasizing the integral role of gut microbes. Furthermore, the review explores the implications of gut microbiota in neurodevelopmental disorders, such as autism spectrum disorder, Rett syndrome, and Angelman syndrome, offering insights into early detection, prompt intervention, and innovative treatments.
Collapse
Affiliation(s)
- Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yao Chen
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huijie Zhong
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuo Liu
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
15
|
Golden RK, Sutkus LT, Donovan SM, Dilger RN. Dietary supplementation of 3'-sialyllactose or 6'-sialyllactose elicits minimal influence on cognitive and brain development in growing pigs. Front Behav Neurosci 2024; 17:1337897. [PMID: 38268796 PMCID: PMC10806065 DOI: 10.3389/fnbeh.2023.1337897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Sialylated human milk oligosaccharides (HMO), such as 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), are abundant throughout lactation and at much higher concentrations than are present in bovine milk or infant formulas. Previous studies have suggested that sialylated HMO may have neurocognitive benefits in early life. Recent research has focused on infant formula supplementation with key nutrients and bioactives to narrow the developmental gap between formula-fed and breastfed infants. Herein, we investigated the impact of supplemental 3'-SL or 6'-SL on cognitive and brain development at two time-points [postnatal days (PND) 33 and 61]. Two-day-old piglets (N = 75) were randomly assigned to commercial milk replacer ad libitum without or with 3'-SL or 6'-SL (added in a powdered form at a rate of 0.2673% on an as-is weight basis). Cognitive development was assessed via novel object recognition and results were not significant at both time-points (p > 0.05). Magnetic resonance imaging was used to assess structural brain development. Results varied between scan type, diet, and time-point. A main effect of diet was observed for absolute volume of white matter and 9 other regions of interest (ROI), as well as for relative volume of the pons on PND 30 (p < 0.05). Similar effects were observed on PND 58. Diffusion tensor imaging indicated minimal differences on PND 30 (p > 0.05). However, several dietary differences across the diffusion outcomes were observed on PND 58 (p < 0.05) indicating dietary impacts on brain microstructure. Minimal dietary differences were observed from myelin water fraction imaging at either time-point. Overall, sialyllactose supplementation had no effects on learning and memory as assessed by novel object recognition, but may influence temporally-dependent aspects of brain development.
Collapse
Affiliation(s)
- Rebecca K. Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Loretta T. Sutkus
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
16
|
Park S, Kang S. Association of Pooled Fecal Microbiota on Height Growth in Children According to Enterotypes. J Pediatr Gastroenterol Nutr 2023; 77:801-810. [PMID: 37771005 DOI: 10.1097/mpg.0000000000003949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
OBJECTIVES The association between fecal microbiota and height in children has yielded conflicting findings, warranting further investigation into potential differences in fecal bacterial composition between children with short stature and those of standard height based on enterotypes (ETs). METHODS According to the height z score for age and gender, the children were categorized into normal-stature (NS; n = 335) and short-stature (SS; n = 152) groups using a z score of -1.15 as a separator value. The human fecal bacterial FASTA/Q files (n = 487) were pooled and analyzed with the QIIME 2 platform with the National Center for Biotechnology Information alignment search tool. According to ETs, the prediction models by the machine learning algorithms were used for explaining SS, and their quality was validated. RESULTS The proportion of SS was 16.4% in ET Enterobacteriaceae (ET-E) and 68.1% in Prevotellaceae (ET-P). The Chao1 and Shannon indexes were significantly lower in the SS than in the NS groups only in ET-P. The fecal bacteria related to SS from the prediction models were similar regardless of ETs. However, in network analysis, the negative correlations between fecal bacteria in the NS and SS groups were much higher in the ET-P than in the ET-E. In the metagenome function, fecal bacteria showed an inverse association of biotin and secondary bile acid synthesis and downregulation of insulin/insulin-like growth factor-1-driven phosphoinositide 3-kinase Akt signaling and AMP-kinase signaling in the SS group compared with the NS group in both ETs. CONCLUSION The gut microbial compositions in children were associated with height. Strategies to modify and optimize the gut microbiota composition should be investigated for any potential in promoting height in children.
Collapse
Affiliation(s)
- Sunmin Park
- From the Department of Food and Nutrition, Institute of Basic Science, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | | |
Collapse
|
17
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Romano K, Shah AN, Schumacher A, Zasowski C, Zhang T, Bradley-Ridout G, Merriman K, Parkinson J, Szatmari P, Campisi SC, Korczak DJ. The gut microbiome in children with mood, anxiety, and neurodevelopmental disorders: An umbrella review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e18. [PMID: 39295902 PMCID: PMC11406386 DOI: 10.1017/gmb.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2024]
Abstract
Research on the gut microbiome and mental health among children and adolescents is growing. This umbrella review provides a high-level overview of current evidence syntheses to amalgamate current research and inform future directions. Searches were conducted across seven databases for peer-reviewed pediatric (<18 years) review literature. Studies reporting gut microbiome composition and/or biotic supplementation on depression, bipolar disorder, anxiety, attention deficit hyperactivity disorder, autism spectrum disorder (ASD), or obsessive-compulsive disorder (OCD) were included. Deduplication and screening took place in Covidence. A sensitivity analysis was conducted to assess the degree of primary study overlap. Among the 39 included review studies, 23 (59%) were observational and 16 (41%) were interventional. Most reviews (92%) focused on ASD. Over half (56%) of the observational and interventional reviews scored low or critically low for methodological quality. A higher abundance of Clostridium clusters and a lower abundance of Bifidobacterium were consistently observed in ASD studies. Biotic supplementation was associated with ASD symptom improvement. Gut microbiome-mental health evidence syntheses in child and youth depression, anxiety, bipolar disorder, and OCD are lacking. Preliminary evidence suggests an association between specific microbiota and ASD symptoms, with some evidence supporting a role for probiotic supplementation ASD therapy.
Collapse
Affiliation(s)
- Kaitlin Romano
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Ashka N Shah
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anett Schumacher
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Clare Zasowski
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Tianyi Zhang
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Kaitlyn Merriman
- Gerstein Science Information Centre, University of Toronto, Toronto, ON, Canada
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter Szatmari
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression, The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Susan C Campisi
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Daphne J Korczak
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Sajdel-Sulkowska EM. The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms 2023; 11:2199. [PMID: 37764043 PMCID: PMC10538154 DOI: 10.3390/microorganisms11092199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota plays a critical role in physiological regulation throughout life and is specifically modified to meet the demands of individual life stages and during pregnancy. Maternal gut microbiota is uniquely adapted to the pregnancy demands of the mother and the developing fetus. Both animal studies in pregnant germ-free rodents and human studies have supported a critical association between the composition of maternal microbiota during pregnancy and fetal development. Gut microbiota may also contribute to the development of the fetal gut-brain axis (GBA), which is increasingly recognized for its critical role in health and disease. Most studies consider birth as the time of GBA activation and focus on postnatal GBA development. This review focuses on GBA development during the prenatal period and the impact of maternal gut microbiota on fetal GBA development. It is hypothesized that adaptation of maternal gut microbiota to pregnancy is critical for the GBA prenatal development and maturation of GBA postnatally. Consequently, factors affecting maternal gut microbiota during pregnancy, such as maternal obesity, diet, stress and depression, infection, and medication, also affect fetal GBA development and are critical for GBA activity postnatally. Altered maternal gut microbiota during gestation has been shown to have long-term impact postnatally and multigenerational effects. Thus, understanding the impact of maternal gut microbiota during pregnancy on fetal GBA development is crucial for managing fetal, neonatal, and adult health, and should be included among public health priorities.
Collapse
|
20
|
Cerdó T, Nieto-Ruíz A, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Suárez A, Bermúdez MG, Campoy C. Current Knowledge About the Impact of Maternal and Infant Nutrition on the Development of the Microbiota-Gut-Brain Axis. Annu Rev Nutr 2023; 43:251-278. [PMID: 37603431 DOI: 10.1146/annurev-nutr-061021-025355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The prenatal and early postnatal periods are stages during which dynamic changes and the development of the brain and gut microbiota occur, and nutrition is one of the most important modifiable factors that influences this process. Given the bidirectional cross talk between the gut microbiota and the brain through the microbiota-gut-brain axis (MGBA), there is growing interest in evaluating the potential effects of nutritional interventions administered during these critical developmental windows on gut microbiota composition and function and their association with neurodevelopmental outcomes. We review recent preclinical and clinical evidence from animal studies and infant/child populations. Although further research is needed, growing evidence suggests that different functional nutrients affect the establishment and development of the microbiota-gut-brain axis and could have preventive and therapeutic use in the treatment of neuropsychiatric disorders. Therefore, more in-depth knowledge regarding the effect of nutrition on the MGBA during critical developmental windows may enable the prevention of later neurocognitive and behavioral disorders and allow the establishment of individualized nutrition-based programs that can be used from the prenatal to the early and middle stages of life.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Ana Nieto-Ruíz
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - José Antonio García-Santos
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - María García-Ricobaraza
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Nutrición y Tecnología de los Alimentos, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Mercedes G Bermúdez
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health, Granada Node, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
21
|
Sawyer G, Heron J, Joinson C. The relationship between maternal psychopathology and offspring incontinence and constipation at school age: A prospective cohort study. J Affect Disord 2023; 335:1-9. [PMID: 37156278 PMCID: PMC7616694 DOI: 10.1016/j.jad.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND There is evidence for an association between maternal psychopathology and offspring incontinence and constipation, but it is unclear if there is a critical/sensitive period of exposure to maternal depression and/or anxiety in the antenatal or postnatal period. METHODS Mothers from the Avon Longitudinal Study of Parents and Children provided data on their depression and anxiety (antenatal and postnatal) and their child's urinary and faecal incontinence and constipation at age 7 (6489 participants). We used multivariable logistic regression to examine evidence for independent effects of maternal depression/anxiety on offspring incontinence/constipation and to investigate if there was a critical/sensitive period of exposure. We examined evidence for causal intra-uterine effects using a negative control design. RESULTS Postnatal maternal psychopathology was associated with an increased risk of offspring incontinence and constipation (e.g. postnatal anxiety and daytime wetting OR: 1.53; 95 % CI: 1.21-1.94). Data were consistent with a postnatal critical period model and there was evidence for an independent effect of maternal anxiety. Antenatal maternal psychopathology was associated with offspring constipation (e.g. antenatal anxiety OR: 1.57; 95 % CI: 1.25-1.98), but there was no evidence for a causal intra-uterine effect. LIMITATIONS Attrition and maternal reports without use of diagnostic criteria for incontinence/constipation are potential limitations. CONCLUSIONS Children exposed to maternal postnatal psychopathology had a greater risk of incontinence/constipation, and maternal anxiety had stronger associations than depression. Health professionals should be vigilant to effects of maternal psychopathology on child development. Identification of mechanisms linking maternal psychopathology to child incontinence/constipation is required to inform evidence-based support.
Collapse
Affiliation(s)
- Gemma Sawyer
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Jon Heron
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Carol Joinson
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Hunter S, Flaten E, Petersen C, Gervain J, Werker JF, Trainor LJ, Finlay BB. Babies, bugs and brains: How the early microbiome associates with infant brain and behavior development. PLoS One 2023; 18:e0288689. [PMID: 37556397 PMCID: PMC10411758 DOI: 10.1371/journal.pone.0288689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Growing evidence is demonstrating the connection between the microbiota gut-brain axis and neurodevelopment. Microbiota colonization occurs before the maturation of many neural systems and is linked to brain health. Because of this it has been hypothesized that the early microbiome interactions along the gut-brain axis evolved to promote advanced cognitive functions and behaviors. Here, we performed a pilot study with a multidisciplinary approach to test if the microbiota composition of infants is associated with measures of early cognitive development, in particular neural rhythm tracking; language (forward speech) versus non-language (backwards speech) discrimination; and social joint attention. Fecal samples were collected from 56 infants between four and six months of age and sequenced by shotgun metagenomic sequencing. Of these, 44 performed the behavioral Point and Gaze test to measure joint attention. Infants were tested on either language discrimination using functional near-infrared spectroscopy (fNIRS; 25 infants had usable data) or neural rhythm tracking using electroencephalogram (EEG; 15 had usable data). Infants who succeeded at the Point and Gaze test tended to have increased Actinobacteria and reduced Firmicutes at the phylum level; and an increase in Bifidobacterium and Eggerthella along with a reduction in Hungatella and Streptococcus at the genus level. Measurements of neural rhythm tracking associated negatively to the abundance of Bifidobacterium and positively to the abundance of Clostridium and Enterococcus for the bacterial abundances, and associated positively to metabolic pathways that can influence neurodevelopment, including branched chain amino acid biosynthesis and pentose phosphate pathways. No associations were found for the fNIRS language discrimination measurements. Although the tests were underpowered due to the small pilot sample sizes, potential associations were identified between the microbiome and measurements of early cognitive development that are worth exploring further.
Collapse
Affiliation(s)
- Sebastian Hunter
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Erica Flaten
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- University of Padua, Padova Neuroscience Center, Padua, Italy
- Université Paris Cité & CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Janet F. Werker
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Laurel J. Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Music and the Mind, McMaster University, Hamilton, Ontario, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| | - Brett B. Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Kwak MJ, Kim SH, Kim HH, Tanpure R, Kim JI, Jeon BH, Park HK. Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: microbiome modulation and therapeutic mechanisms. Front Cell Infect Microbiol 2023; 13:1238005. [PMID: 37554355 PMCID: PMC10405178 DOI: 10.3389/fcimb.2023.1238005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023] Open
Abstract
Dysbiosis of the gut microbiome is thought to be the developmental origins of the host's health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT).
Collapse
Affiliation(s)
- Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Rahul Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
24
|
Cassidy-Bushrow AE, Sitarik AR, Johnson CC, Johnson-Hooper TM, Kassem Z, Levin AM, Lynch SV, Ownby DR, Phillips JM, Yong GJM, Wegienka G, Straughen JK. Early-life gut microbiota and attention deficit hyperactivity disorder in preadolescents. Pediatr Res 2023; 93:2051-2060. [PMID: 35440767 PMCID: PMC9582043 DOI: 10.1038/s41390-022-02051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gut microbiota maturation coincides with nervous system development. Cross-sectional data suggest gut microbiota of individuals with and without attention deficit hyperactivity disorder (ADHD) differs. We hypothesized that infant gut microbiota composition is associated with later ADHD development in our on-going birth cohort study, WHEALS. METHODS Gut microbiota was profiled using 16S ribosomal RNA and the internal transcribed spacer region 2 (ITS2) sequencing in stool samples from 1 month and 6 months of age. ADHD was defined by parent-reported or medical record doctor diagnosis at age 10. RESULTS A total of 314 children had gut microbiota and ADHD data; 59 (18.8%) had ADHD. After covariate adjustment, bacterial phylogenetic diversity (p = 0.017) and bacterial composition (unweighted UniFrac p = 0.006, R2 = 0.9%) at age 6 months were associated with development of ADHD. At 1 month of age, 18 bacterial and 3 fungal OTUs were associated with ADHD development. At 6 months of age, 51 bacterial OTUs were associated with ADHD; 14 of the order Lactobacillales. Three fungal OTUs at 6 months of age were associated with ADHD development. CONCLUSIONS Infant gut microbiota is associated with ADHD development in pre-adolescents. Further studies replicating these findings and evaluating potential mechanisms of the association are needed. IMPACT Cross-sectional studies suggest that the gut microbiota of individuals with and without ADHD differs. We found evidence that the bacterial gut microbiota of infants at 1 month and 6 months of age is associated with ADHD at age 10 years. We also found novel evidence that the fungal gut microbiota in infancy (ages 1 month and 6 months) is associated with ADHD at age 10 years. This study addresses a gap in the literature in providing longitudinal evidence for an association of the infant gut microbiota with later ADHD development.
Collapse
Affiliation(s)
- Andrea E Cassidy-Bushrow
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA.
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA.
| | | | - Christine Cole Johnson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| | - Tisa M Johnson-Hooper
- Department of Pediatrics, Henry Ford Hospital, Detroit, MI, USA
- Center for Autism and Developmental Disabilities, Henry Ford Hospital, Detroit, MI, USA
| | - Zeinab Kassem
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Dennis R Ownby
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Jannel M Phillips
- Center for Autism and Developmental Disabilities, Henry Ford Hospital, Detroit, MI, USA
- Department of Psychiatry and Behavioral Health Services, Division of Neuropsychology, Henry Ford Hospital, Detroit, MI, USA
| | - Germaine J M Yong
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Ganesa Wegienka
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| | - Jennifer K Straughen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| |
Collapse
|
25
|
Lapidot Y, Maya M, Reshef L, Cohen D, Ornoy A, Gophna U, Muhsen K. Relationships of the gut microbiome with cognitive development among healthy school-age children. Front Pediatr 2023; 11:1198792. [PMID: 37274812 PMCID: PMC10235814 DOI: 10.3389/fped.2023.1198792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Background The gut microbiome might play a role in neurodevelopment, however, evidence remains elusive. We aimed to examine the relationship between the intestinal microbiome and cognitive development of school-age children. Methods This cross-sectional study included healthy Israeli Arab children from different socioeconomic status (SES). The microbiome was characterized in fecal samples by implementing 16S rRNA gene sequencing. Cognitive function was measured using Stanford-Binet test, yielding full-scale Intelligence Quotient (FSIQ) score. Sociodemographics and anthropometric and hemoglobin measurements were obtained. Multivariate models were implemented to assess adjusted associations between the gut microbiome and FSIQ score, while controlling for age, sex, SES, physical growth, and hemoglobin levels. Results Overall, 165 children (41.2% females) aged 6-9 years were enrolled. SES score was strongly related to both FSIQ score and the gut microbiome. Measures of α-diversity were significantly associated with FSIQ score, demonstrating a more diverse, even, and rich microbiome with increased FSIQ score. Significant differences in fecal bacterial composition were found; FSIQ score explained the highest variance in bacterial β-diversity, followed by SES score. Several taxonomic differences were significantly associated with FSIQ score, including Prevotella, Dialister, Sutterella, Ruminococcus callidus, and Bacteroides uniformis. Conclusions We demonstrated significant independent associations between the gut microbiome and cognitive development in school-age children.
Collapse
Affiliation(s)
- Yelena Lapidot
- Department of Epidemiology and Preventive Medicine, School of Public Health, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maayan Maya
- Department of Epidemiology and Preventive Medicine, School of Public Health, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Reshef
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Department of Medical Neurobiology, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Cai Y, Liu P, Zhou X, Yuan J, Chen Q. Probiotics therapy show significant improvement in obesity and neurobehavioral disorders symptoms. Front Cell Infect Microbiol 2023; 13:1178399. [PMID: 37249983 PMCID: PMC10213414 DOI: 10.3389/fcimb.2023.1178399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is a complex metabolic disease, with cognitive impairment being an essential complication. Gut microbiota differs markedly between individuals with and without obesity. The microbial-gut-brain axis is an important pathway through which metabolic factors, such as obesity, affect the brain. Probiotics have been shown to alleviate symptoms associated with obesity and neurobehavioral disorders. In this review, we evaluated previously published studies on the effectiveness of probiotic interventions in reducing cognitive impairment, depression, and anxiety associated with obesity or a high-fat diet. Most of the probiotics studied have beneficial health effects on obesity-induced cognitive impairment and anxiety. They positively affect immune regulation, the hypothalamic-pituitary-adrenal axis, hippocampal function, intestinal mucosa protection, and glucolipid metabolism regulation. Probiotics can influence changes in the composition of the gut microbiota and the ratio between various flora. However, probiotics should be used with caution, particularly in healthy individuals. Future research should further explore the mechanisms underlying the gut-brain axis, obesity, and cognitive function while overcoming the significant variation in study design and high risk of bias in the current evidence.
Collapse
|
27
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
28
|
Fan X, Zang T, Liu J, Wu N, Dai J, Bai J, Liu Y. Changes in the gut microbiome in the first two years of life predicted the temperament in toddlers. J Affect Disord 2023; 333:342-352. [PMID: 37086808 DOI: 10.1016/j.jad.2023.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Temperament has been shown to be associated with the change of gut microbiome. There were no longitudinal studies to explore the role of gut microbiome changes in the development of temperament in toddlers. METHODS This study used longitudinal cohort to investigate the associations between changes in gut microbiome and temperament in toddlers in the first two years of life. Linear regression analysis and microbiome multivariate association with linear models were used to investigate the associations between the gut microbiome and toddlers' temperament. RESULTS In total, 41 toddlers were analyzed. This study found both Shannon and Chao-1 indices at birth were negatively correlated with the sadness dimension; the higher the Shannon and Chao-1 indices at 6 months, the lower the surgency/extraversion dimension scores; the higher the Shannon and Chao-1 indices at 2 years of ages, the lower the cuddliness dimension scores. After adjusting for covariates, beta diversity at birth was strongly associated with the negative affectivity dimension; beta diversity at 1 year of age was strongly associated with the activity level dimension; and beta diversity at 2 years of age was strongly associated with the discomfort and soothability dimension. Compared to Bifidobacterium cluster, this study also found Bacteroides cluster was associated with lower negative affectivity and its sub-dimensions frustration and sadness scores in toddlers. LIMITATIONS Generalizability of the results remains to be determined. CONCLUSION Results of this study confirmed the associations between changes in the gut microbiome diversity and composition in the first two years of life and toddlers' temperament.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianzi Zang
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jun Liu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Ni Wu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jiamiao Dai
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Yanqun Liu
- Center for Women and Children Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
29
|
Molecular Mechanisms of Hyperoxia-Induced Neonatal Intestinal Injury. Int J Mol Sci 2023; 24:ijms24054366. [PMID: 36901800 PMCID: PMC10002283 DOI: 10.3390/ijms24054366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Oxygen therapy is important for newborns. However, hyperoxia can cause intestinal inflammation and injury. Hyperoxia-induced oxidative stress is mediated by multiple molecular factors and leads to intestinal damage. Histological changes include ileal mucosal thickness, intestinal barrier damage, and fewer Paneth cells, goblet cells, and villi, effects which decrease the protection from pathogens and increase the risk of necrotizing enterocolitis (NEC). It also causes vascular changes with microbiota influence. Hyperoxia-induced intestinal injuries are influenced by several molecular factors, including excessive nitric oxide, the nuclear factor-κB (NF-κB) pathway, reactive oxygen species, toll-like receptor-4, CXC motif ligand-1, and interleukin-6. Nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and some antioxidant cytokines or molecules including interleukin-17D, n-acetylcysteine, arginyl-glutamine, deoxyribonucleic acid, cathelicidin, and health microbiota play a role in preventing cell apoptosis and tissue inflammation from oxidative stress. NF-κB and Nrf2 pathways are essential to maintain the balance of oxidative stress and antioxidants and prevent cell apoptosis and tissue inflammation. Intestinal inflammation can lead to intestinal damage and death of the intestinal tissue, such as in NEC. This review focuses on histologic changes and molecular pathways of hyperoxia-induced intestinal injuries to establish a framework for potential interventions.
Collapse
|
30
|
Belyaeva IA, Bombardirova EP, Turti TV. The Choice of Product for Mixed or Formula Feeding of Infant: Beneficial Properties of Goat’s Milk Formula. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review summarizes the benefits of goat’s milk as the basis to produce adapted milk formulas according to relevant infants feeding issues. The characteristics of main nutrients of modern goat’s milk formulas are presented. A balanced protein composition enriched with β-palmitate, presence of prebiotics-oligosaccharides, natural nucleotides and probiotics advances these formulas closer to breast milk and provide their multipotent sanogenetic effects. The unique composition of goat’s milk formulas allows to ensure normal physical growth of a baby, induces tissue and systemic immunity via adequate intestinal microbiota formation, maintains normal functioning of gut-brain axis, that promotes vegetative and visceral disorders (due to functional digestive disorders) correction. Thus, it is possible to recommend goat’s milk formulas in cases of forced mixed or formula feeding of healthy infants and children with functional digestive disorders.
Collapse
Affiliation(s)
- Irina A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - Elena P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
31
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
32
|
César H, Nascimento Sertorio M, Santamarina A, Alves de Souza E, Valles Mennitti L, Jamar G, Jucá A, Picin Casagrande B, Estadela D, Pellegrini Pisani L. The influence of parental high-fat high-sugar diet on the gut-brain axis in male offspring. Food Res Int 2022; 160:111706. [DOI: 10.1016/j.foodres.2022.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
33
|
Eow SY, Gan WY, Jiang T, Loh SP, Lee LJ, Chin YS, Than LTL, How KN, Thong PL, Liu Y, Zhao J, Chen L. MYBIOTA: A birth cohort on maternal and infant microbiota and its impact on infant health in Malaysia. Front Nutr 2022; 9:994607. [PMID: 36238465 PMCID: PMC9552002 DOI: 10.3389/fnut.2022.994607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The microbiota plays a key role in early immunity maturation that affects infant health and is associated with the development of non-communicable diseases and allergies in later life. Objective The MYBIOTA is a prospective mother-infant cohort study in Malaysia aiming to determine the association between gut microbiota with infant health (temperament, gastrointestinal disorders, eczema, asthma, and developmental delays) in Selangor, Malaysia. Methods Pregnant mothers will be enrolled in their first trimester of pregnancy, and follow-ups will be done for infants during their first year of life. Maternal-infant biological samples (blood, feces, saliva, urine, and breast milk), anthropometric, dietary, and clinical information will be collected at different time points from early pregnancy to 12 months postpartum. Discussion This study could provide a better understanding of the colonization and development of the gut microbiome during early life and its impact on infant health. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04919265.
Collapse
Affiliation(s)
- Shiang Yen Eow
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Ying Gan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Su Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ling Jun Lee
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yit Siew Chin
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Research Center of Excellence, Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kang Nien How
- Unit of Dermatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pui Ling Thong
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| |
Collapse
|
34
|
Arneaud SLB, McClendon J, Tatge L, Watterson A, Zuurbier KR, Madhu B, Gumienny TL, Douglas PM. Reduced bone morphogenic protein signaling along the gut-neuron axis by heat shock factor promotes longevity. Aging Cell 2022; 21:e13693. [PMID: 35977034 PMCID: PMC9470895 DOI: 10.1111/acel.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is a complex and highly regulated process of interwoven signaling mechanisms. As an ancient transcriptional regulator of thermal adaptation and protein homeostasis, the Heat Shock Factor, HSF-1, has evolved functions within the nervous system to control age progression; however, the molecular details and signaling dynamics by which HSF-1 modulates age across tissues remain unclear. Herein, we report a nonautonomous mode of age regulation by HSF-1 in the Caenorhabditis elegans nervous system that works through the bone morphogenic protein, BMP, signaling pathway to modulate membrane trafficking in peripheral tissues. In particular, HSF-1 represses the expression of the neuron-specific BMP ligand, DBL-1, and initiates a complementary negative feedback loop within the intestine. By reducing receipt of DBL-1 in the periphery, the SMAD transcriptional coactivator, SMA-3, represses the expression of critical membrane trafficking regulators including Rab GTPases involved in early (RAB-5), late (RAB-7), and recycling (RAB-11.1) endosomal dynamics and the BMP receptor binding protein, SMA-10. This reduces cell surface residency and steady-state levels of the type I BMP receptor, SMA-6, in the intestine and further dampens signal transmission to the periphery. Thus, the ability of HSF-1 to coordinate BMP signaling along the gut-brain axis is an important determinate in age progression.
Collapse
Affiliation(s)
| | - Jacob McClendon
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Lexus Tatge
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Abigail Watterson
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Kielen R. Zuurbier
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Bhoomi Madhu
- Department of BiologyTexas Woman's UniversityDentonTexasUSA
| | | | - Peter M. Douglas
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA,Hamon Center for Regenerative Science and MedicineUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
35
|
Jena A, Montoya CA, Young W, Mullaney JA, Roy D, Dilger RN, Giezenaar C, McNabb WC, Roy NC. The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant. Front Neurosci 2022; 16:937845. [PMID: 36046471 PMCID: PMC9421158 DOI: 10.3389/fnins.2022.937845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
While infant formula is usually bovine milk-based, interest in other ruminant milk-based formulas is growing. However, whether different ruminant milk treatments with varying nutrient compositions influence the infant’s brain development remains unknown. The aim was to determine the effects of consuming bovine, caprine, or ovine milk on brain gene expression in the early postnatal period using a pig model of the human infant. Starting at postnatal day 7 or 8, pigs were exclusively fed bovine, ovine, or caprine milk for 15 days. The mRNA abundance of 77 genes in the prefrontal cortex, hippocampus, and striatum regions was measured at postnatal day 21 or 22 using NanoString. The expression level of two hippocampal and nine striatal genes was most affected by milk treatments, particularly ovine milk. These modulatory genes are involved in glutamate, gamma-aminobutyric acid, serotonin, adrenaline and neurotrophin signaling and the synaptic vesicle cycle. The expression level of genes involved in gamma-aminobutyric acid signaling was associated with pigs’ lactose intake. In contrast, milk treatments did not affect the mRNA abundance of the genes in the prefrontal cortex. This study provides the first evidence of the association of different ruminant milk treatments with brain gene expression related to cognitive function in the first 3 months of postnatal life.
Collapse
Affiliation(s)
- Ankita Jena
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, College of Sciences, Massey University, Palmerston North, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Wayne Young
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Jane A. Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Debashree Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Caroline Giezenaar
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Food Experience and Sensory Testing (FEAST) Laboratory, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- *Correspondence: Nicole C. Roy,
| |
Collapse
|
36
|
Alizadeh K, Moghimi H, Golbabaei A, Alijanpour S, Rezayof A. Post-Weaning Treatment with Probiotic Inhibited Stress-Induced Amnesia in Adulthood Rats: The Mediation of GABAergic System and BDNF/c-Fos Signaling Pathways. Neurochem Res 2022; 47:2357-2372. [PMID: 35618945 DOI: 10.1007/s11064-022-03625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The current study aimed to examine the effect of post-weaning treatment with probiotics on memory formation under stress during the adult period in male Wistar rats. Considering GABA is a potential mediator between probiotics and the host, the present study also investigated the involvement of the GABAergic system in the probiotic response. The hippocampal and prefrontal cortical (PFC) expression levels of BDNF and c-Fos were also assessed to show whether the treatments affect the memory-related signaling pathway. Three weeks after birth, the post-weaning rats were fed with probiotic water (PW) or tap water (TW) for 2, 3, 4, or 5 weeks. Exposure to acute stress impaired memory formation in a passive avoidance learning task. Feeding the post-weaning animals with probiotic strains (3, 4, or 5 weeks) inhibited stress-induced amnesia of the adult period. Post-training intracerebroventricular (ICV) microinjection of muscimol improved stress-induced amnesia in the animals fed with TW. ICV microinjection of muscimol inhibited probiotic treatment's significant effect on the stress response in the memory task. The expression levels of BDNF and c-Fos in the PFC and the hippocampus were significantly decreased in the stress animal group. The levels of BDNF and c-Fos were increased in the PW/stress animal group. The muscimol response was compounded with the decreased levels of BDNF and c-Fos in the PFC and the hippocampus. Thus, the GABA-A receptor mechanism may mediate the inhibitory effect of this probiotic mixture on stress-induced amnesia, which may be associated with the PFC and hippocampal BDNF/c-Fos signaling changes.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Golbabaei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran.
| |
Collapse
|
37
|
Sutkus LT, Joung S, Hirvonen J, Jensen HM, Ouwehand AC, Mukherjea R, Donovan SM, Dilger RN. Influence of 2'-Fucosyllactose and Bifidobacterium longum Subspecies infantis Supplementation on Cognitive and Structural Brain Development in Young Pigs. Front Neurosci 2022; 16:860368. [PMID: 35546890 PMCID: PMC9081927 DOI: 10.3389/fnins.2022.860368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Development of the gut-brain axis during early-life is an important contributor of brain structural and functional development. Human milk oligosaccharides and gut microbiota have potential beneficial effects on various aspects of development; however, the effects of 2′-fucosyllactose (2′-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26) administration during infancy separately and combined are still not clear. Therefore, we investigated the effects of early administration of dietary 2′-FL and Bi-26 on brain structural and functional development in the young pig. From postnatal day (PND) 2–34 or 35, fifty-two intact male pigs were randomly assigned to treatment groups in a 2 × 2 factorial arrangement and provided ad libitum access to a nutritionally adequate milk replacer without or with 1.0 g of 2′-FL/L of reconstituted liquid. Pigs within each diet group were further stratified to receive a daily oral dose of glycerol stock without or with Bi-26 (109 CFU). Pigs were subjected to the novel object recognition (NOR) task from PND 27–31 to assess recognition memory and subsequently underwent magnetic resonance imaging procedures at PND 32 or 33 to assess brain macrostructure and microstructure. Pigs that received Bi-26 had smaller absolute brain volumes for 9 of 27 brain regions of interest, and smaller relative volumes for 2 regions associated with kinesthesia (P < 0.05). Synbiotic administration of 2′-FL and Bi-26 elicited interactive effects (P < 0.05) on several microstructural brain components, where dual supplementation negated the effects of each test article alone. Behavioral outcomes indicated that pigs did not express novelty preference, regardless of treatment group, demonstrating no effects of 2′-FL and Bi-26 on recognition memory when supplemented alone or in combination. Interactive effects (P < 0.05) were observed for the number of all object visits, latency to the first object visit, and number of familiar object visits. Pigs that did not receive Bi-26 supplementation exhibited less time interacting with the familiar object in total (P = 0.002) and on average (P = 0.005). In conclusion, supplementation of 2′-FL and/or Bi-26 elicited some alterations in object exploratory behaviors and macro/micro-structures of the brain, but changes in recognition memory were not observed. Specifically in brain microstructure, synbiotic administration of 2′-FL and Bi-26 appeared to negate effects observed when each dietary article was supplemented separately.
Collapse
Affiliation(s)
- Loretta T Sutkus
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sangyun Joung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Henrik Max Jensen
- IFF R&D-Enabling Technologies, Advanced Analytical, Brabrand, Denmark
| | | | | | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Ryan N Dilger
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
38
|
Young A, Robbins I, Shelat S. From Micro to Macro: The Combination of Consciousness. Front Psychol 2022; 13:755465. [PMID: 35432082 PMCID: PMC9008346 DOI: 10.3389/fpsyg.2022.755465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Crick and Koch’s 1990 “neurobiological theory of consciousness” sparked the race for the physical correlates of subjective experience. 30 years later, cognitive sciences trend toward consideration of the brain’s electromagnetic field as the primary seat of consciousness, the “to be” of the individual. Recent advancements in laboratory tools have preceded an influx of studies reporting a synchronization between the neuronally generated EM fields of interacting individuals. An embodied and enactive neuroscientific approach has gained traction in the wake of these findings wherein consciousness and cognition are theorized to be regulated and distributed beyond the individual. We approach this frontier to extend the implications of person-to-person synchrony to propose a process of combination whereby coupled individual agents merge into a hierarchical cognitive system to which they are subsidiary. Such is to say, the complex mammalian consciousness humans possess may not be the tip of the iceberg, but another step in a succeeding staircase. To this end, the axioms and conjectures of General Resonance Theory are utilized to describe this phenomenon of interpersonal resonant combination. Our proposal describes a coupled system of spatially distributed EM fields that are synchronized through recurrent, entraining behavioral interactions. The system, having achieved sufficient synchronization, enjoys an optimization of information flow that alters the conscious states of its merging agents and enhances group performance capabilities. In the race for the neurobiological correlates of subjective experience, we attempt the first steps in the journey toward defining the physical basis of “group consciousness.” The establishment of a concrete account of the combination of consciousness at a scale superseding individual human consciousness remains speculation, but our suggested approach provides a framework for empirical testing of these possibilities.
Collapse
Affiliation(s)
- Asa Young
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Isabella Robbins
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shivang Shelat
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
39
|
Catale C, Lo Iacono L, Martini A, Heil C, Guatteo E, Mercuri NB, Viscomi MT, Palacios D, Carola V. Early Life Social Stress Causes Sex- and Region-Dependent Dopaminergic Changes that Are Prevented by Minocycline. Mol Neurobiol 2022; 59:3913-3932. [PMID: 35435618 PMCID: PMC9148283 DOI: 10.1007/s12035-022-02830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 02/03/2023]
Abstract
Early life stress (ELS) is known to modify trajectories of brain dopaminergic development, but the mechanisms underlying have not been determined. ELS perturbs immune system and microglia reactivity, and inflammation and microglia influence dopaminergic transmission and development. Whether microglia mediate the effects of ELS on dopamine (DA) system development is still unknown. We explored the effects of repeated early social stress on development of the dopaminergic system in male and female mice through histological, electrophysiological, and transcriptomic analyses. Furthermore, we tested whether these effects could be mediated by ELS-induced altered microglia/immune activity through a pharmacological approach. We found that social stress in early life altered DA neurons morphology, reduced dopamine transporter (DAT) and tyrosine hydroxylase expression, and lowered DAT-mediated currents in the ventral tegmental area but not substantia nigra of male mice only. Notably, stress-induced DA alterations were prevented by minocycline, an inhibitor of microglia activation. Transcriptome analysis in the developing male ventral tegmental area revealed that ELS caused downregulation of dopaminergic transmission and alteration in hormonal and peptide signaling pathways. Results from this study offer new insight into the mechanisms of stress response and altered brain dopaminergic maturation after ELS, providing evidence of neuroimmune interaction, sex differences, and regional specificity.
Collapse
Affiliation(s)
- Clarissa Catale
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luisa Lo Iacono
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy
| | - Alessandro Martini
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Constantin Heil
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ezia Guatteo
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Motor Science and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola Biagio Mercuri
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Università Degli Studi Di Roma Tor Vergata, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, Università Cattolica Del S. Cuore, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Daniela Palacios
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Department of Life Science and Public Health, Section of Biology, Università Cattolica Del S. Cuore, Rome, Italy
| | - Valeria Carola
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy.
| |
Collapse
|
40
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
41
|
Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients 2022; 14:nu14071405. [PMID: 35406018 PMCID: PMC9002905 DOI: 10.3390/nu14071405] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
The second and third trimesters of pregnancy are crucial for the anatomical and functional development of the gastrointestinal (GI) tract. If premature birth occurs, the immaturity of the digestive and absorptive processes and of GI motility represent a critical challenge to meet adequate nutritional needs, leading to poor extrauterine growth and to other critical complications. Knowledge of the main developmental stages of the processes involved in the digestion and absorption of proteins, carbohydrates, and lipids, as well as of the maturational phases underlying the development of GI motility, may aid clinicians to optimize the nutritional management of preterm infants. The immaturity of these GI systems and functions may negatively influence the patterns of gut colonization, predisposing to an abnormal microbiome. This, in turn, further contributes to alter the functional, immune, and neural development of the GI tract and, especially in preterm infants, has been associated with an increased risk of severe GI complications, such as necrotizing enterocolitis. Deeper understanding of the physiological colonization patterns in term and preterm infants may support the promotion of these patterns and the avoidance of microbial perturbations associated with the development of several diseases throughout life. This review aims to provide a global overview on the maturational features of the main GI functions and on their implications following preterm birth. We will particularly focus on the developmental differences in intestinal digestion and absorption functionality, motility, gut–brain axis interaction, and microbiomes.
Collapse
|
42
|
Garbi A, Armand M, Beltran-Anzola AA, Sarté C, Brévaut-Malaty V, Tosello B, Gire C. Effect of Massage with Oil Balanced in Essential Fatty Acids on Development and Lipid Parameters in Very Premature Neonates: A Randomized, Controlled Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040463. [PMID: 35455507 PMCID: PMC9031158 DOI: 10.3390/children9040463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Background: Oil massage versus only massage can increase preterm newborn development, especially weight gain, via a supposed percutaneous absorption of oil lipids, but data are contradictory. Aims: Investigating whether massage with a vegetable oil balanced in essential fatty acids improves neonatal weight gain, and digestive autonomy as proxy for neuro-development outcomes. Methods: A prospective monocentric randomized study was conducted in very premature newborns who received massage with oil (isio4 10 mL/kg/day, n = 18) versus with no oil (n = 18) for five consecutive days (10-min session twice daily) at a corrected gestational age of 34−35 weeks. Anthropometrics and clinical characteristics were recorded. Plasma triglyceride and total cholesterol concentrations were analyzed with an enzymatic kit. The fatty acid composition (weight%, mg/mL) of total plasma lipids and of red blood cell (RBC) membrane was analyzed by gas chromatography. Results: Weight gain velocity at the end of massage period was 12.3 ± 1.4 g/kg/day with oil vs. 9.8 ± 1.4 g/kg/day with no oil (p = 0.1). Digestive autonomy, plasma lipid parameters, polyunsaturated fatty acids in plasma total lipids or in RBC were comparable. The no oil group displayed a higher RBC level in nervonic acid at discharge (4.3 ± 0.2 vs. 3.4 ± 0.2%; p = 0.025) and in C18:1n-9 plasmalogen species at the end of the massage period and at discharge (0.73 ± 0.06 vs. 0.48 ± 0.06; 0.92 ± 0.06 vs. 0.69 ± 0.06%; p < 0.01), two molecules that are involved in neurodevelopment. Conclusions: The use of isio4 oil did not provide additional benefits for the development of very premature newborns, neither changed lipid metabolism nor polyunsaturated fatty acid biological status, which did not corroborate the existence of a percutaneous route for oil lipid absorption. The reason for different levels of nervonic acid and plasmalogen in RBC remains to be explored.
Collapse
Affiliation(s)
- Aurélie Garbi
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
| | - Martine Armand
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; (M.A.); (C.S.)
| | - Any-Alejandra Beltran-Anzola
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CERESS, Marseille, France
| | - Catherine Sarté
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; (M.A.); (C.S.)
| | - Véronique Brévaut-Malaty
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
| | - Barthélémy Tosello
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Correspondence:
| | - Catherine Gire
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CERESS, Marseille, France
| |
Collapse
|
43
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
44
|
Tamana SK, Tun HM, Konya T, Chari RS, Field CJ, Guttman DS, Becker AB, Moraes TJ, Turvey SE, Subbarao P, Sears MR, Pei J, Scott JA, Mandhane PJ, Kozyrskyj AL. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021; 13:1-17. [PMID: 34132157 PMCID: PMC8210878 DOI: 10.1080/19490976.2021.1930875] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dysbiosis of gut microbiota has been retrospectively linked to autism spectrum disorders but the temporal association between gut microbiota and early neurodevelopment in healthy infants is largely unknown. We undertook this study to determine associations between gut microbiota at two critical periods during infancy and neurodevelopment in a general population birth cohort.Here, we analyzed data from 405 infants (199 females) from the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study. Neurodevelopmental outcomes were objectively assessed using the Bayley Scale of Infant Development (BSID-III) at 1 and 2 years of age. Microbiota profiling with 16S rRNA gene sequencing was conducted on fecal samples obtained at a mean age of 4 and 12 months.Using clustering methods, we identified three groups of infants based on relative abundance of gut microbiota at 12 months: Proteobacteria-dominant cluster (22.4% higher abundance at 12 months), Firmicutes-dominant cluster (46.0% higher abundance at 12 months) and Bacteroidetes-dominant cluster (31.6% higher abundance at 12 months). Relative to the Proteobacteria-dominant cluster, the Bacteroidetes-dominant cluster was associated with higher scores for cognitive (4.8 points; FDRp = .02), language (4.2 points; FDRp≤0.001), and motor (3.1 points; FDRp = .03) development at age 2 in models adjusted for covariates. When stratified by sex, only male infants with a Bacteroidetes-dominant microbiota had more favorable cognitive (5.9 points, FDRp = .06) and language (7.9 points; FDRp≤0.001) development. Genus Bacteroides abundance in gut microbiota was positively correlated with cognitive and language scores at age 2. Fully adjusted linear mixed model analysis revealed a positive association between Bacteroidetes-dominant cluster and change in cognitive and language performance from 1 to 2 years, predominantly among males. No associations were evident between 4-month microbiota clusters and BSID-II scores. Noteworthy is that enhanced sphingolipid synthesis and metabolism, and antagonism or competition between Bacteroides and Streptococcus were characteristic of a Bacteroidetes-dominant gut microbiota.This study found strong evidence of positive associations between Bacteroidetes gut microbiota in late infancy and subsequent neurodevelopment, most prominently among males but not females.
Collapse
Affiliation(s)
| | - Hein M. Tun
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada,HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Theodore Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Radha S. Chari
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Catherine J. Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Allan B. Becker
- Department of Pediatrics & Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J. Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, Child & Family Research Institute, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Malcolm R. Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, University of Alberta, Edmonton, AB, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Piush J. Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada,CONTACT Anita L. Kozyrskyj Department of Pediatrics, University of Alberta, 3-527 Edmonton Clinic Health Academy, 11405-87th Ave, Edmonton, ABT6G 1C9, Canada
| |
Collapse
|
45
|
Zhang S, Qian Y, Li Q, Xu X, Li X, Wang C, Cai H, Zhu J, Yu Y. Metabolic and Neural Mechanisms Underlying the Associations Between Gut Bacteroides and Cognition: A Large-Scale Functional Network Connectivity Study. Front Neurosci 2021; 15:750704. [PMID: 34733135 PMCID: PMC8558260 DOI: 10.3389/fnins.2021.750704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
There is a proof-of-concept that microbial metabolites provide a molecular connection between the gut and the brain. Extensive research has established a link between gut Bacteroides and human cognition, yet the metabolic and neural mechanisms underlying this association remain largely unknown. Here, we collected fecal samples, resting-state functional MRI, and cognitive data from a large and homogeneous sample of 157 healthy young adults. 16S rRNA gene sequencing was conducted with abundances of Bacteroides and metabolic pathways quantified by species annotation and functional prediction analyses, respectively. Large-scale intra- and internetwork functional connectivity was measured using independent component analysis. Results showed that gut Bacteroides were related to multiple metabolic pathways, which in turn were associated with widespread functional network connectivity. Furthermore, functional network connectivity mediated the associations between some Bacteroides-related metabolic pathways and cognition. Remarkably, arginine and proline metabolism, phenylalanine metabolism, and biosynthesis of unsaturated fatty acids act as the key metabolic pathways that are most contributive, and the executive control and sensorimotor systems contribute most strongly at the neural level. Our findings suggest complex poly-pathway and poly-network processes linking Bacteroides to cognition, more generally yielding a novel conceptualization of targeting gut Bacteroides as an intervention strategy for individuals with cognitive impairment.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qian Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xueying Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
46
|
Rudi K, Zhao L. Grand Challenges in Understanding Gut Microbes. Front Microbiol 2021; 12:752829. [PMID: 34675912 PMCID: PMC8524079 DOI: 10.3389/fmicb.2021.752829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Knut Rudi
- Faculty of Chemistry Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Liping Zhao
- Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
47
|
Xu G, Xing G, Zhang B, Zhu J, Cai Y, Shen T, Rao J, Shi R, Cao Z, Nguyen T. The Relieving Effects of a Polyherb-Based Dietary Supplement ColonVita on Gastrointestinal Quality of Life Index (GIQLI) in Older Adults with Chronic Gastrointestinal Symptoms Are Influenced by Age and Cardiovascular Disease: A 12-Week Randomized Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6653550. [PMID: 34539805 PMCID: PMC8448599 DOI: 10.1155/2021/6653550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022]
Abstract
Chronic gastrointestinal symptoms (CGS) negatively affect the quality of life in about 15-30% of the population without effective drugs. Recent studies suggest that dietary supplement may improve CGS, but inconsistent results exist. The goal of this study is to evaluate the effect of a polyherbal-based supplement ColonVita on the gastrointestinal quality of life index (GIQLI) in 100 old adults with CGS (63.1 ± 9.6 years) who were randomly assigned to daily ColonVita or placebo tablets (n = 50/group) for 12 weeks in a double-blind, randomized controlled trial design. No significant fibrdifferences were found between ColonVita and placebo in the baseline total GIQLI score (101.12 ± 16.87 vs. 101.80 ± 16.48) (P > 0.05) or postintervention total GIQLI score (114.78 ± 9.62 vs. 111.74 ± 13.01) (P > 0.05). However, ColonVita significantly improved 16 scores of the 19 core GI symptoms compared with 10 items improved by placebo. The ColonVita group significantly improved the remission rate of 5 core GI symptoms compared to placebo and significantly improved the total GIQLI scores (118.09 ± 7.88 vs. 109.50 ± 16.71) (P < 0.05) and core GI symptom scores (64.61 ± 3.99 vs. 60.00 ± 8.65) (P < 0.05) in people ≥60 years of age (n = 49) but not in those under 60 y (n = 51). ColonVita significantly improved the total GIQLI scores and core GI symptom scores in people without cardiovascular diseases (CVD) (n = 56) (116.74 ± 9.38 vs. 110.10 ± 14.28) (P < 0.05) and (63.11 ± 4.53 vs. 59.93 ± 8.03) (P=0.07), respectively, but not in those with CVD (n = 44). Thus, ColonVita was beneficial for old adults with CGS, especially those ≥60 years of age and without CVD. Because a heterogenous pathogenesis of CGS-like irritable bowel syndrome (IBS) and inflammatory bowel disease (ISD) is differentially associated with CVD, different comorbidities may have influenced the outcomes of different trials that should be controlled in further studies.
Collapse
Affiliation(s)
- Gang Xu
- Department of Community Health and Behavioral Medicine, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Xing
- The Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical University, Nanchong Central Hospital, Nanchong 637000, China
- Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville 20850, Maryland, USA
| | - Bing Zhang
- The Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical University, Nanchong Central Hospital, Nanchong 637000, China
| | - Jingfen Zhu
- Department of Community Health and Behavioral Medicine, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Cai
- Department of Community Health and Behavioral Medicine, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian Shen
- Department of Community Health and Behavioral Medicine, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, California, USA
| | - Rong Shi
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaochun Cao
- Jiaxing Subdistrict Community Health Service Center, Hongkou District, Shanghai 200086, China
| | - Tuong Nguyen
- Department of Research, DRM Resources, 1683 Sunflower Avenue, Costa Mesa, CA 92626, USA
| |
Collapse
|
48
|
Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther 2021; 231:107978. [PMID: 34492236 DOI: 10.1016/j.pharmthera.2021.107978] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are live microorganisms, which when administered in adequate amounts, present a health benefit for the host. While the beneficial effects of probiotics on gastrointestinal function are generally well recognized, new animal research and clinical studies have found that alterations in gut microbial communities can have a broad range of effects throughout the body. Non-intestinal sites impacted include the immune, endocrine, cardiovascular and the central nervous system (CNS). In particular, there has been a growing interest and appreciation about the role that gut microbiota may play in affecting CNS-related function through the 'microbiota-gut-brain axis'. Emerging evidence suggests potential therapeutic benefits of probiotics in several CNS conditions, such as anxiety, depression, autism spectrum disorders and Parkinson's disease. There may also be some gender-specific variances in terms of probiotic mediated effects, with the gut microbiota shaping and being concurrently molded by the hormonal environment governing differences between the sexes. Probiotics may influence the ability of the gut microbiome to affect a variety of biological processes in the host, including neurotransmitter activity, vagal neurotransmission, generation of neuroactive metabolites and inflammatory response mediators. Some of these may engage in cross talk with host sex hormones, such as estrogens, which could be of relevance in relation to their effects on stress response and cognitive health. This raises the possibility of gender-specific variation with regards to the biological action of probiotics, including that on the endocrine and central nervous systems. In this review we aim to describe the current understanding in relation to the role and use of probiotics in microbiota-gut-brain axis-related dysfunction. Furthermore, we will address the conceptualization and classification of probiotics in the context of gender and lifespan as well as how restoring gut microbiota composition by clinical or dietary intervention can help in supporting health outcomes other than those related to the gastrointestinal tract. We also evaluate how these new learnings may impact industrial effort in probiotic research and the discovery and development of novel and more personalized, condition-specific, beneficial probiotic therapeutic agents.
Collapse
Affiliation(s)
| | - Kevin Ha
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Paul Tsai
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
49
|
Chen J, Li H, Hird SM, Chen MH, Xu W, Maas K, Cong X. Sex Differences in Gut Microbial Development of Preterm Infant Twins in Early Life: A Longitudinal Analysis. Front Cell Infect Microbiol 2021; 11:671074. [PMID: 34458157 PMCID: PMC8387566 DOI: 10.3389/fcimb.2021.671074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Infant gut microbiota plays a vital role in immune response, mediates neurobehavioral development and health maintenance. Studies of twins’ gut microbiota found that gut microbiota composition and diversity tend to be mature and stable with increasing postnatal age (PNA). Preterm infant gut microbiome shifts dramatically when they were staying in the neonatal intensive care unit (NICU). Compositions and shifting characteristics of gut microbiota among neonatal preterm twins and triplets during their early life are still unknown, which impedes a better understanding of the mechanism underpinning neurobehavioral development and precise intervention/health of preterm neonates. This longitudinal cohort study used a twins/triplets design to investigate the interaction of genetic (e.g., male vs. female) and environmental factors influencing the development of the gut microbiome in early life. We included 39 preterm infants, 12 were Female twins/triplets (Female T/T) including 3 twins pairs and 2 triplets, 12 were male twins (Male T) including 6 twins pairs, and 15 were mixed-sex twins/triplets (Mix T/T) including 6 twins pairs and 1 triplet (8 females and 7 males) during the first four weeks of NICU stay. Weekly gut microbiota patterns between females and males were compared by linear discriminant analysis (LDA) effect size (LEfSe). Metagenomics function of gut microbiota was predicted by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Weekly function (KEGG pathways) differences between females and males were detected by using Statistical Analysis of Metagenomic Profiles (STAMP). Results found that female pairs and male pairs were significantly different in gut microbiome diversity, compositions, and predicted metabolic profiles, importantly, females and males were also significantly dissimilar within their co-twin/triplet pairs of the mixed-sex group, infants of co-twins/triplets shared more similar features than un-related infants from different twins’ pair. Future research developing personalized interventions for vulnerable high-risk infants should consider sex, and the interaction of sex and environmental factors.
Collapse
Affiliation(s)
- Jie Chen
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Hongfei Li
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Wanli Xu
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Kendra Maas
- Microbial Analysis, Resources, and Services (MARS), University of Connecticut, Storrs, CT, United States
| | - Xiaomei Cong
- School of Nursing, University of Connecticut, Storrs, CT, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
50
|
Zubareva OE, Melik-Kasumov TB. The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation of Epileptogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|